
Human-Usable Textual Notation
(HUTN) Specification

August 2004
Version 1.0

formal/04-08-01

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2002, Data Access Technologies
Copyright © 2002, DSTC Pty Ltd
Copyright © 2002, France Telecom
Copyright © 2002, IBM
Copyright © 2002, IONA Technologies
Copyright © 2004, Object Management Group, Inc.
Copyright © 2002, Open-IT
Copyright © 2002, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this

specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
1. Overview . 1-1

1.1 Introduction . 1-1

1.2 Changes to Existing OMG Specifications 1-1

1.3 Proof of Concept . 1-1

2. Overall Design Rationale . 2-1

2.1 Overall Approach . 2-1

2.2 Usability Criteria . 2-2
2.2.1 Syntax and Aesthetics . 2-3
2.2.2 Use of symbols and punctuation 2-3
2.2.3 Use of reserved words . 2-4
2.2.4 User expectations. 2-4
2.2.5 Other considerations . 2-5

2.3 The Meta-Object Facility (MOF) . 2-5

2.4 XML-based Model Interchange (XMI) 2-6

2.5 Example MOF Model. 2-7

2.6 Example XMI. 2-7

2.7 Equivalent HUTN . 2-10

2.8 Summary . 2-12
2.8.1 Generic . 2-12
2.8.2 Fully Automated . 2-12
2.8.3 Human Usable . 2-13

3. Conformance . 3-1

3.1 Overview . 3-1

3.2 Input Stream Conformance. 3-1

3.3 Output Stream Conformance . 3-1
August 2004 Human-Usable Textual Notation, v1.0 i

Contents
3.4 HutnConfig HUTN Language Configuration Conformance 3-2

3.5 ECA HUTN Language Configuration Conformance 3-2

4. HUTN Design Rationale . 4-1

4.1 Overview . 4-1

4.2 The Base Language . 4-1
4.2.1 Use of familiar forms. 4-1
4.2.2 Structure reflects containment 4-1
4.2.3 Defining and referencing major concepts 4-2
4.2.4 Representing minor concepts. 4-2

4.3 Model-Specific Shorthands . 4-3
4.3.1 Identifying class instances (objects) 4-3
4.3.2 Keywords and Adjectives . 4-4
4.3.3 Omission of Class Type of an Object Reference . . . 4-6
4.3.4 Omission of Reference Name for a Contained Object 4-6
4.3.5 Default Values . 4-6
4.3.6 Parametric Form . 4-7
4.3.7 Renaming of Model Elements for HUTN languages 4-7

5. Configuration . 5-1

5.1 HutnConfig Metamodel . 5-2
5.1.1 ClassConfig . 5-2
5.1.2 «enumeration» UniquenessScope 5-2
5.1.3 «datatype» ClassRef . 5-3
5.1.4 «datatype» AttributeRef . 5-3
5.1.5 «datatype» ModelElementRef 5-3
5.1.6 IdentifierConfig . 5-3
5.1.7 EnumAdjectiveConfig . 5-4
5.1.8 DefaultValueConfig . 5-4
5.1.9 ParametricConfig. 5-4
5.1.10 RenameConfig. 5-5

6. HUTN Document Production. 6-1

6.1 Notation . 6-2

6.2 Package Representations . 6-3

6.3 Class Representations. 6-4

6.4 Attribute Representations. 6-7

6.5 Reference Representations . 6-9

6.6 Classifier-Level Attributes . 6-10

6.7 Data Value Representations . 6-11
6.7.1 Numeric types . 6-11
6.7.2 Boolean . 6-11
6.7.3 Textual types . 6-11
6.7.4 Enum . 6-11
ii Human-Usable Textual Notation, v1.0 August 2004

Contents
6.7.5 Object Reference . 6-12
6.7.6 TypeCode . 6-12
6.7.7 Any . 6-12
6.7.8 Struct . 6-12
6.7.9 Union. 6-12
6.7.10 Sequence, Array . 6-12
6.7.11 Collections (Set, Bag, List, UList). 6-13

6.8 Association Representations . 6-13

6.9 Lexical issues . 6-15
6.9.1 Comments . 6-15
6.9.2 Identifiers . 6-16
6.9.3 Reserved Words . 6-16
6.9.4 White Space. 6-16
6.9.5 Numeric literals . 6-16
6.9.6 Character and string literals 6-16
6.9.7 Bracketed Pairs/Lists . 6-17
6.9.8 Symbols . 6-17

6.10 Name Scope Optimization. 6-18

7. Configuration Notation . 7-1

7.1 HutnConfig Language Configuration 7-1

8. ECA Textual Notation . 8-1

8.1 ECA Language Configuration . 8-1

 Appendix A - References . A-1
August 2004 Human-Usable Textual Notation, v1.0 iii

Contents
iv Human-Usable Textual Notation, v1.0 August 2004

Preface
About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
August 2004 Human-Usable Textual Notation, v1.0 v

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.
vi Human-Usable Textual Notation, v1.0 August 2004

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Data Access Technologies

• DSTC

• France Telecom

• IBM

• IONA

• Open_IT
August 2004 Human-Usable Textual Notation, v1.0 vii

• SINTEF

• Unisys

Note – The submitters wish to acknowledge the contributions of Jim Steel, Kerry
Raymond and Keith Duddy of DSTC and Mariano Belaunde of France Telecom in the
preparation of this specification.
viii Human-Usable Textual Notation, v1.0 August 2004

Overview 1
1.1 Introduction

A Human-Usable Textual Notation (HUTN) standard represents an important element
of the realization of the Model-Driven Architecture (MDA). This HUTN specification
offers three main benefits:

• Generic: It is a generic specification, that can provide a concrete HUTN language
for any MOF model.

• Fully automated: The HUTN languages can be fully automated for both production
and parsing.

• Human-Usable: The HUTN languages are designed to conform to human-usability
criteria.

1.2 Changes to Existing OMG Specifications

The HUTN Language Configuration for the expression of Enterprise Collaboration
Architecture (ECA) model instances shall become part of the normative specification
entitled “UML Profile for EDOC” (see
http://www.omg.org/technology/documents/formal/edoc.htm). See “Section 3.4,
“HutnConfig HUTN Language Configuration Conformance” for the accompanying
conformance statement, which is a conformance point of that specification.

1.3 Proof of Concept

DSTC Pty Ltd is currently engaged in a 7 year research program into Enterprise
Distributed Systems Technology with major projects devoted to enterprise modeling
and the mapping of such models into middleware technology. DSTC Pty Ltd has
extensive experience in the standardization, implementation, and use of MOF and
XMI. The DSTC has had a prototype implementation since 1999 based on XSLT
[XSLT99] and Antlr [Antlr] (earlier versions used [JavaCC]) that has been used
August 2004 Human-Usable Textual Notation, v1.0 1-1

1

internally in developing prototypes for other DSTC RFP Responses, and for enterprise-
oriented research projects. The tool is also available for download and evaluation from
http://www.dstc.edu.au/Research/Projects/Pegamento/TokTok/index.html.

The original design of the system is illustrated in Figure 1-1 with the components to be
implemented as part of the HUTN system shaded.

The MOF Model Repository is a repository for information models, which are created
in a custom model definition language (called the Meta-Object Definition Language or
MODL). DSTC’s MOF product is used for this purpose, since it has the advantage of
being able to generate fully functional instance repositories from the model in the
Model repository. The XMI subsystem performs the role of generating programs (and
a DTD) for transferring data between the instance repository and XMI form.

Although the original design was quite symmetric and elegant, it was found to be
easier in practice to parse directly into the instance repository rather than into XMI
format. However, the original design is technically feasible.

Figure 1-1 Original Structure of the DSTC HUTN System

Language
Preferences

HUTN Configurator

XSL
Generator
Module

Model

MOF Model
Repository

Parser
Generator
Module

Instance Repository
(generated)

XMI XMI

Textual
Notation

(HUTN)

 XSL
Stylesheet
(generated)

HUTN
Parser

(generated)
1-2 Human-Usable Textual Notation, v1.0 August 2004

1

The system is divided into three basic components. The XSL generator component is
responsible for the creation of an XSLT style sheet for converting a stream of XMI into
the target human-usable language. The Grammar Generator component generates an
ANTLR grammar and associated backend code for the parsing of the language back
into a MOF-compliant repository. Finally, the so-called Configurator component is
responsible for parsing a file containing the language configurations for the
shorthands, and for communicating these preferences to the two generator components.

The Grammar Generator and the XSL Generator components are designed around a
common generator architecture, which provides a simple mechanism for
communicating with the MOF. The architecture is enacted through the use of an
existing Java package included as part of the DSTC’s MOF system.

The HUTN modules were implemented in the Java programming language. Java
provides a number of features that make it a useful language for this purpose, such as
its mature object orientation and use of interfaces, and its ready connectivity with
CORBA. The CORBA product used for this implementation was Inprise’s “Visibroker
for Java” [Visibroker] product. This was chosen because it is the system used in the
dMOF product, and was thus less likely to induce compatibility problems.

France Telecom has developed since 1997 a MOF-based model repository tool
[Belaunde99] and has implemented since 1999 facilities to import and export textual
human usable specifications that use a Java-like syntax (the notation was originally
named JMI) and a hierarchical identification system. The implementation uses a
generic parser that is connected at run-time to the API’s generated from the MOF-
compliant metamodel definitions (no intermediate BNF parser generation is used).
France Telecom has provided feedback to the other submitters based on its original
implementation.
August 2004 Human-Usable Textual Notation, v1.0 1-3

1

1-4 Human-Usable Textual Notation, v1.0 August 2004

Overall Design Rationale 2
2.1 Overall Approach

Taking the goals of the RFP and MDA into account, this specification provides a
generic solution, based on generating a textual language from a MOF model. This is
the same approach taken by XMI, which generates a DTD or Schema from a MOF
model. This relationship between the MOF, XMI, and HUTN specifications can be
seen in Figure 2-1. While XMI represents a generic serialization format for models and
metamodels, HUTN is intended to be easier for human users to read and write.

The benefits of generating an HUTN language from a MOF model are:

• consistency - each HUTN generated language is different, yet they all conform to a
single structure and style.

• automatable - not only can the HUTN language be generated, but also the
production and parsing of text strings to/from a MOF and to/from XMI can be
automated.

• completeness - anything that can be modeled in MOF (which includes all of UML)
can have an HUTN language.
August 2004 Human-Usable Textual Notation, v1.0 2-1

2

2.2 Usability Criteria

The primary design goal of HUTN is human usability, and this is achieved through
consideration of the successes and failures of common programming languages. HUTN
uses an abstract base syntax that is applied to all models, which is customized to
exploit specific properties of particular models.

Figure 2-1 Relationship between MOF, XMI, and HUTN

MOF Model Repository

ModelModel

“MOFlet”
Generated Repository
for Model Instances

XMI DTD
HUTN EBNF Grammar
Generated for ModelGenerated for Model

generated by
HUTN

generated
by XMI

generated
by MOF

XMI Document HUTN Document

Conforms
to DTD

Conforms
to EBNF

Can be
directly

transformed

Generated to/from
Model instances
2-2 Human-Usable Textual Notation, v1.0 August 2004

2

As the first step in this user-centered design process, a number of assumptions had to
be made about the target user audience of the generated languages. It was decided that
this audience could be assumed to have some degree of familiarity with computer
languages generally, while not necessarily being proficient in the use of programming
languages. The syntax of a language can have a strong effect on the speed and
efficiency of its use for an expert user, but the syntax features associated with this
speed and efficiency often lead to a more difficult learning curve for the novice user.
While it is not impossible to deal with both, a certain trade-off between these two
features is apparent in many common programming languages. For example, the C
programming language features many syntactic elements that are convenient for the
experienced user, but the language is widely acknowledged as one of the more difficult
to learn. By contrast, the Pascal language is a very popular language for teaching
programming, but is less popular for large-scale development, where it is more time
consuming and less efficient than a language such as the C programming language. For
this application, it was decided that an efficient learning curve was a more important
requirement of the languages, and that they would consequently be designed with
learnability as a primary goal, and expert-friendliness as a secondary goal.

2.2.1 Syntax and Aesthetics

There is a proliferation of opinions on the aesthetic virtues and downfalls of
programming languages, and of what features are important when designing a
language. However, while there is an abundance of papers on the design of a
language’s semantic operations, there are surprisingly few published works on
programming language usability as it pertains purely to syntax. It must also be
considered that there are essential differences between the syntactic structure and
features of a programming language and those that the HUTN languages might
contain. While a programming language is aimed at the modification and maintenance
of a (usually abstract) body of information, the HUTN languages are required purely
for the display of information. For this reason, programming language features such as
control constructs have no real relevance to HUTN languages.

Two usability works on programming languages and their syntax were considered to
assist in identifying principles upon which to design the HUTN languages. The first
[McIver96] is a paper by McIver and Conway from Monash University, which
identifies and explore problems associated with languages used as first languages for
the teaching of programming. The paper also discusses a number of directions for the
design of such a language. The other [RL77] is a paper by Richard and Ledgard of the
University of Massachusetts, and discussed a number of principles for syntax design,
with a view to designing a general purpose programming language called Utopia84.
From these papers and from independent consideration, a number of principles have
been assembled for the design of the HUTN language.

2.2.2 Use of symbols and punctuation

An important principle of human-usability is that a language should have sufficient
variety of symbols that the user should be able to easily navigate through a stream of
data. A language that does not follow this principle is the LISP language which uses
parentheses almost exclusively. This problem often comes about from a language’s
August 2004 Human-Usable Textual Notation, v1.0 2-3

2

devotion to a certain functional, logical, or object-oriented paradigm. As pointed out
by McIver and Conway, this can also lead to the problem of ‘syntactic homonyms,’ the
use of a single syntactic construct to represent two distinct semantics. Richard and
Ledgard also identify this as a problem, emphasizing that “distinct features should
have distinct forms.”

However, the reverse of this can also be a problem. A language that makes use of a
large vocabulary can make a novice’s task of learning the language very difficult, and
often misleading. The Ada 9x languages, for example, have 68 reserved words and
over 50 predefined attributes. As explained by McIver and Conway, this problem is
often dealt with by teaching the learner only a small subset of the language’s
vocabulary. However, this can lead to confusion when the student is exposed to the
new features of the language, and can lead to the production of overly verbose or
obscure code if they neglect to use some language features. The problem can also lead
to the presence of ‘syntactic synonyms,’ the availability of a number of syntactic
constructs for the presentation of a single construct. These synonyms only serve to
further mislead the student and unnecessarily expand the vocabulary of a language.

Related to this problem is the excessive use of symbols for the denotation of functions
or, to a lesser degree, for the denotation of syntactic structure. This is evident in
languages such as C, particularly. While the resultant terse syntax can make the
language very efficient for expert users, it has a detrimental effect on the novice user’s
ability to learn the language.

2.2.3 Use of reserved words

Another language syndrome to be avoided is the overuse of natural language words for
syntactic structuring. While not as significant a problem as terse syntax, the verbose
syntax that can result in a language that becomes harder to read by virtue of the sheer
bulk of information being presented. Also, symbols are more intuitive delimiters of
structure than words, since natural languages use symbols exclusively for punctuation.
This division between words for semantic functions and symbols for punctuation is a
useful general rule, in part because of the ties with natural language, and in part
because of the roles that words and symbols play. Words are useful when their function
requires a degree of explanation, whereas structure delimitation requires little such
explanation, so is better suited to a more brief representation.

2.2.4 User expectations

One of the programming language faults identified by McIver and Conway is that of
backward compatibility. They define backward compatibility in two forms: genetic
compatibility and mimetic compatibility. Genetic compatibility refers to syntactic
similarities in programming languages that result from one language being developed
as a successor to the first (such as C and C++). Mimetic compatibility, by contrast,
refers to language features that are derived from de-facto standards, such as the use of
square brackets for indexing into arrays. The authors suggest that both of these were
too often agents for the propagation of syntactic features that, while familiar to those
with programming experience, conflicted with a novice’s preconceived ideas of what a
function might appear as. However, since the target audience of an HUTN generated-
2-4 Human-Usable Textual Notation, v1.0 August 2004

2

language is assumed to have some familiarity with programming conventions, the
situation is reversed. These syntactic familiarities can serve the purpose of providing
the new user with a head start in learning the language.

The final usability consideration taken from the two papers was avoiding the problem
of violating the user’s expectations. This often comes about through poor selection of
function names and appearances. In some situations, the orthogonality of concepts can
mean that misleading code can arise through the obscure and complicated combination
of simple features. However, the names used in an HUTN-generated language come
from the underlying model, which presumably conforms to the user’s expectations.

2.2.5 Other considerations

Indentation plays an important part in improving the readability of textual documents,
and particularly in enhancing the navigability of programming language source code.
This is also the case in the HUTN languages, and an indentation policy should be
incorporated into the producer of HUTN text.

It is quite probable that the users of the HUTN languages will be involved in the use of
a number of HUTN languages, either through the evolution of a single domain model
or through the use of a number of models. This implies a need for some uniformity
between the HUTN languages. This is achieved through the use of a common basic
structure for the languages, the design of which is described in 4.1, “Overview.”

One of the major decisions made to enhance the usability of the HUTN-generated
languages was to allow the use of alternative forms (or short-hands). These
configurations would involve simple syntactic extensions without changing either the
larger syntactic structure or the semantics of the language. The details of these short-
hands are described in 4.2, “The Base Language.”

2.3 The Meta-Object Facility (MOF)

OMG’s Meta-Object Facility (see
http://www.omg.org/technology/documents/formal/mof.htm) specifies a small but
complete set of modeling concepts that can be used to express information models. In
line with the OMG’s commitment to CORBA, the MOF standard also provides a
mapping from these modeling concepts to CORBA IDL to support a repository of
instances of that model. Although not part of the MOF standard, some MOF tools
(such as DSTC’s dMOF product) also generate the code for the model-instance
repository.

There are a number of essential concepts used in MOF modeling. A Package is used to
encapsulate a collection of related Classes and Associations. Packages can also contain
simple type definitions, equivalent to those available in CORBA IDL. Classes exist in
the commonly-used sense of the word, describing an object and its properties. These
properties are represented through Attributes and References, which can be inherited
using a multiple-inheritance system based on that of CORBA IDL. Attributes have a
name and a type, selected from the CORBA type system1. This includes a range of
types from basic types such as integers, strings, and booleans to more complex types
such as enumerations, and through to structured types. In addition, attributes have both
August 2004 Human-Usable Textual Notation, v1.0 2-5

2

upper and lower limits on the number of times that they can appear within a class
instance. An Association is used to represent a relationship between instances of two
classes, each of which plays a role within the association. Associations can have the
additional property of containment; an association represents a containment
relationship if one of the participant classes does not exist outside the scope of the
other. A Class participating in an association can also contain a Reference to the
association. A reference appears much like an attribute, but reflects the set of class
instances that participate in the Association with the containing class instance.

2.4 XML-based Model Interchange (XMI)

The XML-based Model Interchange (XMI) Format standard [XMI98] defines a set of
mappings from the MOF modeling concepts to a representation in XML (eXtensible
Markup Language), a standard of the World Wide Web Consortium (W3C) [XML98].

XML was chosen for its growing popularity for data expression, and for the flexibility
provided by its type definition system. The XML is essentially a tree-based language
consisting of a series of nested “elements,” each of which is represented by a set of
matching start and end tags. These elements may also include a number of name-value
pairs called attributes, which appear within the opening tag of the element. The
flexibility of the language lies in the ability to associate an XML document with a
Document Type Definition (DTD). This DTD allows for the placement of further
specific restrictions on the contents of an element. These include restrictions on the
type of data (for example, numbers, strings with/without white space) allowable
between two tags. The element can also be restricted in terms of the attributes that may
appear within the element, and on the types of their value. Further, a restriction can be
placed on the different elements (and the number of each) that are allowable beneath
an element on the document tree.

The XMI specification provides two main components: a set of rules for producing a
DTD from a model, and a set of rules for the transfer of data between XMI and a
MOF-compliant repository. Each instance of a MOF Package, Class, or Association is
represented by an XML element. In addition, every instance of a MOF Class contains
an XMI identifier in the form of an attribute labelled “xmi.id” on the instance’s XML
element. When a class instance appears by reference (rather in the form of a full
declaration), it is referenced by an “xmi.idref” attribute in the XML element. MOF
Attributes whose types are simple types are represented as elements containing data,
except for enumerations and booleans, whose values are enclosed in attributes, within
self-closing tags. Attributes whose values are class instances are represented either as
class instance declarations or as references to class instances using the scheme
mentioned above.

1. The type system for MOF Attributes is currently the subject of revision within the MOF
RTF and may change during the lifetime of this document.
2-6 Human-Usable Textual Notation, v1.0 August 2004

2

2.5 Example MOF Model

To illustrate the MOF, XMI, HUTN relationship with a concrete example, consider the
MOF model in Figure 2-2 describing a family. 2.6, “Example XMI” gives an example
of an XMI stream for that model, describing a number of families. 2.7, “Equivalent
HUTN” represents the same information in the HUTN-generated language for this
model. As can easily be seen, the HUTN is much more human-readable than the XMI.

Figure 2-2 MOF model for a family

2.6 Example XMI

The following XML stream represents an instance of the model in 2.5, “Example MOF
Model.”

<?xml version = "1.0"?>
<XMI>
 <XMI.header>
 <XMI.model xmi.name = ‘familyPackage’ xmi.version = ‘1.1’/>
 </XMI.header>

Family Package

Car
registration:String
make:String
year:Integer
state:String

Dog
name:String
age:int
breed:String
sex:enum(male,female)

Fish

name:String
sex:enum(male,female)

Family

familyName:String
nuclear:Boolean
migrants:Boolean
address:String
petDog:Dog
petFish:Fish

+owned

CarOwnership

+owner

Person

name:String
age:int
sex:enum(male,female)

+family adoption

+family
naturalBirth

+sponsor

sponsorship

+sponsored

+naturalChild

+adoptedChild

familyFriendship

+family2

+family1
August 2004 Human-Usable Textual Notation, v1.0 2-7

2

 <XMI.content>
 <FamilyPackage xmi.id=’xmi-id-001’>
 <FamilyPackage.Family xmi.id=‘xmi-id-002’>
 <FamilyPackage.Family.familyName>
 The McDonalds
 </FamilyPackage.Family.familyName>
 <FamilyPackage.Family.address>
 7 Main Street
 </FamilyPackage.Family.address>
 <FamilyPackage.Family.nuclear xmi.value=’false’/>
 <FamilyPackage.Family.migrants xmi.value=’true’/>
 <FamilyPackage.Family.familyFriends>
 <FamilyPackage.Family xmi.idref=’xmi-id-003’/>
 </FamilyPackage.Family.familyFriends>
 <FamilyPackage.Family.petFish>
 <FamilyPackage.Fish>
 <FamilyPackage.Fish.name>
 Wanda
 </FamilyPackage.Fish.name>
 <FamilyPackage.Fish.sex xmi.value=’female’/>
 </FamilyPackage.Fish>
 </Familypackage.Family.petfish>
 <FamilyPackage.Family.petDog>
 <FamilyPackage.Family.Dog xmi.idref=’xmi-id-007’/>
 </FamilyPackage.Family.petDog>
 </FamilyPackage.Family>
 <FamilyPackage.Family xmi.id=‘xmi-id-003’>
 <FamilyPackage.Family.nuclear xmi.value=’true’/>
 <FamilyPackage.Family.migrants xmi.value=‘false’/>
 <FamilyPackage.Family.address>
 5 Main Street, Brisbane
 </FamilyPackage.Family.address>
 <FamilyPackage.Family.familyName>
 The Smiths
 </FamilyPackage.Family.familyName>
 <FamilyPackage.Family.naturalChild>
 <FamilyPackage.Person>
 <FamilyPackage.Person.name>
 Joan Smith
 </FamilyPackage.Person.name>
 <FamilyPackage.Person.age>
 20
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.sex xmi.value=’female’/>
 </FamilyPackage.Person>
 </FamilyPackage.Family.naturalChild>
 <FamilyPackage.Family.naturalChild>
 <FamilyPackage.Person>
 <FamilyPackage.Person.name>
 Harry Smith
 </FamilyPackage.Person.name>
2-8 Human-Usable Textual Notation, v1.0 August 2004

2

 <FamilyPackage.Person.age>
 17
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 </FamilyPackage.Person>
 </FamilyPackage.Family.naturalChild>
 <FamilyPackage.Family.adoptedChild>
 <FamilyPackage.Person>
 <FamilyPackage.Person.name>
 Dylan Smith
 </FamilyPackage.Person.name>
 <FamilyPackage.Person.age>
 12
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 </FamilyPackage.Person>
 </FamilyPackage.Family.adoptedChild>
 <FamilyPackage.Family.familyFriends>
 <FamilyPackage.Family xmi.idref=’xmi-id-002’/>
 </FamilyPackage.Family.familyFriends>
 </FamilyPackage.Family>
 <FamilyPackage.Person xmi.id=‘xmi-id-004’>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 <FamilyPackage.Person.age>
 7
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.name>
 Namdou Ndiaye
 </FamilyPackage.Person.name>
 </FamilyPackage.Person>
 <FamilyPackage.Person xmi.id=‘xmi-id-005’>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 <FamilyPackage.Person.age>
 6
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.name>
 Sharif Mbangwa
 </FamilyPackage.Person.name>
 </FamilyPackage.Person>
 <FamilyPackage.Person xmi.id=’xmi-id-006’>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 <FamilyPackage.Person.age>
 3
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.name>
 Miguel Aranjuez
 </FamilyPackage.Person.name>
 </FamilyPackage.Person>
 <FamilyPackage.Dog xmi.id=‘xmi-id-007’>
 <FamilyPackage.Dog.sex xmi.value=’male’/>
 <FamilyPackage.Dog.age>
August 2004 Human-Usable Textual Notation, v1.0 2-9

2

 2
 </FamilyPackage.Dog.age>
 <FamilyPackage.Dog.name>
 Spike
 </FamilyPackage.Dog.name>
 <FamilyPackage.Dog.breed>
 Irish Wolfhound
 </FamilyPackage.Dog.breed>
 </FamilyPackage.Dog>
 <FamilyPackage.Sponsorship>
 <FamilyPackage.Family xmi.idref=‘xmi-id-003’/>
 <FamilyPackage.Person xmi.idref=‘xmi-id-004’/>
 <FamilyPackage.Family xmi.idref=‘xmi-id-003’/>
 <FamilyPackage.Person xmi.idref=‘xmi-id-005’/>
 <FamilyPackage.Family xmi.idref=‘xmi-id-002’/>
 <FamilyPackage.Person xmi.idref=‘xmi-id-006’/>
 </FamilyPackage.Sponsorship>
 <FamilyPackage.CarOwnership>
 <FamilyPackage.Family xmi.idref=’xmi-id-002’/>
 <FamilyPackage.Car>
 <FamilyPackage.Car.Registration>
 755-BDL
 </FamilyPackage.Car.Registration>
 <FamilyPackage.Car.State>
 QLD
 </FamilyPackage.Car.State>
 <FamilyPackage.Car.Make>
 Mitsubishi Magna
 </FamilyPackage.Car.Make>
 <FamilyPackage.Car.Year>
 1992
 </FamilyPackage.Car.Year>
 </FamilyPackage.Car>
 </FamilyPackage.CarOwnership>
 </FamilyPackage>
 </XMI.content>
</XMI>

Figure 2-3 An example XMI stream for two families

As Figure 2-3 clearly demonstrates, the XMI/XML format is one that is neither
succinct, nor easily readable or writable. Although the XMI standard is still under
revision, the basic structure of the language and its ties with XML will not change and,
as such, these human usability problems are likely to remain.

2.7 Equivalent HUTN

The following text is the HUTN-generated equivalent representation of the same
example as in 2.6, “Example XMI.”
2-10 Human-Usable Textual Notation, v1.0 August 2004

2

FamilyPackage id-001 {

Family “The McDonalds” {
address: “7 Main Street”
migrants
familyFriends: “The Smiths”
petFish: female Fish “Wanda”;
petDog: “Spike”
CarOwnership: “755-BDL” {

state: QLD
make: “Mitsubishi Magna”
year: 1992

}
}

nuclear Family “The Smiths” {
address: “5 Main Street”
naturalChild: female Person “Joan Smith” {

age: 20
}
naturalChild: male Person “Harry Smith” {

age: 17
}
adoptedChild: male Person “Dylan Smith” {

age: 12
}
familyFriends: “The McDonalds”

}

male Person “Namdou Ndiaye” {
age: 6

}

male Person “Sharif Mbangwa” {
age: 3

}

male Person “Miguel Aranjuez” {
age: 2

}

male Dog “Spike” {
age: 2
breed: “Irish Wolfhound”

}

August 2004 Human-Usable Textual Notation, v1.0 2-11

2

sponsorship {
“The Smiths” “Namdou Ndiaye”
“The Smiths” “Sharif Mbangwa”
“The McDonalds” “Miguel Aranjuez”

}
}

Figure 2-4 The same example in the HUTN-generated language

2.8 Summary

The stark contrast between the example XMI/XML in 2.6, “Example XMI” and the
equivalent HUTN in 2.7, “Equivalent HUTN” shows that a language generation
facility designed with sufficient consideration of usability can make significant
advances in providing a human-usable mechanism for the interchange of data with
repositories. This usability comes about not by coincidence, but through the adoption
of a user-centric design approach, considering the needs of the user before the
technical agenda of the system’s development. The alignment of the generated
language’s style with those of common programming languages provides the user with
a familiar frame of reference for learning the language. Also, careful consideration of
the problems associated with existing programming languages’ styles leads to a syntax
that will be able to avoid these problems.

There are three properties that make the generation of HUTN languages particularly
useful. The first is that it is generic, in that it can provide a language for any model
that can be specified using the MOF techniques. Secondly, the HUTN specification can
be fully automated, particularly useful for systems whose information models are
undergoing rapid change. Thirdly, the family of HUTN languages were designed to
conform to human-usability criteria.

2.8.1 Generic

The language mappings as described in Chapter 6 provide a set of syntactic rules
providing complete coverage for all of the MOF modeling concepts. This means that a
language can be rapidly created for any model specified using these concepts. In
addition, since the MOF modeling concepts have been designed as a basic set of
common concepts, there will almost always be a simple mapping from these concepts
to alternative modeling techniques. Therefore it should be possible to use the syntax
described to develop a similar system for other modeling and repository tools.

Since the HUTN mappings are based on transformations to (and potentially from)
MOF, it can also be used to translate to/from XMI.

2.8.2 Fully Automated

The second benefit of the generation of the HUTN languages is that it can be fully
automated (see 1.3, “Proof of Concept” for a description of DSTC’s prototype). The
task involved in the manual implementation of a parser allows for more flexibility in
language design, but requires a good deal of time and effort. In addition to this, a
2-12 Human-Usable Textual Notation, v1.0 August 2004

2

manually constructed parser is open to problems with information models that are
subject to change. Automation means that changes made to a language, be they as a
result of a change in the underlying model or a change in the syntax, will be
implemented uniformly and quickly across the entire system. In this way, automation
avoids problems of consistency in changing languages, and greatly reduces the time
involved in the evolution of an information model/repository suite.

2.8.3 Human Usable

The other major benefit provided by the HUTN languages is the human-usability.
While the essential style of the language is fixed and hence familiar, the individual
generated languages are specific to each model and incorporate model-specific
shorthands.
August 2004 Human-Usable Textual Notation, v1.0 2-13

2

2-14 Human-Usable Textual Notation, v1.0 August 2004

Conformance 3
3.1 Overview

There are three conformance points for Chapter 4, “HUTN Design Rationale” up to
and including Chapter 7, “Configuration Notation” that apply to HUTN tool
implementations:

1. Input text stream conformance (defined in section 3.2).

2. Output text stream conformance (defined in section 3.3).

3. HUTN Configuration Documents (defined in section 3.4).

In addition, there are further compliance points that will relate to the UML Profile for
EDOC, as amended by Chapter 8 (defined in section 3.5).

3.2 Input Stream Conformance

For all given combinations of MOF models and HUTN Configurations, an HUTN
parser must be able to recognize any legal HUTN document, as defined in this
specification.

Note – This implies that a conformant HUTN parser for a given combination of MOF
model and HUTN Configuration must recognize the input from all conformant HUTN
document generators for the same model/configuration pair.

3.3 Output Stream Conformance

For a given combination of MOF model and HUTN Configuration, an HUTN
document generator must be able to output at least one legal form of HUTN document,
as defined in this specification.
August 2004 Human-Usable Textual Notation, v1.0 3-1

3

Note – The capacity to generate all alternative forms and the internal heuristics or
external instructions or influences used to determine the choice between them is an
area for product differentiation.

3.4 HutnConfig HUTN Language Configuration Conformance

The HUTN language configuration for the org.omg.HutnConfig MOF model given in
Chapter 7 is normative for input to HUTN tools which parse HUTN Configurations. It
is also the standard representation for “@Config” comments in HUTN documents, and
shall be acceptable to tools which parse these comments.

3.5 ECA HUTN Language Configuration Conformance

The HUTN language configuration for the org.omg.ECA MOF model given in Chapter
8 is normative for HUTN tools which parse ECA model instances expressed as HUTN
documents, or output model instances as HUTN documents.
3-2 Human-Usable Textual Notation, v1.0 August 2004

HUTN Design Rationale 4
4.1 Overview

The generation of HUTN languages starts with an abstract base language, which is
then customized by the use of model-specific information.

4.2 The Base Language

4.2.1 Use of familiar forms

Using the structural and syntactic features of existing languages is a good way to
enhance the learnability of the HUTN languages, and to ensure that the user’s
expectations are not violated. To this end, HUTN languages use syntactic forms drawn
from CORBA IDL and structural forms taken from XMI (XML), as HUTN users are
believed to be familiar with these.

4.2.2 Structure reflects containment

Languages, on the whole, represent information in a fairly similar way. A document
invariably consists of a set of concepts, each of which consists of a number of other
concepts, and so on until the concepts are nothing but simple pieces of atomic data.
This can be seen in both procedural and object-oriented programming languages, as
well as in natural English. For example, an English essay could be said to consist of a
series of paragraphs, each of which contains a series of sentences, which contain a
series of words. A piece of source code for the Java programming language [Java]
could consist of a series of import statements, package statements, and class
definitions, which contain variables and methods, which contain sets of parameters and
statements.
August 2004 Human-Usable Textual Notation, v1.0 4-1

4

At different levels of depth on this ‘concept tree,’ the representation of the containing
concept changes. One common change is for concepts higher on this tree to be
introduced in some way. For example the essay with its paragraphs might first have a
title, or chapters within a thesis might have chapter numbers and titles. A method
declaration in a Java class definition has a visibility value, a method name, and a return
type. By contrast, where an element is the only possible element in its position, it may
go without an introduction, such as sentences within a paragraph, or statements within
a Java method definition. However, to be effective this requires some language
familiarity on the part of the user, something that cannot be assumed for the HUTN
languages.

Particularly in structured notations such as programming languages, it is often
necessary to separate the contained concepts using some form of punctuation. Java, for
example, uses braces to delimit method bodies, commas to separate method
parameters, and semicolons to terminate statements. Written English uses full stops to
terminate sentences, and commas or parentheses to delimit phrases. The choice of
symbols for separating punctuation can also be dependent on the depth of the concept
on the tree. For example, braces are often associated in programming languages with
high-level or major concepts such as procedure declarations, while commas are often
associated with low-level or minor ones, such as a list of method parameters.

The MOF modeling concepts underlying the HUTN languages also conform to this
‘concept tree’ paradigm. Package instances contain Class instances, Class instances
contain Attribute values, and so on. Accordingly, the HUTN language core has been
based around these ideas of concept containment, introduction, and delimitation.

4.2.3 Defining and referencing major concepts

The MOF Package, Class, and Association concepts have been classified as ‘major’
concepts, warranting an introduction for their instances. The introduction is a simple
one, consisting of the name of the Class, Package, or Association and some identifying
string. (When translating from XMI, the XMI ID provides a logical and automatically
unique identifier). The appearance of this introduction is very similar to the
introductions of procedures or functions in Pascal or C. Curly braces, as used in many
languages deriving syntactic features from C, are used to delimit the bodies of these
major concepts. Class instances can also be referenced by other parts of the document.
This is done by simply displaying the introduction of the instance without the body.

4.2.4 Representing minor concepts

By contrast, MOF Attributes are denoted as minor concepts, and as such are
represented differently. In their case, the attribute name is followed by a colon or equal
sign, followed in turn by the value of the attribute. The attributes’ representations may
be separated only by white space, or with a semi-colon terminator. White-space-only
separation is possible because it is always feasible to know how many white-space
separated ‘words’ will appear in an attribute’s value. No simple attributes are permitted
white space within their values except string-typed attributes, whose values are
delimited by a number of possible delimiting characters, or left undelimited, if their
contents make this possible. Attributes whose values are class instances are represented
4-2 Human-Usable Textual Notation, v1.0 August 2004

4

either as instance references or as full instance declarations, depending on the nature of
the attribute. These representations do have more than one ‘word’ in their value, but do
not cause problems because the number of words is always fixed and known to the
parser.

References are displayed with the reference name followed by a colon or equal sign
and the representation of the class instance that is referred to. This is almost identical
to the representation of attributes, which could be seen as violating the principle of
‘different forms for different features.’ However, the role of references in the MOF is
in many ways to provide a class instance with attribute-like access to other class-
instances that are related by association links. For this reason, the underlying ‘feature’
of references and class-instance valued attributes is essentially the same, and thus their
representations should in fact be similar.

4.3 Model-Specific Shorthands

There are several kinds of model-specific shorthands and configurations available in
HUTN, each described in the following subsections:

• The use of a class’s attribute as the class’s unique identifier, and the specification of
the scope over which the identifier is unique.

• The representation of a boolean or enumerated attribute as a keyword or adjective in
the Class header rather than a name-value pair in its body.

• The omission of the class type of an object reference when only one type is
possible, or the omission of the reference name for containment relationships.

• The use of default values for mandatory attributes, enabling them to be omitted in
many cases.

• Alternative representations for associations.

• The selection of an alternate name for any model element for HUTN language-
generation purposes.

• The use of parametric form for attribute values; that is, representing a number of a
class’s attribute values in parenthesis in the Class header rather than as name-value
pairs in the body.

Some of these short-hands can be incorporated automatically from analysis of the
MOF model, but a couple of them require some additional information about the
model. Those that do are specified using a language configuration MOF-metamodel.
This metamodel is presented in the next section, and is followed by descriptions of the
various available shorthands. The final section will discuss the effects of inheritance on
the various available configuration.

4.3.1 Identifying class instances (objects)

Class instances (objects) are concepts that can be referred to by other constructs, such
as References, Associations, and Attributes. For this reason they require a unique name
by which they can be identified within the HUTN text stream. As mentioned above, an
August 2004 Human-Usable Textual Notation, v1.0 4-3

4

arbitrary unique identifier such as the XMI ID provides this, and is thus a logical
choice for a default identifier. However, since this string is meaningless in terms of the
data being represented, it makes for a somewhat poor identifier with regard to
usability. It would be far better to use an identifier that somehow is relevant to or
symbolic of the instance that it identifies.

The logical choice, therefore, is to use an attribute of the class instance as the
identifier. Many classes do contain an attribute which can serve as a unique identifier
for the object (e.g., a name or ID field). However, it is vital that the attribute chosen
does indeed distinguish between the instances of this class (it does not have to be
distinct relative to instances of other unrelated classes). Since the MOF does not
provide a mechanism by which an attribute can be defined as unique, the responsibility
of ensuring the uniqueness of the identifying attribute must be provided by the
user/model-builder.

For attributes with a very limited range of values, this is obviously difficult. For
example, if an attribute’s type is boolean, or if it is an enumeration, the attribute is
unlikely to make a useful identifier, since its small range of values will greatly restrict
the number of instances that it can uniquely identify. However, there are cases where
these types may serve to uniquely identify class instances. The only attributes that are
never practical as unique identifiers, due mainly to the impossibility of comparing
values, are those of class types, and therefore it is illegal to nominate a class-valued
attribute as a unique identifier for a Class. Also, the attribute selected must be
mandatory (not optional), since it will always be required to generate the object
identifier.

This identifying attribute may not be configured to have a default value, as only a
single instance of a class (within a given scope) may have any particular value for this
attribute if it is an identifying attribute. (See 4.3.5, “Default Values” for information
about configuration of default values.)

Since the value of the attribute selected as the identifying attribute is presented in the
class instance’s introduction, its normal representation within the body of the
instance’s definition is superfluous, and is thus omitted.

In addition to defining the meaning of the identifying string, users are also given the
ability to define the scope over which the string is unique. By default, identifying
strings (be they arbitrary or the value of an attribute) are required to be unique over the
set of instances of the class, and over all instances of its subtypes. Alternatively, the
identifier may be configured to be unique within the scope of the instance’s containing
object. This allows for nested identification structures.

Class instance identifiers are configured using the IdentifierConfig metaclass (see
5.1.6, “IdentifierConfig”).

4.3.2 Keywords and Adjectives

When a boolean attribute is mandatory, it seems redundant to display the attribute’s
name as well as its value each time it is displayed. The display of two pieces of
information seems unnecessary for the representation of a variable that only has two
states. A shorthand is to display the attribute only if it is true, and to elide its
4-4 Human-Usable Textual Notation, v1.0 August 2004

4

representation if it is false. Further to this, since the presence of the representation
already denotes that the attribute’s value is true, it would be far more efficient to
simply display the name of the attribute. We call the use of such a name alone in the
body of a class-instance a keyword.

However, the use of keywords is restricted to attributes that are mandatory and do not
contain more than one value. There are only two states available to a keyword
representation: present or absent. By contrast, an optional boolean has three plausible
states: true, false, and not defined. Attributes with more than one value obviously have
even more than this, and as such neither optional nor multiply-defined boolean
attributes can be shortened to keywords.

In the absence of a default value for a mandatory single-valued boolean attribute, it is
assumed to be false, and its name will appear in the class instance header only if this is
not the case (the value is true). This is also the case if a default value of false is
explicitly configured for this attribute. (See 4.3.5, “Default Values.”) If, however, the
attribute is configured with a default value of true, then the tilde symbol ‘~’ is used
before the attribute name keyword to denote that its value is false, and the absence of
the attribute name indicates a value of true.

Programming languages such as C++, Java, and Pascal represent various pieces of
information other than an identifier in the definition of methods or procedures. These
can include the visibility of the method, or the return type of the method. Variables
displayed in this way are called adjectives, since they provide information about an
object before it is declared, much like an adjective describing a noun in the English
grammar.

Adjectives in HUTN are similar to keywords, but are located differently within the
representation of the class instance. Where a keyword’s representation is expressed in
the body, an adjective’s is placed directly before the name of the class in the
introduction of the declaration. There are two kinds of adjectives: boolean-valued
attributes, and enumeration-valued attributes.

Like keywords, boolean-valued adjectives are restricted to single-valued mandatory
boolean attributes, and the name of the attribute (perhaps preceded by a tilde symbol)
is used as the adjective. Enumeration-valued adjectives, however, use the enumeration
labels as the adjective. While boolean-valued adjectives are available by default,
enumeration-valued adjectives must be configured. The metaclass for configuring
enumeration-valued adjectives is EnumAdjectiveConfig (see 5.1.7,
“EnumAdjectiveConfig”).

Like the identifying attribute of a class, an attribute that is represented as adjective,
within the introduction of a class instance, need not be shown again within the body of
the class instance.

When one or more attributes are defined as adjectives on a class, the nature of the
parser may be required to change. When no adjectives are present in a language, a
parser may use a look-ahead of only one symbol, since the next occurring symbol will
uniquely determine the current state of the parser. However, the introduction of
adjectives changes this. For example, if two classes are given attributes of the same
name, or if an adjective is inherited from a class’s parent class, then the presence of the
August 2004 Human-Usable Textual Notation, v1.0 4-5

4

adjective in the symbol stream will not be sufficient to determine which class the
forthcoming instance will belong to. For this reason, it is necessary to make the look-
ahead of the parser greater than one. More exactly, the look-ahead must be greater than
the number of adjectives on that class that has the most shared adjectives.

Other conflicts are possible when using enumeration-valued attributes as adjectives,
such as a name clash between enumeration labels for two different attributes or a name
clash between an enumeration label and the name of a boolean-valued adjective. See
4.3.7, “Renaming of Model Elements for HUTN languages,” for ways of overcoming
such conflicts.

4.3.3 Omission of Class Type of an Object Reference

The default form of referring to a class instance (object) is to give its class name and
its object identifier. However, due to the strong typing of the MOF, there are many
situations in which the references will always be to a known class and hence the class
name can be omitted.

There are three situations when this shorthand can be used; in a MOF Reference, in an
attribute where the type of the attribute is an instance of a local MOF class, and in the
representation of an association. Each of these is subject to two conditions. If the
object that is being referred to is contained by the referring object, then the referred
object may be represented as a declaration rather than a reference and, in this case, its
type name may not be omitted.

The second condition is that the referred class and all of its subclasses must use a
consistent identification scheme, either by all using the same attribute as an identifying
attribute, or all arbitrary unique identifiers. Without this condition, the risk would be
introduced of having two objects with the same identifying string.

4.3.4 Omission of Reference Name for a Contained Object

When a contained object is defined within its container object, the default language
rules require the name of the MOF Reference to identify the containment association
involved. However, in practice, there is often only one containment association from
the container class to the contained class, and therefore the MOF Reference name can
be omitted. When there are two containment associations by which a contained object
and its container may be linked, the omission of the reference name is not permitted.

4.3.5 Default Values

Often a class has an attribute for which many of the class instances will assign the
same value to that attribute. Reading and write this same attribute-value pair is very
tedious. Therefore, the HUTN supports the shorthand of omitting the attribute-value
pair if the value is intended to be the default value. Note that the default value cannot
be determined from the MOF model and so user/modeler input is needed. Default
values for an attribute on a class are configured using the DefaultValueConfig
metaclass (see 5.1.8, “DefaultValueConfig”).
4-6 Human-Usable Textual Notation, v1.0 August 2004

4

The effect of this on an HUTN producer is that the attribute’s representation need not
be shown if its value is the same as its default value. For a consumer, the absence of
the attribute in the object declaration can be taken to mean that it has as its value the
attribute’s default value.

Since classes that use an attribute as an identifier must be identified, an attribute
selected as such may not be assigned a default value. Similarly, attributes configured
for parametric display (as described in 4.3.6, “Parametric Form”) are also not
configurable for a default value. As described in 4.3.2, “Keywords and Adjectives,”
the use of a default value on a single-valued boolean-valued attribute affects the
behavior of its keyword and adjective forms.

4.3.6 Parametric Form

Some class instances have a conventional order for the values of certain attributes,
which makes it unnecessary to give the names of those attributes. For example
cartesian coordinates have numeric values named X and Y, but are often represented as
two comma separated numbers (2, 4), where it is well known that the first value
represents X and the second represents Y. The form of their representation resembles
actual parameters to a function or method, and is hence called parametric form.

A configuration of a class for an HUTN language may include a list of attributes
whose values will appear in the class instance header, in parentheses after the class
identifier, and before the class body. The parametric attribute values will be
represented in the same way as multi-valued attributes; that is, separated by whitespace
or commas. These attributes will then be omitted from the class body.

To make the parametric form simple and consistent, attributes nominated by a
parametric configuration may not be multi-valued, and may not be optional. In
addition, these attributes may not have default values, as each class instance will have
explicit values given for each parametric attribute every time.

Attributes having parametric form within a class are configured using the
ParametricConfig metaclass (see 5.1.9, “ParametricConfig”).

4.3.7 Renaming of Model Elements for HUTN languages

In human readable textual representations of MOF Models it is sometimes useful to
use simpler names for model elements than used in other representations. Some
examples include the elimination of white space, and the shortening of long names. In
addition it may be useful to allow certain shorthands given above by removing name
clashes that may arise when placing previously separated names into the same
namespace. For example, a MOF model may have the same name for an enumeration
label as for a boolean attribute name. In this case it would be impossible to use both an
attribute with the enumeration as a type and the boolean attribute as adjectives for the
same class configuration. However, by renaming either the enumeration label or the
boolean attribute name, the clash can be avoided.
August 2004 Human-Usable Textual Notation, v1.0 4-7

4

A renaming configuration allows any MOF Model Element whose name has a
rendering in HUTN (Package, Class, Attribute, Reference, Association, Association
End, Enumeration label) to be assigned a new name for the purposes of configuring an
HUTN representation of the model. This is done using an instance of the
RenameConfig metaclass (see 5.1.10, “RenameConfig”).
4-8 Human-Usable Textual Notation, v1.0 August 2004

Configuration 5
Configuration options for HUTN languages are expressed as instances of the
HutnConfig metamodel, which is described in this chapter.

Figure 5-1 The HutnConfig MOF metamodel

ClassConfig

+the_class

<<enumeration>>
UniquenessScope

-all_of_type
-container
-property_in_container

RenameConfig

+the_element:ModelElementRef
+new_name:string(id)

IdentifierConfig

+id_attribute:AttributeRef
+uniqueness:UniquenessScope

ParametricConfig

+parameters:AttributeRef

EnumAdjectiveConfig

+adjectives:AttributeRef

<<datatype>>
ClassRef

<<datatype>>
AttributeRef

<<datatype>>
ModelElementRef

DefaultValueConfig

+the_attribute:AttributeRef
+the_value:any(idl)
August 2004 Human-Usable Textual Notation, v1.0 5-1

5

5.1 HutnConfig Metamodel

This is the HutnConfig metamodel. The semantics of each element are described in the
following sections. RenameConfig applies to any Model Element whose name can be
represented in an HUTN language (Class, Association, Reference, Attribute, Package,
Enumeration label, Association End), while the other configurations apply to a Class.

5.1.1 ClassConfig

This metaclass is abstract, and is inherited by all the concrete configuration
metaclasses that relate to the textual representation of MOF Classes. The exception to
this is the RenameConfig metaclass, which may refer to any MOF Model Element.

the_class

This metaattribute is a reference to the MOF Class being configured.

5.1.2 «enumeration» UniquenessScope

This enumeration gives possible scopes for uniqueness of identifying attributes of class
instances. It is used in the IdentifierConfig metaclass (see Section 5.1.6,
“IdentifierConfig”).

all_of_type

This value indicates that the scope for uniqueness of attribute values identifying class
instances is all instances of the class and all instances of subtypes of the class.

container

This value indicates that the scope or uniqueness of attribute values identifying class
instances is the set of instances of this class participating in a containment relationship
with the same container instance as this class does.

property_in_container

This value indicates that the scope or uniqueness of attribute values identifying class
instances is the set of instances of this class participating in a containment relationship
with the same container instance and the same containment relationship as this class
does.

Example:

Typical identifier for a UML class contained in a UML Package:

• MyPackage.MyClass, if ’container’ is used.

• MyPackage.ownedElement.MyClass, if ’property_in_container’ is used.
5-2 Human-Usable Textual Notation, v1.0 August 2004

5

5.1.3 «datatype» ClassRef

This is an AliasType to string, for representing a MOF Class by its fully-qualified
name. It is used by ClassConfig (see Section 5.1.1, “ClassConfig”).

taggedValue org.omg.uml2mof.corbaType: string

This type aliases string.

5.1.4 «datatype» AttributeRef

This is an AliasType to string, for representing a MOF Attribute by its fully-qualified
name. It is used by IdentifierConfig (see Section 5.1.6, “IdentifierConfig”),
EnumAdjectiveConfig (see Section 5.1.7, “EnumAdjectiveConfig”),
DefaultValueConfig (see Section 5.1.8, “DefaultValueConfig”) and ParametricConfig
(see Section 5.1.9, “ParametricConfig”).

taggedValue org.omg.uml2mof.corbaType: string

This type aliases string.

5.1.5 «datatype» ModelElementRef

This is an AliasType to string, for representing a MOF Model Element by its fully-
qualified name. It is used by IdentifierConfig (), Enu.

taggedValue org.omg.uml2mof.corbaType: string

This type aliases string.

5.1.6 IdentifierConfig

The metaclass IndentifierConfig is a subtype of ClassConfig, which identifies the MOF
class being configured for an HUTN language.

The purpose of IndentifierConfig is to nominate a particular attribute of the Class as
unique within some scope, so that its value may be used as a unique identifier for the
Class in the HUTN language with this configuration.

id_attribute : AttributeRef

This metaattribute refers to the Attribute of the MOF class being configured for an
HUTN language representation. If this attribute is null, then arbitrary strings may be
used for identifying instances. If this attribute is non null, a specific instance of this
class may use or may not use the value of the identifying attribute as the identifier. If
the latter case, both the arbitrary identifier and the identifying attribute value should be
provided within the HUTN representation of the instance.
August 2004 Human-Usable Textual Notation, v1.0 5-3

5

uniqueness : UniquenessScope

This metaattribute indicates the scope over which the values of the Attribute being
nominated as a unique identifier must be unique. (See Section 5.1.2, “«enumeration»
UniquenessScope” for the definition of UniquenessScope.)

5.1.7 EnumAdjectiveConfig

The metaclass EnumAdjectiveConfig is subtype of ClassConfig, which identifies the
MOF class being configured for an HUTN language.

The purpose of EnumAdjectiveConfig is to identify an attribute of the class whose
value may appear as an adjective for instances of this class.

adjectives: set[0..*] of AttributeRef

This metaattribute denotes the MOF Attributes of the Class being configured for an
HUTN language that may be used as adjectives.

5.1.8 DefaultValueConfig

The metaclass DefaultValueConfig is subtype of ClassConfig, which identifies the
MOF class being configured for an HUTN language.

The purpose of DefaultValueConfig is to provide a value that will be assumed to be the
value of the attribute identified when it is not explicitly provided by a class instance
declaration.

the_attribute : AttributeRef

This metaattribute refers to the MOF Attribute of the Class being configured for an
HUTN language.

the_value : any

This metaattribute provides the default value that the HUTN tool will associate with
the attribute for any class instance where it is not given an explicit value.

5.1.9 ParametricConfig

The metaclass ParametricConfig is a subtype of ClassConfig, which identifies the
MOF class being configured for an HUTN language.

The purpose of ParametricConfig is to provide a list of attributes whose values will be
expected in parentheses after the class instance identifier.

parameters : list[0..*] AttributeRef

An ordered list of Attributes for this class configuration that will be placed in
parametric form for this HUTN language.
5-4 Human-Usable Textual Notation, v1.0 August 2004

5

5.1.10 RenameConfig

This metaclass is used to indicate that a Model Element in the MOF Model for which
an HUTN language is being configured will take a different name in the HUTN
language from its MOF Element Name.

the_element : ModelElementRef

This metaattribute is a reference to the MOF Model Element being renamed in the
HUTN configuration.

new_name: string

This metaattribute is the string to be used to represent the_element in the HUTN
language.
August 2004 Human-Usable Textual Notation, v1.0 5-5

5

5-6 Human-Usable Textual Notation, v1.0 August 2004

HUTN Document Production 6
This chapter describes the syntax of the generated languages, in terms of the MOF
modeling concepts as outlined in 4.2, “The Base Language.”

The examples presented throughout this chapter (with the exception of the name-scope
reduction examples) are derived from the FamilyPackage system, whose information
model is described in 2.6, “Example XMI” and reproduced in Figure 6-1. Sections 2.7,
“Equivalent HUTN” and 2.8, “Summary” contain the respective XMI and HUTN
streams from which the data in this section’s examples are extracted.
August 2004 Human-Usable Textual Notation, v1.0 6-1

6

Figure 6-1 MOF model for a family

6.1 Notation

In this chapter, the following notational conventions will be used.

An example of a text stream conforming to an HUTN-generated language will appear
as follows. The text in bold face (but not italic) is the literal text stream (e.g., the first
and fourth lines below) whereas the text in bold-and-italic face describe omitted detail
which should not be taken literally (e.g., the 2nd and 3rd lines below).

FamilyPackage “id-001” {
Class instances here
Association instances or links here

}

EBNF rules for HUTN mappings are presented using a numbered rule for each non-
terminal (e.g., PackageInstance, PackageHeader, PackageBody) in the grammar and
literal symbols enclosed in single quotes (e.g., right curly brace represented as ‘}’).
The italicized words enclosed in angle brackets indicate a placeholder for a literal

Family Package

Car
registration:String
make:String
year:Integer
state:String

Dog
name:String
age:int
breed:String
sex:enum(male,female)

Fish

name:String
sex:enum(male,female)

Family

familyName:String
nuclear:Boolean
migrants:Boolean
address:String
petDog:Dog
petFish:Fish

+owned

CarOwnership

+owner

+family adoption

+family
naturalBirth

+sponsor

sponsorship

+sponsored

+naturalChild

+adoptedChild

familyFriendship

+family2

+family1

Person

name:String
age:int
sex:enum(male,female)
6-2 Human-Usable Textual Notation, v1.0 August 2004

6

value that must be substituted with an actual value (e.g., <PackageName>); the name
given is deliberately chosen to be meaningful, but will always be explained more fully
in the accompanying text.

[2] PackageInstance := 3:PackageHeader ‘{‘ 4:PackageBody ‘}’
[3] PackageHeader := <PackageName> 5:PackageIdentifier

6.2 Package Representations

An HUTN document consists of a zero or more instances of the package from which
the HUTN has been generated.

[1] Document := (2:PackageInstance)*

A package in the MOF type structure is a concept used for containing a collection of
related classes and associations.

[2] PackageInstance := 3:PackageHeader
(‘{‘ 4:PackageBody ‘}’
| ‘;’ 4:PackageBody)

[3] PackageHeader := <PackageName> 5:PackageIdentifier
[4] PackageBody := (6:ClassInstance | 32:AssocInstance |

24:ClassifierLvlAttr) *
[5] PackageIdentifier := 28:TextualValue

Package instances are represented either by a block structure, with the package
contents appearing either between braces, or following a single line introduction
followed by a semicolon. Identifying attributes are not permitted on packages and, as
such, packages are prefaced and identified by the name of the package, followed by a
string-delimited arbitrary unique identifier. This identifier can be used for qualifying
the identifiers of objects referenced between separate package instances in the same
document. The package body consists of the class and association instances of the
package, as well as any classifier-level attribute values, in accordance with the
mappings described in 6.3, “Class Representations,” and 6.8, “Association
Representations.” An example of the representation of a package instance is given in
Figure 6-2, and 6.6, “Classifier-Level Attributes,” respectively.

Figure 6-2 An example of a package instance representation

FamilyPackage “id-001” {
Class instances here
Association instances or links here

}

August 2004 Human-Usable Textual Notation, v1.0 6-3

6

The classes and associations whose instances can appear in the package body consist
of all non-abstract classes and associations that reside in the target package, including
those that result from package inheritance, those that are defined in nested packages,
and those that are defined in clustered packages.

6.3 Class Representations
[6] ClassInstance := 7:ClassHeader 10:ParametricAttrs

‘{‘ 11:ClassContents ‘}’ (‘;’)?
[7] ClassHeader := 8:ClassAdjectives <ClassName>

(9:ClassIdentifier)?
[8] ClassAdjectives := ((‘~’? <AttributeName>) | 25:DataValue) *
[9] ClassIdentifier := 28:TextualValue
[10] ParametricAttrs := ‘(‘ 31:ValueList ‘)’
[11] ClassContents := ((18:AttributeInstance

 | 21:ReferenceInstance
 | 12:ContainedObject
) (‘;’)?
) *

[12] ContainedObject := (<AssocName>’:’)?
(6:ClassInstance | 13:ClassInstanceRef)

The representation of a class consists of a number of parts; adjectives, class name,
identifier, parametric representation, and contents. The contents consist of attribute,
reference, and contained object representations. The parts appear in that order, to form
the representation of the class. These attribute, reference, and contained instance
representations appear within curly braces, in any order, optionally terminated by
semicolons.

There are two types of adjectives: single-valued boolean attributes, for which adjective
representation is enabled by default; and single-valued enumeration-typed attributes,
which must be configured as adjectives. Boolean attributes are represented by the
attribute name, optionally prefixed by the ‘~’ symbol, representing negation.
Enumerated adjectives are represented as the enumerator label corresponding to the
value of the attribute. Adjectives can appear in any order.

Class instances can be identified in one of two ways. Firstly, if a single-valued simple-
typed attribute has been configured as the class’ identifying attribute, then the value of
that attribute, formatted as appropriate for the attribute’s type, appears as the identifier.
Alternatively, if no such identifier has been selected, then an arbitrary string may be
used, or the instance may go unidentified. Unidentified instance representations have
no identifier, and may only be used when the instance is not referred to from anywhere
else in the document.

If any single-valued, simple-typed attributes have been configured for parametric
representation, then their values appear next inside parentheses. The values appear in
the order specified by the parametric configuration, and are separated by whitespace or
commas.

Contained objects are those class instances linked by a containment association for
which there are no references defined.
6-4 Human-Usable Textual Notation, v1.0 August 2004

6

Figure 6-3 and Figure 6-4 show examples of class representations, where the Family
class is identified arbitrarily and by the familyName attribute, respectively. In both
examples, the boolean nuclear attribute is used as an adjective.

Figure 6-3 An example of the representation of arbitrarily-identified class instances

Figure 6-4 An example of the representation of attribute-identified Class instances

Figure 6-5 shows an example for metamodel of polygons, with a string attribute for
their name, a boolean attribute for whether they are filled or not, and containment
association with coordinate class. The coordinate class has only two floating point
attributes, X and Y. The HUTN configuration for coordinates places X and Y in
parametric form, and for polygons it provides the name attribute as a unique identifier
and the default value ‘true’ for the filled attribute. The example shows filled used as a
negated boolean adjective and the instance identifier as an undelimited string. The
contained coordinate objects are shown inline with all their attribute values in
parametric form, and their empty contents denoted by the use of a semicolon.

FamilyPackage “id-001” {
Family “id-002” {

familyName: “The McDonalds”
Attribute and Reference representations

}
nuclear Family “id-003” {

familyName: “The Smiths”
Attribute and Reference representations

}
}

FamilyPackage “id-001” {
Family “The McDonalds” {

Attribute and Reference representations
}
nuclear Family “The Smiths” {

Attribute and Reference representations
}

}

August 2004 Human-Usable Textual Notation, v1.0 6-5

6

Figure 6-5 An example of the use of various configuration options

[13] ClassInstanceRef := ((<ClassName>)? 14:ClassRefString)
| ExternalObjRef

[14] ClassRefString := 15:PackageRootRef | 16:DocumentRootRef
[15] PackageRootRef := 17:ClassRefSeparator 28:TextualValue

 (17:ClassRefSeparator 28:TextualValue) *
[16] DocumentRootRef := 17:ClassRefSeparator 17:ClassRefSeparator

 28:TextualValue
 (17:ClassRefSeparator 28:TextualValue) *

[17] ClassRefSeparator:= ‘::’ | ‘.’ | ‘/’

There are a number of cases in which a class instance can be referred to, either as a
non-contained attribute of another class instance, via a MOF Reference, or in an
association. The standard representation of one of these references consists of the class
name followed by the identifying string for the class instance (explained below).
Alternatively, the typeless references shorthand allows for the omission of the type
name of the referred instance, leaving just the identifying string. (This is subject to the
conditions stated in 4.2.3, “Defining and referencing major concepts”).

The string used to refer to class instances is structured differently according to the
uniqueness scope of the referred class’ identification system. If all_of_type scope is
used, then the string is just the class identifier of the class referred to (arbitrary or
identifying-attribute value). If container scope is used, then a number of these strings
can be separated by either a double-colon, a full-stop, or a forwards-slash. These
names are resolved relatively, moving up the containment hierarchy one level at a time
until a match is found. If container is used, then a level is represented by a single
string, which is the container’s identifier. If property_in_container is used, then a level
is represented by two strings separated by a delimiter: the container’s identifier and the
property name of the containment association. To indicate that the name should be
resolved relative to the current package instance, a separator can be included as a
prefix to the string. Regardless of which uniqueness scope is used, instances in other
packages can be referenced by prefixing the string with a double separator followed by
the identifying string of the package instance that contains the referred object.

If the class instance referred to exists outside of the scope of the current document
(including any references to external imported classes), then it is represented according
to the rules in 6.7.5, “Object Reference.”

ShapePackage triangles {
~filled polygon my_triangle {

coordinate (3.6, 7.3);
coordinate (5.2, 7.673);
coordinate (9.4 ,13);

}
}

6-6 Human-Usable Textual Notation, v1.0 August 2004

6

Figure 6-6 shows a further example for the metamodel of polygons with an additional
class “diagram,” which has a string name and a multi-valued-attribute “shapes” of type
polygon. The text below is assumed to be in the same document as Figure 6-5.

Figure 6-6 An example of the use of package and document references

6.4 Attribute Representations
[18] AttributeInstance := 19:NormalAttribute | 20:KeywordAttribute
[19] NormalAttribute := <AttributeName> (’:‘ | ‘=’)

 (25:DataValue | ‘null’)
[20] KeywordAttribute := (‘~’)? <AttributeName>?

The standard representation for attributes consists of the attribute name, followed by a
colon or by an equals sign ‘=’, followed by the data value of the attribute, encoded as
is appropriate for the attribute’s type. There are, however, a number of shorthands for
attribute representation. If a default value has been specified for the attribute, then the
absence of the attribute’s representation must be taken to mean that the attribute has
the default value. Mandatory boolean attributes can be represented using the adjective
or keyword shorthands. If there is no default value configured, then a value of true is
indicated by the attribute name, and a value of false by the absence of the attribute
name. The same applies if a default value of false has been configured. However, if a
default value of true is configured, then the absence of the attribute name indicates a
value of true, and a value of false is represented by the attribute name preceded by a
tilde ‘~’.

Attributes whose lower multiplicity bound is 0 may be explicitly unset by assigning
them to the ‘null’ keyword.

Figure 6-7 presents an example of a number of attributes’ representations. The
‘migrants’ attribute has been used as a keyword on the Family class, the ‘nuclear’
attribute as an adjective of Family, ‘familyName’ configured as the identifying
attribute of Family, and ‘name’ has been configured as the identifier of Person.

ShapePackage quads {
polygon my_quad1 {

coordinate (4.6, 78.3);
coordinate (4.2, 7.3);
coordinate (10.4 ,1.5);
coordinate (33 ,8.5);

}

diagram two_shapes {
shapes = [//triangles/my_triangle, /my_quad1]

}
}

August 2004 Human-Usable Textual Notation, v1.0 6-7

6

Figure 6-7 An example of representations of simple attributes

Attributes whose values are instances of a class are represented in two separate ways.
If the attribute class instance is contained by the enclosing class instance (that is, it
does not exist outside of the containing instance’s scope), then the attribute instance
may be represented in-line in the manner described in 6.3, “Class Representations.”
Alternatively, a class instance may appear as a referred object, as described in 6.3,
“Class Representations.” If the class instance is not contained, then only this second
representation may be used. An example in which petFish is a contained attribute and
petDog is a non-contained attribute, both of Family, is presented in Figure 6-8.

Figure 6-8 An example of class-instance valued attributes

FamilyPackage “id-001” {
Family “The McDonalds” {

migrants
Address: “7 Main Street”
Reference representations

}
nuclear Family “The Smiths” {

Address: “5 Main Street”
Reference representations

}
Person “Namdou Ndiaye” {

age: 7
sex: male
Reference representations

}
}

FamilyPackage “id-001” {
Family “The McDonalds” {

petDog: Dog “Spike”
petFish: Fish “Wanda” {

Attribute and reference representations
}

}
Dog “Spike” {

Attribute and reference representations
}

}

6-8 Human-Usable Textual Notation, v1.0 August 2004

6

6.5 Reference Representations
[21] ReferenceInstance := 22:ContainedReference

| 23:NonContReference
[22] ContainedReference := (<ReferenceName> (’:’ | ‘=’))?

 (6:ClassInstance | 13:ClassInstanceRef)
[23] NonContReference := <ReferenceName> (’:’ | ‘=’)

 13:ClassInstanceRef

References are a means for classes to be aware of class instances that play a part in an
association, by providing a view into the association as it pertains to the observing
instance. For this reason, the representation within a class instance of a reference
depends in part on the nature of the association to which it refers. An association is
involved in a containment relationship if one of the participating instances is wholly
contained within the other. That is, the contained instance does not exist outside the
scope of the other instance.

Much like that of an attribute, the representation of a reference begins with the name
of the reference followed by a colon or an equals sign. If the instance to which the
reference refers is the contained instance in a containment relationship, then this may
be followed either by a full representation of the instance (see 6.3, “Class
Representations), or by a reference to the instance. In the latter case the full
representation of the contained instance must appear as a top level definition in the
content of the current package. Figure 6-9 shows the Family class with references,
‘naturalChild’ and ‘adoptedChild,’ to two containment associations between the
Family and Person classes.

Figure 6-9 An example representation for a reference to a containment association

If there is only one association through which a contained object may be referred, then
the shorthand of a nameless reference is available, in which the name of the reference
(and the trailing colon) may be omitted.

FamilyPackage “id-001” {
Family “The Smiths” {

Attribute representations
Reference representations

naturalChild: Person “Harry Smith” {
Attribute and reference representations

}
naturalChild: Person “Joan Smith” {

Attribute and reference representations
}
adoptedChild: Person “Dylan Smith” {

Attribute and reference representations
}

}
}

August 2004 Human-Usable Textual Notation, v1.0 6-9

6

Alternatively, if the association that is referred to is not a containment relationship,
then the subsequent depiction must be in the form of an instance reference. An
example of this case is given in Figure 6-10, where familyFriends is a reference to a
non-containment association ‘familyFriendship.’

Figure 6-10 An example of the representation of references to a non-containment association

If the class referred to by a non-containment association (and all its subclasses) uses a
common identification mechanism (either a single identifying attribute or the arbitrary
unique identifier), then the type name of the referred class may be omitted, as a
typeless reference.

It should be noted that an association link need only be represented once throughout
the document. For example, in the case of an association between two classes where
both classes have references to the association, a link need only be shown in one of the
three possible places it may appear; in one of the two references, or in the
representation of the association. The link may be shown more than once, so long as
the different representations are consistent.

6.6 Classifier-Level Attributes
[24] ClassifierLvlAttr := <ClassifierName> ’.’ <AttrName> (’:’|’=’)

25:DataValue ’;’

Classifier-level Attributes are represented similarly to other attributes, with the
exception that their declarations must appear within package bodies rather than within
class instance bodies, and that the Attribute name must be prefixed by the name of the
Classifier. These declarations must be terminated by semi-colons.

FamilyPackage “id-001” {
Family “The McDonalds” {

Attribute representations
familyFriends: Family “The Smiths”

}
Family “The Smiths” {

Attribute representations
familyFriends: Family “The McDonalds”

}
}

6-10 Human-Usable Textual Notation, v1.0 August 2004

6

6.7 Data Value Representations
[25] DataValue := 26:SingleValueData | 30:MultiValueData
[26] SingleValueData := 28:TextualValue

| NumericValue
| EnumValue
| 27:BooleanValue
| TypeCodeValue
| StructValue
| UnionValue
| 6:ClassInstance
| 13:ClassInstanceRef

The data types of Attributes in MOF are based on CORBA TypeCodes. Therefore, for
each concrete TypeCode, the HUTN must define a textual representation for instances
of that type. Furthermore, a MOF Attribute may be defined as a collection kind (Set,
Bag, List, UList) of these data types.

Note that the system of data typing used by MOF is currently being revised, and that a
final submission will need to conform to these revised data types.

6.7.1 Numeric types

Shorts, longs, unsigned shorts, unsigned longs, floats, doubles, longlongs, unsigned
longlongs, long doubles, fixed points and octets are all represented as numeric literals
(see 6.9.5, “Numeric literals”).

6.7.2 Boolean

[27] BooleanValue := ‘true’ | ‘false’

Boolean values, true and false, are represented as reserved words (see 6.9.3, “Reserved
Words”). Note that boolean attributes may also be represented as keywords or
adjectives, which appear in the class header.

6.7.3 Textual types

[28] TextualValue := EncodedString

Characters, strings, wide characters and wide strings are represented as literal strings
(see 6.9.6, “Character and string literals”). The encoded string may be delimited by
either double quotes, single quotes, or back quotes. Alternatively, they may go
undelimited, provided that they start with an alphabetic character, and that they contain
no whitespace or special characters.

6.7.4 Enum

An enum-value is represented as an identifier (see 6.9.2, “Identifiers”) with the string
values being the names of the enum labels. Note that attributes of type enum may also
be presented as adjectives, which appear in the same way.
August 2004 Human-Usable Textual Notation, v1.0 6-11

6

6.7.5 Object Reference

[29] ExternalObjRef := StringifiedObjRef

An object-reference value is represented as a string literal. The format of the string is
defined by the CORBA standard (Sections 13.6.6 through 13.6.7). It should be noted
that some of the URL formats defined in 13.6.7 were designed to be more “human-
usable” than the stringified object reference format of Section 13.6.6 (a stream of
hexadecimal digits). However, the stringified object reference may be the only format
that can be generated by some ORBs (using the operation object_to_string).

It is important to note that these object-reference values are NOT the format used to
cross-reference objects within an HUTN document, as these are instances of MOF
Classes and are represented by their class name followed by their object identifier (see
Section 6.3, “Class Representations,” on page 6-4). These object-reference values are
used to reference external CORBA objects.

6.7.6 TypeCode

A TypeCode-value is represented as a literal string (see 6.9.6, “Character and string
literals”). The format of the string is defined in XMI,
v1.2:http://www.omg.org/technology/documents/formal/xmi.htm.

6.7.7 Any

An any-value is represented as a bracketed pair (see 6.9.7, “Bracketed Pairs/Lists).”
The first value is the TypeCode (see 6.7.6, “TypeCode”) and second is the data value
(see 6.7, “Data Value Representations”), which is represented appropriately for the
stated TypeCode. The pair are separated by white space and grouped with brackets
(either round, square, or angle).

6.7.8 Struct

A struct-value is represented as a bracketed list (see 6.9.7, “Bracketed Pairs/Lists”),
containing the values of each of the fields of the struct in the order defined by the
struct. The fields of the structs are not labeled.

6.7.9 Union

A union-value is represented as a bracketed list (see 6.9.7, “Bracketed Pairs/Lists”).
The first value is the value of the discriminator. The second value is the value of the
variant part selected by the discriminator (if any).

6.7.10 Sequence, Array

A sequence-value or an array-value is represented as a bracketed list (see 6.9.7,
“Bracketed Pairs/Lists”) with each value of the sequence/array represented in the same
order as in the sequence/array.
6-12 Human-Usable Textual Notation, v1.0 August 2004

6

6.7.11 Collections (Set, Bag, List, UList)

A collection value is represented as a bracketed list (see 6.9.7, “Bracketed Pairs/Lists”)
with each value of the collection represented exactly once. For ordered collections
(Lists and ULists), the elements of the bracketed list are in the same order as the
collection. For unordered collections (Sets and Bags), the ordering does not matter.

[30] MultiValueData := ‘<‘ 31:ValueList ‘>’
| ‘[‘ 31:ValueList ‘]’
| ‘(‘ 31:ValueList ‘)’

[31] ValueList := (25:DataValue)+
| 25:DataValue (‘,’ 25:DataValue)*

An alternative representation is to provide a number of attribute name-value pairs, one
for each value in the collection.

6.8 Association Representations

Associations constitute a relationship between two classes, and can appear in two
forms: either containment relationships or non-containment relationships. Further to
this, classes can contain references into associations (see 6.5, “Reference
Representations”). This leads to three methods of representing the link between
associated class instances.

Firstly, if one or more of the classes participating in the association contains a
reference into the association, then the elements participating in the association can be
displayed within the representation of the class containing the reference, as described
above in 6.5, “Reference Representations.”

Secondly, if the association represents a containment relationship, but there are no
classes with references to the association, the association contents may be displayed
within the representations of the containing class instances. The representation for the
contained instance is exactly the same as if it were referenced, except that the name of
the association is substituted for the name of the reference. This is shown by the
production rules in 6.3, “Class Representations.” The association name is optionally
displayed before the contained class instance to allow disambiguation for MOF models
that have more than one possible containment association between the container and
the contained instance.
August 2004 Human-Usable Textual Notation, v1.0 6-13

6

An example of the representation of unreferenced containment associations is
presented in Figure 6-11, where CarOwnership is an association between Family and
Car, with Car instances being contained by Family instances.

Figure 6-11 An example of a containment association without references

[32] AssocInstance := 33:AssocBlock | 36:InfixAssocLink
[33] AssocBlock :=<AssocName> ‘{‘ 34:AssocContents ‘}’
[34] AssocContents := (35:AssocEnd 35:AssocEnd) *
[35] AssocEnd := (<AssocEndName> (’:’ | ‘=’))?

13:ClassInstanceRef

The third method of representing association instances involves displaying the link
separately to either of the class instances that participate. There are two forms for this:
block display of the association, or infix representation of the individual links.

In the case of block display, a list appears containing references to the class instances
participating in the association. The block consists of the name of the association
followed by a block (with opening and closing braces) containing the pairs of
references to the instances participating in the relationships. Each instance in the pair
may optionally be preceded by the name of the role it plays in the association and a
colon or equals symbol. Class instance references are displayed in the style specified in
6.3, “Class Representations.” Figure 6-12 shows a block representation of an
association ‘sponsorship’ between the Family and Person classes.

Figure 6-12 An example of the representation for a non-containment association

FamilyPackage “id-001” {
Family “The McDonalds” {

CarOwnership: Car “755-BDL” {
Attribute and reference representations

}
}

}

FamilyPackage “id-001” {
Family “The Smiths” {

Attribute and reference representations
}
Person “Namdou Ndiaye” {

Attribute and reference representations
}
sponsorship {

sponsor: Family “The Smiths”
sponsored: Person “Namdou Ndiaye”
Other pairs within the sponsorship association

}
}

6-14 Human-Usable Textual Notation, v1.0 August 2004

6

[36] InfixAssocLink := 13:ClassInstanceRef <AssocName>
13:ClassInstanceRef

Infix display consists of references to each of the class instances (in the form
appropriate for the participating classes’ identification configuration), separated by the
name of the association. It should be noted that the ends of associations are ordered,
and the participating class instances must appear in the appropriate order, with the first
association end before the association name and the second afterwards. Infix links may
be optionally terminated by a semicolon. An example of infix display is shown in
Figure 6-13, where Family is the first end of the sponsorship association, and Person is
the other end.

Figure 6-13 An example of infix display for associations

As mentioned in 6.5, “Reference Representations” there need only be one
representation of any an association link between a pair of class instances. This can be
in the form of a reference, or using any of the forms shown above for associations.

6.9 Lexical issues

In most lexical aspects, HUTN follows the accepted practices of OMG IDL, but allows
greater freedom where the strong-typing of the underlying model permits it.

6.9.1 Comments

Comments appear as in OMG IDL:

/* comment between delimiters */
// comment to end of line

A leading or ‘header’ comment in a document is treated specially, in that it may
contain an HUTN configuration for the document, or a URL or URI indicating where
the configuration document can be found. See Chapter 7 for the specification of the
HUTN Configuration for the metamodel given in Chapter 5.

These comments take the following form:

/**
 *@config
 HUTN Configuration document text or URL/URI
*/

Family “The Smiths” sponsorship Person “Namdou Ndiaye”;
August 2004 Human-Usable Textual Notation, v1.0 6-15

6

6.9.2 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, numeric, and underscore
characters. The first character must be alphabetic. Identifiers in HUTN-generated
languages are mostly taken from the names of MOF Packages, Classes, Attributes,
References, and Associations. Some identifiers from the MOF model will be replaced
by renaming configurations.

Identifiers are case-sensitive, and there are no clashing-case rules like those in OMG
IDL.

6.9.3 Reserved Words

The HUTN languages have three reserved words: “true” and “false” for representing
boolean values, and “null” for unsetting attribute values.

6.9.4 White Space

Like OMG IDL, white space and comments can be freely used between lexical
elements (but not within them) and are ignored in parsing. Note that white space or
comments must be used to separate lexical elements such as identifiers and reserved
words (which would otherwise appear as a single lexical element without such
separation).

6.9.5 Numeric literals

The legitimate forms for numeric literals (integers, floating point, and fixed point) are
the same as for OMG IDL.

‘+’ and ‘-’ can be used to indicate the positive/negative sign of the value.

It should be noted that OMG IDL permits the presentation of integer literals in octal
and hexadecimal forms using the prefixes 0 and 0x/0X respectively.

6.9.6 Character and string literals

The contents of character and string literals can take any legitimate form defined by
OMG IDL. Unlike OMG IDL, however, strings may be delimited by either single
quotes, double quotes, or back quotes (provided that the opening delimiter matches the
closing). Strings may also be left undelimited, provided that they start with an
alphabetic character, and contain no whitespace or special characters. Characters are
delimited by matching single, double, or back quotes. Escape sequences are supported
in both strings and characters. Wide characters/strings are prefixed with “L.” String
concatenation is supported (primarily to enable long strings to be entered using a
number of lines).
6-16 Human-Usable Textual Notation, v1.0 August 2004

6

Since HUTN is based on the strong type system of the MOF, it is always known
whether a literal value is a character or a string. Hence, HUTN permits the use of a
pair of single, double or back quotes to delimit both character and string literals. This
can be convenient when the string must contain single/double quote characters as it is
only necessary to escape the kind of quote used as a delimiter.

6.9.7 Bracketed Pairs/Lists

Bracketed pairs/lists appear throughout the generated HUTN grammars. They consist
of 0 or more (strictly 2 for a pair) values separated by white space or commas,
surrounded by matching brackets. The brackets can be either square [], round (), or
angle <>.

As a number of the representations that use bracketed pairs/lists are recursively
defined, it is to be expected that bracketed pairs/lists will be nested. The use of
different kinds of brackets may help to make the groupings clearer in the text when
there is extensive nesting.

Bracketed form is also used for parametric form, but in this case the brackets are
always round, and there is at least one value in the list (See 6.3, “Class
Representations”).

6.9.8 Symbols

The generated HUTN grammars use the following symbols in a consistent manner as
described in Table 6-1:

Table 6-1 Use of symbols in HUTN-generated languages

Symbol Symbol name Use in HUTN

{} Curly braces nesting of content

() Round brackets grouping of parametric form

() Round brackets grouping of lists

[] Square brackets

<> Angle brackets

: colon introduces a data value

= equals sign

+ plus sign of number

- minus

’ single quote delimit literal strings

‘ back quote

“ double quote

\ backslash escape in literal strings
August 2004 Human-Usable Textual Notation, v1.0 6-17

6

6.10 Name Scope Optimization

Names of packages, associations, and classes in the MOF include all of the information
about the concept’s scope. This fully qualified name consists of a number of scope-
level components, separated by dots. For example, an attribute contains information
about which class it is in, and what package that class is contained by. However, while
this scope information is necessary in the broader picture, these names provide more
information than is necessary to uniquely identify a model concept within the model.

The names of packages, associations, and classes are therefore optimized to make them
as short as possible while still being unique within the domain model. (Since attribute
names are unique within their class, they are simply represented by their local name).
This is done as follows. First, a set of all names is assembled, and each is broken down
into a sequence of words (one for each scope level). A possible scoped name is then
created for each name, constituting the last word of the word sequence for that name.
If this possible name is unique within the set of possible names, then it is accepted as
the scope-optimized name. If not, then the process is repeated with the last two words
of the name sequence. This continues until all names have been optimized. Table 6-2
presents an example of a set of names and their reductions.

, comma Separator in bracketed lists and
parametric attributes.

~ tilde boolean adjective negation

; semi-colon Optional terminator of attributes,
references, and association links.

Table 6-2 An example of some name optimizations

Fully Scoped Name Scope-Optimized Name

Genealogy.Family.Child Family.Child

Genealogy.Family.Father Father

Genealogy.Tree.Child Tree.Child

Genealogy.Tree.Branch Genealogy.Tree.Branch

Flora.Tree.Branch Flora.Tree.Branch

Flora.Flower Flower

Table 6-1 Use of symbols in HUTN-generated languages
6-18 Human-Usable Textual Notation, v1.0 August 2004

Configuration Notation 7
HUTN language configurations are expressed using an HutnConfig language generated
according to the rules in Chapter 6. The language configuration for this generated
notation is described in this chapter.

7.1 HutnConfig Language Configuration

The following document is the language configuration of the HUTN language for the
HutnConfig MOF metamodel. The document is configured by itself, and therefore the
body text is duplicated in the @config section of the opening comment. This
demonstrates the use of the @config statement for specifying language configurations
within HUTN documents.

/**
 * @config

HutnConfig “HutnConfig” {
all_of_type IdentifierConfig “HutnConfig.IdentifierConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
EnumAdjectiveConfig “HutnConfig.IdentifierConfig” {

adjectives: “HutnConfig.IdentifierConfig.uniqueness”
}
all_of_type IdentifierConfig “HutnConfig.EnumAdjectiveConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.ParametricConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.RenameConfig” {

id_attribute: “HutnConfig.RenameConfig.the_element”
}

}
 */
August 2004 Human-Usable Textual Notation, v1.0 7-1

7

HutnConfig “HutnConfig” {
all_of_type IdentifierConfig “HutnConfig.IdentifierConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
EnumAdjectiveConfig “HutnConfig.IdentifierConfig” {

adjectives: “HutnConfig.IdentifierConfig.uniqueness”
}
all_of_type IdentifierConfig “HutnConfig.EnumAdjectiveConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.ParametricConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.RenameConfig” {

id_attribute: “HutnConfig.RenameConfig.the_element”
}

}

7-2 Human-Usable Textual Notation, v1.0 August 2004

ECA Textual Notation 8
This chapter specifies an HUTN language configuration for the ECA metamodel as
specified in the UML Profile for EDOC specification
(http://www.omg.org/technology/documents/formal/edoc.htm). This configuration, in
conjunction with the ECA metamodel as specified in the above document, when used
with the production rules for Human-Usable Textual Notations, results in a textual
notation for the expression of ECA models.

8.1 ECA Language Configuration

The following is the language configuration for the ECA metamodel.

HutnConfig “org.omg.ECA” {

// ModelManagement package configurations
all_of_type IdentifierConfig

org.omg.ECA.ModelManagement.PackageContent {
id_attribute:

“org.omg.ECA.ModelManagement.PackageContent.name”
}

// DocumentModel package configurations
all_of_type IdentifierConfig org.omg.ECA.DocumentModel.DataInvariant
{

id_attribute:
“org.omg.ECA.DocumentModel.DataInvariant.expression”

}
container IdentifierConfig

org.omg.ECA.DocumentModel.EnumerationValue {
id_attribute: org.omg.ECA.DocumentModel.EnumerationValue.name

}
DefaultValueConfig {

the_class: org.omg.ECA.DocumentModel.ECAAttribute
August 2004 Human-Usable Textual Notation, v1.0 8-1

8

the_attribute:
org.omg.ECA.DocumentModel.ECAAttribute.initialValue

the_value: ““
}

// CCA package configurations
container IdentifierConfig org.omg.ECA.CCA.Node {

id_attribute: org.omg.ECA.CCA.Node.name
}
EnumAdjectiveConfig org.omg.ECA.CCA.PseudoState {

adjectives: org.omg.ECA.CCA.PseudoState.kind
}
container IdentifierConfig org.omg.ECA.CCA.ComponentUsage {

id_attribute: org.omg.ECA.CCA.ComponentUsage.name
}
container IdentifierConfig org.omg.ECA.CCA.PropertyValue {

id_attribute: org.omg.ECA.CCA.PropertyValue.value
}
container IdentifierConfig org.omg.ECA.CCA.InitiatingRole {

id_attribute: org.omg.ECA.CCA.InitiatingRole.name
}
container IdentifierConfig org.omg.ECA.CCA.RespondingRole {

id_attribute: org.omg.ECA.CCA.RespondingRole.name
}
container IdentifierConfig org.omg.ECA.CCA.Port {

id_attribute: org.omg.ECA.CCA.Port.name
}
EnumAdjectiveConfig org.omg.ECA.CCA.Port {

adjectives: org.omg.ECA.CCA.Port.direction
}
EnumAdjectiveConfig org.omg.ECA.CCA.ProcessComponent {

adjectives: org.omg.ECA.CCA.ProcessComponent.granularity
}
DefaultValueConfig {

the_class: org.omg.ECA.CCA.ProcessComponent
the_attribute: org.omg.ECA.CCA.ProcessComponent.primitiveKind
the_value: ““

}
DefaultValueConfig {

the_class: org.omg.ECA.CCA.ProcessComponent
the_attribute: org.omg.ECA.CCA.ProcessComponent.primitiveSpec
the_value: ““

}
container IdentifierConfig org.omg.ECA.CCA.PropertyDefinition {

id_attribute: org.omg.ECA.CCA.PropertyDefinition.name
}
DefaultValueConfig {

the_class: org.omg.ECA.CCA.PropertyDefinition
the_attribute: org.omg.ECA.CCA.PropertyDefinition.initial
the_value: ““

}

8-2 Human-Usable Textual Notation, v1.0 August 2004

8

// Event package configurations
container IdentifierConfig org.omg.ECA.Event.EventCondition {

id_attribute: org.omg.ECA.Event.EventCondition.condition
}
container IdentifierConfig org.omg.ECA.Event.NotificationRule {

id_attribute: org.omg.ECA.Event.EventCondition.condition
}
container IdentifierConfig org.omg.ECA.Event.Subscription {

id_attribute: org.omg.ECA.Event.subscriptionClause
}
DefaultValueConfig {

the_class: org.omg.ECA.Event.Subscription
the_attribute: org.omg.ECA.Event.Subscription.domain
the_value: ““

}
container IdentifierConfig org.omg.ECA.Event.Subscription {

id_attribute: org.omg.ECA.Event.subscriptionClause
}
DefaultValueConfig {

the_class: org.omg.ECA.Event.Publication
the_attribute: org.omg.ECA.Event.Publication.domain
the_value: ““

}

// BusinessProcessPkg package configurations
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessFlowPort
the_attribute:
org.omg.ECA.BusinessProcessPkg.ProcessFlowPort.multiplicity_lb
the_value: 1

}
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessFlowPort
the_attribute:

org.omg.ECA.BusinessProcessPkg.ProcessFlowPort.multiplicity_ub
the_value: 1

}
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessRole
the_attribute:

org.omg.ECA.BusinessProcessPkg.ProcessRole.selectionRule
the_value: ““

}
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessRole
the_attribute:

org.omg.ECA.BusinessProcessPkg.ProcessRole.creationRule
the_value: ““

}
}
August 2004 Human-Usable Textual Notation, v1.0 8-3

8

8-4 Human-Usable Textual Notation, v1.0 August 2004

 References A
A.1 List of References

[Antlr] Terence Parr, ANTLR - Complete Language Translation Services.
http://www.antlr.org/index.html

[Belaunde99] Mariano Belaunde, A Pragmatic Approach To Building a Flexible UML
Model Repository. In UML’99 - The Unified Modeling Language. Beyond
the Standard. Second International Conference, Fort Collins, CO, USA,
October 28-30. 1999, Proceedings. Springer. Pp 188-203.

[Java] James Gosling, Bill Joy and Guy Steele. “The Java™ Language
Specification”, First Edition. Sun Microsystems, 1996

[JavaCC] Sun Microsystems & Metamata. The Java™ Parser Generator.
http://www.metamata.com/javacc/index.html.

[McIver96] Linda McIver and Damian Conway. Seven Deadly Sins of Introductory
Programming Language Design. In Proceedings, 1996 Conference on
Software Engineering: Education and Practice. IEEE Computing Society
Press, Los Alamitos, CA, USA 1996. Pp 309-316.

[MOF01] Meta-Object Facility (MOF) Specification, OMG TC document
formal/2001-11-02, 2001

[RL77] Frederic Richard and Henry F. Ledgard. A Reminder for Language
Designers. ACM SIGPLAN Notices, Vol. 12 No. 12 (December 1977). Pp
73-82.

[Visibroker] Inprise Corporation. “Visibroker 3.4 for Java”.
http://www.visigenic.com/visibroker/

[XMI02] XML-Based Model Interchange (XMI) Specification, OMG TC document
formal/2002-01-01, 2002.
August 2004 Human-Usable Textual Notation, v1.0 A-1

A

[XML98] eXtensible Markup Language (XML) 1.0, World Wide Web Consortium
Recommendation 10-February-1998. Http://www.w3.org/TR/1998/REC-
xml-19980210.

[XSLT99] XSL Transformations (XSLT) Version 1.0, W3C Proposed Recommendation
8 October 1999. http://www.w3.org/TR/1999/PR-xslt-19991008.

[XT99] James Clark. XT. http://www.jclark.com/xml/xt.html.
A-2 Human-Usable Textual Notation, v1.0 August 2004

Index
A
abstract base syntax 2-2
adjectives 4-5
ANTLR grammar 1-3
any 6-12
array 6-12
Association 2-6
Associations 6-13
Attributes 2-5

B
base language 4-1
benefits 2-1
Boolean 6-11
Bracketed pairs/lists 6-17

C
C programming language 2-3
character and string literals 6-16
Class Representations 6-4
ClassConfig 5-2
Classes 2-5
Classifier-level Attributes 6-10
collection 6-13
common generator architecture 1-3
Configurator component 1-3
conformance points 3-1
contained instance 6-9
container object 4-6
containment 2-6
containment relationship 2-6, 6-9
CORBA

contributors vii
documentation set vi

D
Data Value Representations 6-11
DefaultValueConfig 5-4

E
ECA metamodel 8-1
Enum 6-11
EnumAdjectiveConfig 5-4

G
Grammar generator component 1-3

H
HutnConfig language 7-1
HutnConfig metamodel 5-2

I
IndentifierConfig 5-3

J
Java programming language 1-3

K
keyword 4-5

M
Meta-Object Definition Language (MODL) 1-2
Meta-Object Facility (MOF) 2-5
model-specific shorthands 4-3

N
names 6-18
notational conventions 6-2
numeric literals 6-16
Numeric types 6-11

O
Object Management Group v

address of vii
Object Reference 6-12

P
Package 2-5
package 6-3
parametric form 4-3, 4-7
ParametricConfig 5-4
parser 3-1
parsing 1-3
Pascal language 2-3
punctuation 2-3

R
Reference 2-6
Reference Representations 6-9
RenameConfig 5-5
reserved words 2-4, 6-16
role 2-6

S
Security Service A-1
sequence 6-12
Stream 3-1
struct 6-12
symbols 2-3, 6-17

T
Textual types 6-11
TypeCode 6-12

U
union 6-12

X
XML-based Model Interchange (XMI) 2-6
XSL generator component 1-3
August 2004 Human-Usable Textual Notation, v1.0 Index-1

Index
Index-2 Human-Usable Textual Notation, v1.0 August 2004

	1. Overview
	1.1 Introduction
	1.2 Changes to Existing OMG Specifications
	1.3 Proof of Concept

	2. Overall Design Rationale
	2.1 Overall Approach
	2.2 Usability Criteria
	2.2.1 Syntax and Aesthetics
	2.2.2 Use of symbols and punctuation
	2.2.3 Use of reserved words
	2.2.4 User expectations
	2.2.5 Other considerations

	2.3 The Meta-Object Facility (MOF)
	2.4 XML-based Model Interchange (XMI)
	2.5 Example MOF Model
	2.6 Example XMI
	2.7 Equivalent HUTN
	2.8 Summary
	2.8.1 Generic
	2.8.2 Fully Automated
	2.8.3 Human Usable

	3. Conformance
	3.1 Overview
	3.2 Input Stream Conformance
	3.3 Output Stream Conformance
	3.4 HutnConfig HUTN Language Configuration Conformance
	3.5 ECA HUTN Language Configuration Conformance

	4. HUTN Design Rationale
	4.1 Overview
	4.2 The Base Language
	4.2.1 Use of familiar forms
	4.2.2 Structure reflects containment
	4.2.3 Defining and referencing major concepts
	4.2.4 Representing minor concepts

	4.3 Model-Specific Shorthands
	4.3.1 Identifying class instances (objects)
	4.3.2 Keywords and Adjectives
	4.3.3 Omission of Class Type of an Object Reference
	4.3.4 Omission of Reference Name for a Contained Object
	4.3.5 Default Values
	4.3.6 Parametric Form
	4.3.7 Renaming of Model Elements for HUTN languages

	5. Configuration
	5.1 HutnConfig Metamodel
	5.1.1 ClassConfig
	5.1.2 «enumeration» UniquenessScope
	5.1.3 «datatype» ClassRef
	5.1.4 «datatype» AttributeRef
	5.1.5 «datatype» ModelElementRef
	5.1.6 IdentifierConfig
	5.1.7 EnumAdjectiveConfig
	5.1.8 DefaultValueConfig
	5.1.9 ParametricConfig
	5.1.10 RenameConfig

	6. HUTN Document Production
	6.1 Notation
	6.2 Package Representations
	6.3 Class Representations
	6.4 Attribute Representations
	6.5 Reference Representations
	6.6 Classifier-Level Attributes
	6.7 Data Value Representations
	6.7.1 Numeric types
	6.7.2 Boolean
	6.7.3 Textual types
	6.7.4 Enum
	6.7.5 Object Reference
	6.7.6 TypeCode
	6.7.7 Any
	6.7.8 Struct
	6.7.9 Union
	6.7.10 Sequence, Array
	6.7.11 Collections (Set, Bag, List, UList)

	6.8 Association Representations
	6.9 Lexical issues
	6.9.1 Comments
	6.9.2 Identifiers
	6.9.3 Reserved Words
	6.9.4 White Space
	6.9.5 Numeric literals
	6.9.6 Character and string literals
	6.9.7 Bracketed Pairs/Lists
	6.9.8 Symbols

	6.10 Name Scope Optimization

	7. Configuration Notation
	7.1 HutnConfig Language Configuration

	8. ECA Textual Notation
	8.1 ECA Language Configuration

	A. References

