

Reverse Engineering of Legacy Systems

Mitel Corporation University of Ottawa

Progress Presentation CASCON November 1998

1 Legacy Software Workshop - Dec. 1998

Timothy C. Lethbridge

Mitel / University of Ottawa

Outline:

How we discover what software engineers do

- Synchronized Shadowing
- Work patterns in UCMs

Work patterns

- Just in Time Comprehension
- Search
- Switching Among Tools
- Copying and Pasting

Tool Requirements

The WASS methodology

'Work Analysis with Synchronized Shadowing'

1. Learn about basic needs of your users (software engineers)

2. Gather structured data about them using Synchronized Shadowing:

- Actions
- Goals, plans tasks

3. Develop Use Case Maps describing patterns of work

4. Derive requirements from all of the above

Timothy C. Lethbridge

Synchronized Shadowing

Involves two 'observers'

Working on laptops

Each observing a different kind of data

Clocks are synchronized

Data is merged later to obtain composite view

Synchronized Shadowing

The observer of actions

Synchronized Shadowing

The observer of tasks, goals etc

Resulting Data

1 13:32:40 NEW-GOAL Friday, August 01, 1997 Jane Smith 2 13:39:26 still explaining stuff 3 13:39:52 UNIX ls cd 4 13:40:12 EDITOR srh 5 13:40:22 EDITOR quit 6 13:40:28 GREP in system 7 13:40:40 VIS at results 8 13:41:02 EDITOR open found file 9 13:41:33 EDITOR open empty 10 13:41:45 EDITOR copy 11 13:41:52 EDITOR paste 12 13:42:00 EDITOR save as xxdbllq.c 13 13:42:21 MODIFY part of query text 14 13:44:08 EDITOR save 15 13:44:12 MODIFY func name 16 13:44:38 EDITOR save 17 13:44:59 stop observing

1 13:32:30 NEW-GOAL Friday, August 01, 1997 Jane Smith

2 13:33:21 GOAL-SUB writing new database query

3 13:34:50 EXPLAN will be invoked from two different parts of the UI

4 13:36:20 GOAL-SUB create code for the query

4 13:37:39 PLAN will clone code for similar query

5 13:40:00 HYPOTHESIS suitable query to copy is in file xvdbllq.c

6 13:40:24 FAILURE couldn't find code there

7 13:40:31 GOAL-SUB search in system for suitable code to clone

8 13:40:50 EXPLAN Saw code before somewhere

9 13:41:01 SUCCESS File xwdbllq.c has it

10 13:41:56 SUCCESS New file created

11 13:44:40 GOAL-SUB Add UI to fire off new query

12 13:44:55 end of session

Use Case Maps to Analyze Data

Work patterns

Just-in-time comprehension

- Software engineers seek to understand just what they need to solve the current problem
- They can't ever hope to learn or remember more than just a small part of the system

Work patterns ...

Use of files

Work patterns ...

Use of editors

Work patterns ...

Search

Work patterns

Copy and pasting of data

Event types	Percent of Total	Standard Deviation	Percent of	Standard Deviation	Number of Events
Total number of events	Iotai		Subtotals	Deviation	966
Copy text	9.2%	6.0%			89
Copy from file $(1c, 7c)$			66.3%	22.0%	59
Copy from search results $(4x, 5x)$			34.8%	23.8%	31
Search	28.3%	10.3%			273
Search in editor (1p, 1e, 7p, 7e)			59.3%	17.1%	162
Search in system			40.7%	17.1%	111
Using grep (4a, 4b)			23.8%	15.6%	65
Using other tool (5a, 5b)			16.8%	16.6%	46
Study	28.5%	13.9%			275
Study in editor (1r, 7r, 4t, 5t)			87.6%	7.1%	241
Study search results (4c, 5c)			12.4%	7.1%	34
Paste text	10.6%	7.0%			102
Paste to modify text $(1q, 7q)$			7.8%	23.5%	8
Paste to search in editor (1p, 7p)			32.4%	22.7%	33
Paste to open file (2a, 8a)			22.5%	16.6%	23
Paste to search in system (4a, 5a)			37.3%	33.0%	38

	Copy from file	Copy from search results
Paste to modify text	5.1%	16.1%
Paste to search in file	27.1%	9.7%
Paste to open file	1.7%	71.0%
Paste as search argument	47.5%	3.2%
Not immediately used	18.6%	0.0%

Timothy C. Lethbridge

Requirements for a source browsing tool

Strong support for search of all types Make good use of screen real-estate

Make transitions from one type of information to another easy to do

Allow heterogeneous graph structures in exploration

Allow user to build their own mental model

Requirements for a source browsing tool 2

Allow easy context switching and return

Make it fast

Make it work with multiple languages

Make it USABLE!!!!!

See our Demonstration

Timothy C. Lethbridge