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Abstract  

Architectural modeling notations are varied based on goals, extensibility, 
application domain, and other factors. In this paper, multiple graphical and textual 
modeling notations are reviewed illustrated by examples, with discussion of their 
advantages and shortcomings.  

 

1. Introduction  

According to Taylor et al, "An architectural model is an artifact that captures some or all of the design decisions 

that comprise a system's architecture. Architectural modeling is the reification and documentation of those design 

decisions... An architectural modeling notation is a language or means of capturing design decisions." [1] 

Without a model, an architecture is inscrutable. Modeling notations can be rich and ambiguous (for example, 

natural language), highly formal (such as the Rapide notation), semantically weak (such as Power-Point diagrams), 

or semantically formal. Several notations can be combined to describe an architecture - for example, a UML class 

diagram can be annotated with natural language. 

Section 2 of this paper deals with basic architectural concepts and design decisions that need to be modelled, as 

well as modeling views, viewpoints, and visualizations. Section 3 covers various modeling notations: natural 

language (3.1); informal graphical styles (3.2); Unified Modeling Language (3.3); early Architecture Description 

Languages (3.4) – Darwin (3.4.1), Rapide (3.4.2), and Wright (3.4.3); domain-specific and style-specific 

Architecture Description Languages (3.5) – Koala (3.5.1), Weaves (3.5.2), and AADL (3.5.3); extensible 

Architecture Description Languages (3.6) – Acme (3.6.1), ADML (3.6.2), and xADL (3.6.3); User Requirements 

Notation (3.7); and Dialog Flow Notation (3.8). Section 4 contains discussion of the presented modeling notations. 

2. Architectural modeling 

To choose a notation, one has to decide upon what architectural decisions and concepts should be modeled, the 

level of detail to include in the models, and how formal the models should be. The choices depend on the cost-

benefit analysis of creating and maintaining the models. The most important aspects of the system are modeled with 
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the greatest detail. Modeling goals include communication, bug finding, quality analysis, generation of needed 

artifacts, etc. [1] 

2.1. Basic architectural concepts that need to be modelled 

1. Components - subsets of system's functionality and data, exposed via explicitly defined interfaces. 
2. Connectors - building blocks regulating interactions among components. 
3. Interfaces - points at which components and connectors interact with the outside world. 
4. Configurations - specific associations between the components and connectors in the system. 
5. Rationale - documentation of architectural decisions. 

According to Taylor et al, “Architectural style is a collection of design decisions that are applicable in a given 

development context, constrain design decisions within that context, and elicit beneficial qualities in the resulting 

system.” [1] 

2.2. Design decisions that might be captured in a style model 

Various elements and constraints can be captured in a style model. Listed below are types of design decisions 

detailed by style models. 

1. Specific elements - particular components, interfaces and connectors to be used in a particular way in 

specific situations. Modeling templates or base models can be thus created. 
2. Component, connector, and interface types - kinds of elements permitted, required, or prohibited in the 

architecture. 
3. Interaction constraints - temporal (call one before another), topological (can be invoked only by 

components belonging to a certain layer), protocol (one or a group) constraints on interaction between 

components and connectors. 
4. Behavioural constraints - from simple rules to complete finite state automata of the system. 
5. Concurrency constraints - rules for concurrency, synchronization, access to shared resources. [1] 

 
2.3. Modeling other aspects of the system 

Static aspects are easier to model as they do not include changes over time. Dynamic aspects of a system are 

harder to represent. This includes interaction models, data flow models, and behavioural models. In cases when the 

system is usually stable but might have to change behaviour if one of the components fails, both the static and 

dynamic models might be needed. 

Modeling dynamic aspects of a system can be done using static modeling (for example, interaction diagrams). 

Dynamic models can be employed to visualize the behaviour of a running system, and are updated on-the-fly. 
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Functional (what a system does) and non-functional (constraints on what a system does) aspects of the system 

can be captured through modeling. Functional aspects are easier to model as they are complete. Most modeling 

notations are designed to capture primarily functional aspects. Non-functional aspects are often captured less 

rigorously, as they are qualitative and subjective. [1] 

 
2.4. Mixed content modeling and multiple views 

Taylor et al present the following definitions for a view and a viewpoint [1]: 

• A view is a set of design decisions related by a common concern (or set of concerns). 

• A viewpoint is the perspective from which a view is taken. 

• A view (what you see) is an instance of a viewpoint (filter) for a specific system. 

 

2.4.1. Traditional viewpoints 

Viewpoints provide a way to limit presented information to a cognitively manageable subset of the architecture, 

display related concepts simultaneously, can be tailored to the needs of specific stakeholders, can be used to display 

the same data at various levels of abstraction. [1] 

Listed below are several traditional viewpoints frequently used in modeling: 

1. Logical - logical (often software) entities in the system and how they are interconnected. 
2. Physical - physical (often hardware) entities in the system and how they are interconnected. 
3. Deployment - how logical entities are mapped onto physical entities. 
4. Concurrency - how concurrency and threading are managed in the system 
5. Behavioural - expected behaviour of the system or its parts. 

2.4.2. Inconsistencies among views 

The following inconsistencies may exist among views: 

1. Direct inconsistencies - two views assert directly contradictory propositions, automatically detectable. 
2. Refinement inconsistencies - two views at different levels of detail assert contradictory propositions; can be 

automatically detected with appropriate consistency rules. 
3. Static versus dynamic aspect inconsistencies  - view of a static aspect conflicts with a view of the dynamic 

aspect of the system, harder to automatically detect, depending on how explicit the dynamic aspect's 

specification is. 
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4. Dynamic aspect inconsistencies  - two views of dynamic aspects of the system conflict, often extremely 

difficult to detect automatically as it requires extensive state exploration or simulations. 
5. Functional versus non-functional aspect inconsistencies - non-functional property prescribed by a non-

functional view is not met by the design expressed in functional views; the most difficult to detect because 

of the general and abstract nature of non-functional properties. [1] 

2.5. Model visualizations 

An architectural visualization defines how architectural models are depicted, and how stakeholders interact with 

those depictions. 

Model is organized information. Visualizations are ways to represent the organized information, usually graphical 

or textual. Visualizations can be used to hide differences in back-end modeling notations. Many modeling notations 

have one or more canonical visualizations. Visualizations are associated with particular viewpoints, not views, since 

the same visualization can be used to visualize many different architectures. [1] 

2.5.1 Types of visualizations: 

Textual visualizations – visualizations that depict architectures using ordinary text files. Textual visualizations 

have several advantages, such as ability to depict the entirety of the architecture in a single file. Models are easily 

accessible and editable via multiple available text editors. Parsing, processing, and editing structured text are mature 

technologies: when the syntax is defined according to a particular meta-language (for instance, Backus-Naur form), 

program libraries can be generated to parse and check the syntax of the documents. Additional features are often 

available, such as auto-completion and syntax checking. 

Disadvantages of textual visualizations stem from the fact that models are usually presented linearly in text 

editors, without a possibility to reorganize the information in multiple ways. While good at depicting data linearly 

and hierarchically, they are not as good at graph-like structure depiction. 

Graphical visualizations – visualizations that depict architecture primarily using graphical symbols, they either 

confirm to a syntax or are free-form. These notations give stakeholders access to information about architectures in 

many ways that textual representations cannot: using colours, symbols, and other decorations that are more easily 

distinguishable than structured text elements. Non-hierarchical relationships can be more effectively presented. 

Spatial relationships can be used to express relationships among elements. Animation can be employed to show 

transitions. Interaction mechanisms are superior, allowing for scrolling, zooming, drilling down, showing and hiding 

elements, as well as allowing direct manipulation with a mouse. [1] 

Disadvantages of graphical visualizations are due to graphical notations requiring costly development of tools to 

support the interactions, as well as proprietary file formats of the tools making connection to a more architecture-

centric representation difficult [2, 3]. 
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Hybrid visualizations are achieved by a combination of graphical and textual elements (such as UML combined 

with OCL).  

2.5.2. Common issues in visualization 

There are issues that affect visualizations, due to differences in semantic meaning of symbols and decorations. 

Listed below are several possible situations that might result in semantic and visual inconsistencies: 

1. Same symbol - different meaning: consistency in meaning is lacking when using a particular symbol 

multiple times. 
2. Differences without meaning - using different symbols to express the same meaning. 
3. Decorations without meaning - "spicing up" diagrams for aesthetic values with meaningless decorations 
4. Borrowed symbol, different meaning – not adhering to a rough meaning of a symbol that is borrowed from 

a different visualization. [1] 

 

3. Modeling notations 

3.1. Natural language 

Natural (human) languages, such as English, are expressive, but ambiguous, non formal, and non rigorous. They 

cannot be effectively processed and understood by machines, and so can only be inspected by humans. Natural 

languages are easily accessible to stakeholders and can be handled using common word-processing tools. Due to the 

abstract and qualitative nature of non-functional requirements, natural languages are best in capturing those. 

Sometimes, a restricted form of a language is used instead of a pure language. This is achieved by users 

employing a particular dictionary of terms, to avoid ambiguity. Extensive use of this technique is not effective, as it 

results in a domain-specific language without the advantages of having a flexibility of a natural language. 

Due to the ambiguity of natural languages, they do not lend themselves to automated processing or verification, 

and so it cannot be tied to implementation of the models. Natural languages can be used across domains and can 

express a high degree of abstraction. Natural language models use textual visualization. 

Example 1 contains a model of the Lunar Lander system in natural language (in this case, American English) [1]. 

The Lunar Lander system is presented by Taylor et al [1] and is used as an example throughout this paper to 

illustrate various modeling notations. 

The Lunar Lander application consists of three components: a data store component, a calculation component, 
and a user interface component. 

The job of the data store component is to store and allow other components access to the height, velocity, and 
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fuel of the lander, as well as the current simulator time.

The job of the calculation component is to, upon receipt of a burn rate quantity, retrieve current values of 
height, velocity, and fuel from the data store component, update them with respect to the input burn rate, and 
store the new values back. It also retrieves, increments, and stores back the simulator time. It is also responsible 
for notifying the calling component of whether the simulator has terminated, and with what state (landed safely, 
crashed, and so on). 

The job of the user interface component is to display the current status of the lander using information from 
both the calculation and the data store components. While the simulator is running, it retrieves the new burn 
rate value from the user, and invokes the calculation component. 

Example 1. “Lunar Lander in natural language” (adapted from [1]) 

 
3.2. Informal graphical styles 

3.2.1. Power-Point notation 

Informal Power-Point-style modeling allows for creation of decorative diagrams of interconnected shapes. They 

are easily accessible to stakeholders, assuming the tools for their manipulation are available. The slide nature of 

these presentations limits the diagram size, which ensures suitable abstraction.  

Similarly to natural languages, these diagrams facilitate expressive, flexible ways of capturing ideas. They are 

useful in early prototypes and exploration, but lack the formality and rigour. Due to the lack of semantics, there is no 

distinction in modeling static and dynamic aspects of the system. Non-functional aspects are modeled using natural-

language diagram annotations. Understanding of the diagrams depends on the correct interpretation of the symbols 

used. In some ways, due to their visual nature, the 

diagrams are easier to understand than natural 

language descriptions. 

As the natural language models, Power-Point-style 

models cannot be processed automatically or tied to 

implementation. Consistency and correctness have to 

be checked through manual inspection. This modeling 

technique can be used across domains and can express 

any degree of abstraction. 

Power-Point-style models use graphical 

visualization manipulated with the help of informal 

graphical editors. Figure 1 shows an example of a 

Power-Point-style diagram [1]. The resulting models 

are generally straightforward and aesthetically 
Figure 1. Lunar Lander in PowerPoint (adapted from [1])
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pleasing; but have no connection with architectural concepts and are very difficult to coordinate with other 

visualizations. The editors often feature powerful user interfaces and limited animation capabilities. [1] 

 
3.2.2 Diagram notation presented in [1] 

A notation similar to the Power-Point model notation is used in a few examples in [1]. A legend is provided to 

denote semantic meaning of the elements involved, yet the models do not appear to be expressed in a notation used 

by any of the ADLs described later in the book. The notation allows for depicting components, connectors, 

connections between interfaces and the interaction flow requests and notifications. Figure 2 shows an example of 

this one-of-a-kind notation [1].  

3.3. Unified Modeling Language (UML)  

  UML [4] combines concepts from earlier 

notations: Booch diagrams [5], OMT [6], OOSE 

[7], and Statecharts [8]. UML provides a wide 

variety of modeling constructs and viewpoints. 

There are many tools that provide varying degrees 

of support for UML (from diagram construction to 

generation of code from UML models). 

  UML is an extensive notation that 

traditionally employs graphical symbols with 

textual annotations to represent the system from 

thirteen different viewpoints (as of UML 2.0). 

Early versions of UML [9] focused on detailed 

design modeling. UML 2.0 has added support for 

higher-level architectural constructs. [1] 

  One of the limitations of UML is its primary 

focus on design. Architectural modeling affects all 

other stages of the software lifecycle, such as 

maintenance, and additional activities, such as 

project management. This limitation requires other 

notations to be used in combination with UML to fully-model the architecture of the system. [1] 

 Another feature of UML is the ambiguity of the modeling constructs. This allows for increase in the generality 

of the notation and its flexibility, but requires additional information to understand the semantics of a particular 

diagram. For example, a dashed open-headed dependency arrow could mean a function call, a pointer or reference to 

Figure 2. One-of-a-kind notation (adapted from [1])
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an instance of one class from another, instance of one class as a parameter to a method in another, or messages 

passing from one class to another. [1] 

 Advantages of UML include: 

•  A multitude of classes, associations, states, activities, and other constructs 

• Ability to model multiple viewpoints 

• Support for static (for instance, class diagrams, object diagrams) and dynamic (state diagrams, 

activity diagrams) modeling 

•  A variety of available tools 

•  UML’s widespread adoption 

  Constraints relevant to a particular architectural style can be expressed in OCL (Object Constraint Language), 

whereas non-functional requirements are loosely supported by allowing natural language annotations.  The 

combination of constraints, stereotypes and tagged values (constituting a UML profile) helps limit the ambiguity of 

the models. 

 UML expressed graphically does not lend itself to automated processing. However, UML textual modeling 

strives to fill that gap. For example, the Umple language [10] allows expressing class diagrams in a textual notation, 

which is more compact than graphical notation, and can be compiled to produce an implementation of the model. 

  Through the available viewpoints and a wide variety of modeling constructs, UML allows for multiple levels of 

abstraction. Different UML models of a system can capture "the big picture" as well as varied levels of design detail. 

UML visualization is associated with a canonical depiction, not a canonical user interface. One of the advantages 

of UML visualization is the consistent use of symbols across diagrams and projects. It should be noted however that 

consistency in the visualization does not mean semantic precision at the notational level: if a concept is semantically 

ambiguous, the consistent use of the same shape to represent it does not repair the ambiguity. [1] 

Below is an overview of the key UML elements (3.3.1), as well as a few words on Umple notation and UMLet 

tool for UML diagram creation (3.3.2). 

3.3.1. UML elements 

UML building blocks include things, relationships, and diagrams. Things are abstractions representing elements 

in the model. Relationships tie things together. Diagrams group relevant collections of things. [9]  

Things 

Structural things – nouns in UML models (see Figure 3): 
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- Class – describes a set of objects that share same operations, relationships, 

attributes, and behaviour. A class implements one or multiple interfaces. 

- Interface – describes externally visible behaviour of an element by specifying 

services of classes or components. 

- Collaboration – denotes a structural and behavioural collaboration of a set of 

elements working together to provide particular cooperative behaviour. 

- Use case – an element that represents a set of actions available to a particular 

actor. 

- Active class – a class that can initiate control activity, due to owning one or more 

processes or threads. Active classes are used to represent elements that exhibit 

concurrent behaviour. 

- Component – a physical and replaceable part of a system that adheres to a set of 

interfaces.  

- Node – a computational resource that exists at run time. A node might contain a 

set of components. 

Behavioural things – verbs in UML models, representing behaviour over time and 

space (see Figure 4): 

- Interaction – denotes a set of messages exchanged between objects to accomplish a 

specific purpose within a particular context. 

- State machine – denotes a set of states of an object, object’s response to events 

depending on the state, and the transitions accompanying each event. 

Grouping things – elements assisting in grouping other elements within a diagram 

(see Figure 5): 

- Package – primary grouping mechanism to envelop structural, behavioural, and 

other grouping things. This grouping exists in development time, not run time. 

Annotational things – elements assisting in explaining other elements (see Figure 6): 

- Note – element that renders comments and constraints related to an element or a 

collection of elements. Notes can be expressed in informal or formal text. 

 
 
 
 

Figure 4. UML 
 behavioural things 

Figure 5. UML 
grouping things 

Figure 3. UML 
structural things 
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Relationships 

See Figure 7 for visualization of the relationships listed below. 

Dependency – a relationship between two objects where modifications to one object may affect the semantics of 

the other one. 

Association – a relationship that specifies a connection between objects, such as aggregation, 

for instance (where link is between a whole and its parts). 

Generalization – a relationship where child objects (specialized elements) can be 

substituted for the parent object (a generalized element). 

Realization – a relationship between classifiers where one specifies a contract and another 

one guarantees to carry it out. This relationship is encountered between interfaces and the 

classes or components that realize them, as well as between use cases and the collaborations 

that realize them. 

 
Diagrams 

Class diagram is a static view of the system that shows classes, interfaces, and 

collaborations together with the relationships among them. 

Object diagram shows a static snapshot of objects and their relationships within a running 

system. This is useful to explore system prototypes. 

Use case diagram shows a static view of actors and a set of available actions (use cases) for each actor, to assist 

in modeling the behaviour of the system. 

Sequence diagram is a type of interaction diagram that emphasizes time-ordering of messages within the 

system. 

Collaboration diagram is a type of interaction diagram that emphasizes the structural organization of the 

objects that act as senders or receivers of the messages within the system. 

Statechart diagram is a dynamic view of the system, showing a state machine of all available states and 

transitions within the system. 

Activity diagram shows the dynamic flow of actions within the system, from activity to activity. 

Component diagram shows dependency and static organizational structure of a set of components. 

Figure 6. UML 
annotational things 

Figure 7. UML 
relationships 
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Deployment diagram shows a static configuration of run-time processing nodes and the component(s) that run 

on each node. 

There are additional variations on the elements listed above, to accommodate a larger set of possible scenarios 

and system organizations that UML is suited to model. 

3.3.2. Umple and UMLet 

The Umple language [10] is a compact textual notation for UML. At the time of this writing, Umple supports 

textual modeling of class diagrams, and the state machine modeling is currently in the works. Umple combines the 

power of UML with the advantages of textual notations, allowing for automated analysis of the models. Umple 

compiler comes as an Eclipse or Rational Software Modeler plug-in and allows for generation of Java or PHP 

structures from class models expressed in Umple. 

UMLet [11] is an Open Source UML visualization tool that runs stand-alone or as Eclipse plug-in. UMLet 

models are saved in a notation that utilizes XML and can be exported to a variety of formats. 

Figure 8 contains the UML model of the Lunar Lander system described previously, both in standard graphical 

UML notation modelled using the UMLet tool, and in textual Umple notation. Please note that Umple notation 

models classes, their attributes, and the relationships between classes. Class method specifications are left to be 

checked by a native language compiler.  

class DataStore{ 

    Time currentTime; 

    Double height; 

    Double velocity; 

    Double fuelLevel; 

} 

 

class Calculation{} 

 

class UserInterface{} 

 

association { 

    1..* Calculation stores  -- 0..1 DataStore; 

} 

association { 

    1 UserInterface displays  -- 0..1 DataStore; 

} 

association { 

    1 UserInterface providesBurnRate  -- 0..1 Calculation;

} 

 
Figure 8. Lunar Lander in UML graphical notation and Umple textual notation 
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3.4. Early Architecture Description Languages (ADLs) 

There is no single definition of what constitutes an architecture description language. The uncertainty regarding 

this issue hinges on disagreement on what should and should not be included in the concept of a software 

architecture. Looking at architecture as a set of principal design decisions about a system, there are several 

languages that fall into the category of ADLs. The early ADLs did not go past the research project stage and are not 

used in practice. However, they are an important part of architectural modeling development. 

A brief feature overview is provided below for three early ADLs: Darwin (3.4.1), Rapide (3.4.2), and Wright 

(3.4.3). Each notation is illustrated by an example using the Lunar Lander application described in [1]. 

3.4.1. Darwin 

Darwin [12] is a declarative language that describes systems as collections of components interacting via explicit 

interfaces. The notion of a software connector is not present, but a component that facilitates interactions can be 

considered a connector. Darwin has a notion of portals, which expose architectural interfaces. Portals can have four 

possible directions: provide, require, export, and import. Provide declarations are provided to encapsulating 

comments by the defining component; whereas require declarations define portals that are being provided by 

external or encapsulating components.  Export portals are similar to provide ones, with the difference that they are 

provided to an external trader or nameserver. Exported portals can be bound by import declarations, which are 

similar to require declarations. Import declarations can be used to bind portals to Darwin portals and non-Darwin 

programs. {{488 Department of Computing, Imperial College of Science, Technology and Medicine 1997}} 

Bindings between interfaces define the configuration. Darwin provides a separation of concerns by separating the 

descriptions of structure, computation, and interaction. [13] 

Darwin includes dynamic binding, where a new anonymous instance of a component is created each time the 

component is accessed by a bound portal. The parameters are supplied by the invoking portal. Method of invocation 

is implementation. Darwin also includes tagging – ability to include non-structural information into the 

specification, and assert declarations that assist in component integrity checks. {{488 Department of Computing, 

Imperial College of Science, Technology and Medicine 1997}} 

Darwin is a textual notation with equivalent less precise graphical visualization. It supports hierarchical 

composition, where components can have internal structure that itself might include components, services and 

bindings. These can be used to provide deployment viewpoints. Darwin supports static viewpoints as well as 

dynamic ones (through dynamic instantiation and binding). There is no support for modeling non-functional aspects. 

The Darwin language is not domain-specific. Darwin models can be expressed in pi-calculus, allowing for 

automated processing. It is most appropriate for modeling structural viewpoints. See Figure 9 for an example of the 

Lunar Lander application modeled in Darwin [1]. 



13 

 

Figure 9. Lunar Lander in Darwin Notation (adapted from [1]) 
  

3.4.2. Rapide 

Rapide [14] is a language that focuses on modeling systems that consist of components communicating via 

events. Procedure calls are supported by using two events: one for the call and one for the return value. Events in 

Rapide are combined into partially-ordered sets. Components in the system work concurrently. Rapide’s textual 

description is similar to Darwin’s, except it also includes behavioural specifications. 

Events can be subject to causal relationships. Such relationships exist if: 

• both events are generated by the same process; 

• process triggered by one event generates the other; 

• process triggered by one event assigns a value to a variable and the process triggered by the other 

event reads it; 

• one event triggers a connection that generates the other event; 

• or events are related transitively (event A precedes C which precedes B). 

Rapide provides a single viewpoint and focuses on modeling dynamic aspects of the architecture. The static 

aspects are captured by interconnections among components. Rapide models can be executed to simulate the 

system's operation. The result of execution is a graph showing causal and temporal relationships between events 
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present in the system. Consistency between multiple models of the same architecture can be checked via manual 

inspection of simulator outputs.  

 

Figure 10. Two-player Lunar Lander in Rapide notation and one-player Lunar Lander Rapide event graph 
 (adapted from [1]) 

 

Because Rapide is optimized for modeling multi-threaded applications, Figure 10 contains an example of a 

slightly modified Lunar Lander application model that includes a game component for 2 players [1]. Using Rapide's 

simulation capabilities, a one-player event graph shown below can be generated. 
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Rapide’s visualization utilizes a simulator that takes architecture models in Rapide notation as input and 

simulates the interaction of the various components defined in the model. Repeated simulations can generate 

different event streams, depending on the simulator's scheduler's allocation of time for the various components. [1] 

 

3.4.3. Wright 

 Wright [15] language deals with checking component interactions through their interfaces. The models include 

components, connectors, ports, roles (interfaces), attachments, and styles. Wright interfaces are based on notation 

derived from CSP - Communicating Sequential Process - and can be translated into CSP [16]. The resulting model 

can be analysed in an automated way to determine compatibility of the interfaces and to identify deadlocks. 

Wright supports static structural models with behavioural annotations describing component interactions. There 

is no support for non-functional aspects of the architecture. Structural, behavioural, and style viewpoints are 

supported. Automated correctness, consistency, and deadlock checks can be performed using a CSP evaluator. 

Figure 11 shows an example of the Lunar Lander application modelled in Wright [1]. The notation is 

complicated and takes a long time to learn, even to model a simple system. It is a good notation for modeling safety-

critical systems where freedom from deadlock is important. The analysis capabilities are powerful but limited to a 

small set of properties. There is no support for generating an implementation from the model. 
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3.5. Domain-specific and style-specific ADLs 

Some architectural languages are created to support a particular architectural style or to model applications 

within a particular domain. Below three such ADLs are presented: Koala notation for modeling products in Philips 

TV product line (3.5.1), Weaves notation for a modified pipe-and-filter architectural style (3.5.2), and AADL 

notation used for embedded and real-time system modeling (3.5.3). 

 

Figure 11. Lunar Lander in Wright notation with some behavioural specifications omitted (adapted from [1]) 
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3.5.1 Koala 

Koala [17] is a language developed by Philips to describe the architecture of consumer electronic devices. Koala 

models include components that communicate via explicit provided and required interfaces. Figure 12 shows an 

example of a TV platform expressed in the Koala notation [17]. 

Koala combines the concept of portals found in Darwin with constructs that support product-line architectures. 

Thus multiple products can be described with a single model representing a structural viewpoint where differences 

are encoded as variation points. 

There is no support for modeling the dynamic or non-functional aspects of the system. The variation points are 

described statically, but the selection can be changed at runtime. Since Koala models are closely tied to 

implementation, the models can be verified for correctness and completeness through analysis of compilation 

results.  

 

 

Figure 12. TV platform in Koala notation (adapted from [17])  
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A software system is modeled and implemented as a collection of interacting components, each one with a well-

defined connector interfaces (those it provides and those it requires), forming a building block of the application. A 

given assembly of components can be treated as a compound component that can be used as a single unit. 

Variability in Koala is managed by: 

• diversity interfaces - mechanisms for parameterizing a component; 

• switches - connecting elements that allow a single component to interact with one of a set of 

components, depending on the value of a given run-time parameter; 

• and optional interfaces: component provides or requires particular functionality that may be 

specialized for certain, but not all, products within a family. 

Combinations of components from different families in novel ways comprise product populations. 

In addition to allowing for reuse and rapid development, Koala is the concrete manifestation of the company's 

corporate experience, knowledge and competitive advantage [1]. 
 

3.5.2 Weaves 

Weaves [18] is an architectural style supported by a graphical 

modeling notation. Weaves can be seen as a variation of pipe-filter 

systems with three differences: 

1. Instead of byte streams, Weaves deals with object streams. 
2. Instead of implicit pipes, Weaves connectors are object queues of 

explicit size. 
3. Instead of a single input and a single output, Weaves tools allows 

for multiple inputs and outputs. [1] 

Models allow for components, connectors (queues) and directed 

interconnections. Figure 13 shows an example of the Lunar Lander 

application expressed in Weaves notation [1]. There is no support for 

dynamic aspect modeling. The architectural style imposes certain non-

functional aspects on the system, but these are not explicitly defined. 

Weaves models provide information about the connections but not about 

how those connections are used. Natural languages or other notations can 

be used to elaborate on the protocols used in the connections, objects that 

are exchanged, etc. Figure 13. Lunar Lander in Weaves notation
(adapted from [1]) 
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It is easy to identify errors in models, as they are limited to broken links and interconnection problems. The 

implementations are closely tied to the model by the architectural style, so it should be possible to check their 

correctness. [1] 

 
3.5.3 Architectural Analysis and Design Language (AADL) 

AADL [19] was initially created to model avionics systems. The notation is not specifically bound to that 

domain, however, and can be used in embedded and real-time system modeling. 

AADL is a textual language that can be expressed graphically and is accompanied by a UML profile to capture 

the information in several ways. AADL includes constructs that describe both software and hardware components, 

as well as mapping between them. The components available include those for networks, buses, ports, threads, 

processes, and a large variety of others. AADL allows for specification of interfaces for flow of control and data. 

There exists limited support for dynamic aspect modeling. There is also support for some non-functional properties, 

such as timing, reliability, and safety, although they cannot be automatically analysed. The models include a high 

level of detail. 

The basic building block of this notation is a component, defined by its category (hardware, software, or 

composite), type (how the component interacts with the outside world) and its implementation (an instance of the 

component type). There can be many instances for one component type. The category of a component defines what 

properties the component might have. Figure 14 shows a partial Lunar Lander model in AADL [1]. 

Automated consistency checks are possible. There are tools that support editing and import/export of AADL 

models, as well as tools that allow one to analyse different aspects of the model - correctness of the connections, 

component resource usage being within limits, etc. 

AADL is a complicated notation to learn due to extensive capabilities and types of analyses that need to be 

performed once the model is complete. The specifications are complex even for simple systems. Within embedded 

real-time system domain the high costs might be justified during the safety-critical and expensive nature of the 

systems. [1] 
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3.6. Extensible ADLs 

Modeling involves a trade-off between being able to describe a variety of systems, and taking advantage of 

semantically powerful features of more specialized languages, such as being able to automate model analysis and 

code generation. One way to resolve this is to use a combination of several languages to describe the system. This 

entails keeping models in sync, which requires knowledge of multiple notations. This approach might also result in 

inability to describe certain concerns in any of the notations. 

Figure 14. Partial model of Lunar Lander in AADL Notation (adapted from [1]) 
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Another way to deal with the trade-off is to use extensible ADLs that strive to combine the flexibility of generic 

languages with precision and analyzability of semantically rich languages. Extensible ADLs normally support the 

common architectural constructs (such as components and connectors) and allow the user to extend the syntax to 

support user-defined constructs [1].  Below three extensible ADLs are presented: Acme (3.6.1), ADML (3.6.2), and 

xADL (3.6.3). 

3.6.1 Acme 

Acme [20] provides a set of seven constructs: connectors, components, ports (interfaces on components), roles 

(interfaces on connectors), attachments (links), systems (configurations), and representations (inner architectures for 

components and connectors). 

To allow for extensibility, properties are used. Properties are decorations (expressed as optionally typed name-

value pairs), to the seven language constructs described above. Simple property types (integers, Booleans, etc.) are 

defined in Acme, in addition to allowed custom type definitions. Acme does not parse these values, leaving that up 

to the tools that process the model. 

Acme allows describing static aspects of the system natively, as well as dynamic and non-functional aspects 

through the use of properties. External tools are required to verify the correctness and types of defined properties, as 

well as the consistency of the model views. 

Acme is verbose, firstly due to its domain-neutrality, and secondly due to it being distributed together with 

AcmeStudio that allows for graphical manipulation of the model and thus takes the burden of dealing with the 

verbose textual notation off the user. Figure 15 shows an example of Lunar Lander in Acme notation [1]. 

Acme's flexibility comes from the use of properties to describe additional information about the system. 

However, it would be even more useful to allow for the creation of custom first-class constructs, such as connectors 

and components [1]. 
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Figure 15. Lunar Lander in Acme notation (adapted from [1]) 
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Initially, Acme was intended as an interchange language - a common model format to which other formats 

would be translated for the purpose of transfer among different tools. Garlan et al[20] have used it to translate a 

model between Wright and Rapide notations in the manner illustrated in Figure 16 [20]. This has never taken off, 

however, primarily due to substantial semantic differences between ADLs. 

Figure 16. Wright to Rapide transformation via Acme (adapted from [20]) 
 

3.6.2 Architectural Description Markup Language (ADML) 

ADML [21] is a language based on XML with its syntax derived from Acme. Semantically ADML is nearly 

identical to Acme, with the exception of meta-properties, which allow for specification of the properties and 

property types that should be present on particular elements. ADML's syntax is defined using an XML DTD. Figure 

17 contrasts Acme and ADML modeling notations [1]. 

 

Figure 17. Acme and ADML descriptions of DataStore component of Lunar Lander (adapted from [1]) 
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Advantages of using XML include the wide variety of tools available for XML document parsing, processing, 

and visualization, as well as the fact that XML is well-suited to describe hierarchical concepts. ADML does not use 

XML's extensibility mechanisms - instead extensibility is provided by encoding of the Acme name-value properties 

into XML. [1] 

3.6.3 Extensible XML-based ADL (xADL) 

xADL [22] is an XML-based domain-neutral extensible ADL that fully leverages XML's extensibility 

mechanisms to extend the language. The syntax of xADL is defined by XML Schemas. xADL models are well-

formed XML documents. Extensibility is achieved through defining derived data types in separate schemas, thus 

allowing data types declared in one schema to be extended in a different schema. Figure 18 shows an example 

architecture for a television in xADL notation [22]. 

Figure 18. Diagram of an example architecture for a television accompanied by its xADL 2.0 design time 
structural description (adapted from [22]) 
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Syntactically, xADL syntax is defined as the composition of all xADL schemas. This allows for incremental 

adoption (users can use only what they need), divergent extension (language can be extended in novel or 

contradictory ways), and feature reuse (schemas can be shared among products). Due to the varying nature of the 

language, xADL is provided with a set of tools that assist in implementation of parsers, editors, and other tools for a 

custom xADL-based language. The tools thus created can be used for consistency and correctness checking of the 

models. [1] 

To make the models more readable, a more compact notation exists for xADL, called xADLite, which expresses 

the models in a less-verbose form. Visualization of xADLite is textual, which allows xADL 2.0 models to be 

captured in a compact format and can be manipulated using standard text editors.  

 
3.7. User Requirements Notation (URN) 

“The purpose of URN is to support, in a semi-formal and lightweight way, the modeling and analysis of user 

requirements in the form of goals and scenarios.” [23] User Requirements Notation (URN) consists of two 

complementary notations: Use Case Map (UCM) notation and Goal-oriented Requirement Language (GRL). 

3.9.1. Use Case Maps (UCM) 

Use case maps focus on representing the behaviour of the elements within a system, in a scenario-based manner. 

Each scenario in the system can be followed by tracing a path within the system's use case map. Multiple scenarios 

can be traced concurrently, enabling modeling of concurrent systems.  [24] 

Figure 19. Operation, Assembly, and Manufacturing complexity factors (adapted from [24]) 

Component context diagrams used for a similar purpose consist of components connected by conceptual or 

actual connections (wires). Buhr [24] calls such diagrams "wirings". He argues that in large complex systems, 

models should assist with specifying guidelines for creating wirings for the system, instead of dealing with details of 

individuals wirings. Complexity factors associated with wirings (shown on Figure 19 [24]) are: 

1. Operation of a system expressed in terms of interactions over wires between components. 

2. Assembly of components in different ways during the execution of the system. 
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3. Manufacturing of objects from inheritance relationships in class hierarchies. 

 

These complexity factors contribute to lack of scalability of wiring models, which UCM aims to address. [24] 

The complexity factors described above are simplified by UCM in the following manner: 

1. Operation. Behaviour is represented as cause-effect sequences between components' responsibilities by 

using paths instead of wires. Responsibilities represent a higher level of interaction than calls, messages, 

and RPC, therefore reducing need for granularity. 

2. Assembly. Changing components are modeled using slots that exist independently of their occupancy or 

occupants. Each slot has responsibilities defined for it. Wires are eliminated from the diagrams. 

3. Manufacturing. Use case maps become first-class models and may be developed independently of class 

descriptions, thus eliminating dependence on manufacturing details. 

 UCM notation includes the following elements (illustrated in Figure 20 [24]): 

1. Paths trace progression of 

causes and effects through the 

system from the points where 

effect is triggered. Paths 

documentation includes 

names and natural language 

descriptions of scenarios 

associated with the paths, 

preconditions and 

postconditions, path segment 

labels, and cross-references 

between large-scale paths and 

subpaths. Paths traversing a 

component correspond to 

methods, messages, and state 

machines enabling the 

corresponding functionality. 

2. Responsibilities link paths to components. They act as a direct link between use cases and architecture. 

3. Interpath couplings connect paths into a larger pattern. They include cases when postcondition of one 

path is a precondition of another, or when paths share a physical resource. 

Figure 20. UCM notation elements (adapted from [24]) 
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4. Components perform responsibilities. UCM components include objects, teams of objects, and slots 

occupied by objects dynamically as scenarios run. Slots are modelled by indicating points along paths 

where components are created, moved, or destroyed. [25] 

UCM notation focuses on a path-centric view - a higher level of abstraction compared to a component-centric 

view. Buhr [25] suggests that annotating UML class diagrams with run-time relationships between instances, or 

superimposing use case paths onto class diagrams, would be stretching the class diagram notation too far. Similarly, 

extending the message sequence charts by interpreting messages as causal relationships and message processing 

segments of timelines as causal sequences can approximate use case maps. However, overloading the existing 

notation leads to cluttered, complicated models, with possibility of misinterpretation. 

 
Figure 21. UCM niche in design (adapted from [25]) 

Instead, UCM aims at separating the "how it works" (use case maps) from "how it is constructed" (class 

relationship diagrams). Figure 21 shows a 

contrast between where the gap in design 

process lies and how it is filled by the 

inclusion of use case maps [25]. The outer 

triangle identifies stages of design, from 

requirements to implementation. 

There exists a trade-off between the 

high-level system behavioural 

specification expressed in UCM and the 

presence of finer component interaction 

details. Because of this omission of low-

level details, UCM models are not used to 

generate application code. Instead, use 

case maps provide a system-wide view 

that exploits human pattern-recognition 

 

Figure 22. Summary of the UCM notation (adapted from [23])
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abilities, which enable stakeholders to visualize, think about, discuss and explain the overall behaviour of a system 

[26]. Figure 22 summarizes main elements of the UCM notation [23], and Figure 23 shows an example of a network 

transaction modelled in UCM [26]. 

       Figure 23. Use case maps for a simple network transaction and for a generalized one (adapted from [26]) 

UCM is technology-independent and domain-independent, which makes it applicable for a variety of system 

types, from sequential to distributed and parallel systems. Behaviour patterns of an application being modeled can 

be explored using this notation. [24]  

3.9.2. Goal-oriented Requirement Language (GRL) 

Goal-oriented Requirement Language (GRL) [27] supports goal-oriented modeling and reasoning about 

requirements, in particular the non-functional requirements. GRL elements are used to represent various concepts 

that arise during the requirements process. Figure 24 summarizes main elements of the GRL notation [23]. 

GRL includes the following concepts:  

1. Actor 

2. Intentional event 

1.  Goal - a state of affairs that 

stakeholders would like to 

achieve. This may be a 

business goal or a system goal. 

2.  Task - a particular way of 

doing something, or a solution 

in the target system which will 

satisfy a softgoal. 

3.  Softgoal - similar to goal, a desirable state Figure 24. Summary of the GRL (adapted from [23])
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of affairs, but without clear-cut criteria for whether the state is achieved. This is left to subjective 

interpretation of the stakeholders. 

4.  Belief - a statement representing design rationale, used to provide justification for decisions. 

Beliefs facilitate review and enhance 

traceability. 

5.  Resource - an entity that can either 

be available or not available. 

3. Intentional relationship: 

1.  Means-ends relationship connects the 

end node with the means node 

achieving it. 

2.  Decomposition defines what other 

elements need to be available or 

achieved in order to complete a task. 

3.  Contribution describes how elements contribute to each other. 

4.  Correlation is similar to contribution, with contribution not being direct, instead being a side-

effect. 

5.  Dependency denotes an intentional relationship between two actors. 

Figure 25 shows an example of a GRL model that uses decomposition structure for the “Assess Treatment” task 

using “Policy Manual” resource, “Verify Patient Policy” task, “Medically Assessed” goal, and “Fast TurnAround” 

softgoal, connected by the “AND” links [27]. 

GRL enables tracking why certain decisions were made, what alternatives were considered, what criteria and 

reasoning was used to arrive at the end decision. Operational details of the system are omitted, much like in UCM 

notation, and the focus is given to the "why" of behavioural and structural choices made.  [27] 

3.9.3. Integration of UCM and GRL 

[28] propose to combine the use case maps and GRL models during architectural design. The GRL language can 

be used for goal-oriented modeling and reasoning, and the UCM notation can be used to capture the design at each 

stage of development. Figure 26 illustrates how UCM and GRL work together in modeling [27]. 

First, GRL models are created, non-functional requirements and business goals are refined, and some concrete 

design decisions are obtained. These decisions are further expanded into UCM scenarios. Sometimes, it is difficult 

to capture highly abstract goals without going into further design detail. In such cases, UCM can be used to create 

scenarios for a hypothetical system, giving more insight into the finer details, and allowing setting more concrete 

goals. [28] 

Figure 25. GRL model of task decomposition (adapted from [27])
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Figure 26. Integration of goal-oriented and scenario-based modeling (adapted from [27]) 
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3.8. Dialog Flow Notation 

There are a number of domain-specific notations. Multiple domains are represented: from a particular product 

line (such as Koala notation for TV platform) to a particular interaction (such as Rapide for event-based systems). 

Dialog Flow Notation (DFN) is an example of another domain-specific notation, created by [29] for describing 

hypertext systems from interaction viewpoint. 

In DFN, a dialog step is a step that happens 

between the submission of a client request to the 

server and the client's receipt of the server 

response. A dialog sequence is comprised from 

multiple consecutive dialog steps. A dialog flow encompasses all possible dialog sequences for a given presentation 

channel of a given application. 

A particular dialog flow is modeled as a directed state-transition graph called dialog graph. States correspond to 

dialog elements, and transitions - to events. Dialog elements can send and receive multiple events. The notation is 

similar to the UML state diagram notation. An example of a dialog graph [30] is shown in Figure 27. 

Dialog elements can be either atomic, or modular. Atomic dialog elements are masks (hypertext pages) and 

application logic operations (actions). 

Modular elements (dialog modules) are 

higher-level elements encapsulating dialog 

graphs, allowing for representation of 

nested dialog structures. Every module has 

one entry point (triggered by initial event 

from a super-module) and one or more exit 

points (triggering terminal events that are 

propagated to the super-module). [29] 

mention that DFN provides additional 

constructs to specify more complex dialog 

structures. An example of a user 

authorization dialog module [29] is shown 

in Figure 28. 

DFN was designed to address the 

following differences between page-based 

applications for the Web and the traditional window-based desktop applications: 

Figure 27. Dialog graph (adapted from [30]) 

Figure 28. Dialog module (adapted from [29]) 
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1. In Web applications the amount of information presented to the user is restricted (by result set size, screen 

size, etc.), therefore different user interfaces and different interaction patterns are needed. 

2. Actions that do not require application logic involvement in window-based systems (such as closing a 

window), require it in page-based systems (when an application window is closed, a new page needs to be 

generated and loaded). 

3. Web applications interact via request-response mechanism, as opposed to being able to push data to the 

client, so they are passive in nature. 

4. Due to HTTP being stateless, the application itself has to manage the state of the dialog system. 

DFN omits information about server-side code generation, user interface widgets, or client-side scripting, as 

those may be related to a specific presentation channel, whereas the notation is not channel-specific. To specify 

channel-specific dialog flows, labels of the module diagrams are appended with a channel name. Figure 29 shows 

examples of HTML and WML presentation channels for the same module [29]. 

 
Figure 29. Separate HTML and WML presentation channel for the same module (adapted from [29])

DFN diagrams can be transformed into Dialog Flow Specification Language (DFSL). This transformation allows 

DFN models to serve as input to the dialog control implementation of applications. DFSL is an XML-based 

language whose elements are based on DFN elements. Dialog Control Framework (DCF) is a reusable framework 

based on the Model-View-Controller pattern that reads DFSL documents and facilitates development of flow control 

for multiple presentation channels. Figure 30 shows architecture of the DCF [29]. 

DCF provides flexibility, reusability, and maintainability due to strict separation of user interface, application 

logic, dialog flow specification, and dialog control logic. It allows for building applications targeted for different 

presentation channels while reusing the application logic. Developers have to provide classes that implement the 

actions, pages that implement dialog masks, DFSL documents, and channel servlets (if required) for additional 

presentation channels (HTML and WML channels are provided). [29] 
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Figure 30. Dialog Control Framework architecture (adapted from [29])  

One of the weaknesses of DSN is its granularity, which results in higher specification, implementation, and 

performance overhead. Another issue that was not addressed during DFN creation is ability to revisit previous masks 

without triggering actions, such as happens on pressing a browser's "back" button. [29]  

 

4. Discussion  

The many modeling notations presented above are not mutually exclusive, and one of them is not clearly 

superior to the others. Depending on the domain and architectural style of a system being modelled, there might be 

several appropriate notations from which to choose. In some cases, the choice is dictated by factors not based on the 

merits of a modeling notation itself. These can include such external drivers as corporate policies or culture, 

established processes and tools used within the organization, existing familiarity with a particular notation, whether 

a notation has been developed in-house, and so on. 

4.1. Choosing a notation 

Some notations are clearly outdated and not used since they have been explored in research literature. Darwin, 

Wright, and Rapide are examples of such notations. Others are strongly tied to a particular product line (such as 

Koala), a particular domain (such as Diagram Flow Notation for web-based applications, or AADL for critical real-

time applications), or a certain architectural style (such as Weaves that deals with object streams).  

Unless one finds oneself within one of the clearly-defined situations when a certain modeling notation is 

obviously the best (or the only) choice, it makes sense to focus on extensible and flexible notations that can adapt to 
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a variety of situations. Time spent learning a new notation is a significant factor, and so it would be logical to invest 

into a notation or a closely-related group of notations that can be used for modeling a variety of projects. 

One extensible notation discussed above is xADL. This notation claims to be highly flexible, domain-neutral, 

XML-based and thus easy to parse. However, it appears that there are multiple steps to learn and multiple tools to 

adopt to be able to work effectively with this notation. In addition, the notation has come from recent research and is 

not widely adopted.  Getting assistance, support, or tool updates might be difficult.  

Another extensible and flexible notation is UML. A variety of diagram types, entities, and relationships, as well 

as ability to extend the diagrams with annotations, makes it suitable for modeling varying applications in multiple 

domains. UML is not tied to an architectural style (although class and object diagrams have strong connection with 

object-oriented architectures) and thus can be used in many contexts.  

Due to UML being widely adopted, the number of tools that support modeling and code generation using UML 

is growing. Multiple Open Source and commercial applications allow modeling using UML graphical notation. One 

of the strengths of UML is the ability to express it in textual notation (as Umple language demonstrates), which 

allows for automated processing and code generation. However, transformations between UML models and code 

generated from those models are not yet widely supported. The Umple compiler allows for generation of PHP or 

Java code from the textually-encoded class diagrams. This functionality, however, is still in development, and at the 

time of this writing is limited to generating the code for classes, their attributes, and associations.  

In addition to UML, URN appears to be a useful notation, allowing one to work with the requirements to create 

goal-oriented models and use case maps to model application’s behaviour.  

Overall, at the time of this writing, UML seems like the most extensible and flexible notation, most widely 

adopted for a large variety of domains. It is supported by multiple available tools and user communities, and there 

are multiple books and tutorials available in print and on-line to facilitate learning of the UML notation. 

 

4.2. Extending UML 

Appendix A presents a comparison table between the notations presented above, across a variety of aspects. 

Natural language, Power-Point-style notation, and one-of-a-kind notations have been excluded from the table, being 

semantically-weak notations that cannot be automatically analyzed or generated. User Requirement Notation has 

been omitted as its purpose is to build on UML capabilities. 

UML is unique in providing multiple viewpoints, due to a variety of diagram types. Most other notations focus 

on a single viewpoint or a small number of them. It is not limited by a particular domain (unlike Wright, AADL, 
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DFN, or Koala) or a particular architectural style (unlike Weaves). It is also extensible (using stereotypes and 

profiles). The only other extensible notation discussed above is xADL. 

Darwin models can be expressed in pi-calculus, Wright models can be translated into Communicating Sequential 

Processes notation,  and AADL syntax is based on the Backus-Naur Form production rules. This connection with 

rigorous notations allows for automated processing and analysis of the models. UML, however, is not based on any 

mathematical notation, which limits the automated analysis capabilities of the models. This is a trade-off for UML 

flexibility and extensibility. 

Most notations listed in the table (except for DFN and Weaves) can be expressed textually, which makes them 

candidates for automated analysis. All of the languages have support for basic architectural concepts: components, 

connectors, interfaces, and configuration. 

However, a few languages have support for modeling non-functional aspects as well as rationale for architectural 

decisions. UML has a limited way of modeling non-functional aspects through textual annotations and stereotypes. 

Acme and ADML have a way to specify component properties that describe these aspects. Even though properties 

cannot be automatically analyzed, they can be captured for documentation purposes and to support future 

architectural decisions. UML could be extended in a similar way, for instance by specifying classes with non-

functional properties. Other classes that are to possess the properties could then extend the class where the properties 

are specified. 

UML supports modeling both static (class, object, package diagrams) and dynamic (state and activity diagrams) 

aspects of the architecture. However, when it comes to dynamic modeling, the support is tool-dependent and limited: 

very few systems tie into the UML model directly allowing “running” it and observing the run-time behaviour [1]. 

State diagrams and activity diagrams would be good candidates for dynamic models, as scenarios can be run in 

accordance with connections existing within these diagrams. 

Rapide simulations of running systems produce event graphs (see Figure 10). These graphs differ for multiple 

simulations of the same system, as events occur in different order. Having similar functionality for UML state 

diagrams would be of value, allowing for model testing through simulation. 

UML allows for modeling applications in multiple domains. However, there is no direct support for real-time 

deadlock-affected architectures. AADL notation allows for specification of time-critical properties which then can 

be used to model and test a system with precision, allowing for detailed simulation. This is a useful modeling 

functionality for embedded real-time systems where precision is important.  

To allow for support for critical system design in UML, state or activity diagrams could be extended, allowing 

for specification of connection properties (such as the time allowed for response or the frequency with which a 

certain message can be sent) and component properties (such as a possible size of a message). Such a highly-detailed 

model could then be run to simulate the system and discover deadlock-prone segments. 
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The last aspect of notation comparison is the tool support. UML is currently supported by multiple tools. 

However, most of them support either graphical modeling only, or both textual and graphical modeling with a weak 

connection (or no connection at all) between the two visualizations. Additionally, to provide possible extensions to 

UML described above (dynamic modeling, system simulations, non-functional aspect modeling), tools these 

extensions would have to be developed.  
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Appendix A 

Aspect Darwin Rapide Wright Koala Weaves AADL Acme ADML xADL UML DFN 

Visualizations Textual, 

graphical 

Textual, 

graphical 

Textual Textual, 

graphical 

Graphical Textual, 

graphical 

Textual Textual Textual, 

graphical 

Textual, 

graphical 

Graphical 

Components Components Interfaces Components Components Components Component 

type, category, 

implementation 

Components Components Components Classes, 

objects, 

components 

Masks 

Connectors Instantiation 

and binding 

Messages 

/events 

Connectors Instantiation 

and binding 

Queues Connections Connectors Connectors Connectors Associations Actions 

Interfaces Require/provide 

interfaces 

Same as 

components 

Ports and roles Require/provide 

interfaces 

Write/read 

ports 

Ports, buses Ports, roles Ports, roles Interfaces Interfaces Events 

Configurations Hierarchical 

composition 

Structures Configurations Hierarchical, 

with variation 

points 

Tool 

fragments 

Networks, 

processes, and 

more 

Systems Systems Links, 

general 

groups 

Diagrams Modules 

Non-functional 

aspects 

No support No support No support No support Implied by 

architectural 

style 

User-defined 

properties 

User-defined 

properties 

User-defined 

properties 

User-defined 

extensions 

Minimal,  

through 

annotations 

No support 

Static/dynamic 

aspects 

Static and 

dynamic 

Static and 

dynamic 

Static and 

dynamic 

Static Static Static and 

dynamic 

Static and 

dynamic 

Static and 

dynamic 

Static and 

dynamic 

Static and 

dynamic 

Dynamic 

Dynamic 

models 

No support No support No support Variation 

combinations 

Implied by 

static model 

No support Programmatic 

manipulation 

Programmatic 

manipulation 

Programmatic 

manipulation 

Tool-

dependent 

Presentation 

channels 

Domain Multiple Event/message 

based systems 

Safety-critical 

systems 

Consumer 

electronics 

Multiple, 

object 

streams 

Critical real-

time 

Multiple Multiple Multiple Multiple Web-based 

applications 

Tool support Darwin 

Framework 

Rapide toolset Wright toolset By Philips and 

Open Source 

Weaves 

toolset 

Multiple and 

growing 

AcmeStudio XML editors ArchEdit, 

Archipelago 

Multiple 

and growing 

Dialog Control 

Framework 

 


