SEG2105 - Introduction to Software Engineering

Lab 3b Instructions – State Diagrams
Fall 2014
Last week we learned about creation of class diagrams, and generation and execution of code from those diagrams.

Purposes this week:

1. To enable you to better understand how to model state diagrams in UML
2. To enable you to understand how UML state diagrams can be translated into code, and how Umple allows you to write such code automatically.

You may work individually or in groups of two. Have the TA verify your work at the end since it will count for your participation grade.

There is no lab report or assignment associated with this lab.
You will need to keep this file open since there are things you will need to copy and paste from here to a web browser or to other files.

1. Learning about basic state machine models
a) Go to http://statemachines.umple.org 
b) Take a few minutes read through the example state machines in each of the following pages (under "State Machines" left side of manual page)
State Machine Actions and Do Activities
Nested State Machines
Auto-Transitions
Timed Transitions
c) Look for a few minutes at the CanalLock state machine example in Umple

Make sure you are progressing to step 2 no later than 30 minutes after the start of the lab.
2. Getting a state machine to run
a) Load the second example at http://statemachines.umple.org  into UmpleOnline. 
This is the example with lots of Boolean methods.
b) Use options/GraphViz state diagram to render the model as a state diagram. Study the state diagram.
c) Remove the ‘lazy’ keyword so the warning goes away. 
All the warning does is says that lazy means to initialize by default; but the attribute is already being initialized.

d) Copy the text of the Umple code into your favourite IDE or text editor. Call the resulting file garage.ump.
e) Download the Umple compiler as you did last week. If you forget, see http://dl.umple.org 

f) Compile the code in garage.ump. And note the results.

g) Compile on the command line and specify the –c – option to tell the Umple compiler to compile the resulting Java code.
java -jar umple.jar garage.ump -c -
h) Add a main thread as follows. This will execute whenever the garage is instantiated.
  // Added for lab

 active {  

    System.out.println("Garage door is now active");

    pressButton();

    Thread.sleep(1000);  // wait a second

    openingCompleted();

    System.exit(0);

  }

i) Add a main program to instantiate the class.
  // Added for lab  

  public static void main (String[] argc) {

    new Garage();

  } 
j) Compile the Umple, and resulting Java as before, and run it. Observe that several events cause a change of state.
3. Modifying the state machine to do more things and meet new requirements
a) Add methods obstruction() and clearObstruction() that change the value of entranceClear. Then compile and run the program (compile and run after every step from now on).
b) Add a reasonably long sequence of calls to pressButton, openingCompleted, closingCompleted, clearObstruction and obstruction to make the state machine take every transition at least twice.
c) Change the design so that instead of having a Boolean attribute with two values, instead you have a second state machine Entrance with two states Obstructed and Clear, with events obstruction and clearObstruction that transition between them. Also get rid of the entranceClear attribute and the two methods you wrote in step a, since the methods will be generated automatically.
Hint: it might be easier to edit the diagram in a text editor, but if you have problems, you can paste it into UmpleOnline and generate a diagram of the state diagram to see what is going on.
Unless you are very clever and thought of it without being told, you will notice when you compile and run the above that an error occurs saying that getEntranceClear() does not exist.
d) To deal with the issue above change the guard as follows. We need to refer to the state of the Entrance state machine instead of the attribute which we deleted.
getEntrance().equals(Entrance.Clear)
e) Add another state Stopped, and make the state diagram go to Stopped when the button is pressed while Opening. If the button is pressed while Stopped, the state machine would go to Opening again.
f) Test your changes. Then show the TA your updated diagram and also the trace of executing the system.
If you don’t have time to complete the lab, simply show the TA how far you have got before leaving.

This is the last formal lab in the course. There will be a break now to prepare for the midterm. Then you will be doing a project (assignments 5 and 7). You will be back in the lab at the end of the semester for demonstrations of your project.

3 of 4

