CODE4 Reference Manual Introduction 1

CODE4.2

Reference Manual and User Guide
April 1995 (revision 18)

This document is the main reference guide to the CODE4 system. Snce CODE4 isa research
tool under development, this manual is not guaranteed to be completely up-to-date or accurate.

Language Analysis and Knowledge Engineering Group, University of Ottawa
Ottawa, Ontario, Canada K1N 6N5
613-562-5800 ext. 6722

Chief CODE4 Designer: Prof. Timothy C. Lethbridge (tcl @csi.uottawa.ca)
Other Authors: Karen Eck (eck@csi.uottawa.ca),Judy Kavanagh (kavanagh@csi .uottawa.ca)

Lab Manager: Prof. Doug Skuce (doug@csi.uottawa.ca)
CODE4 Reference Manual Introduction 1

CODE4 Reference Manual Table of Contents 2

Table of Contents

TahIE OF CONLENES......cueiiiiiieesie et neesae e 2
I o [o o SRR 6
1.1 Organization of thiSAOCUMENL...........cceeieiieiecee e 6
1.2 Key conCepts tO UNAErStand..........cocuvererierereeieiesiesie st 7
1.3 Typical PatterN Of USE.......ccoviiiiirieriseee et 8
IR = 1 0] 01O 8
RNV 1 o 11 2o OO 8

2 SMAIITAIK BASICS......veiiiiicieriieiee et sttt b e 10

2.1 CODEA4 enhancements to basic Smalltalk-80............cccoooerviiiiiniinieiiene 10

3 Suggestions About What Y ou Should LEBIN.........cccuveveiirinieieere e 12

3. L GEtiNG SEAMEU......c.eeeiieeiiece e 12

3.2 Important Material to Learn in Order to be Productive............cccccovvverienene 21

4 Major User Interface COMPONENLS.........courieereerieeiereeesiesiee e sse e e seeseesseesseseesseeneas 23

4.1 TNE LAUNCNEY ...ttt sttt st be e nee s 23

4.2 The CONtrol Pan€l..........c.ooieiiiiiiieseee e 25

4.2.1 The ‘environment’ CONLrol PANEL..........cooeererierierirere e 26

4.2.2 The ‘KBS CONLrol PaNnel.........cooeiiiiiieeiee e e 28

4.2.3The ‘'masks CONLIOl PANELccoeirirereeere e 30

4.2.4 The ‘browser types CONLrol PANEL.........ccoeeiieririeieeeseeeree s 30

4.2.5 The 'graph format’ control Panel...........ccoeoereereereineeeese e 30

4.2.6 The'outline format’ CoNtrol PanEl..........coooereereireineeee e 31

4.2.7 The 'help’ CONtrol PANEL........cccveieeee e 32

4.3 BIOWSENS.....oeeieeeieesieeeiee sttt n e e e s n e e s e e e n e e nne e ene e e ne s 33

4.3.1 Components of browser SUBWINAOWS...........ccccceeiriieiisie e 36

4.3.2 SELECLIONS......veietereeeeieeree ettt 37

4.3.3 Nodes and [iNKS 8S CONCEPLS.........cieruirierierieieie ettt e 37

4.3.4 GENEXIC OPEFBLIONS.......eeueeuieueeiirieeie sttt sttt sttt se et e et e s sbesaesbesbesbesaesbe e es 38

4.3.4.1 Selecting one or more items on which to perform operations............. 38

4.3.4.2 Changing the size of a SUDWINAOW............coovveirieirieirineeeeeees 39

4.3.4.3 Editing the text of an item (renaming)..........ccceoeeeeerereneieneneseseseene 39

4.3.4.4 Performing acommand (in general)........occveeerennenerennenseseeee 41

4.3.4.5 Performing a command from amenU...........cceeereeneieneenecniencneens 41

4.3.4.6 Performing a command with ahot Key..........c.coevevviniinninninncns 45

4.3.4.7 Performing a command with an action button..............cccceeveeveeenene 46

4.3.4.8 COPYING ITEMS.....veiieieiiieiesieseeieieseeeeese e sre e re e see e e e e ne e e e e eneens 46

4.3.49Minimizing and hiding........cccccevieiiiieniiciese e 46

4.3.5 0utline interaction ParadigMm...........ccoeiiiirenie s 47

4.3.5.1 Format options in OULIINE PANES...........coererierienieiereeeeeres e 47

4.3.5.2 Appearance of items in outling PanNES..........ccoevererereneieeceeeeereee 47

4.3.6 Graphical interaction paradigm...........ccoeeeierirene e e 49

4.3.6.1 Navigating, selecting and rearranging agraph...........cccceveerereecneenes 49

4.3.6.2 Displaying icons (pictures) at graph nodes.............coceeverrenieeneennns 49

4.3.6.3 Format options for the entire graph...........ccocoveeneinennenneneseee, 50

4.3.6.4 Apprarance of items on agraph..........cccveeerernenniensiesee e 52

4.3.7 User language interaction paradigm (Value Panes)..........ccveeverereneneneseneeneenes 53

4.3.7.1 Format optionS in ValUE PANES........cccevererererereeseeseseeseeseseeseeeesesneens 53

4.3.7.2 Text manipulation options in value panes............ccooevevenereeneeseeennenns 53

4.3.7.3 Edit OptionNs iN VAlUE PANES........ceceeieiierieieieseeeeeeese e ste e 53

4.3.7.4 Displaying and editing facetsin the value pane..........ccccoceevvevevnnene 55

4.3.8 Matrix interaction Paradigm...........ccoerererenieiieeeeeee s e 56

CODE4 Reference Manual Table of Contents 3

4.3.8.1 Format options in the matriX paradigm..........ccccceeeveninieneneneneseenens 56

4.3.8.2 Matrix example 1: Statements about a conCept..........cccereerererreecenennes 59

4.3.8.3 Matrix example 2: Statements about a concept and siblings............... 59

4.3.8.4 matrix example 3: Statements of a concept and its coordinates.......... 61

4.3.8.5 Manipulating matrixX information............c.ccoovvevrenienieneneneneneeeeeeen 62

4.3.8.6 Modifying statement values in matrix CellS........ccoovvvvrvrierenecnieeinnnns 62

4.3.8.7 Masking out concepts and properties from amatriX........ccoceeeeveeenene. 62

4.3.8.8 Unmasking concepts and propertiesin amatriX.........ccoceeevererererenenn 64

4.3.8.9 Rearranging the order of concepts and propertiesin the matrix......... 65

4.3.8.10 The property history MatriX.......ccoecvererererennenseneeseeeseeeseeeseenes 65

A A MBSK VIBWS....c.eeieeciiee ettt ettt e s e e tee et e e st e e e ate e snaeeeebeeeenbeeesaneeeennes 66
4.4.1 Editing the mask predicate hierarchy...........ccccooeriiiniencee e 66

4.4.2 Editing the mask predicate arguMEeNtS...........cocovrererenenenseneesieesee s 67

4.5 FeedbDaCk Pan€lS.........ccooiiieiie et e 69
ST O] 1.1 7= 0 SRR 70
5.1 Opening WiNAOWS - DASICS.........ccoueriiririininiereeieee e 70
5.1.1 Opening the TaUNCHE ..o 70

5.1.2 Opening the CoNtrol Panel..........cooeiireencereeeere s 70

5.1.3 OPeNing @BrOWSEN......cocuiiieiireeerie ettt 70

5.1.3.1 Opening atop [evel BroWSEr........cccoveereireereee e 70

5.1.3.2 Opening a browser or subwindow from another browser................... 71

5.1.4 Opening afeedback Panel..........ccccvereieieriecccse e 73

5.1.5 Displaying statistics about a knowledge base...........ccccvevveverenieveseseseceeeene 73

5.2 Manipulating Knowledge bases...........cccucveieeveeie e 73
5.2.1 Loading aknowledge Dase...........coo i 73

5.2.2 Changing aknowledge base Name............ccooiiiiii e 74

5.2.3 Saving aknowledge base t0 disK.......c.ooeirririnr e 74

5.2.4 Removing a knowledge base from memory ... nenesesesee e 74

5.2.5 Removing al KBsfrom memory and creating anew default............cccccoveenenee. 74

5.2.6 Creating a new default (empty) knowledge base.........cccovvvvvvrienennneneseeeeene 74

5.2.7 Merging one knowledge base with another...........cccccoovievie v, 75

5.2.8 Duplicating a knowledge base or subtree in memory..........ccoocvverrennenniennenens 75

5.2.9 Manipulating knowledge base WiNdOWS...........ccoovrirrinniineienee s 76

5.2.10 Other knowledge base OPErations............cvieereirenesenisenesie s seeeseenens 76

5.3 Editing Knowledge bases ... 77
LSRG T X [0 T aTo ot o= o] 1= 77

5.3.2 DELEING CONCEPLS......ccueiieiiiiiiiiesiesieeeee e sttt e sttt se e e e se s esesnesrenre e 77

5.3.3 Adding propertieS t0 @ CONCEPL.......cccerveieirieeecerese e re et see e 78

5.3.4 Deleting properties from @ CONCEPL.........cceirirerirere et 78

5.3.5 RENAMING & CONCEPL......c.eieiieieieieeiireee ettt sae b 78

5.3.6 Changing the value of a Statement...........cccceererniinenere e 78

5.3.7 Adding and editing facets Of Properties.........c.uoverrereeneeneeneeseeseese s 78

5.3.7.1 Making faCetSiNNErit.........ccoviiriniieie e 78

5.3.8 Specifying substitution (delegation and special symbols)........ccccoceevveivvirnenene 79

5.3 9 REPAIENTING.....c.e vttt ettt s b e et e b e b 80

5.3.10 Specifying MUILIPIE PArENES.....c.civeirieirieerie et 80

5.3.11 Moving a property to adifferent CONCEPL........eveveereereeierre e 81

5.3.12 Making a property an inverse of another...........cccovvivvie v 81

5.3.13 Making conCeptS diSOINt........cceiveiiirieiericieeieeeee et eneas 81

5.3.14 Making concepts NONAIS OINL.........cccivereeeiirieeesese s e reens 81

5.3.15 Changing atype into an iNSLANCE..........coereeerierererere e 81

5.3.16 Changing an iNStanCe iNtO @ tYe........coeruereeeriereeeriere et 82

5.3.17 Committing and CaNCElINGcccceeriririreie e 82

5.3.18 Editing different relations............ccoeoereinennennereee s 82

5.3.18.1 Creating asimple parts hierarchy..........ceoveeneneienciseeseeseeee 82

5.3.18.2 More complex hierarchies............cocoveenenninnensse e 83

CODE4 Reference Manual Table of Contents 4

5.3.18.3 Non hierarchical relations.............ccreireineinenesee e 84

5.3.18.4 Editing arbitrary relations textually..........c.coereieieininininicee 85

5.3.19 SPECITYING OFUEYcuiieeiirieiriiieteeet ettt 85

5.4 Querying aknowledge Dase............covreeeerenensereee e 87

B L MASKS. ..ot e e e e e eeeee e e es e e s st eteee s s s s et eneeee e e s ere e enenens 87

5.4.1.1 The visibility SUBMENU........c.ccoeieicieice e 87

BAAL2 PrEQICAIES.ceivieeecteete ettt ettt ettt st bbb e b eaeenreenes 88

Lo T B Y o o [(U= = 90

5.4.1.4 The ‘goto’ Capability.......cccevieieeieeieire e 90

5.4.2 Networks of dependent DIrOWSEN'S..........cooiirirereneeeeeee s 91

5.4.3 HardCOPY OUELPUL.........cirueiereeeete ettt st sbe e 91

5.5 CUSIOMIZING DIOWSES......ueiieieieiiesie sttt 93

6 SYSEEM KNOWIEAQE......c.eii et ne e e reesreeans 94

6.1 PrimMITIVE TYPES. ...ttt ne s 9

6.2 PrimitiVe PrOPEItIES.......coiuiiiiiieie et s sae e e 94

6.2.1 MetaCONCEPL PrOPEITIES. ... ccveeeereereirieriereereeeeee e ee e seesee e seesaesee st e e nee e eneeneenes 94

6.2.2 Statement Properties (FACELS).......cv e 95

6.2.3 Properties Of Properties..... ..o e 96

6.2.4 TN PrOPEITIES....c.ecvieetiieterieterteert ettt b e bbbttt 96

7. EXplanation Of Error MESSAgES........cceieeieeiieiiesieeieseesseesieseesseessessessseessesseessesnsessenns 97
Appendix 1. Files Processed Dy CODE............ccooiiiiiiiiereiesese e 100
AL1Knowledge Base FilEsS........ocoi e 100
N V=S 2 T S 100
AL ENVIrONMENE FIlES.......coiiiiiieceeeeee e 100
AL A Browser Template FIlES........coviiiieieee e 100
Appendix 2. Important Changesin the Latest Release............cccovvceeveicieiie e, 101
Appendix 3. Some CODE4 Design Phil0SOPhIES..........ccvecieieeiiciecie e 102
Appendix 4. Future Enhancement Plans...........cccoce i iiie e 103
Appendix 5. User Enhancement of CODE4 software — A Brief Guide......................... 104
AS5.1 Enhancing the eXiSting SYSteM.........cccoeiiiereniineeeee e e 104
A5.2 Interfacing to the existing SYySteM........cooov i 104
Appendix 6. Auxiliary Tools Delivered with CODEA............ccooiininirieeieesese e 106
AB.LThe Call BrOWSES ... e 106
AB.1.1 DesCription Of FUNCHION........ccoiiiiieiecieerteere e 106
AB.1.2 IMplementation NOLES..........ccoiriririeereee ettt seere e 106
AB.2 HierarchiCal INSPECLON.........ccveiiiriirierie st 107
Appendix 7. Building CODE from SOUICES..........cccevrierierieneresieniesieeesee e 108
Appendix 8. Knowledge Preprocessor User’sManualcocevevereneenenenencsenene 109
AB.L INITOTUCTION. ...ttt 109
AB.2 GELtING SLAME™.cceeeiecie e 109
AB8.2.1 Opening the KNowledge PreproCESSOTcoeereeriereriererenesesese e 109
AB.2.2 Closing the KNowledge PreproCESSOL.........cureerieerieerieerieesiesesresee e eseenes 109
A8.3 Using the KNowledge PreproCESSOr.........ccveieeieieerieeeeseesiesseesseessesseesseenes 109
AB8.3.1 The Source file WINAOW..........cooiriieieirrieees s 109
AB.3.L.L MENU ITEIMS.....eiviiiriiirieisiiie sttt s s neens 110
AB.3.2 ProCESSING @ SENLENCE.coeeueruirierieeterieste st seeseesee st e se e e e b sae e sbesbeseeseeeas 111
AB.3.2.1 UNKNOWN WOITS.......coueuerrierriintieeiiseeiessese et 111
AB.3.2.2 The phrase WINGOW...........ccuririririiinese et 111
AB.3.2.3 Menu itemsin the phrase Window............c.ccveereineenenenseseeneenes 111
A8.3.3 Composing knowledge to add to the knowledge base...........cccooeveerircciennenne, 112
A8.3.3.1 Assembling knowledge in the knowledge composing window....... 112

AB8.3.3.2 Menu items in the knowledge composing Window............cc.ccceeee.. 113

CODE4 Reference Manual Table of Contents 5

A8.3.4 Adding to the knowledge base............cooe i 114

A8.3.4.1 The'add to Kb' DULTON.........coiiiiiiiie e 114

AB.3.4.2 |SA relationSNiPS......ccccuereeeirieirieeriee ettt 114

AB8.3.4.3 Adding a statement that isnot an ISA relationship..........c.ccoeeennee. 115

A8.4 What you need to run the knowledge preproCessor..........cceveverereresieneens 116
Appendix 9. The CODE4 KNOWIEAQE SEIVENccvcieieieeeeceecte et 117
A9.1 Genera Information about the SErVEr...........ccceveveece e 117

A9.1.1 How aclient must DENAVE..........ccocviiiieireeee e 117

AO. 1.2 PASSIWOIUS:....c.eevieetireetirieiirte ettt ettt bt bbb 118

A9.2 Commands. Constructors and NaVIgatorsS..........cceevuvereeiieeeseesreenveeseeeneens 118

A9.2.1 Syntax oOf referenCesto CONCEPLS.......ccvreiereereeirere e 118

A9.2.2 Alphabetical list of COMMANGS..........cccecveiriiiiinese e 119

A9.2.3 Exploring the knowledge base using Navigators............cccceeeveeveeieeieeieeiesienennens 121

A9.2.4 Using constructors to edit the knowledge base...........cccoeecinininnicnce 128

A9.3 Examples using commands to work with terms...........ccoceveeiinenininnenne 140
A9.4 Symbols used to refer to primitive CONCEPLS........ovvrverererereeeeere e 144
BiBHOGIaPNY ...t 146
GlOSSAIY ...ttt bbbttt bbbt b bt h e a et b e e b rennenneeneas 147

CODE4 Reference Manual Introduction 6

1 Introduction
CODE4 is a knowledge management system that can be used for many purposes, including:

* Designing or specifying something

* Resolving disagreementsin complex domains

» Documenting complex structures, procedures, rules, etc.
* Setting standards and defining terminol ogy

* Stimulating creative thinking

Traditionally, knowledge associated with the above tasks is represented in documents containing
text or diagrams. The knowledge is often poorly structured, ambiguous, contradictory and
incomplete. There is typically both conceptual and terminological confusion. A maor goa of
CODE4 isto allow people to represent and manage knowledge in a more structured way, so that
the computer can actively assist in preventing the above types of problem.

Other computerized tools exist that share this goal. There are specia purpose tools in various
domains (eg. CAD and CASE). There are genera purpose tools that manage informal
knowledge (e.g. integrated document processing tools, hypertext tools). There are also other
tools for knowledge representation and knowledge acquisition that, like CODE4, have been
developed by artificial intelligence researchers (e.g. KL-ONE derivatives, expert system shells).
We believe that CODE4 takes a well balanced approach: It can be used in a wide variety of
domains (both general and specific); the user can represent knowledge both formally and
informally, with both text and limited graphics.

Version 2 of CODE was used by various corporations and researchers in such domains as
software engineering, metallurgy, optical storage technology and philosophical thought. Version
3 was an experimental prototype. Version 4 (a complete redesign) adds flexibility, an enhanced
and rationalized knowledge structure, powerful user interface paradigms and much more.
Version 4 has been used in industrial and university settings since late 1991.

This document describes release 4.2 of CODE. This release runs under ObjectWorks 4.1 or
VisualWorks 1.0.

Comments, criticisms and suggestions are always welcome.

1.1 Organization of this document

This document is designed as a reference document in that it contains a more-or-less complete
technical coverage of CODE4. Nevertheless, it should be possible for an experienced person to
read it sequentially, exploring the document and the software at the same time.

The beginner should read sections 1, 2 and 3 sequentially, skipping over subsections that are
indicated to be for experts.

The rest of this introduction outlines key concepts and the environment in which CODE4 runs.
Section 2 describes Smalltalk, and how CODE4 has been integrated into that environment.
Section 3 is a step-by-step guide to help the beginner get started. Section 4 describes major user

CODE4 Reference Manual Introduction 7

interface components. Section 5 describes how to perform various actions to manipulate
knowledge. Finally, section 6 describes built-in knowledge. There are also several useful
appendicesincluding alist of literature references, a detailed glossary and a complete index.

1.2 Key concepts to understand

The key concepts to understand in CODE4 are briefly listed below. For a greater conceptual
understanding the user should refer to other papers listed in the bibliography. For a more
complete list of terms, refer to the glossary. On first reading, the beginner should only skim this
subsection.

Concept: A unit of knowledge. Specialized types of concepts include properties, statements,
instance concepts, type concepts, metaconcepts, temporary concepts, etc. Concepts can
become the subjects about which things can be said. To say something about a concept, one
combines it with a property making a statement. Concepts can be arranged in many types of
rel ationships.

Knowledge base: A group of concepts that is |oaded from afile into the on-board memory of
a computer (RAM). Multiple knowledge bases may be loaded at a time. In the future,
knowledge bases will be linkable in dependency relationships, but for now they are all
independent.

Knowledge map: A specification of anetwork of related concepts. Types of knowledge maps
include isa hierarchies (taxonomies), property hierarchies, partonomies, etc. Knowledge maps
are treated as directed graphs and are displayed (textually or graphically) in subwindows of
browsers (see below). Typically, the concepts in knowledge maps form hierarchies, although
thisis not necessary.

Knowledge mask: A filter that determines whether a concept will be included in a knowledge
map (and thus displayed to the user). It contains a logical expression (in future this will be
arbitrary CNF — conjunctive normal form — but for now it isjust alist of conditions that must
all betrue) relating a set of boolean conditions that are applied to each concept. Masks control
the visibility of concepts; they are used for hiding and showing specific sets of concepts, as
well as more detailed patterns of knowledge. Each knowledge map contains a knowledge
mask.

Interaction paradigm: A specification of look and feel of a subwindow. Examples include
‘outline’, ‘graphical’, ‘user language’ and ‘matrix’.

User language: Text that a user types when describing a property of a concept (i.e. a
statement). A user may restrict the language to a specialized syntax called Cleartalk that the
system can parse and process.

Browser: A window containing one or more subwindows that are linked together. A selection
in one subwindow causes an update of what is displayed in another subwindow. Each
subwindow operates on a knowledge map.

Driving browser subwindow: A browser subwindow which is linked to one or more other
(dependent) browser subwindows. A selection in the driving subwindow causes an update of
what is displayed in the dependent subwindow. Closing the window of the driver causes the
window of the dependent to close aswell..

Dependent browser subwindow: A browser subwindow updates automatically when the
selection in its driving subwindow changes.

CODE4 Reference Manual Introduction 8

» Browser template: A specification of how to build a browser describing its subwindows and
how they are interconnected. Each subwindow description includes the type of knowledge
map, the interaction paradigm, etc. There is a set of default browser templates. In the future it
will be possible for the user to add new templates

» Format: Information associated with each subwindow that refines its appearance. It includes
such attributes as font, alphabetical vs. hierarchical, graph layout algorithm, etc.

* Control panel: A window through which the user controls aspects of the CODE4 session. The
control panel allows loading and saving of files and the setting of various types of default
parameters.

» Feedback panel: A window associated with a knowledge base that indicates to the user what
commands have been executed and what problems have occurred. In the future it will make
active suggestions about actions the user can take to solve various problems.

1.3 Typical pattern of use

The following describes briefly a typical user session. See section 3 (Getting Started) for more
detail.

1) The user starts the CODE4 Smalltalk image and uses the control panel to load a top-level
knowledge base containing general knowledge (an ontology).

2) The user opens a browser, and sets display parameters so the browser is displaying knowledge
the ways the user wants.

3) The user queries the knowledge base by using masks and dependent browser subwindows.

4) Upon finding missing or incomplete knowledge, the user adds new concepts and refines
existing ones.

5) The user saves the knowledge base and quits the image.

1.4 Platforms

CODEA4 is intended to run on any platform with Objectworks™\Smalltalk-80 Release 4.1 from
ParcPlace. (It will also run using the VisualWorks version 1 virtual machine)

At least 5SMB of disk space is required for installation and a minimum of about 8M of RAM is
required to run the software. A fast machine (e.g. Sparc-10, or Pentium) is recommended,
athough the software is usable on slower machines, particularly for the creation of small
knowledge bases..

A high-resolution display is recommended. Color is optional, but can be useful if available. On
some machines the user of colour can degrade performance.

At the current time CODE4 is known to run properly on Sun4 (SunOS, but not Solaris), MS-
Windows and Macintosh (not Power-PC) platforms.

1.5 Availability

CODE4 Reference Manual Introduction 9

A demonstration version of CODE4 available by ftp from ail.csi.uottawa.ca. The version is kept
in a subdirectory called 'democode’. Y ou must log on with a specia password to get this version.
Please contact the one of the people listed on the cover page to obtain such a password. It is not
possible to save or load knowledge base files with the demo version; nor is it possible to browse
the source code.

For information about a full-fledged version, including cost, please contact us at the address on
the cover page of this document. We charge for copies of CODE4 in order to subsidize our
research. Educational institutions pay only a minimal fee though, and furthermore we may be
able to arrange reciprocity agreements to exchange each others' software.

CODE4 Reference Manual Smalltalk Basics 10

2 Smalltalk Basics

Users of CODE4 need relatively little knowledge about Smalltalk; however, it would be useful to
know the following points:

Smalltalk applications are delivered as two files: an image file (e.g. code4.im), and a sources
file (coded.sources). Y ou don’'t need the sources file unless you expect to modify the software
yourself. CODE4 is started by running a program called a virtual machine (VM). On most
machines, you tell the VM which image to run by typing the VM program name followed by
the image name (e.g. dost80 KBname.im). On the Macintosh, you simply click on an image
icon. In some environments your system administrator may have set up a special program
called a script that may slightly change the way you start CODEA4.

Asyou work with CODE4 you will notice an additional file in your directory with a suffix of
“.changes . This accumulates any changes made to the Smalltalk software in your image. For
most users it is unimportant.

In Smalltalk applications, the buttons on a three-button mouse have the following standard

usages:

Left (operate): SelectingjMiddle (menu): JRight (window):
whatever is pointed to. Displaying a menu that | Displaying a menu that
is application-specific. | performs window-manager
operations.

For machines that do not have three-button mice, the middle and right buttons have been made
redundant. The application-specific menu can be displayed by clicking on the horizontal
region above any subwindow (thisregion is called the menu bar).

It is possible to cut and paste between other applications and Smalltalk applications. The
Smalltalk end of such operationsis accomplished through menu selections.

In order to save your work, simply save the image (using the Launcher, see below); this
ensures that window layouts, etc. have been saved. In CODE4, it is also advisable to save
your knowledge base (i.e. the raw knowledge) from time to time, especially after you have
performed a major operation; the version number is automatically incremented with every
save. Although it is possible to load a knowledge base into CODE4 every time you want to
work on it, window layouts and similar traits are not saved unless you save the image.

2.1 CODE4 enhancements to basic Smalltalk-80

This subsection isintended for experts only.

» Itispossible to adjust the relative positions and sizes of subwindows. To do this, hold down

the control (ctrl) key and press the left mouse button while pointing to a scroll bar or menu bar
(you will see a double-tipped arrow aligned in the direction that the window can move). Then
move the mouse to a new location in the window and release the mouse button. Y ou can only

CODE4 Reference Manual Smalltalk Basics 11

adjust subwindow borders that are in the interior of awindow (i.e. you cannot change those on
awindow’s edge).

» Several major software development tools have been added, including a hierarchical inspector
and a hierarchical call browser. The genera CODE4 user need not be concerned about these
facilities. See appendix 6 for more information.

» Cut and paste operations of the paragraph editor have been generalized to allow for any object
to be copied, cut and pasted. When you cut or copy, the object is added to the set of paste
buffers as before. When you paste, a particular class of object is requested. The selected paste
buffer is converted, if possible, into the requested class. The previous mechanism is
unchanged from the user’s perspective in that pre-existing controllers use text only (a very
genera class). CODEA4, however, may place concepts in paste buffers; these can be pasted as
text into a paragraph (or even an application external to Smalltalk), or they can be pasted as
concepts into some other element of CODE4. For example, the concept car may have a
property of engine that has no value. The concept car engine can be pasted in as the value, so
that the resulting property isengine: a car engine.

« Severa Smalltalk bugs have been fixed, e.g. a bug that caused a delayed system crash when a
window in adifferent project was closed.

* Inal Smalltalk list panes, cursor arrow keys can be used to move around. In basic Smalltalk,
you can only use arrow keys to move around in text panes..

CODE4 Reference Manual Suggestions:What Y ou Should Learn 12

3 Suggestions About What You Should Learn

This section is intended to give general guidance for people learning how to use CODEA4.
Subsection 3.1 is an introduction for beginners. Subsection 3.2 is intended to point out features
that are probably the most useful to the average user — i.e. features that you should make sure
you ‘do not miss!’.

3.1 Getting Started

This subsection provides a ssimple step-by-step approach so the beginner can get started. Simply
follow the directions. It is assumed that a system administrator has put a version of CODE4 in
your directory and has made sure the appropriate version of Smalltalk can be run. It is aso
assumed that you are using the virgin image as delivered, with no local modifications.

1) Start CODE4: On unix platforms, type ‘st80 coded4’ (or ‘dost80 code4’ or some other
command as specified by your system administrator). On Macintosh or MS Windows
platforms, double-click on the CODE4 icon.

At this point, you may have to wait a while while Smalltalk starts up. After 5-30 seconds,
several windows should appear on your screen (if they do not seek help!) The Launcher
(section 4.1) should be at the top-left; thisis a small window with a menu. The Control
Panel (section 4.2) should be at the top-centre; this is a larger window with many
facilities for manipulating aspects of CODE4. You may move these windows around at
any time, and you may collapse the control panel. To learn how to do these things, read
the documentation of your window manager software (see your system administrator).

We will now focus on the control panel. On its left are two sets of buttons. The upper set
allows you to tell CODE4 how expert you arein its use.

2) Tell CODE4 that you are a beginner: Using the left mouse button, click on ‘beginner’ in the
control panedl.

Now any menus that subsequently appear will be as simple as possible, although you
won'’t have access to some power ful facilities.

3) Go to the knowledge bases control panel: Click on ‘KBS’ in the control panel.

The right hand portion of the control panel now shows information about knowledge
bases. At the top-right is a list of knowledge bases loaded into memory. A knowledge
base contains a set of concepts which describe things in the world. The whole purpose of
CODE4 isto allow you to create and edit knowledge bases.

There should be one knowledge base in memory when you start a new image. We will
now create another.

CODE4 Reference Manual Suggestions:What Y ou Should Learn 13

CODE4 Reference Manual Suggestions:What Y ou Should Learn 14

4) Create a new knowledge base:
* Position the cursor over the‘Loaded KBS list.
* Pressand hold the middle mouse button to bring up the menu.
» Keeping the middle mouse button down, move the cursor to ‘remove and create’.
* Release the middle mouse button down while pointing to ‘remove and cr eate
(The cursor will move to the first item in a submeu)
* Click on ‘create a new default KB’ in the submenu

(on the Macintosh, where there is just one mouse button, you will need to position the
cursor in the region called the menu bar that is just above the Loaded KBs list, or else use
“shift’ while you click the mouse button to bring up the menu)

You have just issued your first CODE4 command!

CODE4 now wants to know what you will call this new knowledge base. A small window
appears with a prompt saying ‘Enter the new name...”, the word ‘default’ appears in
black below the prompt. ‘default’ is a poor name for a knowledge base, so we will
change it to something better. Thiswill be your first experience editing text in CODEA4.

5) Respond to the prompt: Type ‘my first kb’ into the prompt window, and hit the ‘return’
key.

The prompt window disappears and a new knowledge base is created.

The name of the new knowledge base appears in the ‘Loaded KBs' list of the control
panel. You can also see that we have created version 0 of knowledge base ‘my first kb’,
and that it has 87 concepts already. Don’t worry about these concepts for now, most are
system concepts that are only important to experts.

6) Indicate that we want to operate on your new knowledge base: I1n the loaded KBs list, check
that *VO my first kb...” is highlighted (i.e. has white text on a black background). If it is not,
click on it with the mouse.

Commands issued from the menu will now operate on your new knowledge base.

We will now make a change to the knowledge base. To do this we will open a window
called a browser.

7) Open a browser: Select ‘open browser on _’ from the ‘loaded KBs list’” menu.

CODE4 Reference Manual Suggestions:What Y ou Should Learn 15

Now a new menu appears, entitled ‘Choose a template’. CODE4 wants to know what
type of browser you want to open.

CODE4 Reference Manual Suggestions:What Y ou Should Learn 16

8) Request asimple textual browser: Choose ‘Outlineisa hierarchy from X'.

CODE4 now wants you to tell it where the new browser window should be placed on the
screen. A rectangle appears at the cursor position. We will make a big browser.

9) Specify the shape of the new window:
* Pressand hold the left mouse button near the top-left of your screen.

» Holding the left mouse button down, move the cursor to near the bottom right
of your screen.

» Release the mouse button.
A new window now appears. It contains an indented list of concepts.

At the top of the list is a concept called ‘thing’. This concept is the most general concept
in every knowledge base. Everything is a thing! For now, ignore everything else in the
list.

We will now prepare add a new concept to the knowl edge base.

10) Indicate that we are going to perform an operation on ‘thing’: Select ‘thing’ in the browser.

We will now issue a command to add a subconcept (a specialised ‘thing’). We could do
this through the menu, but instead we will show you another way to issue a command:

using a hot key.

11) Issue the *add child" hot key: While the cursor is pointing to the browser, hold down the
‘control’ key whileyou press‘a’. (In the rest of thismanual we will simply say, ‘type"a)

A new concept is now created by CODE4. You can tell this has been done because
‘specialized thing' appears in the list. The new concept is a subconcept of thing; it is
indented more deeply than ‘thing’. *Thing’ is a superconcept of the new concept.

We will now give this new concept a reasonable name.

12) Rename the new concept: Type ‘car’ into the browser and hit ‘return’.

The new concept is now called ‘car’. Note that ‘car’ appears at the bottom of the list,
and also at the top of the browser in a separate subwindow. The currently selected
concept always appears in this small subwindow, so that you can make detailed changes
to its name using the mouse. We won’t worry about this for now.

We will now tell CODE4 that we want to focus on editing just the section of the
knowledge base to do with ‘car’ (which is the currently selected concept).

CODE4 Reference Manual Suggestions:What Y ou Should Learn 17

13) Restrict the display to only show only the hierarchy of ‘car’ (i.e. its superconcepts and
subconcepts):

» Select ‘visibility’ from the browser menu.
» Sdlect ‘excludeall but ..._... hierarchies from the submenu

Now, the only concepts remaining on display are ‘thing’ and ‘car’. (The others have
been temporarily hidden.)

14) Add a subconcept to ‘car’ using the menu: Select ‘add child to ...” from the ‘edit’ menu.
We could have also done this using hot key ‘a’.

The concept ‘ specialised ‘car’ now appears, and is the selected concept.

15) Rename ‘specialised car’ to ‘My trusty auto’ by typing into the browser.
As before, the concept is renamed.

We will now show you how to put the list of concepts in alphabetical order, and at the
same time show you a third way of issuing commands in CODE4: Using action buttons.

16) Alphabetize the list of concepts: Click on theword ‘alpha’ at the top right of the browser.
The concept list no longer appears indented, but instead isin alphabetical order.

We will now open a new browser that shows concepts graphically. This new browser will
show the subtree of the concepts selected in the first browser.

17) Issue the ‘ open graphical subtree’ command:
* Select concept ‘car’
* Typethe hot key “k
(the outline for a new window appears)
* Position the new window on the screen using the left mouse button

This new browser presents concepts graphically, but has most of the same capabilities as
the browser we have been using so far (called an outline paradigm browser).

We will now explore a few capabilities of the graphical paradigm.

CODE4 Reference Manual Suggestions:What Y ou Should Learn 18

18) Rearrange the appearance of the graph using the left mouse button:
* Point to the background of the graph.
* Click and grag the background of the graph.
(you will see that the concepts move around)
» Select ‘car’ in thegraph by clicking on it.
* Drag ‘car’ tothe middle of the graph.
(you will see that the concept moves but the others are left behind)
» Use the menu item ‘reformat>>refor mat graph’ to make the graph look good.
* While holding down the control key, click on ‘car’
(you will seethat the whole hierarchy below ‘car’ is selected’
* Hold down the mouse over ‘car’ and drag the mouse
(you will seethat all the selected concepts are dragged together)

We will now see that the new graphical subtree browser changes dynamically when we
select conceptsin the outline browser.

19) Select the conceptsin the outline browser one-by-one and see how the graphical subtree
browser changes.

When ‘thing’ is selected, its two children are shown below them, When *My trusty auto’
Is selected, it appears alone, because it has no children.

We say that the outline browser is driving the graphical subtree browser.

There are many other kinds of browsers you can open in CODEA4, but for now we are
finished looking at concepts.

20) Close the outline browser: Select close from the menu that appears when you press the
right mouse button (in MS-Windows, just click on the window close box).

Note that the graphical subtree browser also closes because it depends on the outline
browser.

We will now prepare to save the knowledge base.

21) In the control panel ‘loaded KBS' list, issuethe ‘save to disk’ command.

CODE4 Reference Manual Suggestions:What Y ou Should Learn 19

[Thiswill not work if you are using a special demo version of the software because you
are not authorised to save knowledge bases, so skip to step 24 in that case].

You will be prompted for a file name (the default will be ‘my_first_kb.ckb’

CODE4 Reference Manual Suggestions:What Y ou Should Learn 20

22) Specify the name of thefile.Type ‘first’ and hit return

Note that the file name and knowledge base name do not have to be the same. Also, all
knowl edge base files have the suffix *.ckb'.

The knowledge base is now saved. You can verify this by looking at the list of files in
your current directory.

23) In the text pane at the centre-right of the KBs control panel:

* select the existing text by dragging the mouse pointer through it
* type ‘*.ckb’
e hit ‘return’

You should now see ‘first.ckb’ in the ‘Files on disk’ list. At some later point you could
load this into your image and continue work.

We will now save the CODE4 Smalltalk image (so we can continue where we left off),
and end the session.

24) From the launcher window, select ‘Quit’, and then ‘ Save then Quit’ from the menu that
appears.

At the prompt “ Enter name for image file" you will see the current name of the image

(i.e. coded). Type in the name you wish to call your image (e.g. first); thiswill overwrite
the current name.

Hit <Enter> to accept this new name and quit your image.

After 10-50 seconds the CODE4 windows will close.

Congratulations, you have just completed your first CODE4 session!

To learn more about CODE4, you can try exploring the other menu items in the launcher, control
panel and browsers. While doing that you can refer to the rest of this manual. One of the most
important things to learn about is adding properties to concepts. To do that, try opening a
browser of type ‘outline isa hierarchy from X with editable outline statements'.

Once you become familiar with the capabilities of ‘beginner’ level, you can upgrade yourself to
an ‘intermediate’ user. The next section gives you tips about what to learn.

Good luck!

CODE4 Reference Manual Suggestions:What Y ou Should Learn 21

3.2 Important Material to Learn in Order to be Productive
Use this section to learn to use CODE4 productively fast!

Sections of the manual listed below contain information with which an intermediate user of
CODE4 should be familiar. Sections not mentioned can be saftely omitted by most users. Asyou
learn these sections, try them out on the system, preferably with an expert to assist you.

Items in bold are CODEA4 features to learn. Underlined items are critical productivity features —
learn these first if you have limited time.

1. Read the introduction

2. Read about Smalltalk basics (the first part of chapter 2)

3. Read the * getting started’ section above (section 3.1)

4. Read about user interface basics (parts of chapter 4 as follows):

» Expertiselevel (start of section 4.1)

* Parts of the environment control panel (section 4.21): Default KB path, Confirming
when deleting and Confirming when closing.

* All about the KBs control panel (section 4.2.2): L oading and saving files, etc.

» Many details about browser s (parts of section 4.3 asfollows):

- Browser components (4.3.1): several ways of selecting items (4.3.2 and
4.3.4.1), changing subwindow size (4.3.4.2), editing labels (first part of 4.3.4.3).

- Performing commands in browsers (4.3.4.4 to 4.3.4.8): Repetition factors,
menus, hotkeys, action buttons, copying concepts.

- Basics of the outline paradigm: union/isect and update prop set: (start of
4.3.5.1).

- Basics of the graphical paradigm: scrolling, selecting and rearranging
(4.3.6.1). Key format options (parts of 4.3.6.3): save layout, use layout, node
font, sibling space, child space.

- Basics of value panes: show/remove English (in 4.3.7.1); copying and pasting
(4.3.7.2).

- Editing values (parts of 4.3.7.3): accept and tab completion; set value to
copied concept; add copied concept to value; delete concept from set.

- Basics of the matrix paradigm: how it works (start of 4.3.8) and matrix
format options (4.3.8.1), and editing cells (4.3.8.6).

- Masks (all of section 4.4).

CODE4 Reference Manual Suggestions:What Y ou Should Learn 22

- Feedback panel (all of section 4.5).

5. Read about important commands (parts of chapter 5 asfollows):

* Opening browsers (all of 5.1.3)

* Saving, loading and cr eating knowledge bases (5.2.1 t0 5.2.6)
* Editing knowledge bases (parts of 5.3 as follows)
- Adding and deleting concepts (5.3.1t0 5.3.4)

- Renaming concepts (5.3.5)
- Editing values and facets (5.3.6 and start of 5.3.7)

- Changing the parents of concepts (5.3.9 and 5.3.10)

- Detailed manipulations of properties (5.3.11 and 5.3.12)
- Typesvs. instances (5.3.15 and 5.3.16)

- Editing general hierar chies other than isa and property (5.3.18.1)

* Querying knowledge bases
- Masks (al of 5.4.1)
- Hardcopy output (5.4.3)
6. Read chapter 7 about interpreting error messages

CODE4 Reference Manual Magjor User Interface Components 23

4 Major User Interface Components

This section describes the look and feel of the CODE4 interface components. Discussion of
specific commands that the user can employ (e.g. to query or edit the knowledge base) is
deferred to section 5.

4.1 The Launcher

When the Smalltalk-80 system is running, one window that should always be present is the
Launcher (Figure 1). Thisis a menu that is used to open other windows. The top menu item in
the launcher (named CODE) provides a few simple commands (see section 5). Most commands
are better performed from the control panel, browsers or other windows, although the control
panel must be opened from the launcher.

ECIE Launcher =

CODE 4.1B
Dec 1992

CODE

ST browsers
Litilities
Changes
Special
Advanced
Quit

W W [

Figure 1: The Launcher.

You should not close the launcher. If you do close it, you can re-open it by carrying out the
following steps. (1) find another Smalltalk window into which you can enter text, (2) type
‘LauncherView openLauncher’, (3) select this text and, from the middle mouse button, choose
the ‘do it’" menu item. If you cannot find a Smalltalk window that can enter text, press <ctrl-C>
in some Smalltalk window and get a debugger; you can enter text there.

The following summarizes the the functions of the CODE4 submenu items in the launcher:
control panel: opens the control panel (see section 4.2)

open browser: lists a set of browser templates. Selecting one of these will open a
browser on the ‘current’ knowledge base (the knowleledge base selected in the control panel —
see section 4.2, from which this menu can also be opened).

report problem: brings up a window into which the user can describe a problem or
suggestion (figure 2). Upon hitting carriage-return in this window, a detailed report is sent to

CODE4 Reference Manual Major User Interface Components 24

CODE4 developers by email (on unix systems only; on the Mac or PC, the report is saved to a
file).

upgrade softwar e: searches for any changes to the software that may have been issued
and applies them to the current image. This feature will only work if you made arrangements for
access to these upgrades.

AUTOMATIC PROBLEM REPORTER {5392}

Answer the following questions. Tab between fields
Hit RETURM when complete

Please explain what you did just before the problem occuwrred:

Please explain the problem:

How severe is the problem? {lov, medium, high)
low

Figure 2: The problem reporter window.

All of the other menus available from the launcher are general Smalltalk utilities, including
capabilities to edit ordinary files and save the ‘image’ of the whole CODE4 session.

CODE4 Reference Manual Magjor User Interface Components 25

4.2 The Control Panel

The control panel (figure 3) isawindow used to configure the CODE session to a user’s taste. It
is opened from the launcher (from the first menu item in the launcher’'s CODE menu - see
section 4.1).

At the l€eft of the control panel are two subwindows where the user can select from two sets of
buttons:

» User Expertise Level:

These buttons allow the user to select the expertise level: beginner, intermediate, expert or
developer. This expertise level determines how many items will be displayed in menus, and
therefore how complex CODE will be to use. Beginners should ensure ‘beginner’ is selected.
This manual describes all operations, including many not available to beginner or intermediate
USErs.

* Control Panel M ode:

These buttons determine what will appear on the right side of the control panel. The following
subsections describe the specialized control panels.

== CODE 4.1 June 1992 Copyright (c) University of Ottau EIEEF'_EI

LIzer Expertise Drefault KB Path

} beginner - agaljn |

- . undao

i intermnediate Copy

expert cuk

i~ developar pat e

aceept
Prarnpt for Fort Size %
wind ow frames?
control Pamel byrs Do basmall - default xlarge

F environment

»kKEBs

> masks

» browsertypes

& graph farmak Llser Mare
& outline formak codet

i+ help

Figure 3. A Control Panel. Beginner expertise level and environment
mode are selected.

CODE4 Reference Manual Magjor User Interface Components 26

4.2.1 The ‘environment’ control panel

The *environment’ control panel mode is used to set parameters that apply to the system as a
whole, including such things as font size, user name, prompt for window frames, scroll bar
position etc.

The following summarizes the functionality of the items in the environment control panel:

Default KB Path: is a field into which the user can enter the directory where he or she
normally keeps knowledge bases. This can be a pattern with * as a the wildcard character. This
field is used when the user selects 'default KB path' in the KBs control panel.

Prompt for window frames. allows the user to choose whether the user will be
prompted to position newly opened windows (yes), or whether newly opened windows will be
placed on the screen with alocation and size chosen by the system (no).

Font Size: allows the user to determine the size of most text in the system. After
changing the font size some windows may need to be refreshed. See aso section 4.3.6 which
describes the fonts used in graphs.

User name: is afield into which the user can type his or her name (or userid). On unix
systems, the login name can be automatically filled in by clearing the field and hitting carriage-
return.

Confirm when deleting concepts?: If yes, brings up a prompt whenever the user deletes
a concept. This can be useful to prevent knowledge from being lost accidentally. it can also be
annoying if you delete concepts often, hence you have a choice of whether you want the prompt
or not

Confirm when closing browser s?: alows the user to specify whether he or she wants to
be protected from accidentally closing browsers (in which the user may have carefully set up
formatting parameters and masks). If 'yes, then whenever the user asks to close a browser (and
any dependent browsers), a confirmation prompt will be presented. Note: At the current time, if
you edit text but do not save it, it is possible to close windows containing such text without being
warned about possible loss of incomplete edits.

Scroll bar position: Allows a choice between left (probably easier to access, but non-
standard) and right (standard on M S-Windows and Macintosh)

Cleartalk parsing?: Allows the user to specify whether the system should always
automatically try to interpret values of statements.

When a user types in a concept name while editing a value(see section 5.3.6), the system is
capable of automatically looking to seeif a concept with that name exists. If * Cleartalk parsing?
IS set to ‘yes', the this lookup will aways be done when the user presses ‘enter’. If a match is
found, a reference to the concept will be stored (not just the name the user typed). There are
severa advantages to this: 1) If the user changes the name of the concept, the reference will
change appropriately; 2) The user can draw ‘relation’ graphs (see section 5.3.18) or use the
delegation feature.

CODE4 Reference Manual Major User Interface Components 27

If ‘cleartalk parsing? is set to ‘no’, then the user must explicitly request the concept lookup be
performed (e.g. by pressing the tab key or using the ‘parse as cleartalk’ menu option). This can
be an advantage if there are many concepts with the same name. Regardless of whether this
switch is set to 'yes or not, invalid Cleartalk will result in informal text being stored in statement
values.

Speed up by using more memory?: Allows the user to specify whether the system
should optimize use of memory (at the expense of speed). On a fast machine with limited
memory, use 'no'.

Speed up by removing details?: If set to ‘yes’, certain small details of the user interface
(such asicons, link labels and bullets in browsers) will be omitted.

CODE 4.1B Dec 1992 Copyright (c) University of Dttawa

User Expertise Default KB Path
homefproaisSaiicodeiod Baser ckh
& bedinner
intermediate
b expert . Frompt for Font Size
& dleveloper window frames ? bamall default =large P aystemnl
Fyes no
Speed up by
Cantrol Fanel User Mame deferring window updates?
F environment _H— @ always = on edit F never
& KEs
& masks Confirm when Scrall Bar Cleartalk
& browser types closing browsers? Faosition parsing ¢
 graph format Byes Fio Fleft b right Fyes o
& outline format
¥ help Speed up by Speed up by
using mare memary 7 rermoving details?
b always & mayhe Fnever B yES » no

Figure 4: The ‘Environment’ control panel subwindow.

Speed up by deferring window updates?: alows the user to manipulate the
compromise between feedback and response time. On fast machines, 'never' isthe most desirable
choice. On slower machines, or when dealing with very large knowledge bases, the user may
choose to change this switch to 'on edit' or ‘always.

CODE4 Reference Manual Magjor User Interface Components 28

never: means that any time the user makes a selection in a browser, or edits a
knowledge base, many other browser windows will be updated to reflect changing query
results or changing knowledge.

on edit: means that dependent subwindows will still update when selections are
made in driver subwindows, but if a knowledge base is edited, changes will not automatically
reflected in other subwindows. To cause such updates to be reflected, other subwindows can
be refreshed, or the control panel switch can be set back to 'never'. Windows that are not up-
to-date are displayed with a grey background.

always: means that subwindows are never updated unless explicitly requested by
the user.

Check integrity after every update: is a developer feature. If 'yes then any edit will result in a
'sanity check' of the knowledge base. This operation can take considerable time.

4.2.2 The ‘KBs’ control panel

The ‘KBS control panel is used to save and load knowledge bases, as well as to perform
operations on loaded knowledge bases. Figure 5 is an example.

Loaded KBs

At the top of the KBs subwindow (Figure 5) is alist of loaded knowledge bases (KBs). Along
with the KB name is its version number (before the KB name) and the number of concepts and
typesin the KB (in parentheses, after the KB name), e.g. v2 ‘minimal KB’ (147 conc., 23 types).

There is dways at least one KB loaded (removing all knowledge bases causes the system to
create a default, top-level knowledge base). If no knowledge base is selected, the only operation
available isto remove al KBsfrom memory and then construct a default ‘ current’” KB.

The KB that is selected becomes the ‘current’ KB. See section 5.2 for details of operations that
can be performed.

Any knowledge base that has been edited is marked ‘edited’, e.g. v10 'minima KB' (298 conc.,
53 types, edited). This informs the user that the knowledge base should be saved. Conversely, a
knowledge base that is not marked ‘edited’ can be considered the most up-to-date version
(assuming nobody else has also loaded and edited the knowledge base on another machine).

Path

In the middle of the ‘KBS control panel is the path box, which contains the path to the directory
containing knowledge base files; the bottom of the subwindow lists al filesin that directory. The
pathname and file list act in a similar manner to the Smalltalk ‘file list’ tool: you simply edit the
text of the pathname and hit <return> to update the file list. Select ‘load _ into memory’ from the
menu to load a knowledge base (knowledge base file names have the suffix .ckb).

In the path box, it is possible to specify a pattern, using asterisks to match any arbitrary string of
characters. A useful pattern is ‘*.ckb’. This will cause all knowledge base files in the current
directory to be listed. Specifying no path in the path box (i.e. deleting the path and hitting return)
causes the system to fill in the current directory.

CODE4 Reference Manual Magjor User Interface Components 29

CODE 4.1B Dec 1992 Copyright (c) University of Ottawa

zer Expertize] [Loaded KB —----—-
vl “default”

5 heinner O e’ 0111 cone,, 19 types, edited)
:}_ d] vES ‘oplicaldnew* (2473 conc., 254 types)
Eintermecliate | || -——-- End of list —-———
k expert
¥ developer
v
b
Contral Fanel 4-mcodelcd Basefopticalhdoptical!
b
& ervironment Al o Files on disk -----
k KBs multioptical.ckh Jun9 273K w4 ‘Multidimensional optical st
B masks opticaldnew ckl Dec 10 204K wB9 ‘opticaldnes:

opticaldald .ckh Sep 8 235K wB0 ‘opticaldcurrent”

? brovwser types _banpticaldnew cki Dec 2 205K &4 ‘opticaldnew”

> graph format “hanpticaldold ckh Oct 30 235K w60 ‘opticaldcurrent”
#outline format | || 2--=- End of list ————-
& help

Figure 5: A KBs control panel subwindow. Three knowledge bases are
loaded; the second one has been edited. There are also several knowledge
bases on disk.

The following summarizes the menu items found in the path box (standard Smalltalk items are
omitted)

default kb path: sets the path to equa the path specified in the environment control
panel

default image path: sets the path to equal the directory from which the image was
started

parent: changes the path to equal the directory of the current path

child: prompts the user to select one of the subdirectories of the current path (if any) and
sets the path to equal this subdirectory

Files on disk

At the bottom of the 'KBs control panel is the list of files on disk that match the path. Those
items that have the ".ckb' suffix aso display the knowledge base name and version (determined
by reading the file) and the date the file was saved.

CODE4 Reference Manual Magjor User Interface Components 30

Note that filenames and knowledge base names are often similar, but need not be. For example,
as seen in the bottom subwindow of figure 5, ‘opticaldnew’ is the name of both the knowledge
base (with the .ckb extension) and the file. However, another knowledge base has the name
‘optical4current’, while its filename is 'optical4old(.ckb)'.

The following menu items are available in 'Files on disk’ when a file is selected (illustrated in
figure 6). All but the first work on ckb and non ckb files.

load inta rernory
rnake backup of _
rename _to...
copy Lo,

delete from disk

open editoron |

Figure 6: The Files on disk menu

load _ into memory: reads the selected .ckb file into memory. It will appear in the
‘Loaded KBS part of the control panel.

make backup of _: makes a copy of thefile giving it aname with an initial '_b' followed
by aletter. The letter is incremented each time you make a backup of the same file. The loading
underscore of backup filenames ensures that they are always listed at the end of the directory.

rename _ to.... prompts for a new name and renames the selected file. This does not
cause renaming of the knowledge base. To do the latter, it is necessary to load the knowledge
base into memory.

copy _ to.... prompts for a new name and copies the selected file.
delete _ from disk: deletes the selected file after requesting confirmation.
open editor on _: opens a Smalltalk file editor on thefile. Thisisfor developer use.
If the selected fileis adirectory, the following option is available:
new pattern: changes the path to this subdirectory. Thisis the same functionality asin a

Smalltalk file browser.

4.2.3 The ‘masks’ control panel

Future: This will be used to save and load masks, which can be used as ‘canned queries. See
also sections 4.4 and 5.4.1

4.2.4 The ‘browser types’ control panel
Future: Thiswill be used to save and load browser templates. See also sections 4.3.4.2 and 5.4.2

4.2.5 The 'graph format' control panel

The 'graph format' control panel is used to determine the appearance of browser subwindows
using the graphical interaction paradigm. Various items control both the 'look’ of graphs and the
algorithms used to draw them.

CODE4 Reference Manual Magjor User Interface Components 31

Figure 7 shows an example graph format control panel.

=[=== CODE 4.1B Dec 1992 Copyright (c) University of Dttawa
Mode Font Edge Font
lzer Expertize
? Charter ? Charter
5 i Clean Clean
:}_ egmner. Courier Courier
& intermecliate Fisced Fizced
b expert | fixed v_Tixed
> developer i' i'
Control Panel > Bold b Italic | & Baw b Italic |
& environment Jhe Guick Brown Fox | The Guick Brown Fox |
v KBs b Horizontal [vertical |
& masks
Pk graph format b Layer Ii} Tight |
& outline format
 help k Labels |§} Icons |i'} More |
Sibling: 15 | Child: 20 | Max: 200
Use Default in All Panes |

Figure 7: An example of the graph format control panel

The 'graph format' control panel contains the default specification for graph format. Each newly
opened graph will be given this format (with the exception of newly opened driven subwindows
which get their format from their driver). After agraph is open, its format can be changed using a
format dialog that has most of the same items as the control panel. Therefore, see section 4.3.6
for adetailed description of these items.

Use Default in All Panes: This item on the graph format control panel causes all graphs
to be redrawn using the format specified.

4.2.6 The 'outline format' control panel

The 'outline format' control panel is used to determine the appearance of browser subwindows
using the outline interaction paradigm.

Figure 8 shows an example outline format control panel.

CODE4 Reference Manual Magjor User Interface Components 32

=[]

CODE 4.1B Dec 1992 Copyright (c) University of Ottawa

lzer Expertize

> bheginner
intermediate
b expert

» developer

Contral Panel

& ervironmett

& kBs

& mnasks

& hrowser types
& graph format

F outline Format
> help b Hierarchical | & Aphabetical |

b lcons | & Mone |

Use Default in All Panes |

Figure 8: An example of the outline format control panel

Just like graph formats (section 4.2.5), outline formats can be set globally in the control panel, or
locally in each outline pane. See section 4.3.5 for details of the available options.

Use Default in All Panes: Thisitem on the outline format control panel causes all outline
subwindows to be redrawn using the format specified.

4.2.7 The *help’ control panel

The help control panel is intended to provide help about many aspects of the system. At the
current timeit is only a prototype.

Help information is maintained as a hierarchy of topics, and the user's selections are recorded to
allow backtracking. The following buttons are available:

index: displays a popup menu of available menu items.
previous. goes back to the panel most recently displayed.
super: goes to the more general panel

sub: displays a menu of more specific panels

related: displays a menu of panelsthat are related to the current one

CODE4 Reference Manual Magjor User Interface Components 33

top: goesto the top panel.

Future: Help about particular commands can be obtained as follows: Issue the command in the
normal way (using a menu, hot key or action button) while holding down the shift key. Not all
commands yet have help panels.

One of the help panels, seen under 'Index’ and other buttons, is called * Current Command’. This
displays the help for the last command for which you requested help by holding the shift key
down.

CODE 4.1B Dec 1992 Copyright (c) University of Ottawa

ircles rewious | super sub related 1o

Ilser Expertize ” L | 20 | | | 1op !
Ll 4 1 ASE Intraduction

& heginner

»intermediate Welcome to the CODE4 system, developed by the Artificial

b expert Intelligence Laboratary at the University of Ottawa.

> deweloper CODE4 is a powerful and flexible khowledoe representation and

acouisition swstem with many advanced features.
Control Panel
onirel e au may oltain suppart by calling (513) 5648155, ar ky

& erironment ewnailing teli@csivottawaca

& KBs

& masks Click an the “sub™ button to choose a subtopic, or the "index”

& browser types buttan to choose an alphabetically ardered list of topics.

& graph format

& outline format

F help

Figure 9: An example of the help control panel (incomplete fuctionality)

4.3 Browsers

Browsers are used to view and manipulate portions of a knowledge base (groups of concepts
organized by a set of knowledge maps). Each browser is composed of one or more subwindows.

Each browser subwindow has what we call an interaction paradigm, i.e. it displays knowledge as
one of (1) agraph, (2) an outline processor, (3) user language (i.e. simple text input by the user)
(4) amatrix (like a spreadsheet), or (5) in flowing text. Where possible, however, operations are
done in the same way, regardless of what interaction paradigm a subwindow is using.

Figure 10 illustrates the main features of a single-subwindow outline browser. Figures 11 and 12
illustrate graphical browsers.

CODE4 Reference Manual

Major User Interface Components 34

== 0Outline isa hierarchy from thing

S|

all_honly H1,t2 no+- alpha |
4 seaplane |
e |
* war
w3 pOHs car
=truck Fefresh B
nbis cotnmmiticancel &
wiltreetcar Forrmak D
strain wAsi biliky &
w3 e vEhICI aubuandon 5 _
wieaplane copy ']
o : close addchildto _..._iny["a]
safnphibious vehicle ... addsiblingts .. i3]
pship .. [P
sCtuize ship reparent _..._tocopiedconcept [p]
sltaop ship addcopied concept as parent of ... ["0]
wstiiall boat fove ... properiestocopiedconcept
arvetice [
. : : thake ... hondisjoln
« heavierd han-air vehicle fum_.._toinstance []
sditplane tum ... tobype
rokate . up[t]
worhieel el airplarie . robate o down [
slighterd han-air ve hicle
N =baloon
L

Figure 10: A single-subwindow browser using the outline interaction
paradigm (showing an open edit menu)

CODE4 Reference Manual Magjor User Interface Components 35

=[J= Graphical inclusion properties hierarchy from canoe EIEEF'_EI
al honly wert hor t1LE2 no+- |
u| bowseal |
w |
L) fiberglass
Takerials +

/materials *

-- -
Das, materials +

Figure 11: A single-subwindow browser using the graphical interaction
paradigm. The graph is showing both the 'materials and 'parts relations
among several concepts. See section 5.3.18 for information about how to
generate such a graph.

CODE4 Reference Manual Magjor User Interface Components 36

=l Subtree of vehicle
all honly wert hor L1L:
E‘ byl e
b
Ll .
hovercraft =
linstance of landing craft 1]
Sm pin
‘ = _ }‘ v
'}‘Iinstance of landing craft 2|
ip'r pa|
a 5 IE! [v]]
. n——Harnphibious vehicle fr-m—lan din g craft finstanc e of landing craft 3
land wehicle . -
i IEd
5 w firtslariue ol laridirny urarl 4]
[] . ' "
P IE
j trv Trek .
FWEE__::S 1 —F instance of landin g craft &)
=
[Foad vehicle|#=—"
) rm
refresh HMeopy [B]
commiticancel Haddchildto ... 0[]
farrnat rladd=iblingto ... {n}["s]
- i Lilily wluelele . [0]
subwindow Zreparent _..._tocopiedconcept [p]
addcopiedconcept as parent of ... ["0]
3 close tnove ... propediestocopied concept
5 cruid e dit icor
3 - 'igt tum _..._toinstance [w]
S 5 raoftum ... totype
5 '5\1 | N w1 |
£] ratate ... down["0] =

Figure 12: Another single-subwindow browser using the graphical
interaction paradigm. The graph is displaying an isa hierarchy. Note the
use of icons. Note also that the same edit menu item is available asin the
outline paradigm (figure 10)

4.3.1 Components of browser subwindows
Most browser subwindows have the following visual components:

» At thetop, an area called the editing area, with a single editable text string (i.e. the text of the
selected item in the list, graph, etc.). If no item is selected, the string ‘No item selected...’
appears. The user can type over a concept name and hit enter to change the name (see section
5.3.5). The user can aso use the ‘> symbl followed by a concept name (with possible
wildcards) to cause a search for matching concepts (see section 5.4.1.4).

CODE4 Reference Manual Magjor User Interface Components 37

» Below this (in most cases) an area called the navigating area, with a collection (list, graph,
etc.) of links and nodes. Links and nodes represent concepts, and are referred to as items in
the navigating area. It isthe navigating area that changes most between paradigms.

Above the editing area of a browser is an action button bar. This contains symbols for some of

the most frequently useful operations currently available (see section 4.3.4.7). The action button

bar serves as the vertical boundary between two browser subwindows.

4.3.2 Selections

The navigating area can have a subset of its items currently selected. There are two kinds of
selection.

» multi-selection: any subset of the navigating areaitems (either nodes or links).
* master selection: a single member of the multi-selection (anode or alink).

(Note that what might be considered a single selection of the navigating area items is really a
simultaneous master selection and multi-selection, i.e. it is a master selection of a subset
containing only one navigating area item.)

In figure 11 and figure 12 there is a single selection (‘bow seat' and 'bicycle' respectively). In
figure 10, there is a multi-selection (‘ship’, 'air vehicle' and 'seaplane’) of which 'seaplane’ is the
master selection.

Most operations are performed on the multi-selection; such operations are then performed
repetitively on every multi-selected item. Some operations (e.g. renaming) can only be logically
performed on a single selected item; in such cases the master selection is used. Each command
description indicates if it applies only to the master selection. In menu items, the symbol
indicates that the command is to be performed on the multi-selection, whereas' ' indicates that
the command is to be performed on the master selection only.

The editing area always displays the full text of the master selection. This may not be the same
asthe ‘name’ of the concept in the navigating area because the editable text item may represent a
formula for computing the name (see “ specifying substitution” in section 5.3).

4.3.3 Nodes and links as concepts

As mentioned above, nodes and links can be selected independently (the multi-selection can
contain some of each, although this is rarely useful). Both nodes and links represent concepts,
but links always represent statements (e.g. in an isa hierarchy, they represent the statement of
‘subconcept’ in a particular metaconcept).

See the descriptions of different interaction paradigms for a description of how nodes and links
appear.

It is possible to prevent links from appearing at all. The environment control panel item 'speed up
by removing details has this effect, as does selecting ‘'None' within 'Labels/Icons/None' in the
graph format control panel.

CODE4 Reference Manual Magjor User Interface Components 38

4.3.4 Generic operations
The following subsections describe commands that apply to all browser interaction paradigms:

4.3.4.1 Selecting one or more items on which to perform operations
* Selecting a singleitem

Simply click on any unselected item with the left mouse button. The item becomes the sole
selected item.

The arrow keys can also be used to change the selection. If there is nothing selected, the down
arrow key will select the first item, while the up arrow key will select the last item. If thereisa
single selection, the up and down arrow keys will select the next or previous item, respectively.
The left and right arrow keyswill select the next parent or child, respectively.

* Selecting multiple items by dragging

Select an item and drag (move) the cursor over the other items with the left mouse button held
down. The first item selected becomes the master selection. (See also ‘ Selecting a subhierarchy’
and ‘ Shift-selecting’ below; and ‘Marquee selecting’ in the graphical paradigm).

Multiple items can also be selected by pressing the shift key and clicking on each item to be
selected with the left mouse button (see * Shift-selecting’ below).

* Changing the master selection within the multi-selection

Simply click on any selected item (except the existing master-selection) within the multi-
selection. The master selection is moved to the clicked-on item and the multi-selection remains
unchanged.

* Selecting a subhierarchy

Press the control key when you click on an item with the left button. The item and all its children
are selected. Thisis combinable with dragging and shift-selecting (next point).

« Shift-selecting (selecting dig oint groups of items)

Press the shift key when you click on an item. If the item has aready been selected, it is de-
selected; if the item is not aready selected, it is selected. The selection status of other items is
unchanged.

When shift-selection is combined with dragging or subhierarchy selection (i.e. both shift and
control are pressed), the entire dragged-out area or subhierarchy is changed to the opposite
selection status (selected or unselected) from the previous status of the first selected item.

Both nodes and links can be selected at the same time by shift-selecting.
* De-selecting

Shift-selecting any selected item deselcted it. Clicking on the master selection, if it is the only
item selected, de-selectsit.

CODE4 Reference Manual Magjor User Interface Components 39

Clicking on the master selection, if there are other items in the multi-selection, removes the other
multi-selected items from the selection.

As alogica consequence of the above statements, repeatedly clicking on the same item reduces
the selection to nothing.

4.3.4.2 Changing the size of a subwindow

Press the control key while clicking on a scroll bar or menu bar that does not lie at the edge of a
window. The pointer will become a horizontal or vertical 2-way arrow, for scroll bars (e.g. <-->)
and menu bars respectively. With the mouse button held down, dide the mouse to reposition the
scroll bar or menu bar, and hence resize the two adjacent subwindows separated by that bar.

This functionality applies to all windows, not just browsers.

At the current time, you should avoid dragging a subwindow so far that the subwindow is
reduced in size to zero (or less).

4.3.4.3 Editing the text of an item (renaming)

Master-select the item and type a replacement name (the changes will be seen in the editing
area). When done hit <return>. There is no need to actually point to the editing area unless fine
text editing is required (e.g. if you want to change only a few characters). If detailed editing is
required, standard Smalltalk text editing techniques may be used. The ‘copy text' and 'paste text'
menu items are available in the editing area.

When an item is added, it is given a default name by interna rules for automatic name
generation. For example, a new instance concept of the type concept ‘car’ is called ‘instance of
car n’, where n is the number of the instance.

Until renaming is performed, this automatic name generation is performed every time the
concept is displayed. So, for example, if the concept ‘car’ above were changed to ‘vehicle', the
automatically named instance would change to ‘instance of vehiclen’.

In the user language paradigm (section 4.3.7) the only editing that can be done is renaming. Such
renaming has the effect of editing statement values.

» Accented characters
It is possible to enter accented characters in concept names (and statement values):

To enter accents in CODE 4, press Control-Z followed by one of the accent characters listed
below. Then type the letter that should receive the accent. On Sun machines, the Alternate key
can be used in place of Control-Z. Mac users have the option of using the method presented here
or using the Mac's built-in accent support, as set out in the Word manual.

ACCENT CHARACTER ACCENT PRODUCED

" (normal single quote) accent aigue or acute (3, €, i, 6,0)
" (back-quote) accent grave (, €, 1, O, U)

N

accent circonflexe or circumflex (& &, 1, 6,)
~ accent tilde (f)

CODE4 Reference Manual Magjor User Interface Components 40

- (dash) accent stroke

u accent breve

. dot above

" (double quote) accent umlaut or diaresis
* ring above

, (comma) accent cedille or cedilla
_ (underscore) accent underline

: accent double acute

; accent ogonek

% accent caron

To enter other special characters, press Control-Z followed by one of the character sequences
listed below.

™ trademark -H H with stroke

X0 currency sign -| | with stroke

XX Cross -: divided

+- plusminus -L L with stroke

+d lowercase eth, Icelandic -t t with stroke

++ number sign, # -- horizontal bar

n vertical line, | -T T with stroke

lu micro sign _a aunderlined, feminine ordinal
/o o dash e 0 underlined, masculine ord.
/10 O dlash lc cent sign

/l backdash, \ IS dollar sign

((left bracket, [" arrow up

(- left brace, { v arrow down

) right bracket,] O uppercase thorn, Icelandic
)- right brace, } N) uppercase eng, Lapp
>> >> n) lowercase eng, Lapp
34 3/4 1 single quote right

12 1/2 h double quote | eft

ae ae dipthong Is section sign

1J IJligature Ip paragraph sign

] ij ligature I inverted !

kk Greenland small K
Ss German double s
OR registered

OC copyright

OE OEdipthong

oe oe dipthong

om ohmsign

= yen sign

= pound sign

< arrow left

-> arrow right

-D D with stroke

-d d with stroke

CODE4 Reference Manual Major User Interface Components 41

-h h with stroke

4.3.4.4 Performing a command (in general)
Commands are operations that typically appear on menus.

To perform anilary command (i.e. one that takes no selected items as arguments), simply request
the command using a menu, hot key or action button (one displayed on the screen, see below).
Closing awindow is an example of performing anilary command.

To perform a unary command (i.e. one that takes a single set of selected items as arguments),
select the items and then request the command as above.

To perform a binary command (i.e. one that takes two sets of selected items as arguments),
‘copy’ the first set of selected items (see below), then select the second set of items and proceed
as for aunary operation.

* Repetition factors (using the ESC key to perform a command several times)

Some commands optionally take a repetition factor (an integer that tells how many times to
repeat the command). There is a special command for specifying a repetition factor; one executes
this command prior to executing the command to which the factor is to apply. For example, to
add three child concepts to the type concept ‘car’, select ‘car’, press <Esc> + <3>, then press *a
(the hot key for adding child concepts; see below). The result will be three identical child
concepts of ‘car’, each called ‘specialized car’. To specify a repetition factor greater than 9 (in
other words, with more than one digit) you must press <Esc> before each digit. For example, a
repetition factor of 12 is indicated by pressing <Esc> + 1, then <Esc> + 2. Commands that
accept arepetition factor have the symbol {n} in their menu item.

4.3.4.5 Performing a command from a menu

Simply press the middle mouse button to bring up the menu, and release the button over the
desired menu item. Repeat if the menu item brings up a sub-menu. Figure 13 shows a typical
browser main menu.

The menu will change dynamically from time to time as the state of the browser causes certain
items to become available or to disappear. For example, the *edit’ submenu only appears when
items are selected.

Browser menus have the following top-level menu items. Details are deferred to later sections.

refresh: Commands to update the display (figure 13). Normally, refreshes are automatic,
but thisis not the case if either 1) the environment control panel selection " Speed up by deferring
window updates is set to something other than 'Never' (see section 4.2.1) , or 2) the
commit/cancel items 'defer all updates or ‘defer edit updates are in effect for this window.

refresh pane: Causes the subwindow to redraw itself incorporating any
knowledge base updates, but retaining the same layout.

reformat graph (in the graphical paradigm): causes the subwindow to refresh
using the automatic layout algorithm.

CODE4 Reference Manual Major User Interface Components 42

full update: causes any driving subwindows to refresh first, and then the current
subwindow to refresh. This may be needed when window updates are deferred.

refresh i refresh pane
commit/cancel #reformat graph
farmat Afull update [~

wigibility &
subinclow
edit &
bardcopy &

close

Figure 13: A refresh submenu

commit/cancel: Commands to permanently commit changes to the KB in RAM, or to
back them out, or to cause deferra of updates (figure 14). See section 5.2.7 for details of the
commands. See also additional commands in the user language interaction paradigm (section
4.3.7)

defer all updates: Has the same effect locally (in this subwindow) as the
environment control panel option 'Speed up by deferring window updates/always has
globally. This option overrides the global setting (see section 4.2.1)

defer edit updates: Has the same effect locally (in this subwindow) as the
environment control panel option 'Speed up by deferring window updates/on edit' has
globally. This option overrides the global setting

defer no updates. Has the same effect locally (in this subwindow) as the
environment control panel option 'Speed up by deferring window updates/never' has
globally. This option overrides the global setting

file out kb: Saves the knowledge base to disk. If the knowledge base was
previoudy read from disk, the original file is overwritten. If this is a new knowledge
base, a file name is composed from the knowledge base name. Default hot key: .

format: Commands to change the look of a browser subwindow (Figure 15). Different in
each interaction paradigm. See the sections on the individual interaction paradigms (sections
4.3.5104.3.9). See also ‘visibility’ below.

refresh i
cammiticancel

dizplay props onisa graph...

wvisibility Aremove props from isa gragph
subwindow Huse layout. ..

edit H=avee lavout. ..

hardcopy A delete layout. ..

close format. ..

CODE4 Reference Manual Magjor User Interface Components 43

Figure 15: A format submenu (graphical interaction paradigm)

visibility: Commands to ater the mask in order to filter out (or “hide”) certain concepts
(Figure 16). See section 5.4.1 for command details. Note that nodes that are filtered out can
either be not shown (hidden) or shown as mere placeholders (minimized). The format action
buttons '+/- and 'no +/-' control this. See section 4.3.4.9.

exclude

subwindow Hallow inclusion of . [A]

edit Aesclude . subtrees 0} [*]
hardcopy Aallow inclusion of ... subtrees [*y]
close exclude all but _..._hierarchies

exclude all but

exclude all instances

allow inclusion of systermn concepts
exclude non-leaves

lirnit traversal depth to 0}

open mask

reset mask to default

reset mask to show everything

apen selection criteria

Figure 16: A visibility submenu.

subwindow: Commands to open subwindows whose contents depends on the currently
selected item(s) (Figure 17). See section 5.1 for command details.

refresh i
commiticancel i
format e
visikilit ;

subwindoy a0 (g e tached dyramic [4h]
edit Azubtree Aoraphical ¥ detached static [4]]
hardeopy Arelation Atextual Hright dyhamic

cloze terms Armatriz A below dynamic

meanings Afull details & saved to file
metaconcept properties &
freeze this pane

remove this pane

Figure 17: A subwindow submenu.

edit: Commands to change the knowledge base (i.e. modifying, adding or deleting
concepts) (Figure 18). See section 5.3 for command details. See also ‘ copying items’ below.

CODE4 Reference Manual Major User Interface Components 44

Figure 18: An edit submenu.

hardcopy: Facilities for outputting knowledge to a file (see section 5.4.3). This file can
be printed by the user (Figure 19)

Figure 19: A hardcopy submenu.

inspect/debug: Development and maintenance utilities that allow access to system
internals (Figure 20). Only appears when control panel interaction mode is set to ‘developer’.
Not documented further here.

Figure 20: the inspect/debug menu

close: Command to close the current window and any dependent windows. This can also
be accomplished using the right-button menu or windowing-system-specific methods.

* Absent menu commands

If a documented command does not appear on any submenu, either of the following may be true:
(1) the command cannot be performed because it is illogical at the current time (e.g. deleting
when nothing is selected, or adding a subproperty to a type concept); (2) the control panel ‘user
expertise mode is set too low (e.g. to intermediate or beginner); or (3) the command is only
available through keys or action buttons (e.g. specifying a repetition factor — this is fully
tailorable, however).

CODE4 Reference Manual Magjor User Interface Components 45

4.3.4.6 Performing a command with a hot key

Most important commands can be performed by typing a two-key combination on the keyboard.
This two-key combination, referred to as a “hot key”, combines the control key () and the
control character (i.e. another key). Both are pressed simultaneously. Figure 21 lists the hot keys,
along with the default command they run. These hot keys are fully tailorable: in the Loaded KBs
pane of the KBs control panel, select * set a hotkey’ from the middle mouse-button menu.

For some hot keys, the control character serves as a mnemonic for the command. Such
mnemonics are highlighted in figure 21. Where a control character does not serve as a direct
mnemonic for a command, an attempt has been made to use one that is related to a nearby
mnemonic key. For example, *t excludes one or more subtrees, whereas "y (adjacent on the
gwerty keyboard) allows the inclusion of one or more subtrees.

Key | Command Section
"a |eddchildto ... 531
b | copy _ 4.3.4.8
Ac | (reserved for Smalltalk - user interrupt)
Ad |delete ... 532
e | refresh - full update 4345
Ao | file out kb 523
g |rotate ... down 5.3.19
Aho | (reserved for Smalltalk - delete previous
character)
AN | (reserved for Smalltalk - tab)
A |alowinclusonof ... 54.1.1
"k | detached dynamic, graphical, subtree 51.3.2
Al | detached dynamic, outline, subtree 5.1.3.2
"m | (reserved for Smalltalk - return)
n | detached dynamic, outline, properties 51.3.2
Ao | add copied concept asparent of ... 5.3.10
Ap |reparent _..._to copied concept 539
Nq | pastetext (all Smalltalk windows) 4.3.7
Ar |rotate ... up 5.3.19
s |addsiblingto ... 531
Nt | exclude ... subftrees 5411
Au | undo 5.3.17
v | detached dynamic, graphical, relation 51.3.2
AW | turn ... toinstance 5.3.15
x| copy text (all Smalltalk windows) 4.3.7
Ay lalow inclusion of ... subtrees 54.1.1
Az | enter accented character 4343
A\ | show collapsed 5.3.4.9
A | hide collapsed 5.34.9

CODE4 Reference Manual Magjor User Interface Components 46

|"] | detached static, outline, properties 15.1.32 |

Figure 21: Default assignments of hot keys.

Menus aways indicate if a hot key can be used to select commands. The default hot key is also
indicated in command descriptions later in this document.

There are two main advantages to using hot keys instead of using menus: (1) timeis saved by not
moving the hand to the mouse, selecting the submenu and picking the item; and (2) thereis a
type-ahead buffer for keystrokes. Y ou can therefore perform operations as fast as you can type.

4.3.4.7 Performing a command with an action button.

Action buttons are displayed in arow in each browser’s menu-bar (at the top right corner of the
appropriate subwindow). Only currently applicable commands are displayed (the commands
differ between interaction paradigms). Like hot keys, action buttons are fully tailorable.
Currently the buttons are visually presented as a text string (e.g. al honly hiera); however, they
can betailored to display an arbitrary icon.

4.3.4.8 Copying items

Select one or more items and use the ‘copy ' command in the edit submenu. The paste buffer
will then contain the selected items. The buffer can be used to perform binary commands, or the
itemsit holds can be pasted into text inside or outside Smalltalk.

Default hot key: b
Currently, only the master selection is copied.

Note that there is also a 'copy text' command available when editing text. The latter copies the
textual representation, not the actual concept.

4.3.4.9 Minimizing and hiding

Nodes that are masked out (see section 5.4.1) can be made completely absent from the
navigation area (‘hidden’), or else can appear minimized to mere place-holders. The action
button command '+/-' requests that place-holders be shown for masked-out items. The action
button 'no+/-' requests that masked-out items be completely hidden. Hot keys ™\ and // perform
the same functions respectively.

Each interaction paradigm shows minimized items differently (see figures 22 and 24).
Minimized items can be selected, although several items may coalesce into one selectable region
on the screen: clicking such aregion logically multi-selects all the items.

CODE4 Reference Manual Major User Interface Components 47

4.3.5 Outline interaction paradigm
The following are the primary distinctive features of the outline interaction paradigm:

4.3.5.1 Format options in outline panes

union/isect (action buttons): ‘Union’ causes property lists to show the properties of all
the concepts selected in a driving pane. ‘Isect’ causes property lists to show properties common
to the concepts selected in the driving pane (i.e. the intersection of properties).

update prop set (format menu command): Looks for a 'properties dependent
subwindow, finds the set of properties selected in it, and causes every concept in the outline
interaction paradigm to be followed by alist of statement values (generated from the properties).
The statement values are contained in square brackets. 'n/a’ indicates that there is no statement
for a given property about a given concept (i.e. the property does not inherit to the concept). This
option is useful in order to observe how statement values differ throughout a hierarchy.

Note: to return the outline interaction paradigm to its original state, carry out the same process
with no properties selected in the ‘ properties’ dependent subwindow.

update metaconcept prop set.(format menu command): The same as 'update prop set'
except that it looks for a dependent subwindow that is displaying metaconcept properties. The
statement values displayed after each concept name are generated using the selected set of
metaconcept properties. Note that it is possible to display both a property set and a metaconcept
property set.

Format (format menu command): Brings up the dialog box similar to the outline format
control panel shown in figure 8. The following points describe elements of the format dialog:

» Hierarchical/Alphabetical (format dialog box item and action button command):
Hierarchical shows the list of concepts as an indented hierarchy. Alphabetical shows the
concepts in alphabetical order. The latter is useful for rapidly locating a concept in along
list, although the mask (section 5.4.1) provides an alternate mechanism for this. Thisitem
can be altered using the dialog box, or the 'alpha/hiera action button.

» Icong/None (format dialog box item): Icons displays visualy distinct icons at the
beginning of each line that identifies the relationship between the node and its parent (the
icons are how links are represented in the outline paradigm). None indicates that these
icons are not to be displayed.

» Get Default From Control Panel/Ok/Apply/Cancel: These work the same way as in
the graphical interaction paradigm's format dialog box (see section 4.3.6)

4.3.5.2 Appearance of items in outline panes
» Appearance of nodes:

Nodes are represented as lines of text.

CODE4 Reference Manual Magjor User Interface Components 48

If the outline browser is displaying an isa hierarchy, then each line contains a concept.
Indentation signifies the ‘ subconcept’ relation.

If the outline browser is displaying statements, then each line represents a statement, and the
value of any statement is shown following a colon. Formal statements are shown in bold.

» Appear ance of minimized items (nodes and subtr ees):

Minus (-) signs represent one node or several sibling nodes; plus (+) signs represent one or more
entire sub-hierarchies.

Where there are ‘gaps in a chain of related nodes, a ‘..." prefix appears before nodes whose
parents are hidden. For example, nodes at indentation levels 1 and 3 are shown, but a child of
the level-1 node (which is thus a level-2 node and a parent of the level-3 node) is hidden. In this
case, the level-3 node is prefixed with *...".

Where a subtree should appear under multiple parents (e.g. in multiple inheritance), the entire
subtree is shown only once. Subsequent occurrences are marked by showing the root only,
followed by a“..." suffix.

» Appearance of links:

Links are represented as distinctively-shaped bullets (e.g.). Selecting anywhere in the
indentation to the left of a node selects the node's link to the preceding parent (i.e. the item
above at one less indentation level). In the isa hierarchy, the shape of the link icons alows the
user to tell whether the associated node is an instance concept, or a type. Property and relation
hierarchies use their own distinctive link icons.

Figure 22: Minimized nodes and subtrees in the outline paradigm.

CODE4 Reference Manual Magjor User Interface Components 49

4.3.6 Graphical interaction paradigm
The following are the primary distinctive features of the graphical interaction paradigm:

4.3.6.1 Navigating, selecting and rearranging a graph

The graph is drawn in a conceptually infinite 2-D plane. You can navigate in this plane to any
region whose area equals the subwindow size. The used area of the plane is defined as the
smallest rectangle that contains all the graph’s nodes. The black bars in the scroll-bars indicate
what relative portion of the used areais currently visible.

To navigate around the graph, use one of the following methods:
By scroll-bar: Click on and optionally slide either the horizontal or vertical scroll bar.

By background drag: Click on the background and move the mouse while holding down
the left mouse button; the graph will move correspondingly.

By hot-scroll: Click on a node and move the mouse. The node will move (see
‘rearranging nodes', below). Move the node off the side of the window and the graph will move
in the opposite direction. Hot-scrolling also occurs when selecting by marquee (see below).

* Selecting by marquee

Press <control> and click on a corner of a rectangular graph region (but not on an item). Move
the mouse and release the mouse button at the opposite corner of the region. All nodes in the
region are selected. (Note that the control key has a dual use: when the pointer is on a node, the
control key selects a subhierarchy; when it is off anode, it commences selection by marquee.)

Marquee selection is combinable with shift-selection, i.e. one can select (or de-select) multiple
regions. Press <control> and <shift> when clicking on the first corner.

* Rearranging nodes

Move the cursor while clicking on any selected node of a group of selected nodes in order to
move all selected nodes as a block. This feature is very useful for moving whole subtrees on the

graph.

Once a graph is arranged in a suitable manner, you may want to save that arrangement so that it
can be restored later. To do that, see section 4.3.6.3.

4.3.6.2 Displaying icons (pictures) at graph nodes

Icons are stored as term concepts just like textual terms. Icons are edited using the 'edit icon’
menu item. This prompts the user to drag out an area of the screen that contains a picture the user
wants to save as an icon representing the concept.

Since terms are concepts, icons can be given properties. When an instance concept is added to a
type concept with an icon (see section 5.3), a default icon is created for that instance concept.
Thisis similar to automatic name generation (see ‘ editing the text of an item’, above).

Warning: At the current time, color icons are not supported. Do not attempt to create an icon on
acolor machine.

CODE4 Reference Manual Magjor User Interface Components 50

4.3.6.3 Format options for the entire graph

display props on isa graph (format menu command - isa hierarchy only): If the current
subwindow is driving a property hierarchy, this command shows links (representing properties
selected in the dependent subwindow) between selected concepts and other concepts. Repeatedly
issuing this command with different concepts or properties selected causes additional links to be
drawn. To remove al links, use remove props from isa graph.

remove props from isa graph (format menu command - isa hierarchy only): If property
links are being displayed, removes them.

save layout (format menu command): After a user has manually laid out a graph
(normaly by adapting the layout provided by the automatic algorithms), this layout may be
saved. The 'save layout' menu item prompts the user for the name of the layout (no-name is the
default). Any number of layouts may be saved using different names. The 'use layout' command
Is used to restore a saved layout. Note that if any nodes are selected while the layout is being
saved, only their particular layout will be saved (if nodes are selected, CODE4 does query the
user as to whether that is intentional). Hence, you will normally want to ensure no concept is
selected when issuing this command.

use layout (format menu command): Displays a menu of possible layouts. When the user
picks alayout, the graph is reformatted. Any nodes that were not on display when the layout was
saved are automatically positioned. Note that if any nodes are selected when this command is
issued, the saved layout is only applied to those nodes. Hence, you will normally want to ensure
no concept is selected when issuing this command.

format...(format menu command): Brings up the dialog box shown in figure 23. Thisis
very similar to the 'graph format' control panel (section 4.2.5). The following points describe
elements of the format dialog:

Node font (dialog box item): Allows the user to pick the font that is used to
display nodes. The user picks both a font family name and a size. An example of the font
appears below the selections.

Edge font (dialog box item): The same as 'Node font' except it specifies the font
used to render |abels on the links (arcs) of graphs.

Horizontal/Vertical: (action button command or dialog box item): Horizontal
aligns the top nodes of the graph along the left of the used area. Vertical aligns them
along the top. Hierarchies grow to the right or bottom respectively. These two options
may be selected from the action buttons (vert, hor) found in the top right corner of the
subwindow, or from the dialog box brought up from the ‘format’ submenu found in
figure 15 (i.e. by selecting ‘Horizontal’ or ‘Vertical’).

Center/Corner (dialog box item): Corner skews the graph so that the top node is
always placed at the top left of the used area. Center ensures that the top node is always

CODE4 Reference Manual Magjor User Interface Components 51

placed at the centre of the used area (either at the top in vertical mode, or on the left in
horizontal mode).

Layer/Tight (dialog box item): Layer ensures that nodes that are at the same
depth in a hierarchy are placed parallel with each other (either horizontally or verticaly,
depending on mode). Tight conserves graph real estate by placing nodes at the next level
of the hierarchy as close as possible to their parents.

L abels/l cons/None (dialog box item): Labels causes link labels and their icons to
be displayed. Icons removes link labels, but continues to display link icons (link labels
can still be seen in the editing area, however). None results in links being shown as
simple arrows with no label. If none is selected, the user cannot select links in the graph,
only nodes.

Sibling Space (dialog box item): An integer field specifying the minimum
number of pixelsthat can separate sibling nodes.

Child Space (dialog box item): An integer field specifying the minimum number
of pixelsthat can separate a parent node from its child node.

Figure 23: Graphical paradigm format dialog.

Get default from Control Panel (dialog box item): Causes the format to be set to
the format specified in the control panel.

Ok (dialog box item): Causes the graph to be reformatted using the format items
specified in the dialog box, and then closes the dialog box.

Apply (dialog box item): Causes the graph to be reformatted using the format
items specified, but does not close the dialog box. After changing any format item in the
dialog box, it is necessary to select 'Ok’ or 'Apply' before the new specification takes
effect.

Cancd (dialog box item): Closes the dialog box without applying any changes to
the graph.

CODE4 Reference Manual Magjor User Interface Components 52

4.3.6.4 Apprarance of items on a graph
» Appearance of minimized items

When ‘+-’ is selected, a small square represents a single node, and a small rectangle represents
several sibling nodes. A fan-shape emanating from a node represents an entire sub-hierarchy (see
figure 24). When ‘no +-’ is selected, minimized itmes do no appear on the graph at all.

» Appearance of links:

Links are represented as lines between nodes. Link labels are displayed by default. To select a
link, click on the bullet that appears in the centre of the link. When an intermediate node is
missing (i.e. excluded), a link between a parent node and a non-immediate descendant is shown
by adotted line.

Figure 24: Minimized nodes and subtrees in the graphical paradigm.
Compare this with figure 22. Clicking on 'no+-' would remove all but the
'CD-ROM' node, because then masked-out nodes would be completely
hidden.

CODE4 Reference Manual Magjor User Interface Components 53

4.3.7 User language interaction paradigm (value panes)

A window using user language interaction paradigm (usually called a value pane) has only a
single node (i.e. a statement) and no links. It has no navigation area. The editing area contains
the value of the statement expressed as ‘user language’, i.e. whatever the user wants. For an
example, see the bottom-right of figure 48.

4.3.7.1 Format options in value panes

There is no format dialog in this paradigm. Instead, there are two format commands that can be
issued using both action buttons and the menu (figure 25)

Expand delegation & symbols/do not expand... (format menu command and +/- delg
action buttons): The former shows the result of applying delegation and symbol substitution to
Cleartalk expressions. Actually editing this result makes it local, i.e. substitution is no longer
dynamic. The latter shows pre-substitution Cleartalk. These two options may be selected from
the action button (+/- delg) found in the top right corner of the interaction paradigm, or from the
‘format’ submenu.

See section 5.3.8 for details on the use of delegation.

Figure 25: The user language paradigm format menu

Show/remove uneditable English interpretation (format menu command and +/- Engl
action button) The former shows a full sentence expansion of the statement enclosed in double
guotation marks. Edits to this part of the text are ignored. These two options may be selected
from the action button (+/- Engl) found in the top right corner of the interaction paradigm, or
from the ‘format’ submenu.

See section 4.3.7.4 for details of update prop set

4.3.7.2 Text manipulation options in value panes

Figure 26: The user language paradigm (value pane) text menu

copy text [*x]: Copies the text into the Smalltalk (and external) text buffers. Not to be
confused with '‘copy ' (see section 4.3.4.8) which copies a concept. (Note for Macintosh users:
we could not use "*c because thisis assigned to the Smalltalk function ‘user interrupt’).

paste text [q]: Pastes whatever is in the Smalltalk (or external) text buffer. If the shift
key is held down ssimultaneously, a menu will appear showing the last few copied items. 'paste
text' will paste text if text was copied, but it will also paste a textual representation of a concept
if aconcept was copied using ‘copy .

4.3.7.3 Edit options in value panes

CODE4 Reference Manual Magjor User Interface Components 54

accept (edit menu command and enter key): Causes edited text to be ‘accepted’, i.e.
entered into the knowledge base. This can also be accomplished by hiting ‘enter’ unless the ‘-
crAcc’ action button command has been issued (see below). See also ‘tab completion’ below for
amore intellegent mechanism of entering a value fast.

If the value entered matches the name of a concept, and if cleartalk parsing is switched on, then
an actual reference to the concept is made. Otherwise, whatever is typed is entered into the
knowledge base as informal text. To find out whether the text is formal or informal, use ‘+Engl’
format option — the word ‘informal’ will appear if the value contains informal text. Another way
to determine whether the value is formal is to look at the property list (which usualy is situated
above the value pane): Bold items are formal.

tab completion (using the tab key only): This mechanism helps users to enter knowledge
rapidly into the knowledge base. To use it, enter one or more characters of a known concept
name into the value pane and then press ‘tab’. If there is only one concept whose initia
characters match what is entered, the concept name will be completed and entered into the
knowledge base. If there is no matching concept then, the user will be notified by a simple error

message.

If there are multiple matching concepts, then a menu is presented. The user can choose from the
menu — the resulting concept is entered into the knowledge base. Thisis probably the fastest way
to edit values so they refer to other concepts.

cancel (edit menu command):This causes entered text to be reset to its original state, as
long as ‘accept’ or ‘tab completion’ has not been successfully performed.

parse as cleartalk (edit menu command): Causes the value to be explicitly parsed. This
may be necessary if the default parsing setting is off (see the environment control panel or the
‘subsequently parse as cleartalk’ action button below). It may also be necessary if knowledge
base changes that have been made would result in a different parse than was previously
computed.

set value to copied concept (edit menu command): Explicitly sets the statement value
(which must be a concept) to be the contents of the copy buffer. This is useful in the following
circumstances. 1) When default Cleartalk parsing is switched off; 2) When the results of
Cleartalk parsing would be ambiguous (e.g. several concepts with the same name).

add copied concept to value (edit menu command): Adds the concept (which must be a
concept) in the copy buffer to the existing concept in the value. If there was no previous concept
in the value, or if the value was informal, then this has the same effect as ‘set value to copied
concept’. Note that if the value is inherited, this command causes a new local override of the
inherited value that includes the inherited concepts plus the newly added one: If the inherited
concepts are later changed, the local override will not be affected.

Figure 27: The user language paradigm edit menu

CODE4 Reference Manual Magjor User Interface Components 55

delete concept from set (edit menu command): Allows selective editing of a set of
concepts in a statement value. Displays a popup menu from which the user can choose a concept
to delete. This option is particularly useful when Cleartalk parsing gives ambiguous results (due
to severa concepts having the same name)

carriage return accepts (+/-crAcc action button): +crAcc causes subsequent use of the
carriage return to enter (i.e. accept) whatever istyped as an update to the knowledge base. -crAcc
causes enter to be just a character in the value. In the latter case, the ‘accept’ command or ‘tal’
command must be used to actually update the knowledge base.

subsequently parse as cleartalk (+/- parse action button): +parse causes subsequent
entries using ‘accept’ to be interpreted as concept names (values that have concept names or * set
of’ followed by a concept name are said to be formal. -parse causes subsequent entries to be
informal.. If parsing is not switched on, then the ‘parse as cleartalk’ mechanism can be used to
explicitly make a vallue formal.

4.3.7.4 Displaying and editing facets in the value pane

Normally, only the value of one statement is displayed in the value pane (perhaps aso with the
uneditable English interpretation — see section 4.3.7.1).

It is also possible to show and edit the values of other facets directly in the value pane. To do
this:

» Open a properties subwindow from the value pane — this will display facets of the statement.
* Select the facets you are interested in displaying in the value pane.
* |ssue the ‘update prop set’ command in the value pane

The selected facets will appear in the value pane, separated by the ‘%’ character. Any facet can
be edited. Note: Editing facets in the value pane has the same effect as editing them in a
properties subwindow that us showing the facets individually.

CODE4 Reference Manual Magjor User Interface Components 56

4.3.8 Matrix interaction paradigm

The matrix paradigm allows the editing of inherently 2-dimensiona data; for example concepts
may be displayed on one axis and properties on another. Cellsin the matrix contain values of the
statement involving a given concept and property

In other words, it allows the user to view and compare properties for two or more concepts in
tabular format (smilar to a spreadsheet). These concepts may be siblings, coordinates or
arbitrarily chosen. The properties of a singly-selected concept may also be viewed.

The most typical uses of the matrix would be to either (1) view the properties of coordinates or
siblings of one selected concept or (2) view the properties of 2 or more arbitrarily chosen
concepts.

* How the matrix paradigm works

A concept (or characteristic) is selected in either a hierarchical outline browser or graphical
browser. (Although more than one concept may be initially selected, this document assumes that
only one concept is selected from the browser.) The matrix is generated by selecting
subwindow>>pr oper ties>>matrix>>detached dynamic (or detached static, right dynamic or
right static) from the middle mouse button.

Figure 28. Typical matrix interaction paradigm, inital phase.

The typical matrix initially shows the selected concept and its properties. It may also show the
concept’s parent(s) and dimensions.* As figure 28 shows, the various elements are displayed as
follows:

«along the top: superconcept(s) (dimension)

eunder the superconcept(s): selected concept. Note that the selected concept is
reflected in the matrix label aswell

«along the | eft side: property names of the selected concept

swithin the remaining cells: property values

4.3.8.1 Format options in the matrix paradigm

The default format of the matrix is set in the matrix format control panel (figure 29). As seen
in the figure below, it has three main parameters which can be set in a variety of ways: (1)
subjects; (2) properties and (3) property computation operator (PCO). These three parameters
are al taken into account by the matrix when it computes what will appear in its various cells at
various stages. The order in which they are taken into account is (1), (3), (2); i.e. the subject
parameter is considered first, then the PCO parameter, and lastly, the properties parameter. This
format can be changed at any time (see * Changing the default format within amatrix’, below).

Figure 29. Matrix Format in Control Panel.

" Whether or not parents and dimensions show up in the matrix depends on the selected Subjects format
(see below).

CODE4 Reference Manual Magjor User Interface Components 57

The various matrix format options are explained below:
1. Subjects
selected concepts only: alows user to view properties of the concept(s) selected in the browser

esibling concepts of selected concept: allows user to view the properties of all the subconcepts of
the selected concept's superconcept when the superconcept is clicked on in the matrix

ecoordinate concepts of selected concept: alows user to view the properties of al the
subconcepts of the selected concept's superconcept within the same dimension when the
superconcept is clicked on in the matrix

2. Properties
«all properties: showsall properties, whether they have a value or not
enon-nil values: shows all properties with existing values

elocal non-nil values: shows properties whose value has been changed at that particular concept
level

«differentiating values: shows properties whose values are different for one or more of the
selected concepts (only valid where 2 or more concepts are being compared)

3. Property computation operator (PCO)

eproperties shared by more than one subject (not relevant for single-select concepts): compares
properties shared by more than one of the selected subjects

properties shared by all subjects (not relevant for single-select concepts): compares properties
shared by all selected subjects

«all properties: compares all properties, regardless of subject

Changing the default format within a matrix

As with the other interaction paradigms, the format can be changed within an opened matrix at
any time by one of two ways:

(1) In the matrix format control panel, change the desired parameter(s) and select use default in
all panes: this allows you to make the new format effective for all currently opened matrices.

(2) Within an opened matrix, select format>>format to bring up a dialog box with the same
parameters listed as in the matrix format control panel.

After making the desired changes, select either

CODE4 Reference Manual Magjor User Interface Components 58

eapply: to make changesto the matrix and keep the format box open
0k : to make changes to the matrix and close the format box

euse default in all panes: to make changes effective for all opened matrices

Figure 30. Matrix Format, selected fromwithin a matrix.

CODE4 Reference Manual Magjor User Interface Components 59

4.3.8.2 Matrix example 1: Statements about a concept

This section and the next present some typical “matrix scenarios’ for one concept (CD-ROM).
Each scenario uses different matrix formats.

First, ensure that the default formats are set to those specified in figure 31.

Figure 31. Default format (1).

(@) Select CD-ROM from an outline isa hierarchy, and then open a detached dynamic matrix.
The Matrix of statements of CD-ROM appears, as seen below.

Figure 32. Matrix of statements of CD-ROM.
Note:

* at the top: because it has been specified (via the matrix format) that only the selected
concept be viewed, no parents are visible. (Note: it is through the parent that coordinate
concepts and sibling concepts can be made to appear in the matrix.)

« dong the side: property names
* inthe remaining cells: property values

*athough the default parameter for properties is ‘differentiating values’, this
obviously does not apply when only one concept is selected. Instead, properties
with non-nil values appear.

Usefulness of format

Thisformat is useful for comparing two or more arbitrarily selected concepts. If the user decides
to compare the already selected concept with another concept, she can simply shift-select a
second concept in the outline isa hierachy or on the graph; because this is a dynamic matrix, the
second concept will automatically appear.

If the user decides that she would like to compare properties for coordinate concepts or sibling
concepts of CD-ROM, she can open a format dialog box (format>>format from the middle
mouse button menu) and make the appropriate format changes.

(b) To close the matrix, the user clicks on ‘close’ from the right mouse-button menu.

4.3.8.3 Matrix example 2: Statements about a concept and siblings
First ensure that the default formats are set to those specified in figure 33.

CODE4 Reference Manual Magjor User Interface Components 60

Figure 33. Default format (2).

(a) Select CD-ROM from an outline isa hierarchy and then open a detached dynamic matrix.
The Matrix of statements of CD-ROM and siblings appears, with only CD-ROM showing.

Note:

* at the top: because the user has requested (via the matrix format) that sibling concepts
of the selected concept be viewed, the parents of CD-ROM are now visible, i.e. compact
disc and read-only optical disc. By clicking on agiven parent, the user will be able to see
the siblings of CD-ROM under that parent.

(b) To see the sibling concepts of CD-ROM under compact disc (i.e. all the subconcepts of
compact disc regardless of dimension), the user clicks on ‘compact disc’. The sibling concepts
of CD-ROM under compact disc and their differentiating properties (predicate along the left side,
values in the remaining cells) appear, as seen below.

Figure 34. Matrix of statements of CD-ROM and siblings, under
super concept compact disc.

Note that compact disc is now highlighted (i.e. in bold text), so that the user is always aware of
which superconcept is dictating the siblings being shown.

(c) To see the sibling concepts of CD-ROM under read-only optical disc (i.e. al the subconcepts
of read-only optical disc regardiess of dimension), the user would click on ‘read-only optical
disc’. After a brief delay, the sibling concepts of CD-ROM under read-only optical disc and
their differentiating properties (names along the left side, values in the remaining cells) would

appear.
(d) To close the matrix, the user clicks on close from the right mouse-button menu.

CODE4 Reference Manual Magjor User Interface Components 61

4.3.8.4 matrix example 3: Statements of a concept and its coordinates
First ensure that the default formats are set to those specified in figure 35.

(@) Select CD-ROM from an outline isa hierarchy and open a detached dynamic matrix. The
Maitrix of statements of CD-ROM and coordinates appears, with only CD-ROM showing, along
with its two parents, compact disc and read-only optical disc, and their respective dimensions.

Note:

«at the top: because the user has requested (via the matrix format) that coordinate
concepts of the selected concept be viewed, the parents of CD-ROM plus their
dimensions are now visible, i.e. compact disc (physical form) and read-only optica disc
(writability). By clicking on a given parent, the user will be able to see the coordinates of
CD-ROM under that parent.

(b) To see the coordinate concepts of CD-ROM under compact disc (physical form) (i.e. al the
subconcepts of compact disc within the dimension ‘physical form’), the user clicks on ‘compact
disc (physical form)’. After a brief delay, the coordinate concepts of CD-ROM under compact
disc and their differentiating properties (names along the left side, values in the remaining cells)
will appear, as seen below.

Figure 36. Matrix of statements of CD-ROM and coordinates, under
superconcept compact disc (physical form).

Note that compact disc is now highlighted (i.e. in bold text), so that the user is aways aware of
which superconcept is dictating the coordinates being shown.

(c) To see the coordinates of CD-ROM under read-only optical disc (writability) (i.e. al the
subconcepts of read-only optical disc in the dimension writability), the user would click on
‘read-only optical disc’. After a brief delay, the coordinate concepts of CD-ROM under read-
only optical disc (writability) and their differentiating properties (names along the left side,
values in the remaining cells) would appear.

(d) To close the matrix, the user clicks on ‘close’ from the right mouse-button menu.

CODE4 Reference Manual Magjor User Interface Components 62

4.3.8.5 Manipulating matrix information

Once the matrix is opened and the arbitrarily selected, sibling or coordinate concepts and their
properties are displayed, the user may manipulate the matrix information in a variety of ways.
All menu commands are accessed from the middle mouse-button (note: to access the middie
mouse button, the cursor must be in the property value cells areq).

4.3.8.6 Modifying statement values in matrix cells

Statement values in cells can be modified within the matrix. Any modifications made in the
matrix are instantly reflected in the list of conceptual properties (if oneis open), and vice-versa.

Properties cannot be added directory to the matrix, but if a property is added to a concept (e.g. in
an outline isa hierarchy with editable statements), it will automatically appear (as long as the
selected matrix format dictates that this property should appear on the matrix).

Any statement value modification can be accepted (i.e. entered into the knowledge base) by
hitting <return>. Note that severa statements can be changed before hitting <return> to accept
all of them at once; thisis the most time-saving way to edit using the matrix.

Copy text ("“x or text>>copy text) and paste text (g or text>>paste text) functions are also
available. Text may be copied from elsewhere in the KB and pasted into the matrix, and vice-
versa

4.3.8.7 Masking out concepts and properties from a matrix

Both concepts and properties in the matrix can be masked out to make it easier for the user to
focus on specific information. For more information about the mask, see sections 4.4 and 5.4.1.

a) To mask out concepts

* Select the concepts to be masked out by clicking on the concept name (it will become
bolded when selected)

* Select visibility>>exclude selected columns

The selected concepts will then be masked out (disappear) from the matrix.

b) To mask out properties

select the properties to be masked out by clicking on the property name (it will become bolded
when selected)

* Select visibility>>exclude selected rows

The selected rows will then be masked out (disappear) from the matrix.

Figure 37 shows the matrix seen in figure 36 with masked out subjects and predicates.

CODE4 Reference Manual Magjor User Interface Components 63

Figure 37. Matrix of statements of CD-ROM and coordinates under
superconcept compact disc (physical form), with masked-out subjects and
predicates.

CODE4 Reference Manual Magjor User Interface Components 64

4.3.8.8 Unmasking concepts and properties in a matrix

Concepts and properties that have been masked out can be easily unmasked, either individually
or al at once.

a) Tounmask individual concepts and/or properties

* Select visibility>>open mask to get the Mask on knowledge map

Figure 38. Marix mask with masked-out concepts.

* Select 'NOT isincluded in the set': masked-out concepts and/or properties will appear in
the lower subwindow in curly brackets, as seen in figure 38

Toremoveagiven item (e.g. physical appear ance):

* Place your cursor in the lower subwindow and select middle mouse button>>remove
from set

* A list of the itemsin the set appears

» Select the item to be deleted from the set (i.e.unmasked); this procedure must be
repeated for each item to be removed from the list

* Select middle mouse button>>accept and apply changes

The items removed from the list will reappear in the matrix.
b) To unmask all masked-out concepts and/or properties

* Select visibility>>reset mask to show everything

CODE4 Reference Manual Magjor User Interface Components 65

4.3.8.9 Rearranging the order of concepts and properties in the matrix

The order of concepts and properties can be rearranged in any manner according to the user’s
wishes. The various ordering functions are relatively self-explanatory.

To rearrange concepts
* Select the concept(s) to be rearranged

* Select rearrange>>subj ects, and desired method of arranging subjects (see figure 39)

Figure 39. Rearrange subjects submenu.
Torearrange properties

» Select rearrange>>predicates, and desired method of arranging predicates (see figure
40)

Figure 40. Rearrange predicates submenu.

4.3.8.10 The property history matrix

The material described above showed how to compare various concepts that are related
‘horizontally’. 1.e. they have a common parent.

Another useful capability is to find out how a chain of ever-more-specialized concepts becomes
speciaized. To do this:

* Select a concept and a property

* Open a detached dynamic history matrix. This kind of matrix can be edited in a manner similar
to regular property matrices

CODE4 Reference Manual Magjor User Interface Components 66

4.4 Mask Views

Associated with each knowledge map (and with its browser subwindow) is a knowledge mask.
The user can select 'open mask' from the browser visibility menu to display a view of the mask.
An exampleisshown in figure 41.

Figure 41: An example mask with four predicates. A predicate with a
textual argument is selected This mask will show everything in its
knowledge map's hierarchy that match the following criteria: 1) They
must have names starting with 'optical’, 2) they must be in the hierarchy of
'CD-ROM' (above or below), 3) they must not be system concepts or
descendants of system concept types..

Also associated with each knowledge map is a set of selection criteria. The user can select ‘open
selection criteria from the browser visibility menu to display aview of the selection criteria.

The regular mask is used to control which nodes are displayed in a paradigm. The selection
criteriais used to cause a set of nodes to be highlighted (selected).

Both mask and selection criteria use mask views, as described in this section.
A mask view is composed of two subwindows:

* The mask predicate hierarchy (top subwindow)

* The argument editing field (bottom subwindow)

The mask predicate hierarchy currently contains a mere list of mask predicates. To determine
whether a given concept is displayed, all of the mask predicates must evaluate to true when
applied to that concept. In future the mask predicate hierarchy will become a full hierarchy that
will permit 'and’, 'or' and 'not' nodes — this user will this be able to specify an arbitrary logical
expression.

The mask window updates under two circumstances.
1). The user issues acommand from one of the mask menus described below, or
2) The user issues a command from a knowledge map's 'visibility' menu.

Details of both these ways of controlling the set of displayed concepts are described in section
54.1.

4.4.1 Editing the mask predicate hierarchy

One or more predicates can be selected in the mask predicate hierarchy (there are master
selection and multi-selection capabilities just like in the browser - see section 4.3.2). The user
may add or delete from this list. Figure 42 shows a mask with the 2 predicates selected in the
mask predicate hierarchy, the predicate hierarchy menu (left-hand menu) and the *add predicate’
submenu.

CODE4 Reference Manual Magjor User Interface Components 67

The predicate hierarchy for mask and selection criteria menu has the following items:

apply changes. (mask only) Causes the browser subwindow to update with concepts
being masked out as appropriate (this is only effective if updates are not deferred). Refreshing
the subwindow has the same effect as this command. Until either of these actions is taken, the
user may edit the mask without causing immediate change in the browser.

generate new selection: (selection criteria only) Causes concepts in the browser
subwindow to be selected. The mask is temporarily overridden if any of the selected concepts are
masked out (subsequently refreshing the browser subwindow restores the normal mask).

add predicate: Adds a predicate from a list of available predicates, increasing the
restriction about what is displayed. Use 'apply changes to see the effect. The predicates are
described in section 5.4.1.

delete ... : Deletes the selected predicates, removing their restrictions about what is
displayed. Use 'apply changes to see the effect.

negate ... : Reversesthe effect of the selected predicates. The prefix 'NOT' is displayed.

refresh: Updates the mask display (this should not be needed as the mask display is
supposed to aways be up-to-date.

inspect: (developer-only feature) Allows direct editing of the mask.

browse _implementors: (developer-only feature) Allows access to the Smalltalk source
code implementing the master selected predicate.

Figure 42: An example mask showing the add predicate menu. This
particular mask is requesting to show only 'English terms and 'French
terms' subproperties that inherit to the metaconcept of 'read-only optical
disc'.

4.4.2 Editing the mask predicate arguments

There are three types of mask predicates: 1) Those with no arguments, 2) Those with arguments
that are string patterns, and 3) Those with arguments that are sets of concepts.

In future, some predicates might be able to have more than one argument.

When a predicate with an argument is master selected, its argument is presented for editing in the
argument editing field. The menu options available depend on whether the argument is a string
or concept set.

* Editing a string argument

CODE4 Reference Manual Magjor User Interface Components 68

Figure 43: The menu of the mask predicate argument editing field for
string predicates

Arguments of this type are used for pattern matching (e.g. to find all the concepts whose names
or statement values match a certain pattern). Figure 43 shows the menu that is presented. Strings
can use the asterisk character as a wildcard. In the future, more sophisticated regular expressions
will be made available. In generdl, if the predicate argument is a single asterisk, and the predicate
is not negated, the predicate has no effect.

The following menu items are available:

accept and apply changes: (mask only) Updates the predicate with the entered string
and causes the browser subwindow to refresh, presenting the results of the 'query’, i.e. hiding
those concepts that do not match

accept and generate new selection: (selection criteria only) Updates the predicate with
the entered string and causes the browser subwindow selection to show the results of the ‘ query’.

accept: Updates the predicate with the entered string, but does not cause the browser
subwindow to refresh.

copy: Standard Smalltalk text copy
paste: Standard Smalltalk text paste
* Editing a set argument

Figure 44 shows the menu that is presented when the selected predicate accepts a set of concepts
as its argument. This type of predicate is typically used for such masking operations as
preventing display of a specific set of concepts, or only displaying a specific set of concepts.

Figure 44. The menu of the mask predicate argument editing field for
concept set predicates

The following menu items are available

add copied concept to set: Takes the concept copied from some browser subwindow
using 'Copy _ ' or ~b, and adds it to the set. Use 'apply changes' in the predicate hierarchy to see
the effect.

remove from set: Presents a menu of items currently in the set. The item selected is
removed.

CODE4 Reference Manual Magjor User Interface Components 69

4.5 Feedback Panels

Associated with each knowledge base is a feedback panel. Often it is not displayed, but it will
appear any time the user makes a knowledge base editing request that cannot be satisfied. The
user may also explicitly request that the panel be displayed. This is done using the KBs control
panel (see section 5.1.4).

Warning: In version 4.0 of Smalltalk, you should not collapse a feedback panel or else it will not
appear when an editing error occurs. If you don't want to see the feedback panel, you should
closeit.

Figures 45 and 46 give examples of feedback panels.

Figure 45: A feedback panel on a knowledge base called 'optical4new'.

A feedback panel has four subwindows

1) The list of attempted commands (at the top): This lists each command applied to the
knowledge base. In future there will be capabilities for reversing and repeating commands.
Currently this acts as a useful reference and reminder of what the user has done.

2) Command results subwindow (center): This describes textually the results of performing the
selected command. The user may select any command in the attempted-commands list in order
to see its results — by default the command results subwindow shows the results of the latest
command. This subwindow often says 'executed successfully'. If the command did not execute
successfully, then a detailed explanation of why not is presented.

3) Suggested actions subwindow (bottom left). This is currently unused. In future it will list
possible courses of action the user may take, especially as aresult of failed commands.

4) Suggested commands subwindow (bottom right). This is aso not used. It will list the
commands to be executed based on a selection in the suggested actions subwindow.

Figure 46: A feedback panel showing a situation where an error
occurred.

Figure 47 shows a menu that exists in the current release. When some commands fail, a solution
Is presented in the ‘suggested solutions’ subwindow. The perform solution menu item can be
used to carry out the suggested command. After executing ‘ perform solution’ successfully, select
the command that originally failed and issue ‘retry’.

In a near-future release of CODEA4, significant enhancements are planned to this functionality.

Figure 47: The feedback panel attempted commands subwindow

CODE4 Reference Manual Commands 70

5 Commands

This section describes commands available for manipulating and editing knowledge. It assumes
the user isfamiliar with the user interface as described in the last section.

5.1 Opening windows - basics

5.1.1 Opening the launcher

The launcher should always be open, but if it is not, typing the Smalltalk expression
‘LauncherView openLauncher’ in a Smalltalk window will open a new one. See more details in
section 4.1

5.1.2 Opening the control panel

From the launcher’s CODE menu, choose ‘control panel’. Any existing control panel will be
brought to the front. If there is no existing control panel, one will be opened. For more details see
section 4.2

5.1.3 Opening a browser
There are three ways to open a browser:

(1) From the ‘KBS’ control panel, select a knowledge base and choose ‘ open browser on

(2) From the launcher, choose ‘open browser’ (operates on the knowledge base selected in the
control panel).

(3) From any browser, choose ‘ subwindow’ .
For details of the user interface of browsers see section 4.3

5.1.3.1 Opening a top level browser

Opening a top-level browser is achieved from the launcher or from the 'Loaded KBs' control
panel menu (figure 51).

In either case, a popup menu is presented from which the user may pick from a set of templates
that combine the following options:

* graphical or outline
The interaction paradigm of the first subwindow.

e ...isa hierarchy or property hierarchy: The knowledge map of the first subwindow. An
isa hierarchy lists all concepts in the system. A property hierarchy lists al the properties in
the system.

* ... with editable outline statements, graphical statements, full details or none: The
Interaction paradigm and knowledge map of the second (driven) subwindow.

CODE4 Reference Manual Commands 71

Figures 48 and 49 show two examples of top-level browsers, each with several subwindows.

Figure 48: An ‘Outline isa hierarchy with editable outline statements':
the most popular kind of top-level browser. On the left are concepts in an
isa hierarchy. At the top right is a statement hierarchy about the selected
concept. At the bottom right is a user language view showing the value of
the statement whose subject is the selected concept and whose predicateis
the selected property. The right-hand half of this browser may also be
opened from another browser by selecting
‘subwindow>> properties>>outline>>...’

Figure 49: A fully-detailed top-level browser. At the left is a list of
concepts. In the centre are (from top to bottom) properties, terms, term
properties, and metaconcept properties. On the right are (from top to
bottom) facets, term facets and metaconcept facets. The right-hand two-
thirds of this browser may also be separately opened from another
browser by selecting 'subwindow>> properties>>full details.

5.1.3.2 Opening a browser or subwindow from another browser

The 'subwindows menu (figure 17) in any browser subwindow allows the user to create a new
browser, or add subwindows to the current browser. This menu has a series of submenus, that
are combined to produce the desired subwindow(s). The user selects from the first submenu, then
from the second submenu, and finally from the third submenu. After that, the resulting command
Is performed. Not all combinations are possible.

 The first submenu selects the kind of related knowledge to be displayed; it has the following
choices:

properties: A subwindow or subwindows are opened that will show statements about the
selected concept(s) in the current window. If the current subwindow itself is showing statements,
then the new subwindow(s) will show statements about statements (i.e. facets).

subtree: A subwindow is opened with the same type of knowledge map as the driving
subwindow, except that subhierarchies of the selected nodes are shown.

relation: A subwindow is opened that can display an arbitrary set of relationships. For
more details, see section 5.3.18. If this option is selected from a statement hierarchy, then the
selected properties determine the relations to be displayed, and the master selection determines
the relation to be edited. Figure 11 is an example of this kind of subwindow.

terms. A subwindow is opened containing al terms of the selected concepts. The user
can open afurther ‘ properties’ subwindow from thisto obtain linguistic information, etc.

meanings. A subwindow is opened showing the concepts referred to by any selected
terms (their meanings) or statements (the related concepts of the value).

CODE4 Reference Manual Commands 72

metaconcept properties: Similar to ‘properties except that the properties of the
metaconcept of selected conceptsis displayed

freeze this pane: This does not open a new window, but rather alters the current
subwindow so that it is no longer dependent (i.e. it is no longer driven by its driver subwindow).

remove this pane: Removes the current subwindow entirely.

*» The second submenu selects the types of subwindows in which the related knowledge will be
presented; it has the following choices:

outline: A composite of two subwindows is opened: (1) an outline-paradigm hierarchy of
the statements of the selected concept(s) (section 4.3.5) , and (2) a user language subwindow to
allow editing of the value of the selected statement (section 4.3.7). For an example, see the right
half of figure 48.

graphical: A composite of two subwindows is opened as above, except that the first
subwindow uses the graphical interaction paradigm (section 4.3.6)

textual: A subwindow is opened using the textual interaction paradigm (section 4.3.9).
Thisis currently under devel opment.

matrix: A subwindow is opened using the matrix interaction paradigm (section 4.3.8).

full details: A composite of a number of subwindows is opened, showing statements and
their facets, terms and their properties and metaconcept statements and their facets. All these
subwindows use the outline interaction paradigm. See the right two-thirds of figure 49 for an
example of the full-details composite.

* The third submenu selects where the new subwindow(s) will be put with respect to the current
subwindow, and whether the new subwindows will be dependent or not. The menu has the
following choices:

detached dynamic: The new subwindow(s) will be dependent on the current subwindow
(i.e. the current subwindow will 'drive’ the new one(s); selections made in the current subwindow
will cause their content to change dynamically). The new subwindow(s) will aso be in their
own window, separate from the driving subwindow.

detached static: The knowledge in the new subwindow(s) will be determined by the
selection in the current subwindow, but will not be updated when that selection is changed. The
new subwindow(s) will also be in their own window.

right dynamic: The new subwindow(s) will appear in the same window as the current
subwindow, and to the right of it. The current subwindow will be shrunk in size to accommodate
the new subwindow(s). They user may therefore have to subsequently increase the size of the
whole window, or adjust the internal borders (section 4.3.4.2). The new subwindow(s) are
dependent on the current subwindow

below dynamic: The new subwindow(s) will appear in the current window, below the
current subwindow, and will be dependent on the current subwindow.

CODE4 Reference Manual Commands 73

saved to file: This option is currently inoperative. It is planned that the subsidiary
information be savable to afile, instead of being saved in awindow.

Several combinations of the above options have hot keys (section 4.3.4.6). These are:
properties, outline, detached dynamic: ~k
properties, outline, detached static:]
relation, graphical, detached dynamic: v

subtree, outline, detached dynamic: "l

5.1.4 Opening a feedback panel

To see the history of commands issued to a knowledge base, select 'open feedback panel on
from the 'Loaded KBs control panel menu (figure 51). Figure 45 shows an example of a
feedback panel. The user interface is described in section 4.5. See aso section 5.4.3 for other
hardcopy mechanisms,

5.1.5 Displaying statistics about a knowledge base

To see detailed statistics about the number and types of concepts in a knowledge base, select
'display statistics about ' from the ‘Loaded KBs control panel menu (figure 51). Figure 50
shows an example of a statistics window.

Figure 50: A Satistics window generated from the 'vehicle net' knowledge
base.

5.2 Manipulating knowledge bases

The KBs control panel (section 4.2.2) is used to manipulate knowledge bases. Figure 51 shows
the menu of available operations (all accessed from the middie mouse button).

Figure 51: The 'Loaded KBs' control panel menu

5.2.1 Loading a knowledge base

Select afilewith a‘.ckb’ suffix in the bottom part of the ‘KBS control panel, and choose ‘load
into memory’. The system will ask you to confirm your choice. This may take a minute or
longer for avery large knowledge base.

Beware that loading too many large knowledge bases can cause the system to run out of
memory.

Also beware of loading multiple copies of the same knowledge base: you might lose track of
which copy you have edited (even though the control panel indicates when a knowledge base has
been edited).

CODE4 Reference Manual Commands 74

5.2.2 Changing a knowledge base name

Select a loaded knowledge base in the ‘KBS’ control panel (found under ‘Loaded KBS in the
upper part of the subwindow) and choose ‘change name of . Type in a new name at the
prompt and hit <return>.

Knowledge bases have both a version number and a name, e.g. v1 ‘minima KB’ (145 conc., 22
types). The version number is automatically updated whenever the knowledge base is saved. The
name of a knowledge base isin fact distinct from the name of the filein which it issaved. Thisis
done because file names can easily be changed by external operating system facilities (especially
when copies are made), whereas the name of the knowledge base should remain constant.

5.2.3 Saving a knowledge base to disk

A knowledge base which has been edited (e.g. v1 ‘minimalKB’ (145 conc., 22 types, edited))
should be saved to ensure that any edits made are not lost.

Select aloaded knowledge base in the *KBs' control panel and choose ‘ save _ to disk’. You will
be prompted for the file name (which defaults to the knowledge base name). The version number
will be incremented before the saving takes place.

Note that a KB marked ‘edited’ before it is saved will not contain that note once it is saved, e.g.
vl ‘minimalKB’ (145 conc., 22 types, edited) becomes v2 ‘minima KB’ (145 conc., 22 types).
Therefore any KB not marked ‘edited’ can be assumed to be the most up-to-date version of that
KB.

5.2.4 Removing a knowledge base from memory
Select a loaded knowledge base in the ‘KBS control panel and choose ‘remove _ from
memory’.

If a KB isremoved without the edits having been saved, the edits will be lost.

5.2.5 Removing all KBs from memory and creating a new default

In the ‘KBS control panel, select ‘remove all KBs from memory’. All knowledge bases are
removed and a default oneis created.

The default knowledge base that is created contains a minimal set of system concepts needed for
the system’s internal functioning (i.e. knowledge about self; see section 6). It is expected,
however, that users will typically want to load atop-level (ontology) knowledge base rather than
starting from an empty default

5.2.6 Creating a new default (empty) knowledge base

In the ‘KBS control panel, select ‘create a new default KB’. A default KB is created. (See
section 5.2.5, above, for more details on the default KB.)

CODE4 Reference Manual Commands 75

5.2.7 Merging one knowledge base with another

To merge two knowledge bases, first decide what isa-hierarchy subtree of the source knowledge
base is to be merged into the destination knowledge base. Then, use 'copy _ [*b]' (section
4.3.4.8) to place the root concept of the source subtree in the copy buffer. Then select the
destination knowledge base in the KBs control panel (section 4.2.2) and select menu item 'mer ge
copied concept into _".

CODE4 will transfer all concepts in the source subtree into the destination knowledge base. It
makes some heuristic decisions about where to put the destination subtree. It looks for concepts
in the destination KB that match the superconcept(s) of the root of the subtree being copied. If it
finds such a concept, it will merge the subtree as a subconcept. Thisis useful because it allows
multiple people to work on different hierarchies, and then combine their work periodically. If no
match can be found, the incoming subtree and its superconcept chain will be copied under the
top concept of the knowledge base. The superconcepts must be copied too because they contain
properties that inherit to the copied subtree.

During the merge process, all properties, statements, metaconcepts and facets of the copied
subtree are also merged.

The merge mechanism described above will not destroy any knowledge in the destination
knowledge base. If there are conflicting statements, the destination knowledge base has priority,
and statements from the source knowledge base may not be transferred as expected.

Another option in the KBs control panel menu, 'mer ge copied concept into _ (value override)’,
gives priority to the source knowledge base. In this case, conflicts are resolved in favour of the
source KB, and it can be guaranteed that all knowledge from the source subtree is transferred.
Which of the two menu items is most desirable depends on what kind of collaborative work is
being persued, and how much overlap of work has taken place.

In the future a third merge option is planned. This will display all conflicts and allow statement-
by-statement resolution.

5.2.8 Duplicating a knowledge base or subtree in memory

Sometimes it is desirable to take a knowledge base and develop it in two different directions (so
that subsequently, the descendants of the two copies contain different knowledge). Thisis useful,
for example when there exists a knowledge base with top-level knowledge that can be
specialized for various domains or subdomains.

It is always possible to copy afile and thus create a new knowledge base on disk (section 4.2.2).
Likewise it is aways possible to load two copies of the same knowledge base into memory
(section 5.2.1). A third option is to duplicate a knowledge base in memory. To do this select the
top concept of the knowledge base to be duplicated and use menu item ‘copy _ "“b" (section
4.3.4.8). Then use menu item ‘create a new KB with the copied concept' from the KBs control
panel (section 4.2.2). You will be prompted to give a name to the new knowledge base. This
operation is equivalent to merging (section 5.2.7) one knowledge base into a default knowledge
base (section 5.2.6).

Asavariation on the above, it is often useful to just duplicate a subtree. This can be useful when
there exists a large master knowledge base, and for purposes of collaborative work, it is desired

CODE4 Reference Manual Commands 76

to have various people work on different subtrees. The easiest way to achieve this is to make
several new knowledge bases containing the individual subtrees, have the collaborators work on
these subtree knowledge bases, and later merge the edited subtrees back into the master
knowledge base using 'merge copied concept into _ (value override)'. To create the initial
subtree knowledge bases, first select the concept at the roots of the desired subtree and put it in
the buffer using 'copy _ *b', then repeatedly use 'create a new KB with the copied concept'.

5.2.9 Manipulating knowledge base windows
There are three options on the 'Loaded KBs' control panel menu (figure 51 and section 4.2.2) that
can be used to manipulate all the windows on a knowledge base:

raise windows on _: brings all browsers displaying knowledge about the selected
knowledge base to the front. This can be useful when windows get lost behind others, or when it
becomes unclear which windows belong to which knowledge base. Warning: In release 4.0 of
Smalltalk, collapsed windows may not appear.

flash windows on _: momentarily blackens browsers displaying knowledge about the
selected knowledge base. Thisis useful to determine which windows belong to which knowledge
base.

close windows on _: closes all windows on the selected knowledge base

5.2.10 Other knowledge base operations
See ‘Opening abrowser’ in section 5.1.

See also the file manipulation options in the control panel (section 4.2.2).

CODE4 Reference Manual Commands 77

5.3 Editing knowledge bases

Editing knowledge bases is primarily accomplished by issuing commands to a set of selected
concepts. It is also possible to edit textual lists (e.g. iteml, item2, item3) in metaconcepts
properties to accomplish many of the same effects as described in this section.

Before you start to make edits, ensure the correct knowledge base is loaded and selected
(sections 4.2.2, 5.2.1), and that you have one or more browsers open on it (section 5.1.3).

The edit menu isillustrated in figure 18.

Many edit commands are binary in that they not only require a selection, but also require a
‘copied concept' in abuffer. The copying process is described in section 4.3.4.8.

Some edit commands can be automatically repeated (e.g. you can add 4 subconcepts at once).
See section 4.3.4.4

5.3.1 Adding concepts

In any browser subwindow select one or more concepts and then choose one of the following
menu items from the ‘edit’ submenu (found within the middle button menu, figure 18):

add child to _... ["a]: for each selected item, creates a concept that is a child in the
current hierarchy (i.e. a subconcept in an isa hierarchy, a subproperty in a property hierarchy
etc.)

add sibling to _..._[*s]: For each selected item, creates a concept that is a sibling in the
current hierarchy. Where a selected item had multiple parents, the sibling will have the same
parents.

It is not possible to add a child to an instance concept. If thisis attempted, a feedback panel will
appear. If you really want to do this, try changing the concept to a type first. (Some people feel
that instance concepts should be allowed to have subconcepts; this is because they have a
broader notion of what it means to be an instance concept.)

When subconcepts are added in an isa hierarchy, they are created as types by default. However,
if all of the existing concepts ???

5.3.2 Deleting concepts

Select one or more concepts and choose ‘delete ... [*d]’ from the ‘edit’ submenu. There are
many cases where it is not possible to immediately delete a concept because of various
dependencies (e.g. the concept is referred to, or is the source of properties that cannot be readily
moved to some other concept). In these circumstances the feedback panel will appear explaining
why (section 4.5).

Deleting a concept in the middle of a hierarchy causes every parent of the deleted concept to be
made a parent of every child of the deleted concept.

Future: The feedback panel will list the steps necessary to actually delete a concept, if immediate
deletion cannot be accomplished.

CODE4 Reference Manual Commands 78

5.3.3 Adding properties to a concept

This is a gpecial case of adding concepts (see ‘Adding concepts above). It can only be
performed in a property hierarchy knowledge map, driven from some other knowledge map. A
concept must be selected in the latter, and one or more properties in the former.

The easiest way to accomplish this is to open an 'outline isa hierarchy from x with editable
outline statements' (section 5.1.3). Then select a concept in the left hand pane. This concept will
be the most general subject of the new property. Next select a property in the top-right pane. This
will be the superproperty of the new property. Finally, select the menu item 'add child to
...["a]" in the top-left pane. You may then want give a value to the statement involving the
most general subject and the new property; to do this, see section 5.3.6.

5.3.4 Deleting properties from a concept

Thisis a specia case of deleting concepts. See ‘ Deleting concepts and * Adding properties to a
concept’, above, for more details. Note that a property must be deleted from the most general
subject (i.e. the source of the property).

5.3.5 Renaming a concept

Select the concept name, then either (a) type the new name or (b) perform detailed editing in the
editing area of the subwindow, and hit <return>. Applies only to the master selection. See
section 4.3.4.3 for more details.

5.3.6 Changing the value of a statement
This is a special case of renaming a concept. It can only be performed in a user language
knowledge map, driven by a property hierarchy knowledge map.

Simply select the statement, edit the value text and hit <return>. See section 4.3.7 for more
details.

5.3.7 Adding and editing facets of properties
Thisisa special case of adding and editing properties because facets are properties of statements.

Open a property subwindow from a property subwindow so that the new subwindow is
displaying statements of statements (section 5.1.3) . New facets can be added (as in section 4.3.3)
and the name and value of any facet can be edited (section 5.3.6). Note that the value of the value
facet of astatement is, by definition, the same as the value of the statement.

5.3.7.1 Making facets inherit

Adding a facet from a property subwindow of a statement adds a facet in that statement only.
The facet does not inherit.

To make a facet appear in every statement in the system, open a property subwindow on the
subject concept 'statement within self'. Thisis a system concept (see section 6). Add a property
to 'statement within self'. The new facet property will then appear in every statement.

CODE4 Reference Manual Commands 79

To make the value of afacet property inherit down the subject hierarchy as well as the existence
of the facet, edit the value of the facet in 'statement within self’, giving it the value: #f. Thisisa
specia delegation symbol (see section 5.3.8). Make sure you have Cleartalk parsing switched on
when you define a delegation symbol (section 4.2.1).

To make afacet inherit to just a certain set of concepts, do the following:
1) Create asibling concept of 'statement within self’ in the isa hierarchy (section 5.3.1)

2) Reparent this 'specialized statement within self' to be a subconcept of 'statement with self’
(section 5.3.9)

3). Reparent all the concepts to which you wish to add the facet so that they become subconcepts
of the new 'specialized statement within self'.

4) Add the new facet to the new 'specialized statement within self' as described in 5.3.7.

5.3.8 Specifying substitution (delegation and special symbols)

When editing the value of a statement, special syntax can be used to cause special effects to
occur (see below) if substitution has been requested. See section 4.3.7 (format options for the
user language interaction paradigm) for details about how to turn substitution on and off.

Note that substituted values may be different in subconcepts. In fact this is the source of power
of substitution. The current concept refers to the concept in which substitution is taking place.

When specifying delegation, it is necessary to have Cleartalk parsing switched on (section 4.2.1)
Future: The following description will be enhanced.
The following syntaxes cause substitution by the value indicated at the left of the ‘==>":

* the <propname> ==> the value of the property <propname> in the current concept. This is
called simple delegation.

* the <propname2> of the <propnamel> ==> the value of the property <propname2> in the
concept related to the current concept by the property <propnamel>. This is called compound
delegation; any number of levels of ‘of’ are allowed. In the current release this is not guaranteed
to work properly.

* # ==> the current concept (self)

* #m ==> the metaconcept of the current concept

* #s ==> the superconcept(s) of the current concept

* #c ==> the concept of the current concept if it is a statement

* #p ==> the property of the current concept if it is a statement

* #u ==> the submetaconcept of the current concept if it is a metaconcept

* #1 ==> what the concept is‘of" if it is an associated concept (future).

CODE4 Reference Manual Commands 80

» #f ==> the value of the same facet of the same property in the superconcept of the property's
subject (see section 5.3.8). Thisisonly effective as the value of a property of 'statement with self’

* #v ==> the value of a statement involving the same property

These syntaxes can be combined, e.g. ‘the comment of #sm’ would result in substitution of value
of the comment property of the metaconcept of the superconcept of the current concept!

Useful combinations of delegation symbols:
Facet value inheritance: #f (section 5.3.8)

M etaconcept value inheritance: #usmv (take the value of the statement about the same
property of the metaconcept of the superconcept of the submetaconcept). Thisis only effective as
the value of a property of ‘metaconcept within self', or a subtype.

5.3.9 Reparenting

Thisis a binary command which alows you to give a set of concepts new parents. First, copy a
set of concepts to become the new parent(s) (temporarily only one parent can be set at atime —
section 4.3.4.8). Then select one or more concepts to be reparented and choose ‘reparent ... to
copied concept [*p]’ from the ‘edit’ submenu.

Where no consistency constraints are violated, the second set of concepts have their old parents
removed and replaced with the new parent (i.e. the copied concept).

Some consistency constraints that may be violated (and thus may result in a problem being
reported in the feedback panel) are:

* Inisaor property hierarchies, a child of a concept cannot also be a parent of the same concept
(directly or indirectly). In arelation map this constraint is relaxed.

» The isa hierarchy or property hierarchy must aways be maintained so that all concepts that
inherit a given property, also inherit that property’ s superproperties.

Note that what ‘parent’ means depends on the knowledge map. In a isa hierarchy, it means
‘superconcept’; in aproperty hierarchy map, it means ‘ superproperty’; etc.

5.3.10 Specifying multiple parents

This is a binary command. First, copy a set of concepts to be added as additional parent(s)
(temporarily only one parent can be added at a time — section 4.3.4.8). Then, select one or more
concepts to have parents added and choose add copied concept as parent of _... from the ‘edit’
submenu.

Where no consistency constraints are violated, the first (copied) concept is added as an additional
parent of the second set of concepts.

CODE4 Reference Manual Commands 81

5.3.11 Moving a property to a different concept

Thisis abinary command. First, use 'copy _ ["b]' to copy the concept that is to become the most
general subject (source) of the properties. Then, select one or more properties to be moved and
choose'move _..._ propertiesto copied concept' from the ‘edit’ submenu.

Where no consistency constraints are violated, the properties are moved to the copied concepts.
The most common constraint violation involves leaving a statement in a concept that no longer
inherits that statement’ s property.

5.3.12 Making a property an inverse of another
To add a property inverse, perform the following steps:

a) Set up the two properties in question that are to be inverses (for example ‘parts and ‘part of’)
b) In abrowser, select one of the properties to have an inverse made (e.g. ‘parts’)

c) Open a property browser on that property.

d) Edit the value of the ‘inverse’ property to be theinverse (e.g. ‘part of’).

From now on, when any values of either property are edited, The inverse will be edited as well.
To make an inverse of an existing property: Add the inverse as above, then install all the inverse

valuesusing ‘install al inversesof _..._ properties’ in the ‘edit’ menu.

5.3.13 Making concepts disjoint

By default, two type concepts are not digoint, i.e. instance concepts of one type can also be
instances of the other. To declare that types cannot share common instances, you must make
them digjoint.

Select one or more type concepts and choose make ... digoint from the ‘edit’ submenu. All
the selected concepts will be made disjoint from each other.

The metaconcept property 'disjoint concepts displays the most general set of concepts that is
disjoint from a given concept.

An instance concept is always digoint from any other concept.

5.3.14 Making concepts nondisjoint

Select one or more type concepts and choose make ... nondigoint from the ‘edit’ submenu.
All the selected concepts will be made nondisjoint from each other.

5.3.15 Changing a type into an instance

A type concept represents a class or category of things, whereas an instance concept represents a
single thing (e.g. ‘city’ is atype concept, while ‘Paris is an instance concept). New subconcepts
of types are generally added as types; they can then be changed into instances.

CODE4 Reference Manual Commands 82

Select one or more type concepts and choose turn _..._ to instance from the ‘edit’ submenu.
Whether this operation will succeed is constrained by the following rule:

* An instance concept cannot have subconcepts. The feedback panel will display a failure
message if an attempt is made to violate this rule.

5.3.16 Changing an instance into a type

Select one or more instance concepts and choose ‘turn _... to type’ from the ‘edit’ submenu.
This operation is constrained by the same rules as * Changing atype into an instance’ (above).

Concepts such as properties, statements, terms, metaconcepts, etc. are inherently instance
concepts and cannot be changed into types.

5.3.17 Committing and cancelling

The ‘commit/cancel’ submenu is currently of most use only when editing values. See section
4.3.7 for details.

5.3.18 Editing different relations

The most popular relations (i.e. propertoes) used as links in browser subwindows are 'isa’ and
'subproperty’. Isa is a metaconcept property (a relation between concepts themselves).
Subproperty is a relation between properties (that can also be applied to statements because
statements have properties as their predicate).

Often the user wants to display a network of arbitrary (non-isa) relations between things. This
can be done by opening a 'relation’ subwindow (see section 5.1.3.2). Figure 11 is an example of
thiskind of subwindow.

The following subsections describes how one might make use of this functionality:

5.3.18.1 Creating a simple parts hierarchy

To create a‘parts hierarchy, do the following (for other kinds of hierarchy, follow similar steps
with some property other than "parts)

1) Open a browser (or set of browsers) containing an isa hierarchy and a dependent statement
hierarchy. The ssimplest such browser is an 'isa hierarchy from x with editable outline statements.

2) Ensure that the concept in the isa hierarchy that is to have its partitive relations shown in a
partitive hierarchy has properties that are labelled as parts (or something similar). For example,
the concept ‘dog’ could have the properties ‘part:legs, ‘part:head’, ‘part:body’ and ‘part:tall’,
where legs, head, body and tail exist as concepts elsewhere in the kb. The values of these
properties must be found elsewhere in the kb as concepts, i.e. (in this case) legs, head, body and
tail must be found elsewhere in the kb.

3) Select the concept for which you want to see the partitive relations, e.g. dog.

4) Select the property for which you want to see the relation hierarchy (in this case ‘ parts’).

CODE4 Reference Manual Commands 83

5) From the statement hierarchy subwindow, open a relation browser (graphical or outline;
dynamic or static—see section 5.1.3.2). In a graphical browser, you will see the concept dog
related by links labelled ‘part’ (the property name specified in step 2) to the concepts legs, head,
body and tail. For an outline browser, you will have to click on theicons to see the link label.

Additional points:

» The concept that is the root of the parts hierarchy should inherit the 'parts property. If it does
not, you should go to a superconcept and add the property. It isimportant that the 'parts property
not have the root of the part-of hierarchy as its most general subject. If it does then unexpected
circularities can occur in the parts relation.

* In step 3, you can select several concepts to see several hierarchies (possibly overlapping). See
section 5.3.18.2

* In step 4 you can select several properties to see several relations graphed at once. If you select
a superproperty, relations involving all its subproperties will be graphed. See section 5.3.18.2

e If you perform step 5 starting from the concept subwindow (instead of the statement
subwindow), then all the relations involving the selected concepts will be displayed.

Adding concepts (section 5.3.1): If you add a child concept or sibling concept, it will
appear as a child or sibling in the parts hierarchy. It will also appear as a new concept in the isa
hierarchy: It will be created as a subconcept of the most-general-subject of the parts property.
The user can subsequently go to an isa subwindow and reparent the concept in the isa hierarchy
(section 5.3.9)

Reparenting concepts (sections 5.3.9 and 5.3.10): Thisis how you get existing concepts
into the part-of hierarchy. a) First, get a concept so that it is displayed in the relation
subwindow , but not connected to anything: To do this, smply select the concept in the driving
isa hierarchy. b) Then select the superpart in the relation hierarchy, copy it using ‘copy _ [*b],
select the new part, and 'add copied concept asaparent of ..._... [~o]'.

7) You can also note that the values of statements involving the parts property change
dynamically asthe relation hierarchy is updated.

5.3.18.2 More complex hierarchies

In reality, there are many subtle shades of relations between concepts. For example, in some
peopl€'s ontologies, 'inclusion properties may be subdivided into 'parts and ‘'materias.

It is possible to show severa relations at the same time in arelation hierarchy. All you have to do
isto select all the properties you want to show in the driving statement hierarchy. Y ou can select
the properties individually, or you can select the one or more superproperties al of whose
subproperties you want to use.

When showing multiple relations it is best to use a graphical relation hierarchy, because the links
will be explicitly labelled with the type of relation. It is also important to ensure that the graph
format is set to show link labels (section 4.3.6, figure 23). If link labels do not appear, it may be
because nodes are shown too close together — try dragging the nodes farther apart.

CODE4 Reference Manual Commands 84

5.3.18.3 Non hierarchical relations

It is possible to use the above methods to show one or more non-hierarchical relations. At the
current time it is necessary to manually lay out the graph because the graph agorithm assumes a
hierarchy.

Examples of non-hierarchical relation diagrams that can be drawn using CODEA4 are:
« State trangition diagrams

» Network interconnection diagrams

* Physical interconnectedness diagrams.

An example of how to display non-hierarchical relationson a CODE4 graph

The example below shows how “holding tank” concepts called relatedTo X (where X is a
concept in an isa hierarchy, and relatedTo X has a non-hierarchical relation to X) have been set
up for COGNITERM optical storage technology TkB, aterminological knowledge base built using
CODEA4.

Creating "relatedTo concepts’ and displaying them on the graph

RelatedTo X concepts are used as holding tanks within COGNITERM to display concepts about
which little is known except that they are somehow related to X, but they do not have an isa
relation with X.

Note: ‘Cleartalk parsing? must be set to yes in the environment control panel or the non-
hierarchical links between relatedTo X and X won't show up on the graph.

In an ‘outline isa hierarchy with editable statements’ browser:

1) add the property ‘r’ (representing relatedTo) to the system concept ‘ metaconcept within self’.
This ensures that all concepts in the kb have this metaconcept property (although most won't
make use of it).

2) add several ‘normal’ concepts under T (i.e. with isa relations), ensuring that there is one
concept under T from which a whole graph of the subject field can be generated. For example,
for the optical storage technology TkB, the “true” top concept of the TKB was storage (a direct
subconcept of T), and a graph for the whole subject field was generated from it. Storage has the
subconcept optical storage, which in turn has the subconcepts optical storage media, optical
storage devices and optical storage processes.

[try storage .. optical storage.. media, devices, processes]
3) create a concept called relatedTo concepts directly under T.

4) create the appropriate subconcepts under relatedTo concepts. these subconcepts will all be
called relatedTo X, with X being the concept with which the appropriate relatedTo concept will
link up.

5) At each concept (X), fill in the correct name of the relatedTo concept for the background
characteristicr.

CODE4 Reference Manual Commands 85

e.g. storage has metaconcept property r:relatedTo storage
optical storage has metaconcept property r:relatedTo optical storage
optical storage media has metaconcept property r:relatedTo optical storage media

6) In the outline isa hierarchy browser, select the top concept of the ‘normal’ hierarchy that you
want to show on the graph (e.g. storage) and open a static subtree graph (subwindow>>
subtree>>graphica >>detached static).

On the graph:

7) Ensure that all concepts on the graph are selected by ctrl-selecting the top concept (e.g.
storage).

8 Open a metaconcept property browser (usng subwindow>>metaconcept
properties>>outline>> detached dynamic) while still on the graph, and select r (the “link”
between each X and itsrelatedTo X).

9) Select format>>display meta propson isa graph (middle mouse button).

The various relatedTo X concepts (and any of their subconcepts) should be displayed relatively
near to their respective Xs on the graph. The link between each X and relatedTo X will be
labelled r (representing “relatedTo”).

10) Rearrange the layout of the graph as desired to best display the various concepts, and save
the layout using for mat>>save layout.

Note: if new concepts (Xs) are added to the classified hierarchy, they will appear on the graph.
If any new relatedTo Xs are added, steps 4, 5, and 7-9 will have to be repeated. You will
probably also want to rearrange and resave the graph format to accommodate these new
additions.

5.3.18.4 Editing arbitrary relations textually

At the current time, editing arelation graph causes statement values to update. Y ou can also edit
these statement values directly — see section 4.3.7.

5.3.19 Specifying order

Sibling concepts in the isa and property relations can be ordered with respect to each other. The
following commands on the edit submenu allow this:

rotate ... up [*r]: Causes all selected concepts to be moved up one position with
respect to non-selected siblings. This does not change any parent-child relationships. If al
siblings of a given concept are selected, this has no effect. Rotating-up a concept that is the first
listed child makes it the last listed child. Rotating-up the root of a subtree rotates the whole
subtree. A repetition factor may be specified (see section 4.3.4.4).

rotate ... down [*g]: Inverse of the above.

CODE4 Reference Manual Commands 86

The effect of rotating isimmediately apparent in the outline paradigm. In the graphical paradigm,
an attempt is made to always keep nodes in the same place (to preserve user rearrangements). It
IS necessary to reformat a graph to see the effect of rotating.

At the current time, rotation is effective only with respect to the first parent. In future it will be
possible to specify a particular parent about which to rotate.

CODE4 Reference Manual Commands 87

5.4 Querying a knowledge base

There are three main ways by which you can query the knowledge base: 1) using the regular
mask or the selection criteria, 2) using networks of dependent browsers, and 3) generating
hardcopy output. These are described in the following subsections.

5.4.1 Masks

Items in the 'visibility' submenu (figure 16) control the regular mask and the selection criteria.
The regular mask and the selection criteria can also be opened and edited directly (see section
4.4).

As noted in section 4.4, the regular mask is used to control what nodes are displayed, while the
selection criteria is used to cause a set of nodes to be highlighted (selected). Both use objects
called knowledge masks.

Before any node is displayed, the regular mask is asked, 'should this node be displayed? A
knowledge mask contains an expression that is evaluated and can return either true (yes, this
concept should be displayed) or false (no, this concept should not be displayed). At the current
time, the expression is merely a list of mask predicates (functions which also return true or
false), and all mask predicates must be true before a concept is displayed. Therefore, if a concept
is not displayed, and you remove a mask predicate that is causing it not to be displayed, the
concept may not immediately reappear; this is because there may be other mask predicates that
are also causing the concept to not be displayed.

The selection criteria (the other mask-based capability) is called into action on demand, i.e. the
user must explicitly request that a set of concepts be selected. (Most of the time, the user selects
concepts by mousing on them, instead of using the selection criteria.) The regular mask remains
constantly active, restricting what will be displayed.

5.4.1.1 The visibility submenu

The visibility submenu (section 4.3.4.5, figure 16) has the following items (with default hot keys
listed directory after the menu item); except where noted, these items update the regular mask:

exclude ... [*h]: Causes the selected concepts to be removed from display (either
hidden or minimized - see section 4.3.4.9).

allow inclusion of _... [*j]: If no other predicate is preventing display of the selected
concepts, reverses the effect of ‘exclude ... ' so that the selected concepts are displayed. In
order to select concepts for this operation it is necessary to be showing masked out concepts as
'minimized' nodes. Otherwise, there is no way the concepts could ever be selected.

exclude ... subtrees {n}["t]: Causes the subtrees of the selected concepts to be
removed from display. The word 'subtrees depends on the kind of hierarchy being displayed: it
may mean subconcepts, subproperties or children or some other relation. A repetition factor, { n},
may be specified; if so, then subtrees at a depth of n below each of the selected concepts are
hidden.

CODE4 Reference Manual Commands 88

allow inclusion of _... subtrees["y] : Causes the subtrees of the selected conceptsto be
redisplayed, if they are not also masked out by some other predicate.

exclude all but ... hierarchies: Causes any concept that is not a parent or child of one
of the selected concepts to be removed from display. Displays only the hierarchies of the selected
concepts. This command can be also issued from the *honly' action button.

excludeall but ... : Causes only the selected concepts to remain on display.
exclude all instances: Causes instance concepts to be removed from display.

allow inclusion of instances. Causes instance concepts to be redisplayed as long as they
are not masked out by some other predicate.

exclude system concepts. Causes system concepts to be removed from display. Thisis
the default in the isa hierarchy because the user rarely wants to see al the statements,
metaconcepts and terms.

allow inclusion of system concepts. Causes system concepts to be redisplayed aslong as
they are not masked out by some other predicate.

exclude non-leaves. Only shows leaf nodes, i.e. those that have no children. This
command does not use the mask.

include non-leaves: Allows non-leaves to be redisplayed as long as they are not masked
out.

limit traversal depth to {n}: Prevents children deeper in a hierarchy than a certain
number from being displayed. The number is specified as arepetition factor. This functionality is
similar to 'exclude _..._ subtrees with a repetition factor, except that it applies from the root of
the hierarchy and does not involve the mask. Every knowledge map has a default traversal depth
limit (very large in the case of isa and statement hierarchies) to prevent possible infinite regress.
For arelation map, the limit is essential because new concepts can be generated dynamically and
infinite regress can easily occur.

open mask: Displays a mask view on the regular mask (section 4.4). This alows more
detailed mask operations than is possible with the visibility menu.

reset mask to default: Sets the mask to the default for the particular hierarchy,
redisplaying most concepts. System concepts are hidden in the isa hierarchy.

reset mask to show everything: Sets the mask so that all traversable concepts are
displayed.

open selection criteria: Displays a mask view (section 4.4) on the selection criteria. See
section 5.4.1.4 for the ‘rapid goto’ way of using the selection criteria.

5.4.1.2 Predicates

The following describes some of the most important predicates that can be manipulated in the
mask to control what is displayed in a browser subwindow. See section 4.4 for details of adding,
deleting, negating and editing the arguments of predicates.

CODE4 Reference Manual Commands 89

Predicates can be very easily added, and we solicit ideas from users for new predicates. We plan
to add a significant number of predicates to allow such things as searching for concepts with
specific metaconcept and term properties or statements.

has a name matching the string: Searches for concepts whose names match the pattern.
Note that this generally is the primary term; this predicate will not find concepts whose other
terms matches the pattern (see * has any term matching the string’).

has a property value matching the string: In a statement hierarchy, shows just those
statements whose body matches the pattern. In a property hierarchy (no subject selected) shows
just those properties that have any statement value matching the pattern. In an isa or relation
hierarchy, shows just those concepts that have any property with a statement matching the
pattern.

has any term matching the string: Searches for concepts any of whose terms match the
pattern.

has empty property value: Same as 'has a property value matching the string:' except
that the pattern is the empty string. Thisis a very useful predicate because it restricts the display
to statements that are in some sense ‘complete’. When negated, it can be used to find ‘incomplete
statements.

inherits all of the properties: Searches for those concepts that have all of the properties
in the set.

inherits any of the properties whose hame matches the string: Searches for those
concepts that have properties whose name matches the pattern.

inherits any of the properties: Searches for those concepts that have any of the
propertiesin the set.

inheritsto all of: Searches for properties that inherit to all of the concepts in the set. By
default in a statement hierarchy, the mask is set to restrict display to properties that inherit to al
of the selected subjects. The predicate can be removed, but an optimization will still prevent all
statements from being displayed. It is often useful to add extra concepts to the set.

is a descendant of (or equal to) one of: When negated, restricts subtrees from display.
See'exclude ... subtrees and'allow inclusion of ... subtrees above.

Is a system concept (term, statement or metaconcept: When negated, restricts system
concepts from display. See 'exclude system concepts' and 'allow inclusion of system concepts'
above.

iIs an instance. When negated, restricts instances from display. See 'exclude all
instances and 'allow inclusion of instances' above.

isin the hierarchy of any of: Searches for concepts in the hierarchies of those concepts
in the set. This can be set using the 'honly' action button. See 'exclude all but _..._ hierarchies'
above.

CODE4 Reference Manual Commands 90

Is included in the set: Searches for concepts in the set. See 'exclude all but _... ',
‘exclude _... "and'allow inclusion of _... "above.

5.4.1.3 Typical queries

The following points describe typical queries the user may want to do. For any querying to be
effective, it is essential that subwindow updates not be deferred (sections 4.2.1 and 5.3.17)

* To find al the concepts that have the word 'CD' somewhere in any of their terms:
1) Use 'reset mask to default’ to clear out any previous query
2) Open amask (section 4.4)
3) Add the predicate 'has any term matching the string’
4) Edit the predicate argument to: * CD*"
5) Choose 'apply changes' or "accept and apply changes.

» To find al the concepts that do not have properties referring to cars (i.e. that don’t have ‘cars
found anywhere in their value)

1) Reset and open a mask as above.

2) Add the predicate 'has a property value matching the string'
3) Edit the predicate argument to * car*"

4) Negate the predicate

5) Choose 'apply changes' or "accept and apply changes

5.4.1.4 The ‘goto’ capability

The selection criteria capability allows you to select (highlight) a concept or set of concepts
based on any criteria. The graph or outline browser are also repositioned (e.g. collapsed subtrees
are temporarily uncollapsed) so that any hidden selected concepts can be seen. A common use of
this capability isto ‘go to’ a single concept with a known name.

There are two ways to access the selection criteria functionality:

1) Using the *selection criteria’ window:
« open this window from the visibility window
* edit the predicates (just as you would do with regular mask)
* issue the ‘ generate new selection’ command.

2) Using the *quick goto’ capability

* In any browser, type a greater-than sign followed by the name of the concept that
should be selected (e.g. ‘>car’ to cause ‘car’ to be selected and positioned so it isvisible).

CODE4 Reference Manual Commands 91

» Normally typing into a browser causes a rename operation to take place, but CODE4
knows that that ‘> symbol indicates that the goto operation should be performed instead.

* |t is possible that the concept you want to go to is masked out. If thisis the case, then
type two greater-than signs followed by the concept name, e.g. ‘>>car’. In this case, the concept
will appear regardliess of whether the mask is hiding it or not. Subsequently refreshing the
subwindow ("e) restores the mask.

* The quick goto capability uses the ‘ has a name matching the string’ mask predicate.

* Note that wildcards are allowed in the strings you specify in the quick goto (just as they
are when editing the selection criteria window). Be careful when using the mask override
capability (two ‘>* signs) with wildcards because unwanted system concepts may appear.

5.4.2 Networks of dependent browsers

By setting up networks of dependent browsers, it is possible to pose rapid queries to the
knowledge base. When one browser is dependent on another, selections made in the latter cause
updates to the content of the former. For more details see the following sections:

Section 5.1.3.2 on opening dependent browsers
Section 5.3.18 on various relations that can be displayed

5.4.3 Hardcopy output

To generate a text file describing a set of concepts, select the concepts to be output and then
select one of the following commands from the 'hardcopy’ menu:

standar d: outputs descriptions of the concepts asin figure 52.
list of all concepts shown: al the concepts shown in the selected browser or subwindow

Cogniterm and Doug’ s special: alternate output formats specified by some users

Concept name: reflective optical videodisc
Properties:
dimensions/diameter:

vaue: 8 or 12 inches
modality: i rn
status: in progress
reference: ELSHAMI90 p.8& 13
original source: concept of read-only optical disc
immediate source: concept of reflective optical videodisc

recording technology:
value: optical
original source: concept of storage
immediate source: concept of optical storage

content:
value: one or more of: textual data, audio, graphics, still pictures, and motion video
original source: concept of optical storage media
immediate source: concept of videodisc
property description: type of information that can be stored on medium, i.e. textual data, audio, graphics,
still pictures, motion video , type of information that can be stored on medium, i.e. textual data, audio, graphics, still pictures,
motion video

CODE4 Reference Manual Commands 92

available recording surfaces:
value: generally two, but sometimes only one.
original source: concept of videodisc
immediate source: concept of videodisc

storage capacity:
value: data: 324 MB, sound: 30 minutes per side, video: 30 minutes per side, images: 54,000
original source: concept of optical storage media
immediate source: concept of optical videodisc
property description: the number of 1) bytes of data that the medium can hold, 2) minutes of audio, 3)

minutes or hours of motion video , the number of 1) bytes of data that the medium can hold, 2) minutes of audio, 3) minutes
or hours of motion video

Metaconcept properties:

subconcepts: (concept of interactive videodisc, concept of 8-inch videodisc, concept of instant jump)

superconcepts: concept of optical videodisc

disoint concepts: (concept of dye-polymer media, concept of phase-change media, concept of digital paper, concept
of optical tape, concept of optical film, concept of compact disc, concept of optical card)

source properties: concept of material

English terms: reflective optical videodisc

French terms: disgue optique reflechissant

knowledge base: opticalv4_1

classification status: classified

Figure 52: Output from the hardcopy menu item

CODE4 Reference Manual Commands 93

5.5 Customizing browsers

There is a set of standard browsers available from the control panel KBs menu and the launcher.
When one of theseis open, it is possible to ater it in the following ways:

» Add new subwindows (section 5.1.3.2)

* Delete subwindows (section 5.1.3.2)

« Change the boundaries between subwindows (section 4.3.4.2)

* Set the mask on subwindows (sections 4.4 and 5.4.1)

* Set the format of subwindows (section 4.3.5 and 4.3.6)

* Change the label on the window (Smalltalk functionality - right mouse button)
* Change the size of the window (Smalltalk functionality - right mouse button)

At the current time it is not possible to save a new browser configuration, but we plan to provide
such a capability in the future (section 4.2.4)

CODE4 Reference Manual System Knowledge 94

6 System knowledge

This section describes the built-in (primitive) knowledge. Without exception, these concepts can
be renamed, although most can be deleted. If desired, you can mask out concepts (section 5.4)
you do not want to see.

When a new knowledge base is created in the control panel using 'create a new default KB', the
primitive concepts (and any new superconcepts of them) are the only ones created. When a
knowledge base is loaded, primitive concepts are first created so they will exist in the loaded
knowledge base even if the ckb format file was missing them. Filing out of ckb format files
includes the filing out of primitives; however, other applications that generate primitives need
not create al of them.

6.1 Primitive types

There are severa primitive type concepts in the system that are used to hold specia instances.
These are: metaconcept within self, ordinary property within self, term within self, statement
within self. None of these can be deleted.

Another concept that cannot be deleted is the top concept 'thing'. This is the ultimate
superconcept of all other concepts in a knowledge base.

6.2 Primitive properties
There are two main types of primitive properties:

* optimized properties. These are ordinary, editable properties from the user’s point of view.
Vaues of their statements can contain anything. They have been specially optimized because of
frequent use.

» computed properties. These are properties which compute their own value. At the current time
the value cannot be edited, although in future it will be possible to edit some computed valuesin
order to make knowledge base edits. An example of a computed property is the metaconcept
property 'subconcepts.

6.2.1 Metaconcept properties

Metaconcept properties are properties of a ‘concept of a concept’. Many properties that do not
logically belong with instances of a particular concept should go here. For example a‘car’ does
not have a comment, but a‘ concept of car’ might.

The following metaconcept properties are built-in. Others can be added by the normal property
addition process. Built-in properties are more efficiently processed and stored; if necessary, the
set of built-in metaconcept properties can be changed.

comment: An optimized property available for the user to document the purpose of the
concept, etc.

CODE4 Reference Manual System Knowledge 95

changer: Computed property. Currently incomplete. Future: the system will be
configurable to record information about every edit. Saved information includes what the change
was, who did it and when.

related concepts (superconcepts, subconcepts, instances, digoint concepts, source
properties, terms). Computed properties that contain the same information as displayed in the
hierarchical structure of browsers. The first three of these can be edited textually; for therest it is
currently necessary to use the editing commands. When editing textually, it is only possible to
add to thelist.

kinds: A computed property that shows how subconcepts are broken down into different
dimensions.

dimensions: A computed property that contains an informal string indicating how a
concept relates to each of its superconcepts (smilar to the link label on the graph).

inherited dimensions: A computed property that shows the values of dimensions of all
parents.

6.2.2 Statement properties (facets)
Facets are properties of statements. Users can add their own to the following set:

value: The most important facet, and the only one that is essential. Specifies the concept
at one side of the relation between two concepts, where the relation itself is represented by the
property. For example, the property ‘engine: acar engine’, hasavalue ‘acar engine’. Vaues can
be informal text, or pointers to other concepts. The value of a value facet is the same thing as the
value of the statement.

modality: (optimized) Specifies whether the property is necessary, typical, optional or
inappropriate. In future, masking and type consistency checking will make extensive use of this
facet.

status: (optimized) The degree to which the knowledge is ‘ approved'.
statement comment: (optimized) A comment about this statement.

knowledge reference: (optimized) Used to document the source of the knowledge (i.e.
who said it, where it was written, etc.).

predicate: (computed) The property that is the predicate of the statement.
subject :(computed) The concept that is the subject of the statement.

most general subject of predicate: (computed) The concept highest in the isa hierarchy
that has the property.

sour ces of value: (computed) The concepts which have statements whose values directly
inherit to this statement without further refinement.

CODE4 Reference Manual System Knowledge 96

6.2.3 Properties of properties

Properties of properties are rarely used, but users can add to the set below. The easiest way to see
properties of properties is to open an 'isa hierarchy from x with editable outline statements and
then open a separate properties subwindow from the statement hierarchy. When no concept is
selected, the statement hierarchy reverts to a property hierarchy, at which time the subwindow
shows statements of the selected property.

most general subject: (computed) The concept highest in the isa hierarchy that has this
property

super properties. (computed) The superproperties

subproperties. (computed) The subproperties (shows up as 'p' in the browser because
thisis how subproperty links are displayed).

inver se: (computed) Specifies which property is the inverse. This property is symmetric
in the sense that the inverse will have this property asitsinverse. Whenever values of the inverse
are changed, values of this property are changed (and vice versa). See section 5.3.12.

6.2.4 Term properties

string: (computed) The characters making up the term. For icon terms, the string can be
non-human readabl e.

meanings. (computed) The concept(s) the term refers to. This may be changed to only be
asingle meaning.

part of speech (optimized): Whether the term represents a noun, verb, adjective etc.

plural (optimized): The plural form of a noun

CODE4 Reference Manual Explanations of Error Messages 97

7. Explanation of Error Messages

This section illustrates some CODE4 error messages that can be hard to understand. The
following figure illustrates a typical knowledge base on which seven different operations are to
be attempted. In each case, a system constraint prevents the desired operation from being
performed.

In the figure, the boxes contain concepts, and properties are in italics. Outline font indicates a
property at its‘most general subject’, i.e. its highest point in the inheritance hierarchy.

The hierarchies at the left contain only the first letter of each concept — these are the letters used
in the error messages.

1. You aretrying to break a superconcept link from <c> to <v> and create a super concept
link from <c>to <m>. Thisoperation iscalled ‘reparenting’ <c>.

There is a predicate <f> that is inherited by <c> from or through <v>. But <f> is not currently
inherited by <m>. Furthermore, there is a statement <f:val> (with a value) whose predicate is
<f> and whose subject is <c> or below.

However, a statement’ s predicate must be inherited by its subject.

Your reparenting operation would deprive <f:val> of its predicate (The proposed subject of
<f:val> would not inherit <f>), therefore the operation is not allowed.

Possible solutions;

1. Change the most general subject of <f> to be a common superconcept of <v> and <m>, then
reparent.

2. If no suitable common superconcept exists: create one (above <v> and <m>) and made thisthe
new most general subject of <f>, then reparent.

3. Delete all values of <f> at or below <c>, then reparent.
4. Add <m> as a new superconcept of <c>, but |leave <v> as a second superconcept.

5. (Extreme) Delete property <f> entirely, then reparent.

2. You are attempting to destroy a concept <v> that is the most general subject of a
property <f>.

If there were a single subconcept of <v> the system would automatically make that the most
general subject of <f>. However, <v> has either no children, or more than one, and the system
does not know what to do.

CODE4 Reference Manual Explanations of Error Messages 98

Possible solutions:
1. If <v> has zero children, delete property <f> entirely, then delete <v>.
2. Pick one of the children of <v>, and move <f> there, then delete <v>.

3. Move <f> to a superconcept of <v>, then delete <v>

3. You are attempting to destroy a property <f>.

Y ou have selected subject <c> which is not the most general subject of <f>. Thisisawarningin
case you really only want to delete the value of <f> at <c>, or in case you do not realize that
there are statements using <f> astheir predicate.

Possible solutions;

1. Smply edit statements using <f> so their values are null, then select subject <c> and delete
<f>,

4. You aretrying to change the most general subject of property <s>from <c>to <a>. This
iscalled ‘moving’ <s>.

But <c> would no longer inherit <s>. Furthermore, there is a statement <s:val> (with a value)
whose predicate is <s> and whose subject is <c> or below.

However, a statement’ s predicate must be inherited by its subject.

Y our operation would deprive <s:val> of its predicate (The subject of <s:val> would no longer
inherit <s>), therefore the operation is not alowed.

Possible solutions:
1. Instead, move <s> to a common superconcept of <c> and <a>

2. If no suitable common superconcept exists, create one (above <c> and <a>) and move <s>
there.

3. Delete all values of <s> at or below <c>, and then perform the origina move operation.

5. You aretrying to change the most general subject of property <g> from <e>to <a>. This
iscalled ‘moving’ <g>.

However, if a subject inherits property <g>, then it must also inherit al the superproperties of
<g>, such as<s>.

But <a> currently does not inherit <s>, therefore your move operation is not allowed.

Possible things to do before your operation can succeed:

CODE4 Reference Manual Explanations of Error Messages 99

1. Move superproperty <s> to acommon superconcept of <e> and <a>.

2. Change <g> so that it has a different superproperty that is inhertted by <a>.

6. You aretrying to make property <f> a subproperty of <s>. Thisis called reparenting in
the property hierarchy.

However, if a subject inherits property <f>, then it must also inherit all the superproperties of
<f>.

But <s> is not inherited by the most general subject (<v>) of <f>, therefore your reparenting
operation is not allowed.

Possible solutions:
1. Move <s> so that it isinherited by <v> (i.e. move its most general subject up), then reparent

2. Move <f> so that it has the same most genera subject as <s> (i.e. move its most general
subject down), then reparent

7. You aretrying to break a superconcept link from <c> to <v> and create a super concept
link from <c>to <m>. Thisoperation iscalled ‘reparenting’ <c>.

There is a property <s>whose most general subject is <c> or a subconcept of <c>.

However, if a subject inherits property <s>, then it must also inherit all the superproperties of
<s>, such as <w>.

But <m> does not currently inherit <w>

Possible things to do before your operation can succeed:

1. Reparent <w> in the property hierarchy, so that it is no longer a superproperty of <s>.

2. Change the most general subject of <w> to be a common superconcept of <v> and <m>.

3. If no suitable common superconcept exists: create one (above <v> and <m>) and made thisthe
new most general subject of <w>.

CODE4 Reference Manual Files 100

Appendix 1. Files Processed by CODE

Al1.1 Knowledge Base Files

These are ASCII files containing a compact representation of a knowledge base. The plan is that
they will be forward compatible between rel eases.

Their suffix is .ckb. See appendix 9 for more details on this format, which is also used by the
knowledge server capability.

A1l.2 Mask Files

Future: masks will be stored for on-demand loading.

Al1l.3 Environment Files

Future: a whole user’s environment might be saved, typically in his or her home directory.
Includes all parameters specified in the Environment control panel.

Al.4 Browser Template Files
Future: customized saving of user-defined browser types.

CODE4 Reference Manual Changes Made in the Latest Release 101

Appendix 2. Important Changes in the Latest Release

CODEA4.0 wasfirst released in January 1991. Since then there have been two major releases (4.1
and 4.2), some 25 minor releases and hundreds of incremental patches. The following lists a few
of the key enhancements for release 4.2.

» Tab completion as arapid knowledge entry mechanism

* Ability to pick a concept to be the root of a subtree when opening a browser
« Ability to display union or intersection of propertiesin the property hierarchy
* Capabilities to show and edit property values in value panes

* Inverse properties

 Improved knowledge server capabilities

» Some new mask predicates

* Property history matrix

* Improvements to dimensions and inherited dimensions

« Ability to edit most metaconcept properties textually

* Reversal of arrowsin relation graphs

* Numerous small bug fixes

* Substantial internal cleanup of unneeded code (e.g. removal of unneeded cleartalk
functionality)

CODE4 Reference Manual Design Philosophies 102

Appendix 3. Some CODE4 Design Philosophies

The following points illustrate some of the ideas that the CODE4 designers have tried to adhere
to:

* The user interface should be as non-modal as possible. By this we mean that by performing an
operation, the user does not get into a state where another operation is inaccessible until that first
operation is completed. In particular, ‘modal dialogs are frowned upon.

» Maximal consistency across interaction paradigms and knowledge representation components.

* Full pluggability of classes where possible (e.g. knowledge map classes, interaction paradigm
classes, etc.).

* What the user sees is not necessarily how it is implemented: User documentation may
frequently refer to concepts as if they were Smalltalk objects, however, not al concepts that can
be referred to need necessarily exist at al times. If a concept contains no distinct information, it
can be computed as required (as atemporary concept).

» Maximum availability of optionsto permit informal knowledge representation.

CODE4 Reference Manual Enhancement Plans 103

Appendix 4. Future Enhancement Plans

In addition to the following, see all the points marked ‘future’ throughout this document. These
items are listed roughly in order of perceived importance. If you would like us to change our
priorities, feel free to drop us a line. Anyone who gives us aready-written enhancements will
receive our eternal gratitude.

» Improvements to the feedback panel to better handle redo and undo requests, and to give more
information and options when a command fails (work underway)

* Improved graph drawing algorithms, especially in the relation map

* Addition of sets as a fundamental class of concept
* Population of the help system with information.

* Improved merging of concepts
* Individual node shapes, fonts and highlighting in graphical view.

* | nheritance enhancements
- concatenation of values
- upward inheritance (building of sets)

* Loading and saving of masks, environments and browser templates.
» Making masks full-fledged concepts

CODE4 Reference Manual User Enhancement 104

Appendix 5. User Enhancement of CODE4 software —
A Brief Guide.

CODEA4 is designed to be flexible enough for experienced programmers to make enhancements.
The classes have been written with, we hope, sufficient documentation and good design that
enhancements should be relatively easy.

One of the first things to do when setting out to enhance CODEA4 is to change the control panel to
‘developer mode’. This gives access to menu items for inspecting and debugging.

There are three approaches to user enhancements. (1) enhancing the existing system at the user
interface level, (2) interfacing external code to the existing system and (3) writing a client to
communicate with the knowledge server. The latter aproach is deferred to Appendix 9.

A5.1 Enhancing the existing system

The following points indicate places we believe have the highest potential for extension:
(temporarily incomplete as to details)

» Adding knowledge maps (e.g. maps that act like ‘viewpoints').

» Adding inference capabilities onto the knowledge engine (e.g. forward chaining to highlight
conseguences, detect inconsistencies)

* Parser enhancements (other languages, €etc.)
» Adding specialized editing or query commands.

A useful note for those accessing system innards: It is possible to refer to concepts in the current
knowledge base directly, using an extension of the Symbol syntax. (Do not, however, imbed this
syntax in permanent methods.) For example:

#}}sports car’
will return the Smalltalk object for the concept of sports car.
} sports car’
will return the Smalltalk object for the term ‘ sports car’.
» Adding mask predicates

» Adding features that help extract knowledge from specific sources and enter it into the
knowledge base.

We would always appreciate being sent any enhancements users may make to our system. We
would also appreciate consultation about proposed enhancements to help minimize future
conflicts.

A5.2 Interfacing to the existing system

CODE4 Reference Manual User Enhancement 105

Instead of enhancing CODE4’'s Ul features, one may choose instead to use only its knowledge
engine capabilities, adding one’s own front-end.

Such interfacing can be done at two levels: (1) the knowledge map level, and (2) the concept
level.

Interfacing at the knowledge map level involves writing software that creates, traverses and edits
knowledge maps. The effect of such interfacing is to replace CODE’s Ul. Knowledge map level
interfacing is simpler than concept level interfacing; however, the possible operations are more
limited.

Concept level interfacing involves creating and editing concepts, bypassing knowledge maps.
Main interface methods for knowledge map level interfacing

KnowledgeM ap>>TraverseAllQuick:with:

Any methods in KnowledgeM ap>view-display properties
Main interface methods for concept level interfacing

LongTermConcept>>newSubType

LongTermConcept>>termed

LongTermConcept>>newSubpropertyOf :

Concept>>valueAtProperty:put:

CODE4 Reference Manual Auxiliary Tools 106

Appendix 6. Auxiliary Tools Delivered with CODE4

This appendix describes several Smalltalk utilities primarily intended for software development
that are delivered with CODE4. Separate files are available for these utilities and they will
eventually be made available as shareware.

This section is currently incomplete.

A6.1 The call browser

A norma exploration of the Smalltalk environment can require a very large number of
successive calls to ‘senders, ‘implementors and/or ‘messages to find some method which is
doing whatever work is being studied. With each new call, the developer must place a new
window somewhere on the screen. Often this means either making each window successively
smaller, or loosing older windows under the pile. The CallBrowser was developed to replace
most of these windows with a unified tool which keeps track of the expansion which has already
been traversed, while making it possible to continue work with the least distraction.

A6.1.1 Description of Function

A CallBrowser has two panes, alist pane on top and a code pane on the bottom (see figure 53).
The current list of calls being browsed is displayed in the list pane. The text of the selected call
is displayed in the code pane. If the selected call is a message then its parent method is
displayed, with the first instance of the message highlighted.

Performing ‘senders’, ‘implementors’ or ‘messages from another browser will use the selected
method as the source call, with the chosen expansion displayed as its children. In other cases,
where there is no preselected item, the result of the expansion becomes a collection of source
cals.

Further expansion is tracked by displaying the collection of calls in a hierarchical structure,
effectively alist of trees. The developer may select any entry and request that it expand on its
senders, implementors and/or messages. If an expansion is made on a call which has no calls of
that type, then *‘Nobody’ is printed to indicate this. Unwanted expansions may be discarded by
the menu item ‘contract’ on the parent call. The protocol of each method may be observed, if
desired.

To distinguish an item which has been expanded, new calls are inserted below the selected call
with an increased indentation. The browser always places senders before implementors before
messages. The type of expansion is also indicated by font style. Senders are displayed in italic,
‘implementors in bold and messages are displayed without emphasis. Source calls are also
displayed without emphasis.

A6.1.2 Implementation Notes

The CallBrowser is based on and extends the MethodListBrowser. The component views remain
a SelectioninListView and a CodeView. The CallBrowser has replaced the MethodListBrowser

CODE4 Reference Manual Auxiliary Tools 107

in almost all of its uses. Only the degenerate case of a single method browser continues to use
the older class.

Messages do not understand ‘messages’, as they lack sufficient information to perform this
operation. Implementors do not understand ‘implementors’ as this would add no new callsto the
list. Nobody cannot be expanded at all, asit is merely avisual reminder.

Each call in the browser is implemented as a distinct object, which keeps track of its children.
Only the collection of root calls is maintained by the CallBrowser. The SelectioninListView is
passed an OrderedCollection formed by a preOrder traversal of al calls. Each call knows how to
print itself using printltems set to #printText: .

Figure53: A Sample CallGraph Window

A6.2 Hierarchical inspector

Thisis similar to the call browser in that it allows hierarchical inspecting of instance variables of
objects. More detailsto be provided.

CODE4 Reference Manual Building CODE4 from Sources 108

Appendix 7. Building CODE from Sources

This section outlines how to build a CODE4 image if you have access to the source code.
Source code is delivered as a series of files asfollows:

» Several Smalltalk filesin the pattern ‘ CODE4-.st’. These are categories of Smalltalk classes.

» A directory of Smalltalk files containing system-changes, including files containing special
development tools.

* A ‘Makest’ file.
* Possibly several ‘patchnn'’ files.
In order to build a CODE4 image:

1) Start with avirgin Smalltalk image with the advanced programming toolkit filed in. (Call this
the *baseimage’). To build 4.1B, you will also need to file in backwards-compatibility classes.

2) If you are filing CODEA4 in on top of some other application, you may want to load this other
application first. You may also want to set other Smalltalk defaults (e.g. site printing defaults). In
our development environment we actually have a separate makefile to build our ‘base image’.
This can be provided if desired.

3) Run the base image and open afile editor on ‘Make.st’.
4) It may be necessary to adjust path namesin ‘Make.st’ to suit your environment.

5) Follow the instructions in ‘Make.st’. Most of these involve performing ‘doits’ in order to file
in specific files.

6) Some file-ins may cause walkbacks. Thisis due to circular dependencies in the order in which
things are to be filed in (i.e. some classes will not initialize properly). When a walkback is
encountered, proceed anyway (three levels down in the walkback); the necessary reinitializations
will be done again at the end of ‘Make.st’.

7) Save your new image and test it.

Contact usif you have any problems.

CODE4 Reference Manual Knowledge Preprocessor 109

Appendix 8. Knowledge Preprocessor User’'s Manual

A8.1 Introduction

The knowledge preprocessor has been designed to work with the CODE4 knowledge
management system to assist the user in finding the important knowledge in a document and
adding it to a knowledge base. It automatically processes each sentence of the document and
proposes phrases in the form of one or more sets consisting of a noun or verb with its left and
right modifiers. These phrases are then assembled by the user into statements to add to the
knowledge base. A complete statement contains a subject, a property and a value; a partial
statement contains only one or two of these. The words in the sentence are analyzed using two
dictionaries. an external dictionary, caled the Kimmo dictionary, and a dictionary that the user
builds up in the CODE4 knowledge base.

A8.2 Getting started

The knowledge preprocessor must be opened from CODE4 running on a Sun (4 or greater) and
set at the intermediate, expert or developer user expertise level.

A8.2.1 Opening the knowledge preprocessor

The knowledge preprocessor is opened from the CODE4 KB control panel. In the loaded KBs
subwindow select the knowledge base you want to work with and choose ‘kb applications and
then 'open knowledge preprocessor on _ ' from the menu. You will then be prompted for the
name of the text file to be processed. The first thing that is done to the file is to divide it into
sentences. If thisfile has not been analyzed before you will be asked if you want the entire file to
be changed to lower case or not. If the file has been processed before, you will be asked if you
want to reuse the existing sentence file that was created the first time the file was processed. The
name of the sentence file is the name of the original file with ‘.sentences’ added to the end.

A8.2.2 Closing the knowledge preprocessor

To close the knowledge preprocessor, select close from the right mouse button menu. If you have
opened a browser on the knowledge base from the preprocessor (see section A8.3.2.3), this
browser will also be closed when you close the preprocessor.

A8.3 Using the knowledge preprocessor

The knowledge preprocessor consists of three main parts: a window showing the source file
being processed, a window containing phrases selected from the sentence being processed, and a
window where statements are composed so they can be added to the knowledge base.

A8.3.1 The source file window

The top window of the knowledge preprocessor displays the name of the file being processed
and the text of the file separated into sentences with each sentence numbered for reference. The
first letter of each sentence is also made lower case (unless the whole first word is capitalized) to

CODE4 Reference Manual Knowledge Preprocessor 110

make it easier for the preprocessor to analyze the sentence. It is also done so that words put in the
knowledge base start with lower case letters (except when the whole word is capitalized) because
CODEA4 is case senditive. Otherwise you could end up with two concepts for the same subject,
one with an upper case first letter and one with alower case first |etter.

If the source file window is not big enough to display the entire file, the contents of the window
can be scrolled up and down using the scroll bar at the left of the window.

A8.3.1.1 Menu items

The menu obtained by holding down the middle mouse button in the source file window presents
the following options:

again find the next occurrence of the string that was last copied, cut or pasted over.

copy copies the highlighted text into the copy buffer. Copy can be used to copy items to and
from other windows as well.

cut copies the highlighted text into the copy buffer and deletes the original text.
paste deletes the highlighted text and puts the contents of the copy buffer in its place.

save stores the text in the sentence file if it has been modified. The original text file is not
changed.

cancel restores the text to the condition it was in before the file was last saved.

find sentences containing string prompts for a string consisting of a character, word or phrase
and picks out each sentence in the file that contains that string. The selected sentences are
displayed in a Smalltalk file editor and can be saved or printed if desired.

print file prints the sentence file

initialize CODE dictionary inserts into the built-in CODE dictionary a set of commonly used
words such as a, the, and etc. This needs to be done only once when a new knowledge base is
created.

Isselection in CODE dictionary? searchesfor the selected word in the CODE dictionary. If the
word isfound its part of speech isindicated and whether it issingular or plura if it isanoun.

add selection to CODE dictionary inserts the selected word into the CODE dictionary. You
will be prompted for the word's part of speech and, if it is a noun, whether the word is singular
or plural. This can also be used to change the part of speech or singular/plural form of a word
aready in the dictionary.

look up selection in Kimmo dictionary searches for the selected word in the external Kimmo
dictionary. If the word is found, the Kimmo code for the part of speech is shown.

The last menu item, process sentence, is described in the next section.

CODE4 Reference Manual Knowledge Preprocessor 111

A8.3.2 Processing a sentence

To process a sentence, highlight both the sentence and the sentence number in the source file
window by dragging the mouse with the left button held down or by double clicking at the begin-
ning of the sentence. Then select process sentence in the middle button menu. The sentence will
be analysed and the results will appear in the phrase window along with the sentence number.
You can also process a part of a sentence but the sentence number will be shown with the
sentence in the phrase window only if it was included as part of the selection.

A8.3.2.1 Unknown words

When a sentence is being processed, a part of speech must be found for each word. The word is
first looked up in the CODE dictionary. If it is not found there, it is looked up in the Kimmo
dictionary. If itisnot in either dictionary, you will be asked to choose the part of speech from the
following: noun, verb, adjective, adverb, conjunction, preposition, qualifier, adverb or modal,
and unknown. The word will then be added to the CODE dictionary. If you do not want to
continue processing the sentence at any point, click on cancel .

Some words found in the Kimmo dictionary may have more than one part of speech. For
example, dog can be used both as a noun or a verb. The preprocessor uses rules to attempt to
disambiguate such cases but if it is unable to decide the proper part of speech in this context you
will be asked to make the choice.

A8.3.2.2 The phrase window

The phrase window consists of three columns labelled left modifiers, noun or verb and right
modifiers which display the nouns and verbs with their associated left and right modifiers from
each sentence processed. The preprocessor finds one or more complete or partial phrases for
each sentence processed.The results for each sentence are indicated by a line containing the
sentence number followed by one or more phrases.

If the phrase window is not big enough to display all the phrases that have been selected, the
contents of the phrase window can be scrolled up and down using the scroll bar on the left of the
window.

A8.3.2.3 Menu items in the phrase window
The middle button menu in the phrase window has the following items:

open browser on knowledge base opens a browser on the knowledge base that is linked to the
knowledge preprocessor. The browser is the same kind as if you had opened it from the CODE4
control panel using an 'outline isa hierarchy from x with editable outline statements' template.
You may have only one browser open at once. If you attempt to open a second browser, the
existing browser will be brought to the front if it is not already there. You can also open a
browser from the menu in the knowledge composing window.

edit selection in column allows you to edit the highlighted item in the subwindow (left modi-
fiers, noun or verb, or right modifiers) where the cursor is positioned. It brings up asmall dialog
window where you can edit the item. When you are finished editing, press return. To cancel the
editing while the dialog is till open, highlight the entire edited item, press the delete button to
delete the entire item and press return.

CODE4 Reference Manual Knowledge Preprocessor 112

copy selection in column copies the item that is highlighted in the subwindow (left modifiers,
noun or verb, or right modifiers) where the cursor is positioned and placesit in the copy buffer.

cut selection in column copies the highlighted item in the subwindow where the cursor is po-
sitioned, placesit in the copy buffer and then deletes the original item.

paste over selection in column deletes the highlighted item in the subwindow where the cursor
is positioned, then puts the contents of the copy buffer in its place.

remove "the", "a" and "an" from all selected items removes any occurrences of the words
"the", "a" and "an" from the highlighted items (if any) in each of the three columns.

remove final s from all selected items looks at the highlighted items in all three columns and
removes the last letter of any word that whose last letter is an s. This can be used to quickly
change most plural words to singular.

delete all selected items deletes the highlighted item (if any) in each of the three columns.

delete all items on selected line deletes the items in al three columns on a single line that you
have indicated by highlighting one or more items.

delete all statements for selected sentence deletes al the statements that were produced by
processing one sentence. Indicate the sentence to be deleted by highlighting one or more items
belonging to the statements for that sentence.

delete all statements deletes all the statements in the phrase window.

Is selection in column in knowledge base? indicates if the item that is highlighted in the
subwindow where the cursor is positioned is in the knowledge base and whether it appears as a
subject or property or both.

A8.3.3 Composing knowledge to add to the knowledge base

Statements to add to the knowledge base are composed in the bottom window using the items in
the phrase window. Statements consist of three parts: a subject, a property and a value.

A8.3.3.1 Assembling knowledge in the knowledge composing window

Transferring words from the phrase window to the knowledge composing window is done using
the three buttons at the left of the knowledge composing window labelled subject, property and
value. To transfer a line from one of the columns in the phrase window to the knowledge
composing window, decide whether it is to be a subject, property or value in the composed
statement. Click on the appropriate button and then click on the line in the phrase window. The
line will be transferred to one of the three spaces in the knowledge composing window
depending on which button you clicked.

If you want to concatenate a word or phrase to the one already in a knowledge composing
window, click first on the concat. button, then on the subject, property or value button, and then
on the line to copy. It will be added after the existing phrase instead of overwriting it.

Y ou can also copy text from the phrase window and paste it into the knowledge composing win-
dow and you can type directly in the knowledge composing window.

CODE4 Reference Manual Knowledge Preprocessor 113

If you want to edit the statement you can do it in either the phrase window or in the knowledge
composing window. See section A8.3.2.3 for editing commands in the phrase window and
section A8.3.3.2 for editing commands in the knowledge composing window.

You do not always have to add a subject, a property and a value to the knowledge base.
Sometimes you just want to add a subject or just a subject and a value. The following
combinations are valid:

subject with no property and no value
subject and property with no value
subject, property and value

but anything else is invalid. For example, a property and value with no subject is invalid since
the knowledge base has no way of knowing what subject to add the property and value to.

A8.3.3.2 Menu items in the knowledge composing window
The middle button menu in the knowledge composing menu has the following items:

open browser on knowledge base opens a browser on the knowledge base that is linked to the
knowledge preprocessor. The browser is the same kind as if you had opened it from the CODE4
control panel using an 'outline isa hierarchy from x with editable outline statements' template.
You may have only one browser open at once. If you attempt to open a second browser the
existing browser will be brought to the front if it is not already there. You can also open a
browser from the menu in the phrase window.

make subject a compound noun adds the phrase in the subject window to the CODE dictionary
as anoun. You will be asked for the corresponding singular or plural form.

copy copies the highlighted text in the subwindow (subject, property or value) where the cursor
Is positioned into the copy buffer.

cut copies the highlighted text in the subwindow (subject, property or value) where the cursor is
positioned into the copy buffer and deletes the original text.

paste deletes the highlighted text in the subwindow (subject, property or value) where the cursor
Is positioned and puts the contents of the copy buffer in its place.

remove "the", "a" and "an" removes any occurrences of the words "the", "a" and "an" from
the items in each of the three subwindows.

remove final s removes the last letter of each word where the last letter isan s, in all three sub-
windows. This can be used to quickly change most plural wordsto singular.

make subject synonym of makes the subject a synonym of another word. Y ou will be prompted
to enter the second word in a dialog window. One of the two words (but not both) must be
already in the knowledge base. After two words are made synonyms, the concept that they both
represent in the knowledge base may be referred to by either of the synonyms.

CODE4 Reference Manual Knowledge Preprocessor 114

A8.3.4 Adding to the knowledge base

Before you can add anything to the knowledge base there must be a browser open on it. To open
a knowledge base browser, use the menu item open browser on knowledge base from the
middle button menu in either the knowledge composing window or the phrase window.

A8.3.4.1 The 'add to kb' button

When your knowledge is correctly assembled in the knowledge composing window, click on the

‘add to KB' button on the left side of the knowledge composing window to add it to the knowl -
edge base. The added knowledge will immediately show up in the knowledge base browser. If
you try to add an invalid combination nothing will happen.

A8.3.4.2 ISA relationships

If the statement you have composed consists of a subject, property and value and the property is
IS or 'ar€, the preprocessor interprets this as an 1SA relationship and assumes that you want to
add the subject as a subconcept of the value. For example if the statement had 'rose’ as the
subject, 'is as the property and 'flower' as the value it would assume that you want to add rose as
a subconcept of flower rather than as a property of flower. If the property is 'are, the
preprocessor also attempts to change the plural subject and value to singular by removing the
final s (if present) from the subject and value. If this would make an incorrect word (for example
'foxes would be changed to 'foxe') change the property to 'is from "are’ and edit the subject and
value to be correct before pressing the ‘add to kb' button.

Some statements that have a subject, property and value and where the property is'is or 'are’ do
not describe a superconcept-concept relationship. For example, the statement ‘rabbits are soft’
would be proposed by the knowledge preprocessor as an ISA relationship. It is obvious,
however, that 'rabbit’ is not a subconcept of 'soft’. It is also incorrect to try and add the statement
to the knowledge base with the subject 'rabbit’, the property 'is and the value 'soft' (and the
preprocessor will not alow it). One way to enter this knowledge is with the subject 'rabbit’, the
property 'softness’ and the value indicating the degree of softness, for example 'great’. This
allows you to specify how soft different kinds of rabbit are. Another way to express the
knowledge is by giving rabbit a property ‘attributes’ with a subproperty ‘soft’ that has no value.
Thisindicates that all rabbits are soft without indicating how soft they are.

If the statement is an ISA relationship the preprocessor proceeds differently depending on
whether the subject (concept) and/or value (superconcept) are already in the knowledge base. If
neither is present, it adds the superconcept and then the subject. If the superconcept is already
there but the concept is not, it adds the concept as a subconcept of the superconcept.

If the concept is there but the superconcept is not, you will be given a choice of options. You
can:

add the superconcept as an additional parent of the concept
change the parent of the concept to be the superconcept
add new concepts for both the concept and superconcept

cancel the operation

CODE4 Reference Manual Knowledge Preprocessor 115

If both the concept and superconcept are in the knowledge base, the options available depend on
their relationship to each other. If the concept and superconcept are not related (neither is a
descendant of the other), you can:

add the superconcept as an additional parent of the concept

change the parent of the concept to be the superconcept

add new concepts for both the concept and superconcept

add another concept with the same name as a subconcept of the superconcept
cancel the operation

If the concept is a descendant of the superconcept but not a child (for example, a grandchild),
you can:

change the parent of the concept to be the superconcept

add new concepts for both the concept and superconcept

add another concept with the same name as a subconcept of the superconcept
cancel the operation

If the concept is a child of the superconcept or if the superconcept is a descendant of the concept,
you can:

add new concepts for both the concept and superconcept
add another concept with the same name as a subconcept of the superconcept

cancel the operation

A8.3.4.3 Adding a statement that is not an ISA relationship

If the statement you have composed is not an | SA relationship, the preprocessor adds the subject
as a concept, the property asits property and the value asits value.

If the subject is not already in the knowledge base, it will add a new concept for the subject. First
you will be asked for the subject’s superconcept. You can enter the name of a concept that isin
the knowledge base or one that is not there. If you specify a superconcept that is not in the
knowledge base you will be prompted again for the superconcept of the superconcept and so on
until you enter the name of a concept that is present in the knowledge base. The subject and the
chain of superconcepts will be added. Next, you will be prompted for the superproperty of the
property (if the statement has a property) in a similar way to the superconcept. The property and
its chain of superproperties will be added. Finaly, the value (if any) will be added.

If the knowledge base already has a concept with the same name as the subject, you will be given
the choice of adding another concept with the same name, using the concept aready there or can-
celling the operation. If you choose to add another concept, it proceeds the same as if it was
adding a subject not in the knowledge base. If you choose to use the concept that is already there
and you have also specified a property or a property and value to be added, the preprocessor
checks if the concept already has a property with the same name. If not, it adds the property

CODE4 Reference Manual Knowledge Preprocessor 116

(prompting you for its superproperty or superproperty chain) and the value (if any). If the subject
already has a property with the same name then you can either add another property with the
same name, use the existing property or cancel the operation. If you choose to use the existing
property and you also want to add a value the preprocessor then looks at the value of the existing
property. If there is already a value present you can choose to replace the existing value, add the
new value to the existing value or |eave the existing value unchanged.

Whenever you add a statement with a property to the knowledge base, the name of the source file
will be added to the knowledge reference facet of the statement in the knowledge base about the
subject and property. The knowledge reference indicates the source of the knowledge. The
knowledge reference facet may be seen by opening a properties subwindow from the property
window of the knowledge base browser. For more information about facets see the CODE4
Reference Manual.

A8.4 What you need to run the knowledge preprocessor

To use the knowledge preprocessor you need the Kimmo dictionary database file called
morph_english.db. The path to the dictionary database is set in the class method called initial -
izeKimmoDictionaryPath in class SentenceAnalyzer. If the path to the database is changed,
evaluate this method after changing it to the new path.

Y ou must run your image on a Sun4 or greater. If another machine is used, you will not be able
to make use of the Kimmo dictionary.

Figure 54 : A knowledge preprocessor being used with an outline browser

CODE4 Reference Manual Knowledge Server 117

Appendix 9. The CODE4 Knowledge Server

The knowledge server isa TCP/IP capability that works in the following way:
* In the control panel, a user starts a knowledge server.

* A client (some special program written in any language with TCP/IP capabilities) connects to
the server and initiates a dialogue. The dialogue in in the form of a series of commands.

Any number of clients can connect to a running knowledge server (subject to available
resources). Client commands are grouped as follows:

1) Navigators: These pose simple queries to the knowledge base (e.g. connecting to a particular
knowledge base, searching for a concept by name, finding the superconcept of a concept etc.)

2) Constructors: These allow the knowledge base to be edited (e.g. adding a subconcept,
renaming a concept etc). Currently there is no capability to lock the knowledge base to prevent
problems with concurrent access.

The mechanism for storing ckb files uses the same syntax and interpreter.

A9.1 General Information about the Server
The code4 knowledge server is started from the control panel. Using 'Start Knowledge Server'.

The user is prompted for a port number, for a default password and and for allowed hosts. The
port number must be an integer. The alowed hosts must be a space-separated list of hostnames.

Once a server is started, any number of clients can connect. Also, any number of servers can be
started in an image (using different port numbers, but sharing the password).

A9.1.1 How a client must behave
To connect and use the server, aclient must do the following:

1. Set up a socket to the port on the server's host.

2. Read from the socket up to a period (periods enclosed in single-quoted strings do not
count).

3. Alternately write a command to the server and read a command.

4. When the last read command starts with X', the client must gracefully terminate and
close the connection.

The commands are described in from sections A9.2.1 to A9.2.4. The syntax of commands sent to
the server is quite important:

» The commands must end in a period (with nothing extraneous following).

* The concept references and other strings must be correct

CODE4 Reference Manual Knowledge Server 118

» Code4 could hang under some circumstances if syntax is incorrect (although attempts have
been made to trap and report bad syntax).

When the client wants to quit, it should send an x command. It should then wait for an x
command reply before quitting.The client should always quit upon an x command.

A9.1.2 Passwords:
There are two types of passwords:

1. A general server password.

This is the default password that gives read-only access to any knowledge base and
read/write access to any non-protected knowledge base. This password is set up when a
knowledge server is started. Note that all servers running in the same Smalltalk image
share the same password.

2. A knowledge base password.

Thisis specified for each knowledge base after loading into the server. A user using such
apassword is granted read/write access to any knowledge base with a matching password
or to any unprotected knowledge base, and read only accessto others.

This password is specified using the control panel menu item 'kb applications/set server
password on_'. The password can be changed at any time, with the possible result that
users in the middle of a session may no longer be able to edit. If no password is specified
for a knowledge base, then that knowledge base is said to be 'unprotected’. Any user can
edit it (assuming they know the general server password).

The first thing a user must do after connecting is enter a password. This must either be the
general server password or one of the passwords of the loaded knowledge bases.

The only command that may precede password entry is the navigator ‘X', which requests
disconnection (i.e. aborts the connection). The password must be preceded by 'w'. E.g. if the
password is ‘mypass’, the proper password command would be ‘wmypass.’

A9.2 Commands: Constructors and navigators

A9.2.1 Syntax of references to concepts

Most arguments to commands are in the form of references to concepts. For most long term
concepts this is a character string (a base-36 integer involving the digits 0-9 and the upper case
letters A-Z). The server may accept lower case letters, but this may result in confusion with
command codes or modifiers.

» Examples of concept references: 1, R4, S, 5T, M3, S753

For metaconcepts, the concept reference is alower-case 'm’ followed by the concept reference of
the submetaconcept.

» Examples of metaconcept references: m1, mR4, mS, m5T, mS753

CODE4 Reference Manual

For statements, a references has a lower-case 's followed by the concept reference of the
predicate (which must be a property), a'/* and the the concept reference of the subject (which, of
course may be a statement with an embedded /' -- the latter case specifies afacet).

» Examples of references to statements: sSR4/S, sSR4/m5T, s21/sR4/m5T

A9.2.2 Alphabetical list of commands

This lists the legal constructors and navigators aphabetically. The first column is an alphabetic
list of codes. The second column indicates whether the code is a constructor (c), navigator (n) or

Is sent by code4 to the client (s)

* A constructor (c) is used to edit the knowledge base.

* A navigator (n) merely queries the knowledge base

The Third column contains an 's' if the code is sent from the server rather than from the client.

The Fourth column describes the code. See A9.2.3 and A9.2.4 for more details.

Command
* n s
- S

><§<C""U1"QUO:53_X'_'_':T(Q_"CDQ.OUQJ+

=} O S5 5 S5O0 (¢

=}

> 0O O S5 S

S

Description

Ignored - informational

Informational - failure

Informational - success

Create an additional subconcept relation
Create an additional subproperty

Single concept response to a command.
Value response to a command

Destroy a concept (*** new ***)

Search for all concepts with a matching term
List al subconcepts

List all superconcepts

Create a new instance concept (see also 'y to create a type)

Access a hew knowledge base.
List kb names as text

(not a command since thisis the code to indicate a metaconcept)

Get the name of a concept

List al properties/subproperties (inherited by a concept)
Create anew property concept

Activates and positions a primitive property concept
Get primitive reference

(not acommand since thisisthisisthe code to indicate a statement)

Create aterm concept

Relate a concept to aterm

Specify avalue of a statement

Get avalue given a concept and property ref

s Log off, disconnect

Knowledge Server 119

CODE4 Reference Manual Knowledge Server 120

y ¢ Create a new type concept (see also 'i' to create an instance)
Z on Activate and position a primitive type concept or just query a primitive

CODE4 Reference Manual Knowledge Server 121

A9.2.3 Exploring the knowledge base using navigators

This describes the legal navigators. Navigators are one-character commands that allow querying
the knowledge base. Many have arguments.

The server aways returns a response, which also follows the same syntax (although only a few
combinations are possible). In general, the syntax is designed to be symmetric.

See also A9.2.4 for details of the constructors that can edit a knowledge base.
For an alphabetic list, see A9.2.2. The order of presentation below is thematic

? To: Allowsthe user to obtain help about any of the navigatorsor constructors.
Arguments:
1. A sequence of characters. Context dependent
Specify asingle navigator or constructor code for help.
Returns:

A string containing help text.

* To: Irrelevant comment - ignored.

* From: [nformational message (e.g. help)

+ From: Last command succeeded (string argument isinformation only)

Returned upon first connection to the server, after verifying password, after connecting to
aknowledge base, and after any command that needs to give no feedback.

- From: Last command failed (string argument explains why).

Example:

-' Second argunent nust refer to a property'.

To: List knowledge bases activein memory

Arguments:
None (any arguments specified are ignored).

Returns:

CODE4 Reference Manual Knowledge Server 122

* followed by a list of knowledge base names and numbers in the format of a
string. There will always be at least one knowledge base.

Each knowledge base has (following its name) in brackets a number. Use this
number as the argument to the k command to connect to a knowledge base.

Notes:

The numbers should not be counted on to be constant between sessions. Numbers
are used because names can be duplicated.

Example:

| .
*"default (123), test (456)'.
- This server has two loaded knowledge bases

k To: Access a knowledge base

Argument:

1. A single integer with the knowledge base number to connect to.
Returns:

+inresponse, or - on failure.

May fail if an incorrect knowledge base number was used.

The connection message may say ‘read only' if the session password does not
match the knowledge base password.

Notes:

Constructors and navigators listed below will not work unless the client is
connected to akb.

Example:

k456.
+' Connected to know edge base <test>.'.
- The user may now proceed to navigate or edit the knowledge base.

r To: Query the about a conceot or a primitive reference.

Arguments:
1. A primitive reference or a concept reference to query about

Returns

CODE4 Reference Manual Knowledge Server 123

If avalid primitive reference was specified:
¢ with the concept reference of the primitive
If avalid concept reference was specified

d with a string containing general information about the concept. The
following fields are separated by commas:

a) | for instance or T for type
b) If an instance:
Stmt for statement
Meta for metaconcept
Term for term
Prop for property

c) L if permanently stored in the knowledge base (Long term).
Otherwise you can conclude the concept is computed.

d) The primitive referenceif aprimitive.
If aninvalid primitive or concept is specified, expect - with an error message
Notes:
See A9.4 for more details about primitive references

This concept-lookup capability is largely for convenience, since much of the
information can be gleaned from metaconcept properties, Using metaconcept
propertiesis, in fact, the conceptually cleaner procedure.

The string returned describing a concept may be extended with other comma-
separated fields in the future.

Examples:
r #t hi ngConcept .
cl.
- Above looks up the concept reference to primitive #thingConcept
ril.

d{'T,, L, thingConcept'}.
- Above looks up general information about concept 1

¢ From: A singleconcept sentin responsetor or any constructor

Following the c is a concept reference (base 36 -- with possible m and s modifiers).

CODE4 Reference Manual Knowledge Server 124

Examples

cl.
cnB4.
CA2.
cs6/ 1.

d From: A statement value sent in responseto w.

The data that follows is surrounded by braces and has the same syntax as passed to the v
constructor. May be alist of concepts, a string or some other syntax (described in A9.5)

The contents between the braces may be empty, signifying anull set of concepss.
Examples:

d{1}.
d{ 14, 15,1}.
d{"the cat in the hat'}.

w To: Given a concept and a property. get avalue

Arguments:

1. The subject concept reference.

2. The predicate concept reference (i.e. a property).
Result:

din response with a string or set of concepts.

- on failure (e.g. bad concept specified, predicate does not inherit to subject).
Example:

wl: 6. .
d{'a set of thing'}.

f To: Search for all concepts which haveaterm corresponding to astring

Argument:
1. The string to search for in single-quotes.
Result

d followed by alist of concepts

CODE4 Reference Manual Knowledge Server 125

- if none found.

In many cases there is just one concept in the result, but there can be many.
Example:

f'thing' .

d{1}.

n To: Get the name of a concept.

Argument:
1. A concept reference.
Returns:
d with astring.
- on failureonly fails when the argument is not a concept)
Notes:
Largely theinverse of f, but will return astring for a concept that has no term.
Will return the string of the main (first listed) term if there are many.

The returned value is purely a string. To get an actua term, get the value of
#valueTerms of the metaconcept.

Example:

nl.
d{"thing'}.

g To: List all subconcepts of a type concept

Argument:
1. A concept reference.
Returns:
d with alist of superconcepts
- onfailure
Only fails when the argument is not a concept
Notes:

This is a shortcut. An alternative is to get the value of #valueSubconcepts of the
metaconcept (ilustrated below).

CODE4 Reference Manual Knowledge Server 126

Examples:
a) Simply look up the subconcepts

g2U.
d{ 2V, 2W 2X} .

b) The aternate approach, via the metaconcept property valueSubconcepts

r #val ueSubconcept s.
c8.
wnRU: 8.
d{ n2V, n2W n X} .
- It isup to the client to strip off the m, but the result is the same as a)

c) To find out which of the above are instances, do the following

r #val uel nst ances.
c9.

w2U: 9.

d{nm2V}.

- By definition the answer was a subset of b)

h To: List all superconcepts of a concept

Argument:

1. A concept reference.
Returns:

d with alist of superconcepts

- onfailure

Only fails when the argument is not a concept
Notes:

Thisisashortcut. An aternative is to get the value of #valueSuperconcepts of the
metaconcept (illustrated below).

Examples:
a) Simply look up the single superconcept

h16.
d{ 3}.

CODE4 Reference Manual Knowledge Server 127

0

b) The aternate approach, via the metaconcept property valueSuperconcepts

r #val ueSuper concept s.
cB.
wnil6: B.
d{ n8}.
- It isup to the client to strip off the m, but the result isthe same as a)

To: List subproperties (inherited by a concept)

Argument:

1. A concept reference. This can be empty. If argument 1 is present, only
properties inherited by that concept will be returned, otherwise all relevant
subproperties are returned.

2. A property, which may be empty. If the property is present, its subproperties
are listed. Otherwise the subproperties of the top property (#valueProperties) are
listed

Returns:
d with alist of subproperties (possibly empty)
- onfailure (e.g. if argument 2 is not a property)

Notes:

This is used to navigate the property hierarchy to get all the properties of a
concept, or to get all the properties regardless of concept.

Examples:
a) Simple examples
ol: 6.

d{ CN}.
- Above thereisjust one subproperty of 6 inherited by concept 1

ol: CN.
d{}
- Above there are no subproperties
o.:CM
dQR ST, U VWX Y}.
- Above we get all the subproperties of CM, regardless of subject.

ol:.

CODE4 Reference Manual Knowledge Server 128

d{ 2P, 2R} .
-Above we get al the subproperties of the top property that are introduced at or
inherited by concept 1.
b) Hereis how we can get related information using metaconcept properties

r #val ueSour ceProperti es.
cD.

-This property can tell us those properties that are introduced, but it ignores
inherited ones.

wil: D.
d{ 6, n2P, 2R, n2T}.
- Notice that all levels of the property hierarchy are shown, flattened.

X To: Terminates session.

Arguments:
None (al are ignored).
Returns:

X in response to get client to clean up and quit.

Notes:

Sent to code4 to ask it to gracefully clean up.

X From: Terminate session. - sent in response to x, end-of-file, bad password or
fatal error.
Examples:
X.

X.'User requested term nation'.

A9.2.4 Using constructors to edit the knowledge base

This describes the legal constructors. These are aso listed in method 'initializeConstructors
inside the smalltalk software

General description of constructor syntax.

» Each constructor starts with a constructor code. This defines the operation and is a single
character. The constructor code is case sensitive (only lower case codes are currently defined).

CODE4 Reference Manual Knowledge Server 129

 Each constructor has one or more arguments. The first argument follows the constructor code
immediately. Subsequent arguments are separated by colons or > signs. An exception to thisisa
‘primitive symbol' argument -- the argument separator preceding one of these must be a# sign.

Examples (semantically meaningless -- illustrating syntax only)
z:AB: C
- constructor code z
- first argument empty.
- second argument A; third argument B, fourth argument C.

XR4: #cat .
- constructor code X.

- first argument R4.
- second argument empty.

- Third argument (a primitive symbol rather than a concept reference since
it follows a#) cat.

Many constructors have, as their first argument, a 'resultSpecifier'. This is always optional.
Result specifiers are the first argument of constructors that create or activate a new concept.
Result specifiers should only be used in environments where no navigators will be used. The
result specifier is a concept reference that will act as an alias for the concept created by the
constructor. All subsequent constructors should use this alias. Result specifiers are provided so
that certain tools can 'precompute’ a long series of constructors. They are necessary for example
when alist of constructorsisread from afile (asin ckb format).

Without result specifiers, subsequent commands would not know which concept specifier to use
-- as generally concept specifiers can only be known after prerequisite constructors are executed.

The following constructor codes are sufficient to build a knowledge base.

i Creates a new instance concept

Arguments.
1. Possibly empty resultSpecifier (see above)

2. A reference to one of the new concept's superconcepts, a previously
constructed type concept.

Returns;

New instance concept (may be referred to using the result specifier). The new
instance concept is a subconcept of argument 2.

Example:

CODE4 Reference Manual Knowledge Server 130

1.
c2U.
- Add an instance of concept 1. Concept 2U is created.

See also example e under constructor 'v' below for a shortcut.
Notes:
To add any other superconcepts to the new concept, use constructor code 'a.
To add a subtype instead of an instance, use constructor 'y'.
It is never possible to have an instance without a superconcept (its type).

An error occursif argument 2 is an instance concept.

y Createsanew type concept
Arguments:
1. Possibly empty result specifier (see above)

2. A reference to one of the new concept's superconcepts, a previousy

constructed type concept
Returns:
New type concept (may be referred to using the result specifier). The new type
concept is a subconcept of argument 2.
Examples:
y: 1.
c2Q
- add a new concept as a subconcept of concept 1. The new concept is
called 2Q.
yZ77>1.
c2Q
- add a new concept as a subconcept of concept 1. We will refer tothis as
concept ZZZ in any future constructors because we have used the result
specifier.
Notes::

To add any other superconcepts to the new concept, use constructor code 'a.
To add an instance instead of a subtype, use constructor 'i'.

An error occursif argument 2 is an instance concept.

CODE4 Reference Manual Knowledge Server 131

z Positions a primitive type concept in the inheritance hierarchy, or merely allows one

to query a primitive concept to get its concept reference.

Arguments.

Returns:

1. Possibly empty resultSpecifier (see above)

2. A reference to one of the primitive concept's superconcepts; a previously
constructed type concept (May be omitted in order to ssimply perform a query).

3. The primitive identifier

The primitive concept coresponding to argument 3 (may be referred to using the
result specifier). If argument 2 is specified, the primitive concept must be a type
concept and is made a subconcept of argument 2

Examples:

Notes:

z: 2D#sel f Ter nConcept .

c2.
- positions the primitive self TermConcept (the superconcept of all terms)
to be a subconcept of 2D. Does not actualy create the concept, since al
primitives are created at knowledge base creation time. However this
constructor is said to 'activate' the primitive. We are told that the primitive
is concept 2.

z1: #t hi ngConcept .

cl.
- queries which concept is the primitive thingConcept (the top concept in
the knowledge base). We are told the answer is cl.

z: #sel f Met aconcept Concept .
c5.
- queries which concept is the common superconcept of all metaconcepts.

To add any other superconcepts to the primitive, use constructor code 'a.
The constructor form of this command is not expected to be used much.

Before a ckb file is executed, a rudimentary knowledge base is constructed,
containing the essential primitives. The ckb file need not contain all the essential
primitives; those it does not contain will be present in their default position
following execution. Those contained in the ckb file will be repositioned.

See A9.4 for further information about available primitives

CODE4 Reference Manual Knowledge Server 132

a Creates an additional subconcept relation

Arguments:
1. A reference to the previoudly constructed concept that is to have a parent added

2. A reference to the previously constructed concept that is to be the additional
parent; circularity is not allowed, i.e. this argument cannot be a subconcept of the

receiver
Returns:
Nothing (a+ symbol)
Example:
y: 1
c35.
- A subconcept of 1 iscreated ...
y: 35.
c36.
- A second level subconcept is created
y: 1.
c37.
- Another subconcept if 1 iscreated
a36: 37.
+.
- 37 is made the second parent of 36
g37.
d{ 36} .
- This proves that 36 is now the child of 37
g35.
d{ 36} .
- This proves that 36 is still the child of 35
h36.
d{ 35, 37}.
- This shows that 35 and 37 are both parents of 36.
a37: 36.

-'Failed: You are attenpting to reparent a concept such
that its new parent is a descendant. ..’

- Thisshows that circularity is prevented from occurring.

CODE4 Reference Manual Knowledge Server 133

t Creates a hew term concept

Arguments:
1. Possibly empty resultSpecifier (see above)

2. A reference to one of the new term concept's superconcepts, a previously
constructed type concept, that must be a direct or indirect subconcept of primitive
type concept #self TermConcept (or #self TermConcept itself).

3. A string. Strictly speaking, this argument could have been dispensed with: The
string could have been added with the v constructor, however a term without a
string is considered of little use, so it was decided to specify the string upon term
creation. The string can be a word or phrase in any language, or an encoding of
some other symbolic entity such as a picture.

Returns:

A new term concept, to be related to the result specifier

Note:
A term concept is a specia case of an instance concept
Examples:
r#sel f Ter nConcept .
c2.
- The superconcept of most terms.
t:2" object'.
c3l .
- New term has been created
u Relates a concept to a term that can be used to refer (possibly ambiguously) to the
concept
Arguments:
1. A reference to a previoudly constructed concept to which an additional term
concept isto be related.
2. A reference to the previously constructed term concept which isto be related to
the receiver
Returns:

+ if successful.

CODE4 Reference Manual Knowledge Server 134

Examples:

ul: 3l..
+.

- The term is associated with the top concept.

r #val ueTer ns.
cE.

wrl: E.

d{'thing, object'}.
- This shows the concept has synonyms.

p Creates a new property concept

Arguments

Returns:

Notes:

Example:

1. Possibly empty resultSpecifier (see above)

2 A reference to one of the new property concept's superconcepts, a
previously constructed type concept, that must be a direct or indirect subconcept
of primitive type concept #selfOrdinaryPropertyConcept (or
#selfOrdinaryPropertyConcept itself)

3. A reference to one of the new property concept's superproperties, a
previoudly constructed property concept.

4. A reference to the new property concept's most general subject, a previously
constructed or derivable concept that inherits the concept referred to in argument
1

c with a property concept

To add any other superconcepts, use constructor code 'a.

To add any other superproperties, use constructor code 'b'.

r#sel f O di nar yPr opert yConcept
c3.
- Above is the most usual superconcept for a property

r #val uePr operti es.
cb6.
- Above is the most usual superproperty for a property

CODE4 Reference Manual Knowledge Server 135

y: 1.
c34.
- Thiswill be our most general subject
p: 3: 6: 34.
c35.
- The new property is created under the top property.
p: 3: 35: 34.
c36.
- Creates a second level property under thefirst.
p: 3:35: 1.

-'"Failed ..."
- Because the most general subject must inherit the superproperty

See also example b) of constructor e below.

g Ensurestheactivation of, and positions, a primitive property concept

Arguments
1. Possibly empty resultSpecifier (see above)

2. A reference to one of the new property concept's superconcepts; a
previoudy constructed type concept, that must be a direct or indirect subconcept
of primitive type concept #selfPropertyConcept

3. A reference to one of the new property concept's suprproperties, a
previoudly constructed property concept

4. A reference to the new property concept's most general subject, a previously
constructed or derivable concept that inherits the concept referred to in argument
1

5. Theprimitive identifier

Returns:
¢ with primitive property concept reference

Notes:
To add any other superconcepts, use constructor code 'a.
To add any other superproperties, use constructor code 'b'.
Thisisrelatively rarely used

User to just look up a primitive property reference

CODE4 Reference Manual Knowledge Server 136

Example:

g: 3: M 5#val ueLast ChangeReason.

- Activate primitive property vauel astChangeReason; make it a
subconcept of concept 2; make it a subproperty of property M; make
concept 5 its most general subject.

b Creates an additional subproperty relation

Arguments:
1 A reference to the previously constructed property that is to have a
superproperty added
2. A reference to the previously constructed property that is to be the

additional superproperty; circularity is not allowed, i.e. this argument cannot be a
subproperty of the receiver

Returns:
+ 0N success.
Example:
p: 3: 35: 34.
c38.
p: 3: 35: 34.
c39.
p: 3: 38: 34.
c3A.
b3A: 39.
+.
- A diamond is successfully formed.

\Y; Specifiesthe Value of a statement

Arguments:

1. A referenceto apreviously constructed or derivable concept that is to be the
Subject of the statement of which the value is to be specified

2. A reference to a previously constructed property that is to be the Predicate
of the statement of which the value is to be specified

3. A User language argument, representing the value

CODE4 Reference Manual Knowledge Server 137

Returns;

+ to indicate success. (can only fail on a syntax error).

Notes:
Values of statements inherit to the same property in subconcepts unless
overridden.

Examples:

a) Create a subconcept, specify avalue at the superconcept, verify inheritance

y: 1.
c2Y.
v2Y: 6{1}.
+.
v1: 6{1}.
+.
- the value is specified at the top concept

W2Y: 6.
d{1}.
- the value indeed inherits

b) Specify a more complex value composed of alist of concepts.
v2Y: 6{1, 2, 3}.
+.
wW2Y: 6.
d{1, 2, 3}.

c¢) Specify an informal value and look at the recursive nature of the value facet

v2Y:6{"this is arbitrary text'}.
+.
W2Y: 6.
d{1, 2, 3}.
- Thisiswhat we see by directly looking at the value

r #val ue.
cR

- We can aso get the value by looking a the value property of the
Statement

wsb6/ 2Y: R

CODE4 Reference Manual Knowledge Server 138

d{1, 2, 3}.
- It is the same thing as expected

WsR/ s6/ 2Y: R
d{1, 2, 3}
- This can be done recursively forever.

d) Specify the value of a primitive facet (the knowledge reference)

r #val ueKnow edgeRef er ence.
cV.

vs6/ 1: V{' Encyc. Britannica 1990, Vol 6 Page 206'}.
+

€) Specify the value of a metaconcept property
- We will use the metaconcept property 'instances. Specifying astring asa

value of this automatically adds a subconcept (an instance since the
concept only has instances).

- First we will look up the metaconcpet primitive property

r #val uel nst ances.
c9.
- Next we look at the instances of a concept

wnRY: 9.
d{ nB2, n85, nB87} .

- There are already three. We could add another using i:2Y. and then give
the new instance aterm. However the following shortcut can also be used.

vnRY: 9{' cow }.

+.
- We just modified the value. The results are shown below:
wnRY: 9.
d{ nB2, N85, n87, n89} .
n39. .
d{'cow }.
n3A.

d{'term''cow ''}.

e Destroys (Eliminates) a concept.

Arguments:

1. A reference to a concept that can be eliminated (one that does not require the
destruction of another concept first).

CODE4 Reference Manual Knowledge Server 139

Returns;
+. if successful.

- with an error message if unsuccessful

Notes:
You must eliminate a cocept's introduced properties before you eliminate the
concept.
Eliminating a statement eliminates the value of the statement; to undo this you
can use the v constructor.

Examples:

a) Create a subtype of concept 1; eliminate it and verify its elimination

y: 1.
c2R.
e2R.
+

r2R.
-'Concept 2R was not found in the knowledge base'.

b) create a subject, a predicate and then avalue. Then try eliminating them.

y: 1.
c2S.
- Concept 2Sis created
p: 3:6:2S.
c2T.

- Property 2T is created.
v2S: 2T{' cat'}.

+.
- The value is specified for this statement
e2S.
-'Failed "
- Elimination can only be done after properties are removed from the
subject.
e2T
+.
- The property is eliminated
e2S.

CODE4 Reference Manual Knowledge Server 140

- The subject can now be eliminated.
c) Look at the value of a statement, eliminate it, then look again
wl: 6.
d{"a set of thing "}.

es6/ 1.
+

M:G.
a{" '}.

A9.3 Examples using commands to work with terms
These examples follow one after the other and build on what waslearned before

Start by finding needed primitives

r#sel f Ter nConcept .
c2.

r#val ueTer ns.

CcE.

r #val ueMeani ngs.
cl4.

r#val ueString.
cl3.

EXAMPLE 1: Assignment of terms to a concept.

- Add anew concept:
y: 1.
c40.
- Add anew term and assign the term to the concept:
t:2" car'.
c4P.
ud4Q 4pP.
+.
- Next we prove that the term is correctly assigned:
f'car'.
d{40 .
n40.

CODE4 Reference Manual Knowledge Server 141

d{'car'}.

- We can also look in the valueTerms property:
wri O E.
d{ 4P}.

- Or in the valueM eanings property:

WAP: 14.
d{ 4G} .
- Or in the valueString property.

wAP: 13.
d{'car'}.

EXAMPLE 2: Working with synonyms

- Now let us add a synonym term to the original concept

t: 2" autonobil e'.
c4Q.

udQ 4Q.

+.

- And let uslook at several results:

f'autonobile'.

d{ 40 .

f'car'.

d{ 4G .

wi O E.

d{ 4P, 43 .

n40,

d{"' aut onobi l e' }.
- Notice that the last term entered and listed becomes the 'main term’. Now
let us rearrange the order of terms by using valueTerms. Unfortunately

thereis a quirk in the system that reverses the order so we have to specify
the terms backwards. (main term first).

- Note that we can add and remove terms from a concept using this
mechanism too - see below.

VO E{ 4P, 4Q} .
+.

- Let uslook at the results (‘car' has become the main term):

WO E.
d{ 4Q 4P}.

CODE4 Reference Manual Knowledge Server 142

n40.
d{'car'}.

EXAMPLE 3: Removing terms from a concept
- We can remove one of the terms (4Q).

vmdQO E{ 4P} .
+.
wri O, E.
d{4P}.
- If the term did not have any properties of its own, nor was it the term of
another concept, then the term is del eted.

n4Q.
-' Concept 4Q was not found in the know edge base'.

EXAMPLE 4: Changing aterm's string.

- We can change the string of aterm. This changes the the term itself (and
possibly the concept names of several concepts). This should only be done
if there is a spelling mistake because assigning a new term to a concept is
normally preferable since this does not affect other concepts.

r#val ueStri ng.

cl3.

wWAP: 13.

d{'car'}.

v4pP: 13{"' kar'}.

+.

f'car'.

-'No concept found with term car'.
f'kar'.

d40

EXAMPLE 5: Creating multiple concepts with the same term.
- This can be done in several ways:

- The first way is simply to assign aterm to two concepts:

y: 1.
c4R
U4R: 4P,

CODE4 Reference Manual Knowledge Server 143

+.
- We can then see that the term has several meanings.
WAP: 14.
d{ 40 4R} .
f'kar'.
d{ 40, 4R} .
- A second way to edit the list of concepts (to add or delete) is to edit the
valueM eanings property.
y: 1.
c4S.
V4P: 14{ 40 4R, 4S}.
+.
f'kar'.
d{ 40, 4R, 4S} .
- A third way isto edit the valueTerms property
y: 1.
c4T.
viiT: E{ 4P} .
+.
f'kar'.

d{ 40, 4R 4S, 4T}.

EXAMPLE 6: Getting rid of all termsfrom a concept.

- The resultis that the system generates a name.

viiaT: E{}.

+.

f'kar'.

d{ 40, 4R, 4S}.

n4T.

d{"' specialized thing'}."! !

CODE4 Reference Manual Knowledge Server 144

A9.4 Symbols used to refer to primitive concepts

This section describes codes to access the primitive concepts in CODE4 then connected to a
knowledge server. For more information on primitives see chapter 6.

Primitives are accessed through the q and z constructors and the r navigator. All primitives
whose code ends in in ‘Concept’ are primitive types. All primitives whose code starts with 'Value
are primitive properties

Essential primitivesthat should exist in each ckb file

#t hi ngConcept
#val ueProperties

Essential primitivesthat must exist in a loaded knowledge base, but which will be activated
by default if not present

#sel f Met aconcept Concept

#sel f Ter nConcept .

#sel f St at enent Concept .

#sel f O di nar yPr opert yConcept

Computed primitives

Optimized primitives accessed by reasoning mechanisms

#val ue

#val ueSubproperties #val ueSuper properties
#val ueSubconcept s #val ueSuper concept s
#val uel nst ances

#val ueSubj ect #val uePr edi cat e

#val ueTer ns #val ueMeani ngs

#val uePart O Speech #val uePl ur a

#val ueString

#val ueMbst Gener al Subj ect

#val ueMost Gener al Subj ect O Predi cat e

#val ueSour cesOf Val ue

#val ueKnow edgeBase

#val ueSour ceProperties

#val ueDi nensi ons

#val ueKi nds #val ueDi sj oi nt Concept s
#val ueMbdal ity #val ueLayout

Primitives present purely for optimized storage of knowledge

CODE4 Reference Manual Knowledge Server 145

#val ueKnow edgeRef er ence
#val ueComent
#val ueSt at ement Corment

CODE4 Reference Manual Bibliography 146

Bibliography
Note: Some of these can be found at URL http://www.csi.uottawa.ca/~tcl

Bradshaw, J., J. Boose, D Skuce, and T. Lethbridge. (1992). Steps Toward Sharable Ontologies
for Design Rationale. AAAI-92 Design Rationale Capture and Use Workshop. San Jose, CA, 9.

Lethbridge, T. C. (1991). "A moded for informality in knowledge representation and
acquisition.”. Workshop on Informal Computing,, Santa Cruz, Incremental Systems.

Lethbridge, T. C. (1991). "Creative Knowledge Acquisition: An Analysis'. 6th Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff

Lethbridge, T. C. and D. Skuce (1992). "Informality in Knowledge Exchange”. AAAI Workshop
on Knowledge Representation Aspects of Knowledge Acquisition, San Jose

Lethbridge, T. C. and D. Skuce (1992). "Integrating Techniques for Conceptual Modeling”. 7th
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff,

Lethbridge, T. C. and D. Skuce (1992). "Beyond hypertext: Knowledge management for the
technical documenter”. SGDOC 92, Ottawa, ACM.

Lethbridge, T.C (1994) “Practical Techniques for Organizing and Measuring Knowledge”, PhD
Thes's, University of Ottawa

Meyer, |., D. Skuce, et a. (1992). "Towards a New Generation of Terminological Resources. An
Experiment in Building a Terminological KB". 13th International Conference on Computational
Linguistics (COLING)., Nantes,

Skuce, D. and |. Meyer (1991). "Terminology and Knowledge Acquisition: Exploring a
Symbiotic Relationship.". Proc. 6th Knowledge Acquisition for Knowledge Based Systems
Workshop, Banff, 29.1-29.21

Skuce, D. (1992). “A Wide Spectrum Knowledge Management System.” To appear in:
Knowledge Acquisition : 49 pp.

Skuce, D. (1992). “Managing Software Design Knowledge: A Tool and an Experiment.”
Resubmitted with reviewers changes to: IEEE Transactions on Knowledge and Data
Engineering : 36.

CODE4 Reference Manual Glossary 147

Glossary

More complete information about most of these terms can be found in the main text. Use the
index to find appropriate page references.

action button: A graphical symbol in the menu bar at the top of most browser subwindows. The
user can mouse on this in order to issue the command represented by the symbol. At the
current time most action button windows are just short text strings.

arc: seelink.

artificial intelligence (Al): The study of systems that perform functions that, if done by humans,
people feel require intelligence (in the literature there are many other definitions, but this one
is useful because it allows us to define Al in terms of whatever people think intelligence is).
CODEA4 is can be consdered an Al system because it represents and reasons with knowledge,
and most people think that such functions require intelligence. CODEA4 research fallsin the Al
subdisciplines of ‘knowledge acquisition’ and ‘ knowledge representation’ (q.v.).

associated concept: A concept that comes into existence by virtue of a reference to its
superconcept in a property value. This feature is planned for a future release. For example, if
we have the statement ‘ suburbanites have grass-cutting machines which are lawvnmowers’, we
have made a reference to lawnmowers through the value of the statement. But now, what if we
want to say something special about those lawnmowers that are the grass-cutting machines of
suburbanites? Currently we must make an explicit subconcept of lawnmowers and then add
the statement, but with associated concepts we would not have to explicitly add the
subconcept. An associated concept will be removed when the statement from which it is
derived ceasesto exist.

browser: A window containing one or more subwindows that are linked together. A selection in
one subwindow causes an update of what is displayed in another subwindow. Each
subwindow operates on a knowledge map.

browser subwindow: see subwindow.

browser template: A specification of how to build a browser describing its subwindows and
how they are interconnected. Each subwindow description includes the type of knowledge
map, the interaction paradigm, etc. There is a set of default browser templates. In the future it
will be possible for the user to add new templates

browser type: see browser template

child: A node that isimmediately below another in a hierarchy.

CODE4 Reference Manual Glossary 148

ckb format: The language used to represent CODE4 knowledge in files. Each ckb format file
contains one knowledge base. Ckb format files can be loaded rapidly into a running CODE4
system; they contain instructions (constructors) for building a knowledge base from scratch.
Ckb format files can also be trandated into formats suitable for exchange with non-CODE4
knowledge representation systems such as Ontolingua (g.v.). Ckb format was completely
redesigned for the 4.1’ release of CODE4, but CODE4 will remain fully backward compatible
with the old format until the 4.2 release.

Cleartalk: A language used to represent knowledge that closely resembles English but is a very
restricted subset of it. The advantage of using Cleartalk is that it allows the user to writein a
way close to what he or she is used to (i.e,. English), but to nevertheless be precise (being
precise is very difficult in full English). In CODE4, Cleartalk noun phrases can be used to
specify the values of statements. Cleartalk was developed by Doug Skuce, and is derived from
his PhD research. It continues to undergo evolution.

collapsing: The same as minimizing.

command: An operation that can be performed in a browser subwindow, the control panel or
elsewhere in the code system. Commands can be issued by using a hot key, selecting from
menus or mousing on an action button. The feedback panel lists all the commands that have
been issued.

concept: A unit of knowledge. Specialized types of concepts include properties, statements,
instance concepts, type concepts, metaconcepts, temporary concepts, etc. Concepts can
become the subjects about which things can be said. To say something about a concept, one
combines it with a property making a statement. Concepts can be arranged in many types of
relationships. In other Al applications, the words ‘unit’, or ‘frame’ are often used in place of
‘concept’ . Also, theword ‘concept’ sometimes refers only to our notion of ‘type’.

control panel: A window through which the user controls aspects of the CODE4 session. The
control panel allows loading and saving of files and the setting of various types of default
parameters.

coordinate: A sibling concept within one particular dimension. For example, while the concept
compact disc has the siblings videodisc, read-only disc, WORM disc and erasable disc (under
the parent optical disc), its only only coordinate concept is videodisc. This is because both
concepts are found within the dimension of “physical form” under optical disc. Read-only
disc, WORM disc and erasable disc are coordinate concepts within the dimension
“writability.”

copying: The process of preparing a concept for use in a subsequent command. The command is
put in acopy buffer. Text can also be ‘copied’ in atextual window.

deferring: The process of requesting that when the knowledge base is updated, a subwindow is
not to automatically refresh. This is done to increase performance on a slow machine and/or

CODE4 Reference Manual Glossary 149

when many subwindows are open on a large knowledge base. Deferral can be requested
globally from the control panel, or in each subwindow. A more radical radical type of deferral
Is also available that prevents even dependent windows from updating when the selection of
their driving windows changes.

delegation: The process whereby a statement gets its value from the value of another statement
about the same subject. For example, if we have the statement ‘a car has an engine’, we could
add the statement *a car has a heaviest component which isthe engine’. Here, ‘the engine’ isa
delegated reference to engine, and the value of the latter statement will be the value of the
former (both in ‘car’ and in any lower-level concepts where we may talk about specific
engines). We may aso add the statement ‘a car has a hottest area which is the hottest area of
the engine’. Here ‘the hottest area of the engine’ indicates that the value should be obtained by
looking at the statement of *‘hottest region’ about ‘engine’. In CODE4, there are also certain
special forms of delegation that use special symbols — please see the main text for these.
Delegation is akind of inference mechanism..

dependent browser subwindow: A browser subwindow that updates automatically when the
selection in its driving subwindow changes. For example, ina“... isa hierarchy with editable ...
statements' the subwindow in the left drives the two dependent subwindows on the right (e.g.
the property hierarchy updates whenever a new subject is selected in the isa hierarchy).

detached browser subwindow: A subwindow that isin a separate window from the subwindow
from which it was opened.

dimension: An informal label placed on a subconcept link to specify the criteria by which a
subconcept is related to a particular parent. The ‘dimensions property can be edited in the
metaconcept, the inverse ‘kinds' property and by directly changing the subconcept label. For
example, if ‘person’ is the parent concept, then ‘by age’ might be the dimension for the
concepts ‘child’ and ‘adult’, and ‘by sex’ might be the dimension for the concepts ‘man’ and
‘woman’.

dragging: Selecting several concepts by pressing the mouse button, and moving the pointer over
aset of concepts before releasing the mouse button.

driving browser subwindow: A browser subwindow which is linked to one or more other
(dependent) browser subwindows. A selection in the driving subwindow causes an update of
what is displayed in the dependent subwindow. Closing the window of the driver causes the
window of the dependent to close aswell..

dynamic browser subwindow: The same as dependent browser subwindow.

edge: seelink.

CODE4 Reference Manual Glossary 150

editing area: An area at the top of the subwindows of the graphical and outline interaction
paradigms where the name of a concept can be changed by standard Smalltalk editing
methods.

environment: A collection of information that in future functionality will be loadable and
saveable as awhole. Included in auser’s environment would be: (1) a set of browser types, (2)
some default parameters, (3) some masks, (4) knowledge bases that the user wants loaded on
startup. Currently, only the default parameters component is manipulable through the control
panel.

facet: A property of statements. Examples are ‘value', ‘modality’, ‘subject’, ‘predicate’.

feedback panel: A window associated with a knowledge base that indicates to the user what
commands have been executed and what problems have occurred. In the future it will make
active suggestions about future actions.

formal knowledge: Knowledge that is represented in a language with a well-defined syntax and
semantics, and which can be manipulated by inference mechanisms. Knowledge
representation systems vary in their formal capabilities; some are capable of representing
anything in first order logic, with the addition of many useful extensions such as set theory.
CODE4's semantics is somewhat more limited, because its strengths lie elsewhere. One of
CODE4's dtrengths is its ability to represent knowledge informally (see also informal
knowledge). Work aimed at trandating CODE4 to and from Ontolingua (q.v.) have proved
that CODE4 can be given a valid formal semantics. Many of the formal semantics decisions
that in other systems would be fixed, remain flexible in CODE4 — the user can declare the
semantics of a certain representational scheme he or she uses within CODEA4.

format: Information associated with each subwindow that refines its appearance. It includes
such attributes as font, alphabetical vs. hierarchica mode, graph layout algorithm, etc.

graphical interaction paradigm: An interaction paradigm where node concepts can be
positioned anywhere within a virtual screen. The display has the visual appearance of a
traditional directed graph.

hiding: The process of using the mask to exclude a concept or set of concepts from view. [see
also minimizing] .

hot key: A way of issuing a command by holding down *control’ and pressing an aphanumeric
key.

icon: A small picture contained in a term representing a concept, that can be displayed in the
graphical interaction paradigm. Also can refer to a picture in an action button that can be
displayed in the menu bar at the top of a subwindow.

CODE4 Reference Manual Glossary 151

image: A Smalltalk file that contains a compiled version of the CODE4 software, along with
loaded knowledge bases and layed-out windows.

inference mechanism: A process where new knowledge is derived, beyond what the user
directly entered. Examples of inference mechanisms in CODE4 are inheritance, delegation
and aspects of Cleartalk parsing. Unlike many knowledge representation systems, automatic
inference is of secondary importance to CODE4. Of primary importance is the ability to
represent knowledge effectively and rapidly, and to help the user to perform his or her own
mental inference. Additional automatic inference mechanisms could readily be added to
CODEA4.

informal knowledge: Knowledge that cannot be processed fully and unambiguously by an
inference mechanism, and whose meaning is grounded primarily in the understanding of a
human or a computer program. For example, the strings or images that form terms are
informal, as are CODE4 statement values that are not parsed as Cleartalk. Several facets and
other properties such as ‘comment’, ‘graphical layout’ and ‘dimension’ contain only informal
knowledge — useful primarily to people.

inheritance: The process whereby when one adds a property at a more general concept in anisa
hierarchy, all more specific concepts also automatically have that property. Furthermore,
when a value is added to a statement about a higher-level concept, all statements with the
same predicate at lower levels have the same value, unless this is overridden. CODE4 is
highly optimized to provide efficient inheritance. Inheritance is a kind of inference
mechanism..

instance concept: A concept representing a specific thing (real or imagined). For example, if you
owned a particular dog called ‘Lassie€’, you might describe him in a knowledge base using an
instance concept. On the other hand, the concept ‘dog’ is a type concept because it abstractly
describes dogsin general.

interaction paradigm: A specification of look and feel of a subwindow. Examples include
‘outline’, ‘graphical’, ‘user language’ and ‘matrix’.

inverse property: A property that is automatically calculated as the inverse of another. This
functionality is not yet available.

isa hierarchy: An arrangement of concepts so that lower-level concepts are specialized kinds of
higher level concepts. Between any lower-level concept, X and its parent Y, the statement ‘an
X isa Y’ holds true. In CODE4, all concepts in a knowledge base are arranged in an isa
hierarchy whose topmost element is a primitive concept usualy caled ‘thing’. Normally, only
asubset of the entire isa hierarchy is shown at atime.

item: Either anode or alink. Anything that is selectable in a browser subwindow.

CODE4 Reference Manual Glossary 152

knowledge acquisition: The process of gathering knowledge from various sources and
representing it in a knowledge base. CODE4 assists in this process by providing
representational capabilities and visual feedback about what is being entered (so as to
stimulate ideas). The main aspect of knowledge acquisition for which CODE4 is useful is
‘knowledge modelling’ which considers that much of the knowledge being entered may not
exist prior to the knowledge acquisition effort.

knowledge base: A group of concepts that is loaded from afile into the on-board memory of a
computer (RAM). Multiple knowledge bases may be loaded at a time. In the future,
knowledge bases will be linkable in dependency relationships, but for now they are all
independent.

knowledge map: A specification of a network of related concepts. Types of knowledge maps
include isa hierarchies (taxonomies), property hierarchies, partonomies, other relation graphs,
property tables etc. Knowledge maps are treated as directed graphs and are displayed
(textually or graphically) in subwindows of browsers (g.v.). Typicaly, the concepts in
knowledge maps form hierarchies, although thisis not necessary. [see also traversal].

knowledge mask: A filter that determines whether a concept will be included in a knowledge
map (and thus displayed to the user). Concepts that are excluded by the mask are either
completely hidden or minimized (see hiding and minimizing). A knowledge mask contains a
logical expression (in future this will be arbitrary CNF — conjunctive normal form — but for
now it isjust alist of conditions that must all be true for a concept to be included) relating a
set of boolean conditions that are applied to each concept. Masks control the visibility of
concepts; they are used for hiding and showing specific sets of concepts, as well as more
detailed patterns of knowledge. Each knowledge map contains a knowledge mask. The
conditions that are related by a mask’s logic expression are Smalltalk functions called mask
predicates, that return true or false when given a particular concept as an argument

knowledge preprocessor: A prototypical mechanism within CODE4 for extracting knowledge
from atext file. The preprocessor splits the file into a sentences, and then scans the sentences
for patterns that it recognizes. Then it proposes statements that the user can add to the
knowledge base.

knowledge representation (KR): 1) The process of structuring concepts so they correspond to
knowledge represented elsewhere (typically in the mind), 2) The results of the process, and 3)
The schema used for the process. CODE4 contains a conceptual KR schema (in which
knowledge is composed of concepts, properties etc.), a physical KR schema (implemented in
terms of Smalltalk objects), various user interface KR schemas (the interaction paradigms),
and an interchange file format KR schema (ckb format). Users create particular
representations of knowledge using CODEA4.

launcher: a Smalltalk window that contains a menu for opening other windows. Most of the
time, CODE4 users will use the control panel instead of the launcher, because the control
panel contains many more options.

CODE4 Reference Manual Glossary 153

layout: A set of instructions about how to position nodes in the graphical interaction paradigm.
A layout contains a name, and a set of coordinates for each concept. A layout may only cover
a few concepts, or al the concepts in the knowledge base. In future it is intended to enhance
layout to include font and node shape information. All the layouts in which a concept is
involved are available in a metaconcept property.

leaf: A concept that has no children during traversal of a knowledge map. For example, a
concept that has no subconcepts when traversing an isa hierarchy. It is possible to restrict an
outline or graphical display to ‘leavesonly’.

link: A line drawn between concepts (nodes) in the graphical interaction paradigm. A link
represents a statement whose subject is pointed-to by the arrow at the end of the link. A link is
also sometimes called an edge or an arc..

long term concept: a concept that is explicitly stored in the knowledge base, as opposed to a
temporary concept which is computed when needed.

marquee: A rectangular area that can be dragged-out by the mouse in the graphical interaction
paradigm in order to select concepts. The control key must be held down, and the mouse
button must be pressed when the mouse is pointing to the background of the subwindow.

mask: See knowledge mask

mask predicate: A Smalltalk function that, when applied to a concept, returns true or false.
Mask predicates are used in masks of the mask view and the selection criteria. (do not confuse
with ‘predicate’ —q.v.)

mask view: A window that displays the contents of a knowledge mask and allows editing of that
mask, and hence querying of a knowledge base. Mask predicates can be added or deleted and
their arguments can be edited. Once editing is complete the mask can be ‘applied’ to the
knowledge map that contains the mask, resulting in a change to the set of concepts that is
being displayed. An alternate way to edit the mask is to use the ‘visibility’ browser submenu.
A ‘selection criteria’ view looks and works identically to a mask view, except that concepts
are highlighted rather than being selectively displayed.

master selection: One of the concepts that form the selection in a browser subwindow. The
master selection is surrounded by a crosshatch pattern. The user can change the master
selection by clicking with the mouse. Some commands, such as ‘rename’ operate only on the
master selection.

matrix interaction paradigm: An interaction paradigm where knowledge is presented in a
rectangular array with row and column headers. Currently this paradigm only works with the
property table knowledge map, and is at the beta test stage.

CODE4 Reference Manual Glossary 154

meanings. The concepts a term refers to or the concepts that are pointed to by the value of a
statement. It is possible to open a subwindow to see the meanings of aterm or statement.

mer ging: The process of adding two knowledge bases to create alarger one.

metaconcept: A concept of a concept. Anything can be represented by a concept, including
concepts themselves which are represented by metaconcepts. In CODE4, metaconcepts are
instance concepts that are subconcepts of the type * metaconcept within self’. Most of the time
metaconcepts are hidden in the isa hierarchy. To look at the properties of a metaconcept,
select a concept whose metaconcept’s properties are to be viewed and open a ‘ metaconcept
properties’ subwindow.

minimizing: The process of using the mask to make a node or set of nodes in the graphical or
outline interaction paradigms appear as a tiny place holder. By default, nodes are hidden
rather than minimized, but the an action button command *+/-" changes this default. [see also
hiding].

modality: a facet that describes whether a statement is typical, necessary or optional. For
example, birds typically fly. It isn't necessary to fly to be called a bird. The property
‘modality’ isaprimitive property.

most general subject: A property of a second property that specifies the domain of the second
property. Only the most general subject and its subconcepts have (inherit) that second

property.
multi-selection: see selection.

name: A string used to identify a concept. Typically the name comes from the main term for the
concept, but the name can aso be computed. Most system concepts have computed names, as
do most newly-added concepts.

navigation area: The bottom area of a browser subwindow that can be scrolled in order to
navigate around the concepts on display.

node: A shape in the graphical interaction paradigm representing a concept. Nodes are linked by
edges. The indented elements in the outline interaction paradigm are also sometimes called
nodes.

Ontolingua: A knowledge representation schema that is being promoted as a standard for the
interchange of knowledge between systems. CODE4 currently contains a prototype capability
for trandating from Ontolingua to Ckb format and hence to the CODE4 internal format. In
future this capability will be extended.

CODE4 Reference Manual Glossary 155

outline interaction paradigm: An interaction paradigm where knowledge is displayed as an
indented textual list. The user may display the knowledge hierarchically or alphabetically, and
may perform many of the types of operations available in outline processor software.

parent: A concept that is found immediately above another concept in a hierarchy. It is found
before its children during knowledge map traversal. Arrows in the graphical interaction
paradigm point from children to parents.

partonomy: A type of relation graph showing the decomposition of something into its parts.
Typically a partonomy is in the form of a hierarchy with major parts (e.g. ‘engine’) highin the
hierarchy, and increasingly smaller parts-of-parts (e.g. ‘piston’) lower in the hierarchy. In
CODE4, it is typical to have a property that represents the part-whole relation, and then to
have subproperties relating lower-level parts to the whole. If the knowledge is entered
correctly, and the values of properties are are parsed as Cleartalk, then a partonomy can be
displayed by opening a ‘relation’ subwindow. A partonomy is the most useful type of relation
subwindow to draw, but any other property can also form the basis for a relation subwindow.
A partonomy is aso sometimes known as a‘meronymy’.

preprocessor : see knowledge preprocessor.

predicate: A property considered in itsrole asthe part of a statement that describes the particular
relation the subject has with the value. In the statement ‘a table has parts which are (legs,
surface)’, the predicate is ‘has parts (typicaly the property name would be ‘parts’). The
property ‘predicate’ is one of the primitive facets of every statement. (Do not confuse
‘predicate’ with ‘mask predicate’ —q.v.).

primitive concept: A concept that is referred to by some of CODE4' s computational machinery.
Some primitive concepts are essential, and some are optional, but if present allow useful
computations to be made. A primitive concept can be a type (e.g. the top of the isa hierarchy,
‘thing’; or the types ‘metaconcept within self’ etc.) or a property (e.g. the properties
‘subconcepts’ and ‘value’' are primitive because the ideas of subconcepts and statement value
are so fundamental to CODE4; without the subconcept relation, there could be no inheritance).

property: A kind of concept representing a relation between concepts. An example of a property
that appliesto humansis ‘friends . The fact that such a property is associated with the concept
‘person’ indicates that it makes sense to talk about ‘the friends of a person’. A property
describes arelation abstractly only; a statement contains a property as its predicate in order to
describe a particular occurrence or tuple of the relation (e.g. ‘ John has friends’). In CODEA4,
properties are instance concepts that are subconcepts of the type ‘property within self’. Most
of the time properties are hidden in the isa hierarchy. To look at the properties of a property,
open a ‘... property hierarchy’ from the control panel and from the newly-opened property
hierarchy open a properties subwindow. A property is an instance concept, because it
represents a particular relation. A property may have subproperties that represent more
restrictive relations between concepts. In some other Al applications, the word ‘dot’ often
refers to what we call a property, although ‘slot’ sometimes aso refers to our idea of
‘statement’.

CODE4 Reference Manual Glossary 156

property hierarchy: The arrangement of properties into a hierarchy such that the most general
properties are higher. The top of the property hierarchy is a property usualy called
‘properties’. In CODEA4, a property hierarchy is displayed in the right hand subwindow of any
‘...isa hierarchy with editable ... statements’ browser. All properties are arranged in one big
property hierarchy, but each concept only inherits a subhierarchy of this, with many branches
pruned. A property hierarchy that is restricted to displaying the properties of a particular
subject becomes a ‘ statement hierarchy’.

property table: A knowledge map that is displayed using the matrix interaction paradigm, and
shows concepts on one axis, properties on the other axis, and statement values in cells of the
matrix. A property matrix allows 1) comparison of concepts (differences can easily be seen),
2) knowledge acquisition to fill in cells and thus distinguish concepts, and 3) construction of
definitions (by highlighting the most important differences between concepts).

relation: Mathematically, a set of tuples with a common pattern of connection between
elements. In CODEA4, arelation is represented using a property. Statements using the property
as predicate form the tuples.

relation graph: A knowledge map where the edges represent arbitrary statements. Examples of
relation graphs are partonomies (q.v.), state diagrams, network interconnection diagrams etc.

refreshing: The process of redrawing a subwindow. This is done automatically by the system
whenever a knowledge base is updated, in case the updated knowledge base resultsin the need
to display different knowledge. It is possible to defer, the automatic refresh process, in which
case the user may have to explicitly select the refresh command. If multiple knowledge bases
have had updates deferred, it may be necessary to request a full update of all related
knowledge maps.

reparenting: The process of changing the parent of a concept. For example, to change the
superconcept of a concept, or the superproperty of a property. Reparenting is done by issuing
a command to a knowledge map. A similar operation, adding a parent, is also available.

selection: The set of concepts that is highlighted in a graphical or outline subwindow. The
selection can be changed by the user clicking or dragging the mouse, or by opening a selection
criteriawindow or using the ‘goto’ functionality. There are three reasons to select concepts: 1)
to highlight them so they stand out, 2) to cause a dependent browser subwindow to change
what it displays, and 3) To prepare for the issuing of some command that will operate on the
selection. One element of the selection is called the *master selection’. The selection is also
often called the ‘multi-selection’ to distinguish it from the master selection.

selection criteria: A facility that uses a knowledge mask to select (i.e. highlight) a set of
concepts. It uses a mask view like a knowledge mask, but whereas a normal knowledge mask
causes al nodes that to not pass to be minimized or hidden, the selection criteria causes all
nodes that do pass to be highlighted.

CODE4 Reference Manual Glossary 157

set: Mathematically, a collection of members considered as a whole. In CODE4, a set is
represented as any other concept, typically by creating a concept called ‘set’ which has a
property ‘members’. In future, primitive set concepts will be introduced so that sets of things
can be referred to without manually adding a new concept, and so that sets can be described
both intentionally (by describing potential members) and extensionaly (by specifying
individual members).

sibling: A concept that shares a parent with another in a knowledge map. All the immediate
subconcepts of a concept are siblings.

Smalltalk: The object oriented programming language in which the CODE4 software is written.

static browser subwindow: A subwindow that is not driven by another, and hence will only
changes its contents when the knowledge base is edited, not when a selection is made
somewhere. The opposite of ‘dynamic browser subwindow’

statement: A kind of concept representing the occurrence of a particular property (the predicate)
at a particular concept (the subject). A statement can be expressed as a sentence. In CODE4,
statements are instance concepts that are subconcepts of the type * statement within self’. Most
of the time statements are hidden in the isa hierarchy. To look at the properties of a statement
(which are called facets), 1) open an ... isa hierarchy with editable ... statements browser, 2)
select a statement by selecting a concept (the subject) and a property (the predicate), and then
3) open a properties subwindow. In some Al applications, the word ‘triple€’ corresponds to our
notion of ‘dot’.

statement hierarchy: A hierarchy of the statements of one or more subjects. The predicates of
the statements form a subhierarchy of the knowledge bases property hierarchy.

subject: A concept considered initsrole as part of a statement answering the question, ‘what isa
given statement about? . Any concept can be treated as a subject because every concept has
properties (even of all of the properties are inherited). In the statement * a table has parts which
are (legs, surface)’, the subject is the type ‘table’. The property ‘subject’ is one of the
primitive facets of every statement.[see also ‘ most general subject’].

substitution: The process that goes on when a value is being computed using delegation. The
concept found is substituted for original delegation specification.

subtree: A set of concepts in a knowledge map that contains a particular concept and all its
children, and their children etc. There are three ways to manipulate subtrees in CODE4: 1)
Using the control key when selecting a concept to select the whole subtree, 2) Opening a
subwindow displaying just one or more subtrees, and 3) Using the visibility menu to hide one
or more subtrees.

CODE4 Reference Manual Glossary 158

subwindow: A bordered rectangular area within a window, containing a set of concepts.
Associated with each subwindow is a 1) knowledge map that controls which concepts are
displayed and how they are connected; 2) a knowledge mask that can cause some concepts to
be hidden, and 3) an interaction paradigm that describes the graphical appearance of the
subwindow and how the concepts can be manipulated. A subwindow can be ‘driving’ or
‘dependent’ (g.v.).

system concept: A primitive concept that most users would prefer not to see displayed in the
main isa hierarchy. The system concepts include metaconcepts, properties, statements and
terms.

system control panel: see control panel..

taxonomy: In CODEA4, thisis a synonym for ‘isa hierarchy’ (q.v.), athough in common English
usage, the term may have a more general meaning.

template: see browser template.

term: a kind of concept that represents a symbol for a concept. Typicaly a term represents a
word or phrase, but may represent a picture (an icon). There can be a many-to many
relationship between terms and other concepts, although in general the relationship is closer to
one-to-one. In CODE4, terms are instance concepts that are subconcepts of the type ‘term
within self’. Most of the time terms are hidden in the isa hierarchy. To look at the properties
of terms, select a concept at whose terms you want to look, and open a ‘terms subwindow.
From the new terms subwindow, then open a‘properties subwindow. Note: We have received
some criticism from terminologists for our semantics of ‘terms’. It has been proposed that
what we called terms should be called ‘words, athough ‘compound words would be
allowed. Terminologists fedl that terms never have a one-to-many relationship with concepts.
[see also name].

temporary concept: A concept that is not stored permanently, but is computed on request. Its
existence is only implicit in the knowledge base. Any statement or metaconcept is temporary
if the user has not explicitly edited any of its properties (e.g. a statement where the value is
purely inherited). In almost al respects temporary concepts behave just like other concepts
(long term concepts), so their existence should not be of concern to users.The number of
potential temporary concepts is infinite (e.g. one can have a ‘the metaconcept of the
metaconcept of the metaconcept of the... of X' or ‘the value of the value of the value of ... of
statement X’) and the entire set of concepts, both temporary and long term, is called the
‘virtual knowledge base'.

textual interaction paradigm: An interaction paradigm under development. It will operate in a
similar manner to the outline paradigm, except that editing will take place directly in the
navigation area, and concept names will wrap over severa lines.

CODE4 Reference Manual Glossary 159

topic: One of the main concepts that the user is interested in describing. The word ‘topic’ is not
used in this manual, because topics are treated in the same way as other concepts. However,
some of the literature discusses topics, and in CODEZ2 the only things referred-to as concepts
were topics (code4 has introduced many generalities, including the idea of treating properties,
statements, terms etc. as full-fledged concepts). Topics are sometimes aso referred to as
‘primary subjects’.

traversal: The process of enumerating the concepts of a knowledge map so they can be
displayed. A knowledge map does not store the actual network of concepts, it only stores
instructions about how traversal is to take place (it stores the top concepts, the set of links to
follow and amask to allow hiding of concepts). Traversal takes place in a depth-first manner;
when the traversal reaches aleaf, it backs up and traverses another branch. It is possible that in
some knowledge maps traversal could get into a loop: to prevent the system from hanging, a
‘restrict traversal depth’ capability is provided.

type: A kind of concept that represents an abstraction, not a particular thing. A type is holding-
place for a partial description: a set of properties called the intension. A type can also be
considered to represent a set: all those things that fit the description.

user language: Text that a user types when describing a property of a concept (i.e. a statement).
A user may restrict the language to a specialized syntax called Cleartalk that the system can
parse and process.

update: The process of changing a knowledge base, or the contents of a window to reflect a
knowledge base update. [See also refresh].

user language interaction paradigm: An interaction paradigm only displaying text containing
the value of asingle statement.

value: A facet of a statement that describes what the subject is related to by the predicate. In the
statement ‘a table has parts which are (legs, surface)’, the value is ‘(legs, surface)’. A value
may be informal, in which case it is merely a string that is subject to human interpretation. Or
the value may be a formal pointer to a concept or a set of concepts, or a delegation rule for
such a concept or set of concepts. The value the only facet that inherits automatically, and the
property ‘value' is primitive and highly optimized. A formal value may point to an instance
concept, indicating that the statement is ‘ground’ (that the subject is related to a specific
thing), or the value may point to a type, indicating a constraint on the range of the property
(only instances of the type should be specified as the values of statements of instances of the
subject).

virtual knowledge base: The infinite set of all concepts that can be accessed in a knowledge
base. It includes both the long term concepts and the temporary concepts that can be
computed. The term was first discussed in the PhD thesis of Liane Acker (U. Texas, Austin).

CODE4 Reference Manual Glossary 160

window: A rectangular region on the screen that can be opened, resized, iconized etc. A window
may be divided into one or more subwindows. In CODE4, major types of windows are the
control panel, browsers, feedback panels and mask views and selection criteriaviews.

CODE4 Reference Manual

Index
ACCENTS.....eeeeeesiee e 39
action DULEON.........cceveerreeceee e 46
glossary definition..........cceceeeeninnnen. 147
allow INClUSION........ccovveeeeceee e, 87
alphabetical mode..........ccccoeevveveeiiccieee, 47
APPLY e 51
AIC.eieeee ettt 147
= RSO
EAItiNG....ceveeeceee e, 36
NAVIGALING......cceeeeieeie e 37
ATGUMENE. ...
predicate..........ccccvvveveveeiesieireenn, 66, 67
ATOW KEYS....eeieeeeeeeree e 11
artificia intelligence.........ccccceveevceeveeccieenen,
glossary definition...........ccccceereneenne. 147
associated CONCEPL........cccvvveerercrieesieerens 79
glossary definition...........ccccceevvnienee. 147
aVailability.....ccoereririceeeeee 9
DACKUPS......c.eeeiiiee e 30
DrOWSESvveieceie e, 7, 33, 149
ClOSING..c.eiiiiiieeeee e, 26
CUSEOMIZING. .. 93
glossary definition...........cccceeeveneenne. 147
(007 1 11 oo FHU USSP 70
browser SUbWINdOw...........cccevevvereereriene. 147
browser type........ccceevrneene. 8, 10, 23, 30, 147
PrOWSING....ccvieieceeciece e
CallS. oo 106
browsing predicate............cccccoevverveiinineenee. 67
PUITEL......coeeie e 48
CAD. ..ot s 6
CASE.....co o 6
Changes.......ccov e 95
ChiIld. ..o
glossary definition..........cccocevevvennen. 147
CKD e 117
CKb format........coooeveeieiisee e 100
CleartalK........ccooovvvenienirieieresese 27,53
eXPliCit PAIrSING......ccceveeeneenieseniereeee 54
glossary definition..........cccocevevvennen. 148
Cleartalk parsing.........ccceeeeveereneneneneneens 26
ClIENE .o 117
closiNg WINdOWS.........cocoeereeeeneie e 76
collapsad IteM.........ccverereee e

APPEATANCE.ceveeerreeerriee e 48, 52

Index 161
COAPSING. ..o
glossary definition..........cc.cceeeeeeenens 148
(0:0] Lo ST 8
COMMEAN......cooeiierieeeree e 70
attempted.........cooovevenin 69
EAItiNG.....ceoieeeieeeeeere e 77
glossary definition..........cc.cceeeeceeenens 148
HOgICA....cceeeeceeeeec e 44
NHANY. oo 41
performing........ccccceeeeeveeieseeseeennn. 23,41
UNAIY .. 41
COMIMENE.....ceteerieeereesiee e 94
COMMULEING....eiveeeeeie e 42
COMPONENL....cveiieiieierie e neeas
VISUBL ..o 36
compound delegation...........c.cccceevveeiveennen. 79
(6010101 o SR 7,148
COOrdINALE.oceeeveeieeee e 148
adding.......cccoeveveeieie e 77
CUMENL. ..o 79
AiOINt....ccceiiiieciecee e 81
glossary definition............cceeeceeenees 148
NOOE @S.....ccuvereieieeieeee e 37
TEMPOrary......cveceeeeeeeeee e 102
(00]0 15 1 7= 1 | KSR
CONSISIENCY ... 80
CONSIIUCLOLS......ooveeeieeiee e 117
control character.........coeeevvereeeeseesiesnns 45
control panel.........cccoeeveevieenenienenne 8, 23,25
glossary definition..........ccocceeeeceeenens 148
OPENING. ..ot 70
copied CONCEPL......ccuvreerreeie e eee e 68
COPYING..tevevirienieeeeee et 41, 80
glossary definition..........cccceeeveeenen. 148
COPYING tEXE...cveeieieeieieiesie e 53
creative thinking.........cooeeeveeeeeecesceeseecesens
SMUIAING. ... 6
CUt aNd PBSLE.......ccveeeeirieriecie e
generalized.........ccocveeevieveee e, 11
other applications...........ccccccveveevnnenne. 10
de-SEleCting.......cccvveveeeeeeee e 38
deferring.......cceveecee e
glossary definition..........ccccceeevveeennen. 149
deferring updates.........ccooeveeveneeneenienene 27
delegation.........cccceeveeeieciee e
glossary definition..........cc.cceeeeceeenees 149
deleting conCepts.......cceevveeveeecieecie e, 77
dependent browser subwindow......................

CODE4 Reference Manual

glossary definition.........cceeeveenienen. 149
ESIGNING. ..o 6
detached browser subwindow..............cc.......

glossary definition...........cccceeeveneenee. 149
detached subwindow............ccoceveevvvennnnee. 72
AiMENSION.....cceiieeiee e

glossary definition...........ccccceeneneenne. 149
dimensions.........cccovevenene s, 56, 57, 61
diSAgreements.......cccovevererereeeee s

FESOIVING....ecee et 6
AIGOINE. ..o

MAKING.....ccveieeerieie e 81
dragging......cccceeeeveeceseere e 38, 49

glossary definition.........ccccevvennnen. 149
duplicating knowledge base....................... 75
dynamic browser subwindow.............ccceeueeee

glossary definition.........cccccveeeennnen. 149
EUOE....cieeee e 149
editing area........ccccoeeveeieieece e

glossary definition.........cceeeveenienen. 150
ENVIrONMENE........ccovvererereeeeee e 100, 150

CONLrol PANEL........ccceeeeeeeeeeresieene 26
EXCIUTE.....coiiee e 87
FACEL. ... 95

EAItING....ciieereeeee e 78

glossary definition...........ccccceeneneenne. 150

INNENTTING. ..ccviiieeee e 78

VAlUB......ooie e 159
feedback panel.........cccccoveeieeinieenne. 8, 69, 73

glossary definition...........cccceeeveneenne. 150
=SSN

knowledge base...........ccccevevvieennnnnn. 100

[08dING.....ccoiirireeee 29

MBSK. et 100

smaltalk......ccocoeeevenieeiceeceee e, 10
FONL. i 47

(<0 [0 50

(0100 L= SRR 50
fONE SIZE...eiiiee e 26
formal knowledge..........ccovevvevieeiie i

glossary definition..........ccccvevvennnnen. 150
format........coooeveeiineeee e, 8,42, 53

glossary definition.........ccccveveeneeen. 150

OrAPN. . 30
format dialog........ccceevevvveeviiciiecieeen, 47,50
freezing Pane.........cocveeeeeieeieeierese e 72
full detailS.......cccovvvieeeeeeee e 72

full update.........coovveiiiiee s 42

Index 162
6 0] {0 TR 90
OraPN. ..o 49
graphical..........ccoceeeeeieiiiieeeee 70, 72
graphical interaction paradigm................... 49
glossary definition..........cc.cceeeeceeeenees 150
NardCOPY.....c.oiereeriirieeee e 91
NEIP. e 32
RN, 43
glossary definition..........cc.cceeeeeenens 150
hierarchy........cccccoveeeeiec e
SEIECHING. .. 38
horizontal.........cccoeveninineeee e 50
POt KEY...oveeeeeeeeeee e 45
glossary definition..........ccccceeeeeeennen. 150
talloring ...oceeveeeceee e 45
hot-SCrolling........ccocceevee e 49
1ol o SRRSO 49
glossary definition..........cccceeveecieennn. 150
TCOMN ittt 47
[0l] PSR
displaying......cccceevvevveeiieecieeieeene, 47, 51
IMBOE. ...t
glossary definition..........cccceeveecieennn. 151
0 L S
REIP. . 32
inference capabilities...........ccccoverenirienne. 104
inference mechaniSM.........ccccoeveeveeceneesennns
glossary definition..........cc.cceeeeeeenens 151
informal knowledge..........ccoovvininenenennnns 6
glossary definition..........ccocceeeeceeenens 151
INNENTTANCE.eeeeeeeee e
glossary definition..........ccceeeeeeenens 151
INNEITTING. ..o
metaconcept properties..........cocvveenee. 80
INSPECLING. ... 44
INSPECtiNg MasK........ccceeveveevieeieceeeieceee 67
1S 0= (o S
hierarchical.........c.cooeveiiiineresenee 11
INSEAELTON. ... 8
INSEANCE.....oveeeiieeee e e
L0001 oo X (o T 82
INSLANCE CONCEPL......ccvveereeriiecreesiee e
glossary definition..........ccccceeevveeennen. 151
INSEANCES.....coiveeiereie et
EXCIUAING......eeiveiieee e, 88
interaction feedback view...........ccccceveenien. 77
interaction paradigm................... 33, 72,102
teXtUA ... 158

CODE4 Reference Manual

interaction parstigm..........cceveeveenieeneeieenene
USEr |anguage........ccccevveeereenienieriennnn 159
INEEIPretation........cceoveevereererere e
ENglish.....ooooii 53
INVEISE ...t 81
INVEISE PrOPETY....ovevereeeieeieee e
glossary definition...........ccccceeneneenne. 151
isahierarchy.......ccccoceovveceiiesece e,
glossary definition...........cccceeeveneenne. 151
= o SR 47
0 . OO
(007071 1 SR 46
glossary definition.........cceeeveeneennen. 151
KEY ettt
(6(0] 011 (o] F SRS 49
S 111 i SO URRRR 49
Knowledge.........cooveveeeeveee e
Problems.........ccccevveevie e 6
SYSIEBM..iii e 94
knowledge acquiSition..........c.cceceereeiinnneenne. 6
glossary definition.........ccccecevevvennen. 152
knowledge base.........cccevveveveeneniescenieenn, 7
control panel..........ccoceeeeevieiceeiie e, 28
CUMENT. ..o 28
default......ccccoooveeeereer s 74
FHlING N 28
glossary definition...........ccccceereneenee. 152
[08dING.....ccoiirinire e 73
MUILTPIE. ... 73
52 Y/ o TS 42,74
top leveEl... ..o 28
knowledge map.........cccccevveveeceeneesece s 7
glossary definition...........cccceveneneenee. 152
knowledge masK.........c.ccceeveeeeieecnciesecns 7
glossary definition...........cccceeeveneenne. 152
knowledge preproCesoroovevveeveveeeseeennans
composing knowledge....................... 112
knowledge preprocessor.........vevvveeeevenee. 109
glossary definition..........cceceeeeninnnen. 152
knowledge preprocessorovvvveevieeciveeen.
adding tokb........ccooveeiiiiiee, 114
(o015 o o SRS 109
[0]07=: 011 o 109
processing a sentence...........ccecveenen. 111
requirements for running................... 116
source filewindow.........c.cccceeevuennenne. 109
knowledge reference..........ccccceeveeviecnenne, 95

knowledge representation..............ccceveeennene

Index 163
glossary definition..........ccoceeeeneennens 152
knowledge Servercccveveneneeennns 117
[aNQUAGE. ... e
USEN .t sree et e et e et 53
[QUNCNEN ... 10
glossary definition..........ccocceeeveeeenens 152
[QYEN . 51
= Y011 | S
glossary definition..........cc.cceeeeeenens 153
015 T o 50
= S SSSPSRN
glossary definition..........cccccveeveueennen. 153
[EAVES......eciieeee e
eXCluding.......cccoeeevvececiecece e, 88
FINK e
APPEAANCE.......evveecrreeeieeesreeesreeesrees 52
glossary definition..........ccccceeeeeeennen. 153
long term CoNCEPL.........cceevvevcveevie e,
glossary definition..........ccccceeeeeeenen. 153
look and fedl.......cccooevvriiieeneeee 7,23,151
MAIQUEL.ceneeneeeesiesiesie et see e seesee e enes
glossary definition..........ccocceeeveeennens 153
1071 S 66, 87, 153
FESELLING....cve v 88
MaSK PrediCate.......coovvveererie e
glossary definition..........cc.cceeeeeeenens 153
MBSK VIEW....ceiveeieeieesieeie e
glossary definition..........cc.cceeeeeeenens 153
master Selection.........cceecveeeeeecieeeecenee. 37,38
0= 1 72
matrix interaction paradigm............c.ce.e.... 56
format control pandl..........cccccceevreenenn 56
format dialog box within...................... 57
MASK ON...oveiiie e 62
modifying property vauein................. 62
rearranging concepts and propertiesin 65
using the MatriX......ccceeeeevereeieeeesieenn 59
glossary definition..........ccccceeeeeeennen. 153
MEANINGS....ccuveeveereereseereeree e sre e sre e
glossary definition..........cccceveecveenen. 154
MENU. ..ottt s
It 43
hardcopy........ccoevevieieeie e 44
hot key indicator...........ccocovveeveenennnns 46
performing command from................. 41
VISIDIHtY ..o 87
MENU DA ..o 10
MEITING. .ttt

CODE4 Reference Manual

glossary definition.........cceeeveenienen. 154
merging knowledge bases.............ccoceeuenee 75
MEtacoNCePL........ooovvveeriieerieeeen, 72,79, 94

glossary definition...........cccceeeveneenee. 154
metaconcept Properties.........coceeeveeereene 47
MINIMIZING. ... 46

glossary definition...........ccccceeneneenne. 154
MOAIITY....ccceereee e 95

glossary definition...........cccceeeveneenne. 154
MO,

CONLrol PaNEl........ccceeeeeeieeerenieine 25
most general subject............cccevveveieeinenen. 95

glossary definition.........cceeeveeneennen. 154
MOUSE DULLONS........ccvvreeeieieiese e 10
MOVING NOES........cccevvreierreeireeie et 49
MUIti-SEl€Ction.........coeerveriiieeee 37,154
multiple inheritance............ccceeeeeeeeeseennen, 48
NBIMIE. ..ttt seesee e enas

CONCEPL....ceviiiee e 37

glossary definition.........cceeeveenienen. 154
NAMEe generation..........cccveveeciieeseesireeseeseeens

AULOMALIC....cvveee e 39, 49
NAVIQatioN @r€AL.......cceeereeiree e

glossary definition...........ccccceevvneenne. 154
INF= V0= 0 S SRR 117
0100 /= S RSS

glossary definition...........ccccceereneenee. 154
non-hierarchical relations..............ccccee.... 84

an example of displaying on graph......84
NONAIFOINE.....ceeveieriererieeee e

MAKING....cceiireeeeee e 81
OntolinguaL.........cceeveeeereeie e 148

glossary definition...........cccceveneneenee. 154
(001 (0] Fos | 8

top eVl ... 74
(001 = 1 o OO

(05 . 0 Lo 38

performing on multi-selection............. 37
order of CONCEPLS......ccvvverrveririierece e 85
OULIINE. ...t 72
outline format...........ccceveverenenenenenennens 31
outline interaction paradigm...........cccccvevuens

glossary definition.........ccccveveeneeen. 155
PANE.....eveeteeteeteeneesieeeseeseesseseesresre e eseeseeeeneens

FEMOVING....ceiiieeiie e sie e 72
PArAIGM.....eoiiiieie s

INtEraction........occeveeveneesiesieenne 47,70

Index 164
glossary definition..........ccoceeeeneennens 155
PAENES.....c.veieiieete et eeee et
specifying multiple.........cccoovenenennne 80
PATONOMY......ecveieeereeieeeeeesee e
glossary definition..........cc.cceeeeceeeenees 155
parts hierarchy.........ccoceoevenininineieneens 82
PESSWOITS......ccueeueeeeieriesiesie e 118
pattern matching..........ccoeevevveveceereenne 68, 89
Pluggability.......cccovvrieriirieeee 102
PrediCate.........cocvvveveciese e 95
glossary definition..........ccocceeeeceeenen. 155
MBSK. e 88
(01=0= 11 S 67
predicate argument............cccceeceeveeieceenieenns
SEL.itieieee e 68
predicate hierarchy..........ccccevviceeveeccieccieee,
MBSK. e 66
Q11 0010155 o | S
Knowledge.........covevvveeveeieciecee 155
Primitive CONCEPL........ovverereriereeie e
glossary definition..........cccceveecveenen. 155
PIrOJECE. ...ttt
smaltalK.......ccooevevenieniieceeeen 11
PrOPEITIES. ...t 71
PrOPENTY....eeieiiiieetee e 82
addiNg......cooeiiiireee e 78
deElEtiNg......coeiereeeeeee e 78
glossary definition..........cc.cceeeeeeenens 155
moving to different concept................ 81
PropertieS ofcccceveveneveninenee, 96
property hierarchy.........ccccoeeveviniininece
glossary definition..........ccceeeeeeenens 156
property history matriX.........ccccocevevrerennne 65
Property iNVErSe........cccveevueeeeseeiieseesieenens 81
property table.......cccooeveiiii
glossary definition..........cccceveeveeennen. 156
query, CaNNEd.........ccoeeereereereeneese e 30
guerying knowledge base.............cccune... 87
raisSing Windows..........cccecveveeveeniesceeseennnns 76
RAM ..ot
removing knowledge base from.......... 74
FEATAW. ...t 41
FEfOIMEL.......coieeeeeeeee e 41
FEfFESN...ceiee s 41
Fefreshing........cccvevee v 67
glossary definition..........cccceeeeeneennens 156
FRIAHON. ...
EAITING. ... 82

CODE4 Reference Manual

glossary definition.........cceeeveenienen. 156
relation graph.........ccocevevenereneeeeeeeee
glossary definition...........ccccceeveneenne. 156
FENAMING.....eeeeeereerie et enes
(601016 o F PR 39
renaming CONCEPL.........ccververuereerererierienaeas 78
FEPAMENTING. ...t
glossary definition.........cceeveeernenen. 156
repetition factor.........ccoevvvereeieiesese 41
report problem.........ccccoevevveecicce e, 24
SCroll Dar......ocveeeeeeeceee e 49
SElECHING.....ee e 38
SEIECHION. ..o 37
glossary definition.........ccccevvennnen. 156
MASLEY ... 153
Selection Criteria......coeveneereneseesieee 66
glossary definition.........cccccveeeennnen. 156
SEIVEN ...ttt 117
S
glossary definition.........cceeeveenienen. 157
shift-selecting........cccoeveveveeveccee e 38
SIDIING. .o
adding.......ccoooeeii e 77
glossary definition...........ccccceevvneenne. 157
simpledelegation...........cccceeeererinneeniennnn. 79
SMalltalK.......ocoveveeveieieee e 10
glossary definition...........ccccceereneenee. 157
Smalltalk walkback...........cccceeveveinrienene, 69
Smalltalk Window..........cccccvvvevvieneeeennne 70
SOUMCES.....vevereereeneeeeseestesseaseeseesesessessesseeseens
building from........cccooeveniiiieneee 108
SPacing ON graph........ceceeceeeeereeieeseeseennen. 51
SPEEAING UP...eeveeerieeieieie e 27, 37
SEANAANAS......coovevereiieeeee e 6
StalEMENt.....ccooeeeeeeeeeeeeee 71,79
glossary definition.........ccccevvenenen. 157
VAUB....ceiiieieiee e 78
statement comment...........cccceeveerieeeneennne. 95
statement hierarchy...........cccocveeevevecceceenee,
glossary definition..........ccceeevevvennen. 157
static browser subwindow............cccceeeveriennene
glossary definition..........cccocevevvennnen. 157
static SUbWIiNdow..........cccceeeeeveerierienenne 72,73
SEALISHICS. e 73
SEALUS....ceceeeeeee e e 95
SUbCONCEPL.......ccvveeeieeee e 77,95
subhierarchy........ccccccevvveiiececcc e 71

Index 165
glossary definition..........ccoceeeeneennens 157
SUDMELACONCEPL........ceveeeeeeeeeeieriesie e 79
SUDPIrOPEIIES.....cvevieeeeeeeeeee e 96
SUBSEITULION......ceceeeeeee e 79
glossary definition..........cc.cceeeeceeeenees 157
SUBLIEE.....c.eeeeceee e
glossary definition..........cc.cceeeeceeenens 157
SUDWINAOW.......ccueiiiiiiinie e
adjusting SIZe.......coceveviiee e, 11
changing Size........cccovceveeveceececee 39
AriVEN.....coeeeeee e 70
AriVING....ccoeieceeceee e 72
glossary definition..........cccceeeeeeenens 158
(0]07=:0 1 o R 43,70
= = (0] FO SRR 71
S0 07C (0/0] 0100 o 79
SUPEIPrOPErtiES....cveeveceeeeteeieeeesieeie e 96
SYSLEM CONCEPL.....oveveeeeieeieeeeee e
glossary definition..........ccccceeeeeeenen. 158
system control pan€l..........cccoeeeveeiennnne 158
tab completion.........ccccoveveeeceevie e, 54
12270010 0 1|V
glossary definition..........cccceeveecieennn. 158
TCPIP e 117
template........ccooeviiieeee e 158
temporary CONCEPL........cccvreeeereereriesesieseenes
glossary definition..........ccccoeeeceeenens 158
EO M. 71
glossary definition..........cc.cceeeeeeeenees 158
PropertieS ofcccceveveneveninenee, 96
TEXIUAL ... 72
L0 o o3
glossary definition..........ccocceeeeeenen. 159
TraVErSal.....coeeee e
glossary definition..........ccoccveeeceeenens 159
traversal depth..........cccoceevveveiceceeec 88
By Pt 81
glossary definition..........ccccceeeeeeennen. 159
PrMITIVE......ccviieeceee e 9
tUrNING t0...ccveevee e 82
01010 L= = USRS
glossary definition..........ccccceveecieennne 159
update pProp St......cceeeeveeeieeceerie e, 47
UPELES. ..ot
deferring......cocveveeececve e 42
upgrade Software..........cccceeevereneneneenen, 24
USEr 1anQUAaGE.........ccvveieevie e 7
glossary definition..........cc.cceeeeceeeenees 159

CODE4 Reference Manual

USEYN NAIME......uviiiiieeiieeesree e e sree e 26
VAIUB.....coieeie e 95
Changing........ccccevereeieieere e 78
EAITING....coveeeeeieeeeee e 54
SOUICES Of .o 95
VErSION NUMDENeeveeiecieeee e
knowledge base..........ccceeveveiinincnnne 74
virtual knowledge base..........ccccceevvvvecvenennee.
glossary definition...........cccceeeveneenne. 159
Visibility menu.........cccoeeeeieece e 66
WINAOW.....eeiiciiecieeie e
ClOSING....coiieeceeseee e 44
glossary definition.........cceeeveeneennen. 160
... union

Index 166

	Table of Contents
	1 Introduction
	1.1 Organization of this document
	1.2 Key concepts to understand
	1.3 Typical pattern of use
	1.4 Platforms
	1.5 Availability

	2 Smalltalk Basics
	2.1 CODE4 enhancements to basic Smalltalk-80

	3 Suggestions About What You Should Learn
	3.1 Getting Started
	3.2 Important Material to Learn in Order to be Productive

	4 Major User Interface Components
	4.1 The Launcher
	4.2 The Control Panel
	4.2.1 The ‘environment’ control panel
	4.2.2 The ‘KBs’ control panel
	4.2.3 The ‘masks’ control panel
	4.2.4 The ‘browser types’ control panel
	4.2.5 The 'graph format' control panel
	4.2.6 The 'outline format' control panel
	4.2.7 The ‘help’ control panel

	4.3 Browsers
	4.3.1 Components of browser subwindows
	4.3.2 Selections
	4.3.3 Nodes and links as concepts
	4.3.4 Generic operations
	4.3.4.1 Selecting one or more items on which to perform operations
	4.3.4.2 Changing the size of a subwindow
	4.3.4.3 Editing the text of an item (renaming)
	4.3.4.4 Performing a command (in general)
	4.3.4.5 Performing a command from a menu
	4.3.4.6 Performing a command with a hot key
	4.3.4.7 Performing a command with an action button.
	4.3.4.8 Copying items
	4.3.4.9 Minimizing and hiding

	4.3.5 Outline interaction paradigm
	4.3.5.1 Format options in outline panes
	4.3.5.2 Appearance of items in outline panes

	4.3.6 Graphical interaction paradigm
	4.3.6.1 Navigating, selecting and rearranging a graph
	4.3.6.2 Displaying icons (pictures) at graph nodes
	4.3.6.3 Format options for the entire graph
	4.3.6.4 Apprarance of items on a graph

	4.3.7 User language interaction paradigm (value panes)
	4.3.7.1 Format options in value panes
	4.3.7.2 Text manipulation options in value panes
	4.3.7.3 Edit options in value panes
	4.3.7.4 Displaying and editing facets in the value pane

	4.3.8 Matrix interaction paradigm
	4.3.8.1 Format options in the matrix paradigm
	4.3.8.2 Matrix example 1: Statements about a concept
	4.3.8.3 Matrix example 2: Statements about a concept and siblings
	4.3.8.4 matrix example 3: Statements of a concept and its coordinates
	4.3.8.5 Manipulating matrix information
	4.3.8.6 Modifying statement values in matrix cells
	4.3.8.7 Masking out concepts and properties from a matrix
	4.3.8.8 Unmasking concepts and properties in a matrix
	4.3.8.9 Rearranging the order of concepts and properties in the matrix
	4.3.8.10 The property history matrix

	4.4 Mask Views
	4.4.1 Editing the mask predicate hierarchy
	4.4.2 Editing the mask predicate arguments

	4.5 Feedback Panels

	5 Commands
	5.1 Opening windows - basics
	5.1.1 Opening the launcher
	5.1.2 Opening the control panel
	5.1.3 Opening a browser
	5.1.3.1 Opening a top level browser
	5.1.3.2 Opening a browser or subwindow from another browser

	5.1.4 Opening a feedback panel
	5.1.5 Displaying statistics about a knowledge base

	5.2 Manipulating knowledge bases
	5.2.1 Loading a knowledge base
	5.2.2 Changing a knowledge base name
	5.2.3 Saving a knowledge base to disk
	5.2.4 Removing a knowledge base from memory
	5.2.5 Removing all KBs from memory and creating a new default
	5.2.6 Creating a new default (empty) knowledge base
	5.2.7 Merging one knowledge base with another
	5.2.8 Duplicating a knowledge base or subtree in memory
	5.2.9 Manipulating knowledge base windows
	5.2.10 Other knowledge base operations

	5.3 Editing knowledge bases
	5.3.1 Adding concepts
	5.3.2 Deleting concepts
	5.3.3 Adding properties to a concept
	5.3.4 Deleting properties from a concept
	5.3.5 Renaming a concept
	5.3.6 Changing the value of a statement
	5.3.7 Adding and editing facets of properties
	5.3.7.1 Making facets inherit

	5.3.8 Specifying substitution (delegation and special symbols)
	5.3.9 Reparenting
	5.3.10 Specifying multiple parents
	5.3.11 Moving a property to a different concept
	5.3.12 Making a property an inverse of another
	5.3.13 Making concepts disjoint
	5.3.14 Making concepts nondisjoint
	5.3.15 Changing a type into an instance
	5.3.16 Changing an instance into a type
	5.3.17 Committing and cancelling
	5.3.18 Editing different relations
	5.3.18.1 Creating a simple parts hierarchy
	5.3.18.2 More complex hierarchies
	5.3.18.3 Non hierarchical relations
	5.3.18.4 Editing arbitrary relations textually

	5.3.19 Specifying order

	5.4 Querying a knowledge base
	5.4.1 Masks
	5.4.1.1 The visibility submenu
	5.4.1.2 Predicates
	5.4.1.3 Typical queries
	5.4.1.4 The ‘goto’ capability

	5.4.2 Networks of dependent browsers
	5.4.3 Hardcopy output

	5.5 Customizing browsers

	6 System knowledge
	6.1 Primitive types
	6.2 Primitive properties
	6.2.1 Metaconcept properties
	6.2.2 Statement properties (facets)
	6.2.3 Properties of properties
	6.2.4 Term properties

	7. Explanation of Error Messages
	Appendix 1. Files Processed by CODE
	A1.1 Knowledge Base Files
	A1.2 Mask Files
	A1.3 Environment Files
	A1.4 Browser Template Files

	Appendix 2. Important Changes in the Latest Release
	Appendix 3. Some CODE4 Design Philosophies
	Appendix 4. Future Enhancement Plans
	Appendix 5. User Enhancement of CODE4 software — A Brief Guide.
	A5.1 Enhancing the existing system
	A5.2 Interfacing to the existing system

	Appendix 6. Auxiliary Tools Delivered with CODE4
	A6.1 The call browser
	A6.1.1 Description of Function
	A6.1.2 Implementation Notes

	A6.2 Hierarchical inspector

	Appendix 7. Building CODE from Sources
	Appendix 8. Knowledge Preprocessor User’s Manual. Knowledge Preprocessor User’s Manual;
	A8.1 Introduction.1 Introduction;
	A8.2 Getting started.2 Getting started;
	A8.2.1 Opening the knowledge preprocessor.2.1 Opening the knowledge preprocessor;
	A8.2.2 Closing the knowledge preprocessor.2.2 Closing the knowledge preprocessor;

	A8.3 Using the knowledge preprocessor.3 Using the knowledge preprocessor;
	A8.3.1 The source file window.3.1 The source file window;
	A8.3.1.1 Menu items.3.1.1 Menu items;

	A8.3.2 Processing a sentence.3.2 Processing a sentence;
	A8.3.2.1 Unknown words.3.2.1 Unknown words;
	A8.3.2.2 The phrase window.3.2.2 The phrase window;
	A8.3.2.3 Menu items in the phrase window.3.2.3 Menu items in the phrase window;

	A8.3.3 Composing knowledge to add to the knowledge base.3.3 Composing knowledge to add to the knowledge base;
	A8.3.3.1 Assembling knowledge in the knowledge composing window.3.3.1 Assembling knowledge in the knowledge composing window;
	A8.3.3.2 Menu items in the knowledge composing window.3.3.2 Menu items in the knowledge composing window;

	A8.3.4 Adding to the knowledge base.3.4 Adding to the knowledge base;
	A8.3.4.1 The 'add to kb' button.3.4.1 The 'add to kb' button;
	A8.3.4.2 ISA relationships.3.4.2 ISA relationships;
	A8.3.4.3 Adding a statement that is not an ISA relationship.3.4.3 Adding a statement that is not an ISA relationship;

	A8.4 What you need to run the knowledge preprocessor.4 What you need to run the knowledge preprocessor;

	Appendix 9. The CODE4 Knowledge Server
	A9.1 General Information about the Server
	A9.1.1 How a client must behave
	A9.1.2 Passwords:

	A9.2 Commands: Constructors and navigators
	A9.2.1 Syntax of references to concepts
	A9.2.2 Alphabetical list of commands
	A9.2.3 Exploring the knowledge base using navigators
	A9.2.4 Using constructors to edit the knowledge base

	A9.3 Examples using commands to work with terms
	A9.4 Symbols used to refer to primitive concepts

	Bibliography
	Glossary
	Index

