
System Generation
for Time and Activity Management

Product Lines

Jenya Levin

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements

For the Master’s degree in Computer Science

Ottawa-Carleton Institute for Computer Science
University of Ottawa

Ottawa, Ontario, K1N 6N5
Canada

© Jenya Levin, Ottawa, Canada, 2009

 ii

TABLE OF CONTENTS

List of Figures and Tables ... iv
Glossary.. vii
Abstract ... viii
Chapter 1: Introduction .. 1

1.1. Motivation and Objectives... 1
1.2. Audience .. 3
1.3. Organization ... 4

Chapter 2: Modeling and Product Lines .. 6
2.1. Modeling Purpose and Notations .. 7
2.2. Unified Modeling Language ..11
2.3. The Umple Language..13
2.4. Product Families and Product Lines ..14

2.4.1. Definitions of Product Family/Line ...16
2.4.2. Issues in Product Family/Line Development17
2.4.3. Case Studies ..18
2.4.4. Product Generation ..23

2.5. Expressing Variabilities ..24
2.6. Selected Technologies ...31

Chapter 3: Case Studies ...33
3.1. Methodology ..33
3.2. Klok ..37
3.3. Leia ...39
3.4. Anuko Time Tracker ..50
3.5. TimeTrex ...53

Chapter 4: Product Line Derivation ...63
4.1. Product Line Derivation Notation and Methodology63

4.2.1. Product Line Derivation Notation ..65
4.2.2. Product Line Derivation Methodology ...66

4.2. TAM Product Line Derivation ...73
4.2.1. Integrating Klok Functionality into the Product Line73
4.2.2. Integrating Leia Functionality into the Product Line76
4.2.3. Integrating Anuko Time Tracker Functionality into
the Product Line ...83

4.2.4. Integrating TimeTrex Functionality into the Product Line...............87
4.3. Time and Activity Management Product Line Model93

Chapter 5: Contributions, Discussion and Future Work ..99
5.1. Contributions ...99
5.2. Discussion .. 101

5.2.1. Product Line Derivation Methodology Analysis 102
5.2.2. Methodology Improvements and Automation 105
5.2.3. Evaluation of the Chosen Technologies .. 106

 iii

5.2.4. Design of the TAM Product Line ... 107
5.3. Summary... 109
5.4. Future Work .. 110

Appendix A: Klok case study support materials ... 114
Appendix B: Leia case study support materials ... 126
Appendix C: Anuko Time Tracker case study support materials 128
Appendix D: TimeTrex case study support materials .. 132
Bibliography ... 134

 iv

LIST OF FIGURES AND TABLES

Table 1. Examples of an optional and an alternative variation point34
Figure 1. A requirements definition hierarchy (Kuusela et al., 2000)20
Figure 2. Examples of an optional and an alternative variation point30
Figure 3. Klok class diagram modeled from UI ...38
Figure 4. Klok architecture expressed in Umple ..39
Figure 5. Leia single task view screen ...40
Figure 6. Leia class diagram modeled from user interface ...42
Figure 7. Comparison between UI- and ERD-based class diagrams43
Figure 8. Leia class diagram modeled from the ERD with highlighted

clusters ..45
Figure 9. Leia reduced class diagram modeled from the ERD with

highlighted clusters, showing only the clusters related to time and
activity management ..49

Figure 10. Anuko Time Tracker UML class diagram modeled from the
ERD with highlighted clusters ...52

Figure 11. Anuko Time Tracker reduced UML class diagram modeled from
the ERD with highlighted clusters, showing only the clusters
related to time and activity management ...53

Figure 12. TimeTrex UML class diagram modeled from the user interface56
Figure 13. TimeTrex UML class diagram modeled from the ERD with

highlighted clusters ...57
Figure 14. TimeTrex cluster diagram modeled from the ERD58
Figure 15. TimeTrex reduced UML class diagram modeled from the ERD

with highlighted clusters, showing only the clusters related to
TAM..60

Figure 16. Partial product line with base case and Klok functionality – class
diagram ...74

Figure 17. Partial product line with base case and Klok functionality –
VML4Umple ...75

Figure 18. Partial product line with base case, Klok, and Leia functionality –
class diagram ..82

Figure 19. Partial product line with base case, Klok, Leia, and Anuko Time
Tracker functionality – class diagram ...86

Figure 20. Complete product line with base case, Klok, Leia, Anuko Time
Tracker, and TimeTrex functionality – class diagram94

Figure 21. Mandatory feature specification in the VML4Umple model95
Figure 22. Invocation of the base case system and the resulting Umple code96

 v

Figure 23. Invocation of the system based on Klok and the resulting Umple

code ...97
Figure 24. Klok timesheet screen ... 114
Figure 25. Klok use cases ... 114
Figure 26. Leia timesheet screen .. 126
Figure 27. Leia use cases (those grayed out are not relevant to time and

activity management) .. 127
Figure 28. Anuko Time Tracker time entry screen ... 128
Figure 29. Anuko Time Tracker use cases (those grayed out are not relevant

to time and activity management) .. 129
Figure 30. Anuko Time Tracker ERD (without foreign keys) 130
Figure 31. Anuko Time Tracker UML class diagram modeled from the

ERD ... 131
Figure 32. TimeTrex time entry screen ... 132
Figure 33. TimeTrex use cases (those grayed out are not relevant to time

and activity management) .. 133

 vi

GLOSSARY

Base case. The smallest unit of functionality that allows the system to
perform its primary function. In the case of time and activity management
systems, the base case allows the person to enter a comment describing the
activities they performed for a certain amount of time on a certain date.

Cluster. A group of classes that together provide particular functionality
(implement a particular group of features) for the application.

Common base. A group of clusters that is common to most applications
within a domain. In the case of time and activity management systems, the
common base includes clusters related to time entry, user management, task
management, company structure, and excludes payroll, accrual, invoice
generation, etc.

CRUD. Create, Read, Update, Delete – basic functions in data storage and
user interfaces.

ERD. Entity-relational diagram used to model relational data structures.

Feature. As used in this work, denotes a particular functional property of
an application. Features are documented via use cases. Classes addressing
closely-related features are grouped into functionality clusters. During the
system generation stage, each invoke() statement in the VML invocation file
corresponds to a feature.

Invocation file. File containing VML invoke() statements, each of which
corresponds to a feature. By parsing the invocation file, the VML4Umple
compiler generates code for each feature in the order listed.

Product line. Several products that have many common elements and a
few elements that differ from one to others.

TAM systems. Time and Activity Management systems – systems that deal
with time entry against activities, such as personal time management utilities
and business employee time tracking.

UI. User Interface – means by which the users interact with a system. Used
here to primarily denote graphical user interfaces.

UML. Unified Modeling Language, general-purpose modeling language
accompanied by graphical notation.

 vii

UMLet. Tool geared towards graphical UML modeling.

Umple. Textual modeling language based on UML.

VML. Variability Modelling Language, language for modeling
commonalities and variabilities in software product lines.

VML4Umple. Product line modeling language where VML is used for
hierarchical model of features, whereas Umple is used to model the actual
feature implementation.

 viii

ABSTRACT

This thesis investigates a product line derivation methodology to create a

variability model of a whole domain. From this variability model, we can

then use one-step code generation to create distinct products that meet

differing sets of requirements.

We derive a time and activity management (TAM) product line from four

existing systems using our methodology. We describe the product line using

the VML4Umple language we adopt by combining the strengths of VML

and Umple notations. From this we show how it is possible to generate any

number of Umple models of TAM systems, each with a different

combination of features. The results can be compiled to either Java or PHP,

allowing for rapid development of TAM systems.

1

CHAPTER 1

INTRODUCTION

1.1. Motivation and Objectives

Every business needs to track the time worked by employees. Many companies

that perform work for multiple clients need a more precise time tracking scheme

that captures the amount of time spent working on a particular project, so that

the corresponding client can then be billed accordingly. The time tracking needs

vary based on the nature of a business: what works well at a medical clinic or a

lawyer's office might not work at a software development company or a

university. Additionally, individuals need to manage time on personal projects, be

it paid work, study time, or errands.

The need of tracking time leads to development of time tracking applications. A

business can either buy an off-the-shelf application to track its employees' time,

pay a subscription fee to access a remotely-hosted application, or develop an in-

house system to address their needs. Many time tracking systems have sprung to

life – both commercial and open source, – similar in goals but differing in

implementation. As a result, unless a company can afford developing an

application in-house, they have to settle for one of the existing systems, which

might not fit their business model well. This leads to adjustments where a

company either has to modify its business processes to fit the time tracking tool,

2

or has to pay for customization of the tool to suit its needs. This in turn leads to

the existence of many versions of a tool, each slightly different from the others,

making maintenance a nightmare.

Based on the commonalities among the time tracking tools, as well as some

differences among them that address varying business needs, the time tracking

tool domain appears to be a good candidate for a product line. Once a product

line is created, an application suiting a particular set of business needs can be

rapidly developed from the common base. The product line can then be

expanded with new features if needed without having to re-develop the

functionality used in the existing systems.

This work addresses the following problems:

P1. The need to re-write systems from scratch within a domain where most

systems are similar.

P2. Difficulties maintaining multiple versions of the same system that have slight

differences.

P3. Inability of the current generation of product line tools to work in a way that

is model-driven.

Our objectives to combat those problems are:

3

O1. Generate a product line for a domain where most systems are similar. This

will remove the need to re-write systems from scratch (addressing P1) and

simplify maintenance (addressing P2).

O2. Find a combination of product line tools and notations that allows for

model-driven development (addressing P3).

O3. Attempt to derive a general methodology from the steps used to achieve O1

(allowing to solve P1 and P2 for multiple domains).

1.2. Audience

The TAM product line research is intended to make the rapid application

development possible in the time and activity management domain. Thus, the

target audience of this research includes the developers working on TAM

systems.

The product line approach, applicable in the TAM domain, can be applied in

other domains, in which case the methodology used in this research would be of

help. Someone might like to model a more specific case of TAM applications,

such as appointment-based time tracking used in clinics, or a course-based time

tracking used in universities. Domains other than time tracking might benefit

from a product line approach as well. In each case our methodology and

modeling language choices would serve as an example. The case studies are

4

extensively documented (Levin, 2009) with each modeling stage captured in UML

models as well as explained in text.

We also showcase the model-driven analysis using the Umple language, which has

compact syntax and powerful capabilities. It allows for the model and code

synchronization, as well as generation of object-oriented application code.

Developers or modelers interested in using Umple in their projects might find

our case studies useful.

1.3. Organization

In Chapter 2, we begin with an overview of purpose of software modeling, and

several modeling notations. Our focus is primarily on UML and Umple notations,

as they are used in our case studies. We also review the research on product

families and product lines, focusing on ways to express application variabilities.

Chapter 3 contains case studies of the four time and activity management

applications: Klok, Leia, Anuko Time Tracker, and TimeTrex. Klok is a free,

stand-alone, closed source application. Leia is a proprietary web-based

application, although we do have access to its database design and source code.

Anuko Time Tracker and TimeTrex are both open source web-based

applications. The case studies are extensively documented: all the models that

could not fit into this work can be viewed online (Levin, 2009).

5

In Chapter 4, we describe the methodology used to derive the time and activity

management product line, followed by the detailed step-by-step analysis of each

application's features and ways they are represented within the product line. At

the end of Chapter 4, we present the complete TAM product line together with

invocation examples for the time tracking applications. More examples can be

seen online (Levin, 2009).

Chapter 5 contains the summary and discussion of our findings, as well as

possible directions for future work.

There are four Appendices, each containing support materials for a particular

case study, including an application interface screenshot and use cases addressed

by the application. Additional support materials for the case studies can be

viewed online (Levin, 2009).

6

CHAPTER 2

MODELING AND PRODUCT LINES

In our research, we use architectural modeling to provide a high-level overview of

time and activity management systems. Modeling allows us to operate on a high

level of abstraction, so that we may compare varying systems while disregarding

implementation differences. Section 2.1 provides a brief discussion of concerns

that are addressed by our models and the details we have chosen to omit.

Time and activity management applications are similar in their data models, as

they all keep track of the same information. Thus we have chosen to use UML

class diagrams in our case studies to model and compare different applications. A

brief description of UML follows in Section 2.2.

UML, being primarily a graphical notation, is not well-suited for automated

model processing, analysis, and code generation. To address this, we have turned

to Umple – a textual language based on UML, allowing us to express class

diagrams as textual models. Umple is described in Section 2.3.

As we are looking at applications that exhibit certain similarities, while still having

a few differences among them, we have chosen to treat them as a product line of

7

time and activity management software. An overview of product lines and

product families is presented in Section 2.4.

There are multiple ways to express commonalities and variabilities among

products that comprise a product line. Section 2.5 contains a discussion of

existing methods, their advantages and shortcomings, focusing on VML – a

notation we chose to model the time and activity management product line.

Section 2.6 gives an overview of the technologies we selected for our research.

In this work, we analyze and model only the data structures of the applications.

This is done for simplicity. Our methodology, however, is not constrained to the

data layer. Umple (and thus VML4Umple) is capable of handling arbitrary Java

code, so it can theoretically be used for business logic. A more formal

representation of logic in state machines and constraints would be an

improvement, and is already under development. Automated UI generation from

Umple models is also in progress. Thus, our product line model allows for

generation of data structures and business logic.

2.1. Modeling Purpose and Notations

According to Taylor et al, “An architectural model is an artifact that captures

some or all of the design decisions that comprise a system’s architecture.

Architectural modeling is the reification and documentation of those design

decisions… An architectural modeling notation is a language or means of

8

capturing design decisions.”(Taylor et al., 2009) Additionally, some modeling

notations (for instance, UML) are used to capture requirements, functional

design, and data design. We have compiled a technical report on modeling

notations, which details a variety of Architecture Description Languages (ADLs).

Here we summarize our findings. For more detailed view, please see the report

itself at (Levin, 2009).

In the report, we have analyzed and compared the following modeling notations:

natural language; informal graphical styles; Unified Modeling Language (Booch et

al., 1999; Object Management Group, 2008); early Architecture Description

Languages – Darwin (Imperial College, 1997), Rapide (Luckham et al., 1995), and

Wright (Allen et al., 1997); domain-specific and style-specific Architecture

Description Languages – Koala (Ommering et al., 2000), Weaves (Gorlick et al.,

1991), and AADL (Feiler et al., 2006); extensible Architecture Description

Languages – Acme (Garlan et al., 1997), ADML (Spenser, 2000), and xADL

(Dashofy et al., 2005); User Requirements Notation (Weiss et al., 2005; University

of Toronto, 2000); and Dialog Flow Notation (Book et al., 2003; Book et al.,

2004).

One of the modeling notations covered in our report is especially interesting, as it

concerns architecture of a product family. Koala (Ommering et al., 2000)

language developed by Philips is used to describe the architecture of consumer

electronic devices. Koala models are closely tied to implementation and thus can

9

be automatically verified for correctness and completeness. Ideally, this is the

point at which we would like to arrive with modeling, implementing, and

verifying the systems belonging to the time and activity management product line.

Basic architectural concepts captured in the models are components, connectors,

interfaces, configurations, and rationale for architectural decisions. Architectures

may include static as well as dynamic aspects (those that change over time), and

modeling notations exist to capture both. Dynamic aspects can be modeled using

static models or dynamic models (those that visualize the behaviour of a running

system and are updated on-the-fly). Modeling in our case studies is concerned

with static aspects, as we are dealing with use cases and data representations of

the systems, neither of which changes at run-time.

Systems may include functional aspects (system’s functionality) and non-

functional aspects (constraints on what a system does). We focus on modeling

functional aspects, as we try to generalize behaviour of several systems.

A model can be associated with several visualizations, where each visualization is

a different way of representing the information organized by the model. Some

notations, like UML, have a canonical visualization. There are three types of

visualizations: textual, graphical, and hybrid. Textual visualizations are easily

accessible and editable; they can store the entirety of the model in one file; they

can be parsed, processed, and automated if their syntax is associated with a

10

particular meta-language. However, textual representations are linear and do not

work well for graph-like structure depiction. Graphical visualizations are best at

depicting spatial information, presenting additional information such as colours,

symbols, and other decorations, scrolling, zooming, showing and hiding elements,

and being directly manipulated with a mouse. However, they depend on costly

tools and cannot be directly used in automated processing. Hybrid visualizations

combine graphical and textual elements (such as UML with annotations in OCL

(Object Management Group, 2009)).

In our research, we use graphical visualizations to represent the time and activity

management systems during the modeling stage. This allows us to determine the

similarities and differences in models easily, based on visual models. At later

stages, to facilitate automated code generation, we convert the models from the

UML graphical visualization to the textual representation in Umple.

Modeling includes a trade-off between flexibility of being able to describe a

variety of systems and being able to utilize the semantically powerful features of

more strict notations for automating model manipulation. We focus on class

diagrams textually represented in Umple, since that allows us to automate code

generation.

The majority of models developed during our work are presented in UML, using

the UMLet (Auer et al., 2003) graphical modeling tool. To manipulate the models

11

textually, we use Umple (Forward et al., 2009), a text-based modeling language

that compiles to Java or PHP. We have written a converter in Java to transform

UMLet XML-based files to the Umple notation. To model the product line

variabilities and the invocation for the TAM applications, we used the Variability

Modelling Language (VML) (Loughran et al., 2008). The final product line model

is thus expressed in our adaptation of VML combined with Umple which we call

VML4Umple. To generate a particular system from the domain, we create a file

that uses VML invoke() statements to list the required features for the system.

The combination of the product line model and the invocation file can then be

processed by the VML4Umple compiler that can generate the application code

either in Umple, of in an object-oriented language. Currently Java and PHP code

generation is supported.

2.2. Unified Modeling Language

Unified Modeling Language (UML) brings together concepts from several earlier

notations: Booch diagrams (Booch, 1986), OMT (Rumbaugh et al., 1991), OOSE

(Jacobson et al., 1992), and Statecharts (Harel, 1987). It is an extensive notation

with multiple viewpoints, allowing for both static (class and use case diagrams)

and dynamic (activity and state diagrams) aspect modeling.

UML started as a design modeling language and as of UML 2.0 support has been

added for architectural modeling (Taylor et al., 2009). UML is supported by a

12

variety of open source and proprietary tools. In our research, we use an open-

source UML visualization tool called UMLet (Auer et al., 2003). It is available as a

stand-alone application as well as an Eclipse plug-in. The models are stored in a

notation that uses XML and can be exported to JPG, PDF, EPS, and SVG. In

the course of our research, we have also written an UMLet to Umple converter

for UML class diagrams, in Java.

UML has several advantages over other notations: there is a multitude of

constructs such as classes, associations, states and activities; multiple viewpoints

are supported; it allows for static and dynamic aspect modeling; and it is widely

adopted. Through a variety of viewpoints, UML can capture the information at

different levels of abstraction, thus aiding design and architecture stages of

development.

Details of UML semantics can be found in the UML specification (Object

Management Group, 2008), or the many books written about it (for instance,

(Lethbridge et al., 2005)). In our time and activity management application

research, we make use of UML class diagrams and use case diagrams, so below is

a short review of the elements involved.

In class diagrams, classes and relationships between them are key elements. A

Class describes a set of objects that share same operations, relationships,

attributes, and behaviour. A Class implements one or multiple interfaces. An

13

Association is a relationship that specifies a connection between objects, such as

aggregation, for instance (where a link is between a whole and its

parts). Generalization is a relationship where child objects (specialized

elements) can be substituted for the parent object (a generalized element).

In use case diagrams, actors, use cases available to them, and relationships

between the actors are involved. An Actor is a role played by a user or a system.

A Use case is an element that represents a set of actions available to a particular

actor. Actor generalizations are used to denote overlapping roles by extending

use cases available to another actor (Object Management Group, 2008).

2.3. The Umple Language

Umple (Forward et al., 2009) is a model-oriented language family based on

object-oriented language concepts. It has support for domain concepts such as

classes, attributes, associations with different multiplicities, and several software

patterns. State machine support is currently in the works as well. Umple tools are

available in IBM's Rational Software Modeler, and as an Eclipse plug-in. There is

also the Umple Online application (Forward, 2009a) that allows one to try out

Umple without the need to install any software.

We chose Umple based on several advantages it has over object-oriented

languages for implementation of our models. Umple produces significantly fewer

lines of code with higher readability, as compared to Java or PHP (Forward et al.,

14

2009). It can be generated directly from the data model of an application, as

Umple classes map to database tables, attributes to data fields, and associations to

key - foreign key relationships.

Code to manage associations and code to access and modify attributes with single

as well as multiple values is generated by the Umple compiler. Thus Umple takes

care of the boilerplate code, and the amount of hand-written code is minimized.

This in turn minimizes time spent in development and faults encountered during

implementation. Umple provides a concrete syntax for key elements of UML

class diagrams, thus being a natural choice to model an application's data objects.

Using Umple allows us to take the model-driven approach to the research. We

are able to adjust the models and quickly generate the corresponding data objects

by converting the UML graphical model created in the UMLet tool to Umple,

and compiling Umple code into either Java or PHP. Any small change in a model

can be easily propagated to the code base.

2.4. Product Families and Product Lines

In the global markets coarsely segmented by different cultural factors and

standards, some segments are too small to warrant independent product

development. For such segments, it makes sense to pursue a product family

approach, where assets can be reused across products created for different

segments. (Kuusela et al., 2000)

15

The need to design, implement, and maintain applications that have a set of

similar functions, but differ from each other based on platform, version, or target

audience, has given rise to research in product families, product lines, and process

families.

The notion of a program family was first mentioned by Parnas (Parnas, 1976). He

explored and contrasted the approaches to development of program family

applications.

Several works addressing the subject were published in 1996. For example,

Sutton et al. described product and process families, their properties, and

relationships between them (Sutton et al., 1996). Cugola et al. looked into

requirement definition for process languages (Cugola et al., 1996) based on the

work of Parnas (Parnas, 1976). Di Nitto et al. addressed the differences between

product families and product lines and identified areas of further research needed

(di Nitto et al., 1996).

The majority of the product line research described below deals with analyzing

the results of switching to product line development (Cugola et al., 1996; di Nitto

et al., 1996). The literature describes how the requirement definition,

documentation, organizational processes and development practices are affected

(Lutz, 1999; Schmid et al., 2000). Other researchers look into requirements

definition for product lines from the start (Kuusela et al., 2000; Ram et al., 1997).

16

There is also research that deals with modeling commonalities and variabilities

(Loughran et al., 2008; Ardis et al., 1999; Dhungana et al., 2009; Acher et al.,

2009; Metzger et al., 2007; Mietzner et al., 2009; Sánchez et al., 2009) and product

generation (Batory et al., 2002).

Our objective of creation a product line from several similar systems that come

from different sources and belong to the same domain is not addressed. We have

also not found any description of a generic product line derivation methodology.

We have built on the research of Sánchez et al. in adopting VML for our

VML4Umple notation for variability modeling (Sánchez et al., 2009).

2.4.1. Definitions of Product Family/Line

Sutton et al. described a product family as a collection of products similar in

some ways and systematically different in others, the emergence of which is

usually caused by one of the following: successive revisions of a single

application; versions of a single application for different platforms; or versions

with different sets of features (e.g. an “educational” versus a “professional”

version of the same software) (Sutton et al., 1996).

Di Nitto et al. addressed the lack of a common lexicon when talking about

product lines and families, and attempted to derive a definition incorporating

existing descriptions (di Nitto et al., 1996). They defined product family as a

17

"collection of software products based on the same set of assets" (requirements,

designs, software components), "but still having significant variations". In

contrast, product line was defined as a "collection of different software products,

each based on different assets", offering complementary features, designed to

jointly operate through integration and interoperation. An example of a product

family would be programs with the same features running on different platforms,

whereas an example of a product line would be an office suite that includes

separate applications: a text editor, a spreadsheet application, etc. - while sharing

common assets, such as the help system.

In subsequent parts of this work, we shall be using the term “product line” to

describe a group of applications having some commonalities as well as some

variabilities.

2.4.2. Issues in Product Family/Line Development

Di Nitto et al. touched upon several issues involved in development of product

line software (di Nitto et al., 1996). These include design for reuse, reuse of

existing components, configuration tracking, and maintenance of common assets.

Cugola et al. addressed the structure of the design process for a product family,

and concluded that process does not necessarily need to be modified to

accommodate product families, but it might be more important to follow in case

of product families (Cugola et al., 1996).

18

2.4.3. Case Studies

Ram et al. looked into issues that arise while developing software for the Nokia

Synfonet line of products (Ram et al., 1997). Requirements for it include being

configurable, distributed, embedded, real-time, dependable, as well as including

several optional levels of software and hardware fault tolerance and function

protection. The authors suggested that "architecting should start with specifying

the partition in different component domains along with a scheme for integration

and coordination of the parts". It should also include an explanation of how the

partition and its integration address the specified architectural concerns, such as

timeliness, capacity, availability, effective division of work, standards compliance,

existing parts utilization, or controlled propagation of change.

Lutz has focused on an interferometer (telescope) subsystem design (which was a

part of a product family), and the evaluation of this as a reusable component

(Lutz, 1999). Several stages of the case study are discussed: product family

definition, hazard analysis, and design evaluation.

They suggest that near-commonalities (features common among almost all

product family members) can be represented as variabilities. Product family

requirements need to anticipate both future feature additions and possible

reductions. Dependencies among options need to be represented. Ardis et al.

19

suggest writing such constraints as commonalities, where the commonality is the

required relationship between the parameters of variation (Ardis et al., 1999).

Most of the case studies mentioned above have focused on design of product

lines and evaluation of feasibility of product line development. They have also

focused on creating product lines either from the very beginning of product

development, or from multiple versions of the same system. None of them have

described a methodology to derive a product line from several different

applications in the same domain, which is a part of our objectives.

Lutz also has touched on the possibility of organizing the products into a

hierarchy where products at the same node share the same value for many

parameters of variability (Lutz, 1999). They note that it did not add any insight in

their application, but might be beneficial for larger product families.

At the end of Lutz’ study (Lutz, 1999), a review was conducted by an engineer

experienced in interferometers. It resulted in deletion of 9 out of 29

commonalities, increase of variabilities from 23 to 35, and modifications to 4

variabilities. Among the lessons learned, they mentioned thorough

documentation of variabilities as a safest course of action, even at the cost of

minimizing possible commonalities. Safe reuse largely depends on the underlying

assumption of commonalities being true.

20

Kuusela et al. introduced another hierarchy approach (Kuusela et al., 2000). They

proposed a definition hierarchy

where design objectives are defined

by other design objectives or design

decisions (see Figure 1 for an

example of a requirements definition

hierarchy). They are arranged into a

logical AND tree subject to the

following rules:

1) Child requirements define the

meaning of parent

requirements.

2) Top nodes represent

architectural drivers and quality attributes.

3) Edges represent refinement of design objectives and/or design decisions.

4) Each key architectural driver defines a sub-tree under the root node.

5) Parent nodes have higher priority than their child nodes.

6) Lowest priority is "irrelevant" - it represents design decisions or objectives

that do not belong to the description of the specific product.

Product families in this approach share most of the quality attributes, even

Figure 1. A requirements definition
hierarchy (Kuusela et al., 2000)

21

though their definitions can vary significantly among product family members.

This approach simplifies testing: if all sub-nodes pass their tests, the super node

can be assumed to pass the test as well. Requirements are more easily visualized

in a hierarchy than if they were to be explained through textual description.

Structuring helps resolving missing requirements and inconsistencies: by

reversing the tree, it can be determined whether the collection of the sub

requirements fully and unambiguously defines the super requirement. If that is

not the case, some requirement is missing and needs to be added. This process

must be repeated for every member of the product family.

The requirements-based hierarchical approach was of interest to us, since

isolating similar interdependent clusters of functionality in different systems is

similar in nature.

Another case study by Schmid et al. deals with introducing a software modeling

concept in a supermarket chain subsidiary company, founded to develop a family

of new merchandising information systems (Schmid et al., 2000). They attempted

to address the following documentation problems that frequently occur in

practice:

• Standard approaches to documentation do not fit real requirements;

• Documentation requirements may change over time and make old

documentation and processes obsolete;

22

• The entrance barrier to changing the documentation approach is high due to

re-documentation effort;

• There is a lack of time and expertise to devise a new approach.

Schmid et al. present QIP (Quality Improvement Paradigm) - an iterative, goal-

driven framework for the continuous improvement software development,

closed-loop process for planning, executing, evaluating improvements to software

development environments, and incorporating experience gained from

improvement efforts into future development (Schmid et al., 2000). Application

of QIP resulted in a brief start-up phase with improved documentation, and also

with ease of documentation reaching a reasonably good level. Training, trial

usage, active cooperation of the people involved, comprehensive examples, as

well as detailed guidance and support in the early stages were needed to

successfully complete the project.

A company switching from individual product development to development

based on a product line model will likely face the documentation issues described

in (Schmid et al., 2000). This might be a factor affecting adoption of our

methodology.

23

2.4.4. Product Generation

Batory et al. look at two classifications of software components: 1) object-

oriented: method, class, package; and 2) feature refinement (or layer): module

encapsulating a feature (Batory et al., 2002).

Refinements cross-cut classes. Layers (features) are building blocks of software;

facets are building blocks of layers. Facets are not classes - they arise when feature

refinements encompass more than an individual program or package.

Refinements can be broken down into gluons - elements arranged in regular ways

to form both facets and "atomic" elements.

Batory et al. introduce Origami - a model of gluons, revealing a mathematical

structure of software (Batory et al., 2002). It is based on GenVoca (Batory et al.,

1992) - a methodology and technology for generation of product lines from

feature refinements. Software is extended based on component additions and

removals. Origami can be scaled to generate product families as well as

standalone products.

GenVoca function (set of classes and class refinements) is applied to a GenVoca

constant (set of classes) - some classes are extended and some classes are added.

Class extensions encapsulate new data members, methods, and method overrides

of the parent class. Linear inheritance chains (or refinement chains) are

constructed by application of several functions to the constant, and in the

24

resulting application, only the bottom-most classes of the chains are instantiated,

as they implement all the roles assigned to them.

Layers are orthogonal to facets, so the relationship between them can be

expressed as a matrix, where each entry (gluon) lists the name of a module that is

implemented as a facet within a layer. If each row is a layer, each column is a

facet, and vice-versa.

GenVoca models are 1D - they are composed by the sets of constants and

functions. Gluon models are 2D, and can be n-dimensional. The Origami model

scales to n dimensions. Each new row in a matrix requires a gluon for every

existing column (or the identity function if no implementation is needed). The

same is true if a new column is added. An application is created by folding an

Origami matrix.

2.5. Expressing Variabilities

Dhungana et al. present an interesting perspective on variability (Dhungana et al.,

2009). They suggest similarity between software variability and genetic variability,

comparing individual species to natural product lines and individuals to products.

For these natural product lines, both commonalities and variabilities are coded in

genes, which can be “turned on” and “turned off”, corresponding to each feature

to be either present or absent in an individual. Reproduction is compared to

product instantiation, allowing for assignment of features to a particular

25

individual by binding the corresponding variation points. The primary difference

between the customization processes in nature versus that in software is the

presence of random aspects in nature, whereas software customization is

deterministic (Dhungana et al., 2009). Complex dependencies among features in

software (similarly to those among genes in biology) are common, making

arbitrary combinations of features (or genes) not viable.

To further explore the similarities between the product lines in software versus

those in nature, Dhungana et al. map the several other genetic concepts to those

of software development. Genotype (“the set of genes present in the DNA of an

organism” (Dhungana et al., 2009)) is compared to how variability in software is

implemented. Phenotype (the appearance of particular traits in an individual) is

compared to the characteristics of a software application visible to the user.

Alleles (“alternative forms of the same gene” (Dhungana et al., 2009)) are similar

to alternative forms of the same feature.

The work of Dhungana et al. is recent and largely exploratory, inviting the reader

to consider the similarities between software product lines and genetics

(Dhungana et al., 2009). Considering the success of genetic algorithms in other

areas of computer science (such as neural networks, for instance), this approach

seems promising.

26

Archer et al. explore variability expression in video surveillance domain (Acher et

al., 2009). They use feature models, one to describe tasks (domain variability) and

the other to describe software variability. The authors suggest applying modeling

techniques not only to software implementation, but to the specification of the

software features as well. To model the variabilities, they use the Feature-

Oriented Domain Analysis (FODA) method presented in (Kang et al., 1990)

which uses feature diagrams. Features in the diagram are organized by hierarchy,

with edges breaking the features down into sub-features. Each feature is

represented by a node on the tree and can be either mandatory or optional.

FODA also supports “requires" and “excludes” constraints, specifying

dependencies among features. The FORM method (an extension of FODA)

allows for additional kinds of constraints (Kang et al., 1998).

As Metzger points out, the FODA method focuses on “separating the

documentation of software variability from the base models” (Metzger et al., 2007)

(original emphasis).

Mietzner et al. look at the variability modeling in Software as a Service (SaaS)

applications (Mietzner et al., 2009). These applications can be hosted on the same

infrastructure for multiple tenants while being customizable to suit each tenant’s

needs. The authors distinguish two types of variability: external – that

“communicated to the customer of the product line” (Mietzner et al., 2009); and

internal – that “only visible to the developers of the product line” (Mietzner et al.,

27

2009). The language used by the authors is the OVM – Orthogonal Variability

Model language, presented in (Metzger et al., 2007). It includes variation points

and variants. Each variation point documents a variable item. Each variation

point can have several variants, which document “possible instances of a variable

item” (Mietzner et al., 2009). Both variation points and variants can be either

mandatory (they have to be bound) or optional. OVM also supports “requires"

and “excludes” constraints.

The authors are undecided on a formalism to use with their model diagrams,

suggesting several systems that are worth exploring, such as Object Constraint

Language (OCL (Object Management Group, 2009)). They are also looking into

transformation engines so that the rules can be executed (Mietzner et al., 2009).

Thus even though OVM operates with useful concepts, such as mandatory and

optional variation points and variants, there does not appear to be a

corresponding textual notation we can use in our models.

Sánchez et al. note that there are several modeling languages involved in product

line modeling: (a) a language to specify the variability of the product line; (b) a

language for modeling the assets (such as UML), and (c) a language directing the

composition of reusable assets (Sánchez et al., 2009). The goal, they state, is to

come up with a notation that can handle all the aspects of the software product

line modeling. Sánchez et al. use a Smart Home System to demonstrate the

28

capabilities of the Variability Modelling Langauge (VML) described in (Loughran

et al., 2008).

A VML model can include multiple Concerns. Each Concern deals with a

particular set of features (a particular cluster of functionality). In the case of time

and activity management systems, for instance, there are single-user and multi-

user systems (reflected by the User cluster). Thus one of the Concerns would deal

with the user-related data and the interaction between a time entry and a user.

Within each concern there could be multiple VariationPoints (either Optional - to

be optionally included, Parameter (the parameter determines the implementation

of a feature), or Alternative - one of the alternatives must be included). In our

model we do not use the Parameter VariationPoints, so we shall omit them in

further discussions. Alternative VariationPoints have multiple Variants within

them. A VariationPoint corresponds to a feature, while a Variant represents a

possible implementation of that feature. In the time and activity management

systems, for instance, the time can be entered as duration (e.g., 1 hour) – which

would correspond to Variant 1, or as a combination of start time and end time

(e.g., 10:00 to 11:00) – corresponding to Variant 2.

To derive a model for a particular system, a series of invoke statements is used.

Each statement can either invoke a single Variant within a particular Alternative

29

VariationPoint of a particular Concern (see (1) below); or invoke a single Optional

VariationPoint of a particular Concern (see (2) below).

1) invoke (ConcernA, VariationPointB, VariantC) - include the code from

VariantC of the Alternative VariationPointB in ConcernA.

2) invoke (ConcernA, VariationPointD) - include the code from the Optional

VariationPointD in ConcernA.

Figure 2 shows examples of an optional and an alternative variation point.

VML seems the most promising for the purpose of expressing variabilities in the

time and activity management product line. It is hierarchical, allowing for

modeling features belonging to different feature sets. Concerns map to clusters of

functionality (a set of related features), VariationPoints to features, and Variants

to feature implementations. VML also allows for modeling dependencies among

features. We have combined VML with Umple which is used to model the

reusable software assets. Umple allows us to define code in fragments, while the

compiler takes care of combining the fragments into class definitions. The Umple

compiler generates Java or PHP code directly from the Umple model.

The combination of VML and Umple allows us to describe the product line and

invoke specific features for a particular product, as well as generate the

corresponding object-oriented code directly from the product line model. We call

30

this combined language VML4Umple, following the naming convention

presented in (Sánchez et al., 2009).

.

Concern CTimeEntry{

 // time entry can have a rejection comment

 VariationPoint VPTimeEntryRejectedComment{

 Kind: Optional;

 class TimeEntry{

 String rejectedComment;

 }

 }

 // either duration or both start and end time are required

 VariationPoint VPEntryDuration{

 Kind: Alternative;

 Variant VDuration{

 class TimeEntry{

 Double duration;

 }

 }

 Variant VStartEndTime{

 class TimeEntry{

 Time startTime;

 Time endTime;

 }

 }

 }

}

Figure 2. Examples of an optional and an alternative variation point.

VML is still evolving and some of the syntax has changed since the papers on

which we base our work have been published. However, since the variability

elements that need modeling stay the same, our syntax can be adjusted once the

VML notation becomes stable. Our methodology and the results of our research,

however, should not be affected.

31

2.6. Selected Technologies

Modeling is key in software development, be it architectural modeling, software

specifications, or software asset modeling. Keeping models consistent with the

implementation is an important aspect of software documentation and

maintenance.

UML is an effective notation to model various aspects of a software system. We

are primarily interested in modeling use cases and data structures of the time and

activity management systems. UML is well-suited for both.

Furthermore, expressing our UML models in the Umple textual notation gives us

the ability to quickly edit the models and automate some stages of

implementation, such as generation of the application code.

Product lines allow for asset reuse. Developing products via product lines allows

for speedy development, incremental testing, and streamlined deployment. Thus

our intention of creating a product line for the time and activity management

applications should allow for efficient creation of customized time tracking

systems.

To model the TAM product line, we have adopted the VML4Umple notation – a

combination of VML control structures with the software assets modeled in

32

Umple. This allows us to express the product line and product invocations in

textual notation, providing means for automated product generation.

33

CHAPTER 3

CASE STUDIES

3.1. Methodology

To understand time and activity management applications and to see how they

could be considered cases of an abstract product family, we have conducted the

case studies described below. We have selected four applications: Klok - a small

one-person time tracking system; Leia and Anuko Time Tracker - two medium-

size multi-user applications; and TimeTrex - a large multi-user time and activity

management system. See Table 1 for the feature summary of the four

applications.

For each of the four applications that we have chosen for analysis, we followed a

number of steps, to make sure they are analyzed in a consistent manner. We had

access to the source code for three out of four applications: Leia, TimeTrex, and

Anuko Time Tracker. Klok – the simplest time tracking application we analyzed

– did not have the source code available.

34

Features and
characteristics

Klok
(McKeown,

2009)

Leia (Lixar I.T.
Inc., 2009)

Anuko
TimeTracker

(Anuko
International
Ltd., 2009)

TimeTrex
(TimeTrex
Payroll

Services, 2009)

License Free, closed-
source

Commercial,
closed-source

Open source Open source

Users Single-user Multi-user Multi-user Multi-user

Database
tables

2 55 16 99

Time Entry � � � �
Project � � � �
Task -- � � �

User -- � � �

Company -- � � �

Helper -- � � �

Pay Period -- �
-- �

Accrual -- -- -- �

Cron -- -- -- �

Department -- -- -- �

Help -- -- -- �

Hierarchy -- -- -- �

Holiday -- -- -- �

Message -- -- -- �

Pay Stub -- -- -- �

Policy -- -- -- �

Tax -- -- -- �

Table 1. Case study applications - summary and feature comparison

35

First, we created the class diagram for an application, based on its user interface

(UI). Secondly, if we had access to the database schema, we generated the Entity

Relationship Diagram (ERD) from it, and used the ERD to create another, more

accurate, class diagram for the application. Both diagrams were modeled using

the UMLet modeling tool (Auer et al., 2003). We analyzed the differences

between the class diagrams modeled from the UI and those modeled from the

ERD, to determine the reasons for the discrepancies (if there were any).

Thirdly, by looking at all four applications, we determined similar clusters of

functionality present in more than one application, and attempted to group

together classes related to the same cluster. Each cluster is a group of classes that

work together to provide a particular feature of a system. For instance, classes

related to project management, project review, project milestones, etc. are all

grouped into the Project cluster.

We modified the class diagrams by colour-coding separate clusters. To assist in

this step, use cases were created for each application, helping us isolate the

common usage patterns within the domain of time and activity management.

To simplify use cases, instead of creating separate use case for creation, updating,

listing, and deleting entities, we used a combined use case for CRUD (Create,

Read, Update, Delete) for a particular entity if the user type (actor) was allowed to

36

fully manage it. If the user type was only allowed to create an entity, the use case

was included only for the “Create” action.

To avoid confusion due to naming differences, for generalization purposes we

use the definitions of project, activity, and task as they appear in Leia: project is a

large unit of work done for a client (the organization or individual itself can be a

client as well); activity is a unit of work to support the main project work (such as

project management, human resource management, company meetings, etc.); and

task is the smallest unit of work that can belong to a project or an activity. All

three of these are commonly referred to as work items.

Fourthly, we looked at the clusters with functionality not directly related to time

tracking, such as overtime and accrual policies, payroll, currency management,

helper system information, invoicing, and so on. Classes related to these clusters

were then removed from the class diagrams, leaving only the classes that

represent the core functionality for time tracking.

At this stage, we compared the four resulting colour-coded class diagrams, to

determine the common elements as well as the variabilities between systems,

together with the constraints and dependencies among the system elements.

For each system, we translated the complete UML class diagram and the reduced

diagram with only the core classes into the Umple language (Forward et al., 2009),

using a helper script we wrote. We then compiled the Umple code generated

37

from the reduced diagram of the studied application, to produce skeleton time

tracking systems in Java and PHP.

Below are more detailed descriptions and highlights of the four case studies

described above: Klok (3.2), Leia (3.3), Anuko Time Tracker (3.4) and TimeTrex

(3.5). Some support materials for the case studies (application screenshots, class

diagrams, and use case diagrams) are included in Appendices A through D. The

complete set of support materials can be viewed online (Levin, 2009).

3.2. Klok

Klok (McKeown, 2009) is a single-user time-tracking application, aimed at

logging time for personal and professional projects. Klok keeps track of projects

and sub-projects, allowing explicit time allocation to them. It also provides a

timer that a user can manually start and stop to keep track of time spent working

on a particular project. Klok allows for view and export of weekly timesheets. It

also has functionality for viewing weekly, monthly, and project-based summary

reports.

We have modeled the structure of Klok by analyzing the user interface only, as

the source for the application is not available. As can be seen in Figure 3, Klok

consists of the Project class storing project name, related contact information,

work time estimate, archived status, and colour code. Projects can have zero or

more sub-projects.

38

The time entries are logged against a project. Because the application is simple,

there are only two clusters that can be isolated, each consisting of one class:

Project class belongs to the Project cluster, and TimeEntry class belongs to the

Time Entry cluster. Klok is the simplest system that we have analyzed. Time

entry is the central

functionality of

time tracking

applications,

keeping records of

dates and times

worked. Klok

expands the base

case of time

tracking by adding

the Project class, allowing the time entry against a particular project, thus making

logging and reporting more precise. Since even in personal time tracking multiple

projects are usually involved, both classes of the application would be essential

even for a single-user system (more so for a multi-user one). Thus for Klok the

cluster diagram was not further reduced.

 Figure 3. Klok class diagram modeled from UI

39

The Umple code resulting from the Klok class diagram is shown on Figure 4. To

view the Java and PHP code generated by the Umple compiler, please see

Appendix A.

class Project{

 String name;

 String contactName;

 String cotactEmailAddress;

 String contactPhoneNumber;

 Double hoursEstimate;

 String colourCode;

 Boolean archived;

}

class TimeEntry{

 Date date;

 Time startTime;

 Time endTime;

 Double duration;

 String comment;

}

association {

 0..1 Project parent <- * Project;

}

association {

 1 Project <- * TimeEntry;

}

 Figure 4. Klok architecture expressed in Umple

3.3. Leia

Leia is a multi-user application developed by Lixar I.T. (Lixar I.T. Inc., 2009),

allowing for several user types, each having different access permissions. There

are two main work entities in Leia: project (an item of work to be done for a

particular client) and activity (support work item, such as human resource

40

management, infrastructure management, time off, etc.). Smaller units of work –

tasks – can be created within projects and activities. Time can be logged against

tasks, or directly against a project or an activity.

Figure 5. Leia single task view screen

The use case diagram is included in Appendix B. Employees can create and

manage tasks, log time against tasks, projects, and activities, export timesheets,

and adjust their preferences. Payroll users can create and manage pay periods and

approve timesheets. Division managers can approve timesheets and run time

41

entry reports. Project managers can create and manage projects, assign project

roles, and approve time entry. Administrators can do all of the above, as well as

create service items, project codes, client and user accounts, grant access rights,

and run extensive reports.

First, we created a class diagram for Leia from the UI. To demonstrate this

approach, we include Figure 5 which shows a screenshot of the Leia single task

view screen. This screen includes a task’s name, description, priority, due date,

estimated hours, and status attributes. These correspond to the attributes of the

Task class. The associations of the Task class can be deduced from this

screenshot as well: a task is associated with an activity, with one or more users to

whom it is assigned, as well as with a user that created the task. This corresponds

to the associations between Task and Activity classes, and two associations

between Task and User classes. The other classes and associations were modeled

through similar analysis of the user interface screens.

 To see how accurate the class diagram created from the UI was, we then

generated the ERD (since we did have access to the database schema for Leia)

and created a more precise class diagram based on the ERD. There were several

differences between the two models. The UI-based model is shown in Figure 6,

the table discusses the differences between the UI- and the ERD- based models

can be seen on Figure 7. The ERD-based model is shown on Figure 8.

42

Figure 6. Leia class diagram modeled from user interface

43

Figure 7. Comparison between UI- and ERD-based class diagrams

Some of the classes have not been modeled due to locked conditional access to

the functionality they represent (such as ProjectReview and associated classes, as

they are only accessible to the Project Manager for a particular project). Some

44

other classes were not obvious from the UI (such as QBBillingCode which is a

supporting class to associate projects with those defined in QuickBooks

accounting software; or UserFilterSession that keeps track of user-defined filters).

Some classes have been modeled as associations (RoleGroupItem class is

represented in the diagram as an association between Role and RoleGroup).

Others have been modeled as attributes of the classes they described (such as

ProjectType being modeled as the attribute of the Project class).

Based on the use cases, we have isolated the following clusters within Leia

structure: Pay Period – payroll functionality, such as pay period management

and timesheet approval; Project – functionality dealing with projects, their

history, status, milestones, clients, user roles within a project, and project reviews;

Time Entry – everything that has to do with logging time against a work item;

Company – internal company project and activity codes, as well as their mapping

to QuickBooks codes; User – user management, user session filters, role groups

within the company (such as Project Manager, Developer, Graphic Designer),

roles, and division management; Task – small units of work against which time is

being logged, their status, history, attachments, and categories; and Helper

functionality – helper classes that deal with user permissions, error handling, and

other cross-cutting concerns. The colour-coded clusters are shown on Figure 8.

45

Figure 8. Leia class diagram modeled from the ERD with highlighted clusters

46

Compared with Klok, Leia is a more complex application. By looking at the two

together, we considered how we can reduce Leia to Klok without losing

functionality absolutely required for a time and activity management application.

To accomplish this, we started with the full class diagram that had clusters

highlighted in different colours, and one-by-one removed the classes deemed

unnecessary. The reduced diagram is shown on Figure 9. Below is the

explanation of the reasoning why the particular classes are to be removed.

First, we kept the Time Entry cluster as it is the essence of time-tracking

applications. Another cluster that has to be present is the Project one. However,

several classes within that cluster can be removed from the diagram without

affecting time and activity management functionality of Leia.

We chose to exclude the ProjectReview class and its associated classes, as this

functionality differs among companies and often takes place offline.

ProjectTechnology and its associated classes can also be removed, as it either can

be omitted (in case a company is not a technology company, or if the company

uses the same technology for all of its projects) or can be modeled as an

association of the Project class. ProjectURL can be modeled as an attribute of the

Project class. ProjectHistory and ProjectRoleHistory classes keep a log of changes

to the project and so are helper classes that can be left out of the model as

housekeeping functionality. This also applies to the classes in the Helper cluster

47

and the UserSessionFilter class, which have been removed from the diagram as

well.

Klok does not include user management, as it is a single-user application.

However, most time and activity management application include multiple users.

Usually there are at least two user types: Employee and Manager (which also

might be called Supervisor or Admin). Therefore, for Leia, we chose to leave in

the User cluster, including the Manager, UserRole, and UserRoleGroup classes.

The latter defines positions within the company and is also often present in time

and activity management systems.

Internal project and activity codes included in the Company cluster were also

removed as these are specific to this application. We did keep the Activity class

since it is central to activity management.

The Task cluster has been trimmed to remove WorkItemAttachment and

WorkItemNote that can be modeled as WorkItem attributes. TaskCategory has

been removed as it is a helper class that provides additional grouping. Other

companies might have other ways of grouping tasks, such as parent-child

relationships, for instance. TaskStatus can be modeled as a Task attribute. The

TaskHistory, WorkItemHistory, and WorkItemAssignment classes have been

removed based on the same reasoning as the ProjectHistory class.

48

We have removed the entire Pay Period cluster as it is specific to payroll

practices of a particular company. Some time and activity management

applications will not have payroll at all (personal or academic activity

management, for instance), others will have contractors invoicing the company at

irregular intervals. Therefore, the Pay Period cluster is not essential for the time

and activity management applications.

The resulting diagram contains five clusters: Time Entry, Project, Task,

Company, and User. Compared to the simplest application, such as Klok, we

have added user and company management. Project and task management can be

considered to be a part of the same module, where Project is a grouping

encompassing multiple other, smaller, projects – tasks. Klok has a similar

functionality by allowing for creation of child projects.

The reduced class diagram shown in Figure 9 contains fewer classes than the full

one, and so the Umple code generated from the reduced diagram is more

compact. From the Umple code we have generated Java and PHP classes for Leia

in a manner similar to Klok. The Umple, Java, and PHP code for Leia can be

viewed online (Levin, 2009).

49

Figure 9. Leia reduced class diagram modeled from the ERD with highlighted
clusters, showing only the clusters related to time and activity management

50

3.4. Anuko Time Tracker

Anuko Time Tracker (Anuko International Ltd., 2009) is a multi-user application

with two user types differing in access permissions: Employee and Manager.

Employee users can edit their profile, enter time, view and export their

timesheets. Manager users can do all an Employee user can do, as well as create

projects, tasks, users, clients, and export the timesheet data. The use case diagram

is included in Appendix C. This application is slightly more complex than Klok,

but simpler than Leia, due to fewer user types and use cases.

In Anuko Time Tracker, there are projects to designate a larger unit of work and

activities to represent smaller units of work. In the use case diagram, we kept to

the previously stated definition of work items, so activities are specified as tasks.

However, in the class diagrams, to keep consistent with the application’s ERD,

we kept the table names as class names. Therefore, the Activity class in the class

diagram maps to the “CRUD Task” use case in the use case diagram, because it

deals with creation and management of the smallest units of work within the

system.

We have modeled the full Anuko Time Tracker class diagram based on its ERD.

The ERD is included in Appendix C, and the class diagram is shown in Figure

10. As in the previous case studies, we have identified clusters within the class

diagram, to group the similar functionality. Once again, we colour-coded similar

51

clusters to those of Leia and Klok: Project – corresponding to projects and users

involved in them; Users – containing user information and preferences;

Company – containing company and client entities; Task – classes dealing with

“activities”; Time Entry – ActivityLog class; and Helper – TmpRef class used in

user creation, report filters, and system configuration data.

In the Anuko Time Tracker ERD, the client records are not connected to

particular projects, as they are in Leia. Therefore, instead of putting the Client

class into the Project cluster, as we did for Leia, it was put into the Company

cluster, together with other data defined for the company using the product.

After colour-coding the separate clusters, we once again went through the class

diagram removing classes that we deemed not necessary for time and activity

management applications. This included all the classes in the Helper cluster, as

well as the InvoiceHeader class needed only for specifying information related to

invoices, and thus not required.

52

Figure 10. Anuko Time Tracker UML class diagram modeled from the ERD with

highlighted clusters

All the other clusters were kept, arriving once more to the five core clusters:

Project, User, Company, Task, and Time Entry. The Anuko Time Tracker

reduced class diagrams with clusters highlighted is shown in Figure 11.

We have generated Umple code, and from it in Java and PHP for both full and

reduced versions of the class diagram. The code can be viewed at (Levin, 2009).

53

Figure 11. Anuko Time Tracker reduced UML class diagram modeled from the ERD
with highlighted clusters, showing only the clusters related to time and activity

management

3.5. TimeTrex

So far, we have looked at the very small application with minimum functionality

required for time tracking (Klok) and two medium-size applications (Leia and

Anuko Time Tracker) which also include user management, company

information, and at least two types of work items: projects and tasks. The fourth

test case (TimeTrex) deals with a large application, supported by 99 database

54

tables. Our goal was to see if we can isolate the same functionality clusters within

this large application and create from them an implementation with minimal

functionality that would still support time and activity management tasks.

TimeTrex (TimeTrex Payroll Services, 2009) is a multi-user system which

includes two user types: Employee and Administrator. The use case diagram is

included in Appendix D. Employee users can enter time, view and export their

timesheets, edit their profile and preferences, create and manage messages, and

create requests directed to managers. Administrator users can do everything

Employee users can, plus authorize, decline, and pass requests; create and manage

tasks, projects, users, clients, task and job groups, recurring and current

schedules, user access rights, company information, policy and payroll

information; create, manage, and export lookup data; and run administrative

reports.

We have created the TimeTrex class diagram based on the user interface. It

contains 21 classes, the attributes and associations for which we could deduce

from the UI. This diagram is shown in Figure 12.

TimeTrex is an Open Source application, so we were able to create a database

and generate the ERD from it. Unfortunately, since the TimeTrex MySQL

database uses an engine that does not support foreign keys, we had to determine

the associations between classes ourselves, based on database field names that

55

referred to other tables. In the case of Anuko Time Tracker we were faced with

the same issue; however, it did not hold us back significantly, due to the small

number of tables involved. For the TimeTrex database, the task was much more

complicated, because of the sheer size of the database and the number of

associations among entities. Several tables did not appear to exist in the database,

yet their IDs were referenced from other tables, and so we created classes for

those. In the class diagram, they are identified using the fuchsia colour (for those

classes that appear to deal with hierarchy of objects in the application) and gray

(for the rest of the objects referenced from other tables).

Once the class diagram was completed, we attempted to identify classes

belonging to common functionality clusters. We have categorized the classes into

17 clusters: Accrual – data on employee time accrual; Company – company and

branch information, company deductions, user count within the company;

Helper – authentication and station information, error handling, system log,

bread crumbs, user date totals, etc.; Cron – data used in running cron jobs;

Department – department information; Help – data used in the help system;

Hierarchy – object hierarchy data; Holiday – public holidays; Message –

messages passed between users; Pay Stub – pay stub entries, as well as current

and recurring amendments; Pay Period – payroll data; Policy – exception,

accrual, meal, overtime, premium, and absence policies; Project – job data

against which time is logged; Task – recurring and current schedules; Tax –

56

income tax forms and rates for Canada and USA; Time Entry – punch in/out

data; and User – identification, preferences, wages, status, and other data on

users within the system.

Figure 12. TimeTrex UML class diagram modeled from the user interface

57

The diagram with clusters highlighted is shown in Figure 13. Due to the

complexity of the application and the number of classes and associations, the

diagram is rather large, and so is not readable. We include it here for purposes of

illustration of the size and complexity of the TimeTrex system. A large version of

the diagram can be viewed online (Levin, 2009). To assist further discussion, we

are also including an abstracted diagram showing all 17 clusters and relations

between them, in Figure 14.

Figure 13. TimeTrex UML class diagram modeled from the ERD with highlighted
clusters

58

 For the large systems such as TimeTrex we could have created several smaller

UML package diagrams with defined interfaces. This would be useful if we were

to examine each cluster (or package) on its own and have a more clear view of

the interfaces among clusters. However, the huge numbers of associations (such

as those among TimeTrex classes) would potentially result in the package

diagrams being more complex than one large model, making it harder to view all

the relationships within the model and to see the big picture.

Figure 14. TimeTrex cluster diagram modeled from the ERD

We tried to be as granular as possible in our groupings, to allow for more flexible

analysis later. The UMLet tool we used to create the class diagrams and highlight

59

the clusters has a limited number of colours available, so we tried to keep to

those allowing for best readability.

Once the clusters were identified, our next step was to try reducing the diagram

to a smaller subset of classes that would allow us to generate a simple time and

activity management system from the same objects used in TimeTrex.

To reduce the diagram to a set of essential clusters, we started with removing the

entire clusters that did not provide necessary functionality. Accrual, Pay Period,

Pay Stub, and Tax clusters are all related to payroll; Policy, and Holiday

clusters deal with lookup and policy data. Cron, Hierarchy, and Help clusters

are used for UI generation and housekeeping scripts. Message cluster relate to

messages sent between users. All these clusters could be removed without

affecting the core functionality of a time and activity management system.

The Department cluster classes were moved into the Company cluster, as they

relate to organizational units within the company. Most of the Helper cluster

classes were removed. The only two that remained were UserDate and

UserDateTotal as they are involved in time entry. Both of these classes were

therefore moved into the Time Entry cluster.

There are 5 clusters remaining. The Project cluster contains Job and JobItem

classes, and Task cluster contains the Schedule class. All three classes are

involved in managing work items against which time can be logged.

60

Figure 15. TimeTrex reduced UML class diagram modeled from the ERD with

highlighted clusters, showing only the clusters related to TAM

61

Time logging happens against the job and the job item, whereas the schedule

separates work on the same job into separate time periods. This is why we have

separated the classes in such a manner, although other interpretations are

possible. The reduced cluster class diagram is shown in Figure 15.

We have kept Company and Branch classes in the Company cluster, and have

included with them the classes from the Department cluster. We have dropped

all the other company-related classes as they are either involved in housekeeping

or in payroll-related functionality.

In the User cluster, we have kept the classes that deal with user contact data,

identification, preferences, default settings and grouping, and the user role within

the company. The rest of the classes have been dropped, as they deal with

financial information and additional user data not essential for time and activity

management applications.

We retained the entire Time Entry cluster consisting of Punch and

PunchControl classes, and included with it the UserDate and UserDateTotal

from the Helper cluster, as discussed above.

After the reduction, we ended up with a diagram containing 18 classes grouped

into 5 clusters: Project, User, Company, Time Entry, and Task.

62

Based on the reduced class diagram for TimeTrex, we have created the

corresponding Umple code, and from it have generated Java and PHP classes for

a reduced time and activity management application. The code is available at

(Levin, 2009).

63

CHAPTER 4

PRODUCT LINE DERIVATION

4.1. Product Line Derivation Notation and Methodology

We have looked at four time and activity management applications – one small

one, two medium ones, and one large one. For each application, we were able to

identify clusters with similar functionality, reduce the application set of classes to

those required by a time and activity management system, and generate textual

UML models (using Umple) and source code (in Java and PHP) for the classes

and associations of each system.

It is clear that applications in the time and activity management domain have

certain similarities (the clusters we identified as common) and certain variabilities

(the different classes and associations within the clusters). Therefore, it should be

possible to express time and activity management application architecture as a

product line architecture. The main obstacle in this process is the difference in

design of these four systems: the same functionality is achieved using different

classes, attributes, and associations, making generalization difficult.

One possibility would be to encode variabilities in such a way that we could

generate the four systems precisely as they are in their reduced form. This would

64

be an interesting exercise but the resulting architecture would ultimately be

useless, as no other time and activity management system could be generated

from such a specification.

The second way would be to try reducing the four systems even further,

removing all but absolutely necessary classes and attributes. This still however,

would not solve the problem of generalizing the different ways of implementing

the same feature.

The third way would be to follow a bottom-up approach by starting with the

simplest case of time entry and building the other features upon it. This way we

would not be following precisely the naming convention of each of four systems

or the exact same attributes represented in each. The resulting generalization,

however, should allow us to generate a variety of time and activity management

systems based on a selection of required features. Among those, we should be

able to generate the four systems closely resembling our case study applications in

feature sets.

We have decided to follow the third approach, as it potentially results in the most

useful definition of the product line. The resulting model could then be further

extended to generate full-fledged time and activity management applications,

including accrual calculations, policies, and other modules we have removed

during the reduction process.

65

4.1.1. Product Line Derivation Notation

We shall use the following notation elements in the product line model building

below:

1. Application.Class (for instance, Klok.TimeEntry) to refer to a model of

Class in Application (class name and attributes);

2. Application.Class1 – Application.Class2 (for instance, Klok.TimeEntry –

Klok.Project) to refer to an association of Class1 and Class2 in

Application;

3. TAM.Class (for instance, TAM.TimeEntry) to refer to a model of Class in

the Time and Activity Management (TAM) product line;

4. TAM.Class1 – TAM.Class2 (for instance, TAM.TimeEntry –

TAM.Project) to refer to an association of Class1 and Class2 in the TAM

product line;

5. attribute (for instance, duration) to refer to a class attribute;

6. o:attribute – optional attribute (for instance, o:comment);

7. anm:attribute where n>0 denotes the alternative attribute index, and

m>0 denotes the option index within the nth alternative attribute (for

instance, a11:duration, a12:startTime, a12:endTime to

66

denote that either duration or a combination of startTime and

endTime are required).

4.1.2. Product line derivation methodology

 1. Select several systems from the domain and model each system in UML

When selecting the systems from which to derive your product line, several

things are important to keep in mind. Select systems that differ in size and

complexity. Otherwise you might miss essential features that arise only in large

systems or arrive to an overly complicated base case if you do not examine

smaller systems. It is good to have access to the database schema as it simplifies

the modeling. However, if you only go with open source software because you

can get access to the database schema, you might overlook features provided by

closed-source software, which might be essential to the domain. If you do not

have access to a copy of a closed-source application that you would like to

analyze, look into a possibility of using a trial version to analyze the user interface

and model the application features that way.

People applying our approach, particularly as it involves reverse engineering,

should be aware of possible licensing issues and contract violations (prohibitions

against reverse engineering). In our research we reverse engineered the systems

based on the available code, databases and UI, and did not copy any code from

the existing systems so we are not breaking copyright.

67

If you are modeling the system from the database, each table can become a class

and each field an attribute. If you have a database model that supports foreign

keys, the associations can be derived from those. If not, look for the references to

other table IDs as indications of relationships among tables. A database table

reflecting a many-to-many relationship among tables becomes a class in UML

model, associated to the classes that correspond to those tables.

If you do not have access to the system’s database, you can still try to model its

data structures based on its user interface. The resulting model might not reflect

the application’s data structures exactly, but it will capture the features supported

by the system.

2. Identify clusters of functionality

Look for groups of classes that together address a particular set of features (or a

module). For instance, in the TAM domain, all the classes with the project-related

data would be grouped into a Project cluster, whereas all those dealing with pay

period calculations would be grouped into a Pay Period cluster.

Some classes logically belong to more than one cluster. For instance, classes

related to user roles on projects relate to both User and Project clusters. Those

can be put into either cluster. In step (7) when you are building the model, you

will include these classes with that of the two clusters that you model last. For

instance, if you choose to model the User cluster first, you will include project

68

role classes and associations with the Project cluster. These classes will require

variation points and variants that model classes to which they are associated from

both Project and User clusters.

You can create a variability model without grouping classes into clusters.

However, it will make identifying related classes more difficult as you try to

determine which features are essential to your domain and which are peripheral.

The clusters can be quite big if there are many related classes. If that is the case,

see if the cluster you have identified is really addressing only one feature set that

cannot be broken down further. For example, in the TAM domain, classes related

to project reviews are as much project-related as the project milestone class.

However, time entries can be made against milestones, so project milestone class

is relevant to the time entry systems. Project reviews have more to do with

project management and thus are from a neighbouring domain. Therefore they

can either be separated into their own Project Review cluster and be removed in

step (3) or stay in the Project cluster and be removed in step (4).

3. Remove clusters that are not directly related to the domain, together

with the associations that connect them to the remaining classes.

Look for clusters that deal with additional features not essential to your domain.

These could be helper classes that are system- or platform- dependent and will

not be needed by all systems, or those that belong in the display layer. They can

69

also be features from the domains closely related to yours. For example, the

Accrual cluster in TimeTrex is related to accounting and is only relevant to time

entry if a company that uses the tool for time entry needs to tie the time entries

into their accrual policies. This cluster is thus not essential for the TAM domain

and can be removed.

Keep in mind that these clusters can later be added to the system if desired after

the essential features have been modeled. Removing them here allows you to

concentrate the modeling effort on those clusters that are essential to the system,

which can be hard with multiple associations and classes cluttering the model.

4. From the remaining clusters remove classes that are not directly related

to the domain, together with the associations that connect them to the

remaining classes.

The reasoning and the process are similar to step (3). Removing the unnecessary

classes here allows us to further simplify the model. If desired, they can later be

added to the product line.

5. Identify a base case for the domain.

Think of the smallest set of features that allows one to accomplish the main task

of a system within the domain. For example, for a TAM system, we need to be

able to track time spent each day on various activities. So, the minimal amount of

70

information we need to track is the date, the duration of time spent, and the

activity it is spent on (which can be achieved with a comment). Thus our base

case becomes a class with a date, duration, and comment.

The base case does not have to be present in each application. For example,

some systems will track all time entries against a project. Later, when we add a

project-related concern to the product family, comment will become part of one

of the variants within an alternative variation point, the other one being the time

logged against a project.

It might be possible that a domain does not have a single base case, as the task

can be accomplished by more than one set of features. In that case, identify each

set of features, so that you have multiple "base cases".

6. Model the base case in VML4Umple

If there is functionality that is required for all systems in the domain (a

commonality), include an invoke statement for the corresponding features in the

product family. For example, in the TAM domain, each time entry in the system

must include a date. Thus, invocation of this field becomes part of the product

line model.

In the case of more than one base case, we need to create an alternative variation

point where each such base case is a variant.

71

7. Build the product line from the base case up

For each of the applications, go through each cluster in the order of simpler

clusters to more complicated clusters with more associations.

1. If a cluster does not exist in product line, create a concern for it.

Otherwise, find a corresponding concern.

2. For each class in the cluster: if a class exists with the same or different

name that has similar functionality, find a corresponding class, renaming

it for clarity if desired.

3. For each attribute in the class, if it is not directly related to the domain (UI-

related, device-specific, etc.) skip the attribute, do not include it. Most

likely it needs to be a part of a different layer or of additional clusters.

4. For each attribute in the class, if the attribute exists - find a corresponding

attribute, renaming it for clarity if desired.

5. For each attribute in the class, if an attribute does not exist with a same or

different name that has similar functionality, create a variation point for

the class with the attribute. If the attribute is optional, make the variation

point optional, otherwise make the variation point alternative and create two

variants, one for each alternative.

72

6. For each attribute in the class, if the variation point depends on another

variant or variation point previously defined, use the "requires" keyword

to indicate the dependency

7. For each class, if a class is associated with others, add all the associations

to the classes that are already modeled. If a class is associated with

another class which has not yet been defined, make a note of the

association and when you model the corresponding class, include the

association.

You should now have a full product line based on the reduced systems you

derived in (4). If you now wish to include any of the classes or clusters you

discarded in steps (2) and (3), you can do so by following the process described in

(7). The difference is that you are now not building on the base case from (6), but

on all of the features you modeled in (7).

A similar process can perhaps be used to connect a VML4Umple product line

model for one domain (such as TAM) to a VML4Umple model of a

neighbouring domain (such as accounting). Theoretically, the two models can be

linked together by associations among related classes, similar to the way packages

are linked though interfaces.

To generate a full system from the product line you derived, create a VML invoke

file with an invoke statement for every feature you wish to include in the end

73

system. If you have an existing invoke statement that you have used before to

generate a system, you can adjust it to reflect the set of features required for the

new system, instead of writing an invoke file from scratch.

4.2. Product Line Derivation

The simplest possible case in time and activity management is entering time in a

spreadsheet-like fashion, with minimum information. This would include time

entry by a single user filling out the date, time duration, and comment for each

time entry. No tasks, projects, company or user information would be present.

Thus we shall take this scenario as our base case. All the required information can

be captured in a single class that we shall name TimeEntry, with three required

fields: date, duration, and comment.

4.2.1. Integrating Klok Functionality into the Product Line

Our simplest case study, Klok, is a step above the base case: it logs time against a

project. Thus in addition to our TimeEntry class, we now also have the Project

class connected to the TimeEntry by an optional association such that for each

TimeEntry instance there is a 0 or 1 project. In the case of the Klok.TimeEntry,

comment is optional, and startTime and endTime are used instead of

duration. So, we write it as a11:duration, a12:startTime,

a12:endTime.

74

Figure 16. Partial product line with base case and Klok functionality – class diagram

From Klok.Project, we add the name, o:hoursEstimate, and o:archived.

We leave out the attribute colourCode, as it is UI-related and not essential for

the model. For the remaining contact fields, we shall add another optional class

Client that will keep track of client-related data. Even though Klok does not have

a Client class, Anuko and Leia do, therefore we choose to isolate the client-

related data in a separate class. Each project can have 0 or 1 client associated with

it. We also keep the parent association between projects, as it is present in

multiple time and activity management systems.

The resulting small product line model is shown in Figure 16 and the

corresponding VML4Umple code – in Figure 17.

At this point, we have a small product line with a few optional and alternative

attributes, and optional classes. We can generate a time management system for

the base case as well as one with the functionality of Klok.

75

Concern CRequired{

 // base case - date is required for time entry

 VariationPoint VPTimeEntryDate{

 Kind: Optional;

 class TimeEntry{

 Date date;

 }

 }

}

invoke(CRequired, VPTimeEntryDate);

// either duration or both start and end time are required

Concern CTimeEntry{

 VariationPoint VPEntryDuration{

 Kind: Alternative;

 Variant VDuration{

 class TimeEntry{

 Double duration;

 }

 }

 Variant VStartEndTime{

 class TimeEntry{

 Time startTime;

 Time endTime;

 }

 }

 }

}

Concern CTimeEntryAgainstProject{

 // time can be entered against project or via a comment for each time entry

 VariationPoint VPEntryAgainstProject{

 Kind: Alternative;

 Variant VComment{

 class TimeEntry{

 String comment;

 }

 }

 Variant VProject{

 class Project{

 String name;

 }

 association {

 0..1 Project <- * TimeEntry;

 }

 association {

 0..1 Project parent <- * Project;

 }

 }

 }

 // project can optionally include estimate expressed in hours

 VariationPoint VPEstimate requires VPEntryAgainstProject(VProject){

 Kind: Optional;

 class Project{

 Double hoursEstimate;

 }

 }

 // project can optionally be set as archived

 VariationPoint VPArchive requires VPEntryAgainstProject(VProject){

 Kind: Optional;

 class Project{

 Boolean archived;

 }

 }

 // client information for a particular project can optionally be stored

 VariationPoint VPClient requires VPEntryAgainstProject(VProject){

76

 Kind: Optional;

 class Client{

 String name;

 }

 association {

 0..1 Client <- * Project;

 }

 }

 // client can optionally have an email address

 VariationPoint VPClientEmail requires VPClient{

 Kind: Optional;

 class Client{

 String emailAddress;

 }

 }

 // client can optionally have a phone number

 VariationPoint VPClientPhoneNumber requires VPClient{

 Kind: Optional;

 class Client{

 String phoneNumber;

 }

 }

}
Figure 17. Partial product line with base case and Klok functionality – VML4Umple

4.2.2. Integrating Leia Functionality into the Product Line

Now that we have a product line that incorporates the base case and the smallest

time entry system, we can extend it to include the functionality of a medium-size

application. Both Leia and Anuko are fit candidates. We picked Leia as we would

like to apply the terminology used in its model for Activities and Tasks. We will

then adopt the same terminology when incorporating Anuko functionality into

the product line.

We start from the product line derived in 4.2.1 and proceed by examining each

class, attribute, and association from the Leia model for inclusion into the

product line model.

77

Leia.WorkItemUserTime serves the same purpose as the TAM.TimeEntry. Date

and comment fields are already present in TAM.TimeEntry. The

durationMinutes attribute in Leia corresponds to the duration attribute in

the product line. We need to add two optional fields to TAM.TimeEntry:

exported and rejectedComment. These are used in timesheet submission

and approval process. Leia.TimeType and Leia.WorkItemUserTimeStatus

represent lookup tables. Both of these together with their associations to the

TimeEntry class will be added to the product line model as optional classes. We

will omit the orderNum attribute of Leia.TimeType as it is used for ordering

items during display, and is not directly relevant to the data model. We shall

rename the WorkItemUserTimeStatus class to TimeEntryStatus for consistency.

As in Leia the time entry type and status are required fields, both associations are

1 – *. To make the product line more flexible, however, we shall convert the

cardinality of both to 0..1 – *. The required fields can then be enforced in the

business logic layer if needed.

Another cluster which is already represented in the product line is the Project

cluster. Thus we will look at the Leia model of the Project cluster next.

TAM.Client already has a name attribute. We will add an optional slaLevel

attribute to it, which is used to keep track of a client’s level under the Service

Level Agreement (SLA). All the attributes of Leia.Project will be added to

TAM.Project as optional attributes with the exception of name, estimate, and

78

archived (as their equivalents already exist); preNews and postNews (as

those are preferences for whether to notify selected people of the project

beginning and end respectively, and are better managed through user email

preferences); and devEndDate and normEndDate (that stand for end of

development and end of normalization phases respectively). The last two

attributes are dependent on the internal process of a company that manages the

projects, and thus will only be relevant in a small subset of cases. Instead, we shall

add an endDate attribute that would signify the completion due date of a

project, to provide a process-independent counterpart to the startDate

attribute. We will also change the type of the hoursEstimate attribute of

TAM.Project to Double to accommodate the way it is used in Leia, and will

rename it to timeEstimate for flexibility.

Leia.Project is associated with three lookup classes: ProjectType, ProjectStatus,

and ProjectIntensity. In each of these we shall ignore the display-related

orderNum attribute. The cardinality of the associations is changed to 0..1 – * for

the most flexible product line definition.

Projects in Leia can be associated with several milestones. This is a common

functionality in project management applications, so we shall keep the

ProjectMilestone class with attributes name and releaseDate. The attribute

lastNotification is relevant to email preferences and is better managed

elsewhere in the application, so we will omit it.

79

The remaining class in Leia that we associated with the Project cluster is

ProjectUserRole. Since it requires the User cluster with both User and Role

classes present to be useful, we shall include it in variants related to the User

cluster, which are discussed later.

So far we have covered the TimeEntry and Project clusters present in both Klok

and Leia. The next cluster that appears in Leia is the Company cluster, containing

entities relevant to the internal company structure. In the case of Leia, the only

class in this cluster is Activity. As we noted before, we shall keep to the

terminology used in Leia for defining what constitutes a Task, Project, and

Activity. A Task is the smallest unit of work against which users can log time. A

Project is a larger unit of work done for a particular client. In cases where a single

user tracks their time spent working on personal projects, the user themselves can

be thought of as the client. A typical software project can have multiple

milestones. An Activity is a larger unit of support type of work. This includes

office and infrastructure work, project and team management, human relations

management, vacation and time off, company functions, and so on. Both Project

and Activity can be divided into multiple Tasks. For example, there can be a

“Deployment” task for a software project, or a “Recruitment” task for the

“Human Relations Management” activity.

Leia.Activity, Leia.Task, and Leia.Project all extend Leia.WorkItem. This is a

design choice made by the developers. We will not preserve it, to keep the classes

80

separate, so as not to create additional overhead if only one of them is used. Thus

the TAM.Activity class will have the following attributes: name, description,

and optional attribute archived. We shall omit the contactInfo and

percentageCompleted attributes, as they are deprecated in the newer

versions of Leia due to lack of use. Just like time can be logged against a project,

it can also be logged against an activity, so we will create the 0..1 Activity ← *

TimeEntry association.

Leia Task cluster contains Leia.WorkItem, Leia.Task, and Leia.TaskUser. The

latter is used to keep track of assignments of tasks to users and requires the User

cluster. Thus we shall include it in variants related to the User cluster, which are

discussed later.

Following the discussion regarding the Activity class, we shall omit the WorkItem

class from the Task cluster for similar reasons. The TAM.Task class will include

Leia.WorkItem attributes name and description, as well as optional attributes

priority, dueDate, and estimatedTime (as a more generic version of the

estimatedMinutes attribute).

TAM.Task can be associated with TAM.Activity, TAM.ProjectMilestone, or

directly with TAM.Project. Also, time can be entered against a task. Thus we have

4 classes potentially associated with TAM.Task.

81

The last remaining cluster to add to the product line is the User cluster. It is

optional, as systems can be either multi-user or single-user. We shall keep the

following attributes from Leia.User: firstName, lastName, username,

password, isActive. The attributes email, extension (renamed to

phoneExtension), hostName, and lastLogin will be added as optional. We

shall omit the attributes receiveTaskResolvedEmail and

paginationPreference, as they are better related to user preferences, and

not directly to the user. We will also omit quickbooksName, as it is closely tied

to a particular payroll implementation.

TAM.User is connected to all the other clusters. The TimeEntry cluster is

connected by an association between TAM.User and TAM.TimeEntry (a time

entry is logged by a particular user). The Task cluster is connected through

TAM.TaskUser (a task can be assigned to a particular user). The Activity cluster is

connected by an association between TAM.User and TAM.Activity (in Leia, each

activity has assigned to it a user that approves the time entries against that activity

– we will call that person that activity’s manager). The Project cluster is connected

through the ProjectUserRole class to both TAM.User and TAM.Role (a user can

have one or more roles in a project). For the latter, we have to include the Role,

RoleGroupItem, and RoleGroup classes. Even in a system where each project

has only one role, a user can be assigned to the project by being assigned to that

role. For TAM.Role we will omit note, sequence, and hidden attributes (as

82

they are related to the UI), and keep the attributes name, description, and

multi (whether more than one person can be assigned to a role), which we will

rename to multipleUsersAllowed.

Figure 18. Partial product line with base case, Klok, and Leia functionality – class
diagram

The remaining two classes in the Leia model are UserManager and Manager.

Manager class designates a user as a manager of a particular team, whereas

UserManager maps users to their managers. This arrangement is counter-

83

intuitive. It would make more sense to have a Department class that keeps track

of specific department information including the department’s manager user, and

a class mapping users to a particular department. TimeTrex has a concept of a

Department that appears to be applicable. Thus we shall keep this functionality

out of the product line until we examine TimeTrex to see if there is a way to

define departments and managers in a more scalable and flexible way.

This concludes the integration of Leia classes into the TAM product line. So far

we should be able to produce systems that closely resemble the base case, Klok,

and Leia. The resulting model is shown on Figure 18.

4.2.3. Integrating Anuko Time Tracker Functionality into the Product

Line

To integrate the Anuko Time Tracker classes into the product line, we start with

the ActivityLog class. It serves the same purpose as the TAM.TimeEntry class.

We shall add the following attributes as optional: timestamp, proof, charge,

and billable. As the last three appear to be flags, we will change their type

from Int to Boolean. Anuko.ActivityLog is connected to the Project, Activity,

and User clusters. Since these connections already exist in our product line

model, there is no need to add them.

84

The Anuko.Project class has the name and timestamp attributes. We shall add

the latter to TAM.Project as an optional attribute, renamed to lastModified

for clarity. Anuko.ProjectStatus contains the hidden attribute that appears to be

used for display purposes. Therefore we shall omit it. The name attribute is

already represented in TAM.ProjectStatus. Anuko.UserBind keeps track of

assignment of a user to a project. In the product line model, this role is played by

TAM.ProjectUserRole. We shall add the optional attribute rate used in

Anuko.UserBind to TAM.ProjectUserRole.

Task cluster in the Anuko Time Tracker is represented by three classes: Activity,

ActivityBind, and ActivityStatus. Anuko.Activity is similar to TAM.Task (we shall

add the optional attribute timestamp to TAM.Task, renamed to

lastModified for clarify). Anuko.ActivityBind functionality is presented in

TAM.TaskUser (we shall add the optional attribute rate to TAM.TaskUser). We

shall add TAM.TaskStatus and include the Anuko.ActivityStatus name attribute,

omitting the hidden attribute as we did for TAM.ProjectStatus before. In

Anuko Time Tracker, an Activity can have a manager, so we shall include a

corresponding optional association between TAM.Task and TAM.User.

The Company cluster in Anuko Time Tracker includes two classes: Client and

Company. Client appears to be a look-up class not connected to other classes by

associations. In our product line, client is connected to a project and thus belongs

to the Project cluster. We shall keep that as a reasonable assumption: after all, if a

85

client is being invoiced, some work has been performed for them, which means a

corresponding project must exist. TAM.Client already keeps track of the client’s

name. The rest of the attributes from Anuko.Client will be added to TAM.Client

as optional fields, with the exception of fSubtotals (as it appears to be

display-related) and addrYour (as it appears to stand for the company’s address

and is better represented in the Company class). We will rename addrCust to

address for clarity, and will use it to represent the client’s address.

In Anuko Time Tracker users belong to a company. Leia was designed to be used

by a single company, so our model up to now associated users with an implicit

company. However, even in case of a single company it might be useful to keep

company-centric information in the system, such as company name for branding,

address for invoice generation, or company’s web site URL for reference. Thus

we shall include the Company class into our product line connecting it to the

TAM.User class by an optional association. We will keep the name attribute, www

(renamed to url), address (formerly addrYour from Anuko.Client),

currency, and locktime. All the attributes except for the name will be

optional.

The Anuko TimeTraker User cluster contains User and UserStatus classes. We

will add the UserStatus class to the product line omitting the hidden attribute as

we did before for the ProjectStatus and TaskStatus. From Anuko.User we will

keep level, rate, language, and timestamp (renamed to

86

lastModified). The attributes showPie and pieMode appear to be display-

related, so they are omitted. The attribute language will be used to mean the

primary language used to interact with a user in the workplace, as opposed to the

user interface language preference that will be addressed when we look at user

preference representation in TimeTrex.

Figure 19. Partial product line with base case, Klok, Leia, and Anuko Time Tracker
functionality – class diagram

The attribute comanager is related to the management hierarchy within the

company. We shall deter its inclusion until we examine the TimeTrex company

87

structure model, as it is the most complex one. For the same reason we shall omit

the manager reflexive association on the User class.

At this point, we have specified a product line model, from which systems closely

resembling the base case, Klok, Leia, and Anuko Time Tracker can be generated.

Figure 19 shows the corresponding model of the product line.

4.2.4. Integrating TimeTrex Functionality into the Product Line

Due to the large number of classes in the original TimeTrex system and the large

number of associations among them, in the reduced TimeTrex system almost

every class has a large number of associations to other classes. In order to more

effectively generalize the TAM product line model, we shall drop many of these

associations and re-connect the classes in a more logical manner, allowing for a

more scalable design.

The Project cluster in TimeTrex incorporates two classes: Job and JobItem. Each

time entry is logged against both the Job and the JobItem, and there is no

apparent relationship between these two classes, so it seems logical to combine

them into one class, against which the time is logged. The only field of this class

is name, and so the logical choice for its equivalent in the TAM product line

model would be TAM.Project. Since we already have associations between

88

TAM.TimeEntry and TAM.Project, there is no need to create an additional class

or extra associations in the product line model.

The Task cluster in TimeTrex is represented by one class – TimeTrex.Schedule,

with attributes startTime, endTime, and totalTime. TimeTrex connects

this class with TimeTrex.Job class in a way similar to how TAM.Task is

connected to TAM.Project. We shall add startTime and endTime as optional

attributes to the TAM.Task class to indicate the planned start and end time of a

task. The totalTime attribute is equivalent to the estimatedTime attribute

in TAM.Task, so we shall omit it. TimeTrex.Task is connected to the User

module via the TimeTrex.UserDate class, which is equivalent to the TAM.Task –

TAM.TaskUser association. TimeTrex.Task is also connected to

TimeTrex.Branch and TimeTrex.Department classes from the Company cluster.

We shall return to these associations later when we are examining the Company

cluster of the TimeTrex system.

The time entry in TimeTrex is performed with “punch in” / “punch out” actions.

An employee uses a particular device to indicate the time they start and end a

particular job, thus creating time entry records of an equivalent duration on a

given date against a particular job. In addition to entering the time by hand, a

wide variety of hardware “punch” devices is supported: fingerprint readers,

phones, cell phones, proximity card readers, etc. The TimeTrex.PunchControl

class appears to deal with the hardware sampling of the “punches” entered

89

(stored by TimeTrex.Punch) and determining quantity of “good” (legitimate)

entries in the total number of entries. To abstract from the implementation

details, we shall only use the TimeTrex.Punch class and assume that a provided

punch is legitimate. The controller then can be programmed in a way suiting a

particular application, without enforcing a specific data model. TimeTrex.Punch

attributes originalTimestamp, actualTimeStamp, transfer (as

optional), longitude, and latitude will be included in TAM.Punch. We shall

also add the Boolean attribute direction, to distinguish between “in” and

“out” punches. TAM.TimeEntry will be connected with the TAM.Punch class by

an optional association, where each time entry can be associated with multiple

punches. The punch timestamp fields would tell the story of when the work on

the task started and ended.

Two other classes within the TimeTrex TimeEntry cluster are UserDate and

UserDateTotal, both of which are connected to TimeTrex.PunchControl.

TAM.TimeEntry already includes the time entry date, start, end, and total time.

Attributes quantity, badQuantity, and actualTotalTime in the

TimeTrex.UserDateTotal class seem to depend on the punch controller

implementation, so we shall omit them. The override flag shall be added to the

Punch class as an optional attribute, to mark whether the punched-in time entry

has been overridden.

90

The Company cluster is quite extensive in the TimeTrex system. A company can

contain multiple departments and branches. We shall add the following classes to

the TAM product line: Department (including the name attribute), Branch

(name, address, city, province, country, postalCode, phoneNumber,

and faxNumber), DepartmentBranch class to represent the many-to-many

association between the two, and DepartmentBranchUser to represent the ability

of an employee to belong to several departments in different branches, allowing

for organizational flexibility. Additional fields from TimeTrex.Company shall be

added to TAM.Company as optional attributes: shortName, city, province,

country, postalCode, phoneNumber, faxNumber, businessNumber,

adminContact, billingContact, supportContact. We shall omit

originatorID, dataCenterID, and enableSecondLastName, as the first

two appear to be related to business logic, and the last one – to

internationalization.

A parent reflexive association shall be added to TAM.Company. Associations

between TAM.Company and TAM.Department as well as TAM.Company and

TAM.Branch shall also be added. TAM.User will optionally be associated with a

company, or with a branch within a company, or with a department within a

company, or with a combination of a branch and department. A department can

potentially have sub-divisions, so we shall add a parent reflexive association to

TAM.Department. Each department can be associated with one user in the

91

manager role. This will allow us to model the organizational structure of

companies with multiple branches, each containing a hierarchy of departments,

each of which has a manager (with one person being able to perform manager

roles for multiple departments). For example, if a company has two branches in

two different cities, and each branch has a Development and a Business

department, where a Development department contains several development

teams, each team might have a separate team leader (manager) and each

department can have a manager as well. A wide variety of organizational

structures can thus be accommodated.

In the TAM product line, a user can be assigned to any task, project, or activity,

and can log time against any project, task, or activity. Any restrictions to this

arrangement based on the organizational structure can be enforced by business

logic. This approach allows us to avoid a complicated network of optional and

alternative dependencies between classes at the data model level.

The last remaining cluster in TimeTrex is the User cluster. It consists of several

classes: User, UserTitle (within a company), UserGroup (within a company),

UserIdentification, UserPreference, and UserDefault. We shall omit UserDefault,

as it can potentially be associated with Department, Branch, Company,

DepartmentBranchUser, or UserTitle, depending on the company structure. It

primarily has to do with the initial display settings and newly-created users,

contributing to usability, so we shall omit it in the data model. We shall keep the

92

UserGroup class as it allows for additional grouping of users within a company

(albeit a user can only belong to one user group), and UserTitle class. We already

have a role-based system for user roles within the projects, but that does not

include user roles within the company. As TAM.User already exists, we need only

to add more optional attributes to it from TimeTrex.User: phoneID,

phonePassword, middleName, sex (instead of sexID as that would require

a look-up table), address, city, province, country, postalCode,

workPhoneNumber, homePhoneNumber, mobilePhoneNumber,

faxNumber, homeEmail, workEmail (we’ll rename email for clarity),

birthDate, hireDate, socialInsuranceNumber (instead of sin),

employeeNumber, note, and terminationDate.

The following attributes shall be omitted. The attributes passwordResetKey

and passwordResetDate are dependent on the authentication system;

iButtonID only applies when iButton device is used to punch in time;

labourStandardIndustry is related to labour policies; rfID and

rfIDUpdateDate only apply when RFID is used to punch in time; otherId

attributes are placeholder fields; and fingerprint-related attributes are only

relevant when fingerprint readers are used.

We shall omit the UserIdentification table as it appears to be implementation-

dependent. We already have a way to keep track of the last time a user logged into

the system through the TAM.User lastLogin attribute.

93

We will keep the UserPreference table while omitting the following fields:

enableEmailNotificationException, enableEmailNotification

Message, enableEmailNotificationHome, and timesheetView, as

they are application-dependent. The other preferences have to do with date and

time format, time zone, user interface language, and number of items displayed

per page, which are relevant in a large variety of applications.

The resulting product line model is displayed on Figure 20. The corresponding

VML4Umple code is not included here as it is rather long. The complete product

line VML4Umple model contains annotations for each feature, listing from

which of the case study systems it originated. It is available at (Levin, 2009).

4.3. Time and Activity Management Product Line Model

To be able to work with the product line expressed in VML4Umple, a parser had

to be created to process the VML4Umple code for the product line together with

the invoke statements and output the Umple code for the resulting system. A.

Forward has extended the current Umple compiler implementation to allow for

this functionality. He created a command-line tool that given the product line

VML4Umple file, the invocation file for a desired system, and the name for the

resulting Umple file, generates the Umple code for the application with specified

features.

94

Figure 20. Complete product line with base case, Klok, Leia, Anuko Time Tracker,
and TimeTrex functionality – class diagram

95

The Umple code thus created can then be piped into the Umple compiler to

generate the Java or PHP implementation of the particular system. An online

implementation also exists for demonstration purposes – by pasting the product

line code followed by the invocation code into the text field at (Forward, 2009b),

the corresponding Umple, Java, or PHP code can be generated. Further in this

work an example of a system’s invocation is provided.

Due to VML not explicitly addressing the expression of commonalities, we had

to make an adjustment to the product line family VML4Umple code, to be able

to specify the single mandatory feature for all of the time and activity

management systems. All the TAM systems must have a date attribute in the

TimeEntry class. VML does not allow for “mandatory” variation points, and so

we specified this variation point as “optional”, immediately followed it by its

invocation within the product line specification itself, instead of including it in all

the invocation files. See Figure 21 for the corresponding VML4Umple code.

Concern CRequired{

 VariationPoint VPTimeEntryDate{

 Kind: Optional;

 class TimeEntry{

 Date date;

 }

 }

}

invoke(CRequired, VPTimeEntryDate);

Figure 21. Mandatory feature specification in the VML4Umple model.

96

Once the product line is expressed in VML4Umple, each system can be

generated by the following steps:

1) Create an invocation file by writing a series of invoke statements to build the

system’s features. See Figure 22 for the invocation of a base case system (time

can be logged against a particular date, with a particular duration and a comment

to note what the time was spent on). See Figure 23 for the invocation of a system

that has features similar to those of the Klok system. The other case study

systems require more extensive invocation and so the code is too long to be

included here. It can be viewed in the case study materials listed online (Levin,

2009).

// Base case invocation in VML

// Time Entry

// log time duration

invoke(CTimeEntry, VPEntryDuration, VDuration);

// log time entry comments

invoke(CTimeEntryAgainstProject, VPEntryAgainstProject, VComment);

// Umple code for the base case system

class TimeEntry{

 Date date;

}

class TimeEntry{

 Double duration;

}

class TimeEntry{

 String comment;

}

Figure 22. Invocation of the base case system and the resulting Umple code.

2) Using the VML parser (Forward, 2009b), compile the product line VML

97

model together with the invocation file created in (1). The parser outputs a series

of Umple statements.

3) Run the Umple code output by the parser through the Umple compiler, which

generates the code for the desired system (at this time, in either Java or PHP).

// Invocation of a system similar to Klok

// Time Entry

// log time start and end times

invoke(CTimeEntry, VPEntryDuration, VStartEndTime);

// Project

// enter time against projects (client-related work items)

invoke(CTimeEntryAgainstProject, VPEntryAgainstProject, VProject);

// store optional comments for time entries

invoke(CTimeEntryAgainstProject, VPTimeEntryComment);

// allow projects to have parent projects

invoke(CTimeEntryAgainstProject, VPProjectParent);

// store project time estimates

invoke(CTimeEntryAgainstProject, VPProjectEstimate);

// allow archiving projects

invoke(CTimeEntryAgainstProject, VPProjectArchive);

// associate projects with clients

invoke(CTimeEntryAgainstProject, VPClient);

// store client email

invoke(CTimeEntryAgainstProject, VPClientEmail);

// store client phone number

invoke(CTimeEntryAgainstProject, VPClientPhoneNumber);

// Umple code for the system based on Klok

class TimeEntry{ Date date; }

class TimeEntry{ Time startTime; Time endTime; }

class Project{ String name; }

association { 0..1 Project <- * TimeEntry; }

class TimeEntry{ String comment; }

association { 0..1 Project parent <- * Project; }

class Project{ Double timeEstimate; }

class Project{ Boolean archived; }

class Client{ String name; }

association { 0..1 Client <- * Project; }

class Client{ String emailAddress; }

class Client{ String phoneNumber; }

Figure 23. Invocation of the system based on Klok and the resulting Umple code.

98

You will notice that the Umple code that is output by the VML parser declares

the same classes repeatedly, with different attributes. In a programming language

like Java this would not be a proper syntax. However, the capabilities for merging

properties in the Umple language allow this syntax. The separate class

declarations are accumulated to create a complete specification of a class. So the

following syntax examples in (1) and (2) are equivalent for the Umple compiler:

class TimeEntry { Date date; } class TimeEntry { Double duration; } (1)

class TimeEntry { Date date; Double duration; } (2)

After gradually integrating the features from our four case studies into the model,

we have arrived at a time and activity management product line that allows us to

generate applications closely resembling all four of our case studies, the base case

application, and a large variety of “in-between” applications using subsets of the

features we have modeled. This includes single- and multi-user applications,

systems suited to a variety of organizational structures, project user role

definition, and time entry against projects, project milestones, tasks, and activities.

99

CHAPTER 5

CONTRIBUTIONS, DISCUSSION AND FUTURE WORK

5.1. Contributions

The contributions of this work are as follows:

C1. Case study in the time and activity management domain.

We have modeled four systems within the time and activity management domain.

We have analyzed the commonalities and variabilities among the systems, and

identified similar clusters of functionality.

C2. Time and activity management product line.

We have generated a usable product line in the TAM domain. We have

thoroughly documented the derivation process, including intermediate and final

models, generated code, and suggestions on possible future extensions and

automation.

C3. Creating a variability model of an entire domain.

We have modeled the commonalities and variabilities in the time and activity

management domain in such a way that other applications in this domain can be

100

added to our variability model, as long as they are built on the date –

duration - comment base case.

C4. Variability in UML modeling and VML4Umple notation.

We have introduced the notation for UML optional and alternative variability

modeling for classes and class attributes. We have also come up with

VML4Umple notation, leveraging the hierarchical feature-based VML notation

and compact UML-based Umple language, allowing us to define product line

features with Umple fragments and generate object-oriented code from the

product line model.

C5. One-step generation of code from a variability model.

To generate a code for a system based on a product line model, the only step

required is to run an invocation file listing the features desired in the resulting

system.

C6. Generic product line derivation methodology.

We have described in detail and presented with the TAM example the

methodology to derive a product line for domain with several similar systems.

101

5.2. Discussion

As previously stated, the majority of businesses need to keep track of the time

spent by employees on work tasks. Instead of re-inventing the time tracking

applications with similar features, with our TAM product line it is possible to

rapidly create an application fitting the needs of a particular business. This would

also be useful to individuals keeping track of their own time.

As stated earlier, in this work for simplicity we are modeling only the data

structures of the application, but our methodology overall is not intrinsically

constrained. This is due to the ability of VML4Umple to handle arbitrary Java

code, allowing for business logic specification. Further improvements to the

Umple language will allow more formal business logic modeling using constraints

and state machines.

Our target audience (software developers and maintainers) can benefit from our

research in several ways. Our time and activity management line product line

derivation could be used by developers as an example of the steps needed to

derive a product line. The generic product line derivation methodology we have

described can be used in other domains. Once a product line is derived, product

development can be done via product line model modification and code

generation. New products can be created by invoking a required combination of

product line features from the product line. Maintenance can also be done

102

through modifying the model and generating the code to update all affected

versions. This model-driven development reduces the amount of boilerplate code

that has to be written by hand, reduces the number of defects (as a large portion

of code is generated), and helps ensure the synchronization between the software

documentation and implementation.

Our approach can be used to either create a product line from scratch, or to

derive one from the existing products. In the former case, a base case has to be

identified by analysis of the requirements and taking into account possible

variations on the functionality. In the latter case, by analyzing existing products, a

common base case can be identified among the existing systems. Starting with the

base case the remaining variability model can then be built.

5.2.1. Product Line Derivation Methodology Analysis

Our methodology can be used in domains other than time and activity

management, allowing for the creation of other product lines. We are considering

here form-based applications, such as point of sale systems, shopping carts,

product catalogues, conference and university registration systems, and so on.

Mature domains with multiple systems implementing similar functionality can

benefit from automated application creation based on required feature sets.

Initial derivation of the product line for any of these types of systems can be

done in a manner similar to that used in this work. First, several existing systems

103

would have to be analyzed – the more complex the domain the more case studies

would be required to be able to effectively generalize the domain. Secondly, these

systems would need to be iteratively brought to the common base. Thirdly, by

analyzing each system separately, a product line can be built that encompasses

features from all the case study applications. Once the product line is complete,

any of the case study systems, as well as systems with any other possible

combination of features which have been modeled, can be generated from the

product line with the help of an invocation file.

Other approaches to creating a product line might be possible. One might decide

to pick a particular application design and attempt to generalize it to a product

line. However, this approach might not suit other (perhaps more often used)

designs that address a different set of features. For instance, one might decide

that time will always be logged against a project, and build a product line where

that is the base case. This will prevent generation of the systems that log time

against smaller units of work, or by simply providing comments for each time

entry. Thus we believe that analysis of several applications from the domain is

essential. Picking applications different in complexity, as well as a combination of

open source and proprietary applications, is also important, as each covers a

feature set targeted at a slightly different audience. This helps ensure the

generality of the resulting product line.

104

Through research of existing literature, we have not found any mention of an

existing time and activity management product line. It is possible that another

quite different TAM product line would be created if a different set of

applications had been analysed. However, to be possible to generate the systems

we used in our case studies, this other TAM product line would have to allow for

the same base case. Since the only mandatory features of our product line are:

having a date for a time entry, having either duration or start and end time for a

time entry, and having a comment or an associated project for it, any other set of

features can be built on top of our product line. Thus any other TAM product

line can be combined with ours to create a more extensive set of features from

which time tracking applications can be generated.

This last conclusion is also supported by our observations during the derivation

of the product line. After adding features originating from Klok, the

corresponding features from Leia did not have to be added (such as logging time

against a project). Features from Anuko TimeTracker did not add much to the

intermediate version of a product line based on Klok and Leia. TimeTrex analysis

contributed mostly to the company structure (departments and branches) and to

additional attributes for Company and User classes, but the time tracking

functionality did not significantly change. If we were to analyze several additional

applications, it appears that each next one would have only a small subset of

features to offer for the inclusion in the product line.

105

5.2.2. Methodology Improvements and Automation

The approach we used in creating the TAM product line is somewhat time-

consuming. The greatest amount of time is taken to model the complex

applications, such as TimeTrex. It is helpful if the application is developed with a

model-driven approach and already has UML class diagrams documenting the

underlying data model.

Once the UML class diagrams are created, they have to be analyzed and reduced

to a common base. This requires human involvement, since judgment calls need

to be made as to the similarities and differences among the systems. This is hard

to automate as different systems might name and arrange the structures

addressing the same functionality differently.

Once the systems are reduced to a common base, product line construction

requires the identification of a base case and required features. The remaining

features are manually added to the product line as optional. Perhaps this stage can

be automated, if during the previous analysis stage the similar structures in

different systems are mapped to each other. For instance, in the TAM product

line, Anuko TimeTracker ActivityLog class signified the same functionality as

Leia WorkItemUserTime class. Naming them both TimeEntry after realizing that

they perform the same function, simplified the generalization stage.

106

After the product line is created, generation of a particular system requires

creation of an invocation file for that system. We have done this manually.

However, during the derivation of the product line the features can be annotated

with a list of systems from which they came (which we have done with

comments) in a way that can be automatically parsed. The parser can then be

extended to take those annotations into account if a system to be invoked is one

of the original case studies.

5.2.3. Evaluation of the Chosen Technologies

The technologies used during this work proved to be helpful. UML is a good

choice for models as they are closely related to the ERD representations of

applications’ data structures. The UMLet tool we used allowed for rapid creation

of UML diagrams, their export to JPG and PDF formats for documentation, as

well as their storage in a textual notation that could be processed in an automated

way.

The Umple language was helpful in specifying classes, attributes, and associations

in a compact notation with subsequent possibility to rapidly generate the

corresponding object-oriented code. The property of Umple that allows

specification of classes in fragments was extremely useful in the specification of

the product line. Otherwise the definition of the product line would have to

involve “remove feature” statements as well as “add feature” statements to be

107

able to define classes with more or fewer attributes. The Umple Online tool

(Forward, 2009a) was very useful in trying out quick code examples.

VML proved a good choice as well, containing the number of concepts sufficient

to construct a functional product line, yet requiring a parser to deal with only a

few keywords. The hierarchical nature of VML in combination with a way to

specify alternative and optional features as well as requirements dependencies

makes it easy to learn and use. It would be helpful, however, if we had access to

more examples of VML use: the examples provided in VML papers and online

are partial and not always unambiguous. The VML Online tool written by

Andrew Forward was a big help at the product generation stages.

5.2.4. Design of the TAM Product Line

The systems generated from the TAM product line which are based on the

original applications used in the case studies, do not support all the features of

the original systems in exactly the same way. This is due to two factors. First of

all, between the original systems and the “reduced” systems, many elements were

removed. Those were the elements not directly relevant to time tracking (such as

policies, currency, payroll functionality, and so on), elements related to user

interface (such as order in which to display the elements on the screen), and

support structures (such as currency and tax tables, cron tasks, etc.). These

features can be added into the product line as optional. However, some design

108

decisions will have to be made on whether each feature belongs to the data

structure layer, the business logic layer, or the display layer of the TAM

applications.

The second factor is due to the fact that the data structures in the original systems

were designed differently from each other. For instance, in Klok, the time is

logged directly against the Project class. In Leia, however, even though through

the user interface the time appears to be logged directly against the Project class

(or the Activity or Task classes), the Project class extends the WorkItem class.

Thus, at the data structure level, the time is logged against the WorkItem class.

This is based on different design decisions in the architecture of Klok versus

Leia. However, to make the product line general, we had to settle on one way of

representing the Project – TimeEntry association. Thus the model we selected

would not exactly match that of all the original applications, but the initial

functionality is preserved.

Due to the two factors described above, it is hard to estimate how “close” the

generated systems for the original case studies would be to the original

applications. The features in the generated systems should completely correspond

to those of the original applications in the reduced stage (once the functionality

not directly related to time entry has been removed). The similarities in the design

of the generated systems with those of the original ones will vary.

109

The changes in design might result in the generated applications being “superior”

or “inferior” to those of the original applications. This will also vary based on the

design of the original system and the design decisions made during the

construction of the product line. This quality of the application design is

dependent on the skill of the individuals involved in design decisions and the

complexity of the application’s feature set.

5.3. Summary

We have addressed the problems stated in the Introduction:

P1. We can now generate any TAM system with a combination of features that

have been modeled directly from the product line model. The applications similar

to those we analyzed no longer have to be written from scratch.

P2. To introduce a modification to the code base of multiple systems, all we have

to do is to modify the product line. The subsequent code generation will

propagate the modification to all systems based on the product line, thus

alleviating maintenance issues.

P3. The code for the systems is generated directly from the product line model

using the VML4Umple compiler, which allows for model-driven development.

We have achieved the following objectives:

110

O1. We have generated a product line for time and activity management

applications, allowing for generation of a variety of TAM systems and for

maintaining multiple systems from one product line model.

O2. The combination of VML and Umple allowed us to describe systems in a

flexible way. VML has the ability to define multiple concerns (each to address a

particular feature within the system) through the hierarchical structure of

variation points and variants. This, combined with Umple’s ability to define code

in compact fragments and generate object-oriented code, makes VML4Umple a

good notation to facilitate model-driven development.

O3. We have derived a general methodology to allow the creation of product

lines in other domains.

5.4. Future Work

There are several avenues for future work based on our findings.

As mentioned in the section 5.1.2, the generation of the systems based on the

original applications that were used in the case study can be automated. To

achieve this, the product line features would need to be annotated with the name

of the application(s) in which they originated. The parser would need to be

modified to take annotations into account when generating a time tracking

111

application. For instance, a statement “invoke(TimeTrex)” could invoke all the

features from the product line that originated with the TimeTrex application.

An application can be written to simplify the feature selection for time tracking

applications that are to be generated from the TAM product line. The product

line features (VariationPoints and Variants) can be represented through a user

interface as a dependency tree, allowing a developer to pick which features in the

time tracking application would need to be supported. A selection of features that

require presence of other features would automatically trigger the selection of

those requirements. Once all the features for a system have been selected, the

invocation file, the Umple code and the object-oriented code for the

corresponding application could be generated. The invocation file and the Umple

code would serve as documentation of the generated application, as well as to

allow manual modification to further tweak the resulting system.

The application described above could accept an invocation file to pre-select

features in the dependency tree presented to a developer. That way, if a developer

does not wish to manually adjust the invocation file, it could be done through the

user interface.

Another part of the process that can be partially automated would be the addition

of features from a new application into an existing product line. Using a UML

model of the new application, the corresponding feature set can be presented as a

112

dependency tree, alongside the dependency tree of the product line. The features

from the new application can then be either mapped to the existing features

(resulting in no need for their implementation), or can be designated as

alternative or optional (resulting in their inclusion in the tree). Not all features

would be easy to migrate in this way (for instance, an alternative feature might

require modifications to an existing alternative feature). However, allowing some

of the features to be integrated in this manner, would allow for the focus on the

remaining features, shortening the integration time. The more feature sets from

different applications are added to the product line in such a manner, presumably

the more the future integrations can be shortened. This is because the product

line would be able to accommodate a larger number of permutations of feature

sets.

Product lines can be created for a variety of domains other than time and activity

management. Applications such as registration systems for events, blogs and

forums, budget applications, shopping cart and point-of-sale systems, task

management and scheduling, calendars, and many others can benefit from being

generated from a product line. Moreover, there are enough applications on the

market to make into case studies for product line development in all of the

aforementioned domains.

This work focuses on generating the data structure layer of applications.

However, in combination with the existing work on automation of user interface

113

creation for Umple systems, it would be possible to also generate the

corresponding CRUD user interface code for the systems generated from UML

models. This would allow a developer to pick a set of features they need in an

application, and both the data structure code and the user interface

implementation would then be generated by the VML4Umple parser. This would

take care of a large amount of boilerplate code in both the data and the UI layer,

leaving the developer to tweak the code as required and add the business logic.

This approach would significantly speed up custom application development.

114

APPENDIX A

KLOK CASE STUDY SUPPORT MATERIALS

Figure 24. Klok timesheet screen

Figure 25. Klok use cases

115

KLOK JAVA AND PHP CODE GENERATED FROM UMPLE

Java Project class

/*This code was generated using the Umple 1.6.0.1717 modeling

language!*/

public class Project

{

 //------------------------

 // MEMBER VARIABLES

 //------------------------

 //Project Attributes

 private String name;

 private String contactName;

 private String contactEmailAddress;

 private String contactPhoneNumber;

 private double hoursEstimate;

 private String colourCode;

 private boolean archived;

 //Project Associations

 private Project parent;

 //------------------------

 // CONSTRUCTOR

 //------------------------

 public Project(String aName, String aContactName, String

aContactEmailAddress, String aContactPhoneNumber, double

aHoursEstimate, String aColourCode, boolean aArchived)

 {

 name = aName;

 contactName = aContactName;

 contactEmailAddress = aContactEmailAddress;

 contactPhoneNumber = aContactPhoneNumber;

 hoursEstimate = aHoursEstimate;

 colourCode = aColourCode;

 archived = aArchived;

 }

116

 //------------------------

 // INTERFACE

 //------------------------

 public boolean setName(String aName)

 {

 name = aName;

 return true;

 }

 public boolean setContactName(String aContactName)

 {

 contactName = aContactName;

 return true;

 }

 public boolean setContactEmailAddress(String

aContactEmailAddress)

 {

 contactEmailAddress = aContactEmailAddress;

 return true;

 }

 public boolean setContactPhoneNumber(String

aContactPhoneNumber)

 {

 contactPhoneNumber = aContactPhoneNumber;

 return true;

 }

 public boolean setHoursEstimate(double aHoursEstimate)

 {

 hoursEstimate = aHoursEstimate;

 return true;

 }

 public boolean setColourCode(String aColourCode)

 {

 colourCode = aColourCode;

 return true;

 }

 public boolean setArchived(boolean aArchived)

 {

 archived = aArchived;

 return true;

 }

 public String getName()

 {

 return name;

117

 }

 public String getContactName()

 {

 return contactName;

 }

 public String getCotactEmailAddress()

 {

 return cotactEmailAddress;

 }

 public String getContactPhoneNumber()

 {

 return contactPhoneNumber;

 }

 public double getHoursEstimate()

 {

 return hoursEstimate;

 }

 public String getColourCode()

 {

 return colourCode;

 }

 public boolean getArchived()

 {

 return archived;

 }

 public Project getParent()

 {

 return parent;

 }

 public void setParent(Project newParent)

 {

 parent = newParent;

 }

 public void delete()

 {

 parent = null;

 }

}

118

Java TimeEntry class

/*This code was generated using the Umple 1.6.0.1717 modeling

language!*/

import java.sql.Date;

import java.sql.Time;

public class TimeEntry

{

 //------------------------

 // MEMBER VARIABLES

 //------------------------

 //TimeEntry Attributes

 private Date date;

 private Time startTime;

 private Time endTime;

 private double duration;

 private String comment;

 //TimeEntry Associations

 private Project project;

 //------------------------

 // CONSTRUCTOR

 //------------------------

 public TimeEntry(Date aDate, Time aStartTime, Time

aEndTime, double aDuration, String aComment, Project

aProject)

 {

 date = aDate;

 startTime = aStartTime;

 endTime = aEndTime;

 duration = aDuration;

 comment = aComment;

 setProject(aProject);

 }

 //------------------------

 // INTERFACE

 //------------------------

 public boolean setDate(Date aDate)

 {

 date = aDate;

 return true;

119

 }

 public boolean setStartTime(Time aStartTime)

 {

 startTime = aStartTime;

 return true;

 }

 public boolean setEndTime(Time aEndTime)

 {

 endTime = aEndTime;

 return true;

 }

 public boolean setDuration(double aDuration)

 {

 duration = aDuration;

 return true;

 }

 public boolean setComment(String aComment)

 {

 comment = aComment;

 return true;

 }

 public Date getDate()

 {

 return date;

 }

 public Time getStartTime()

 {

 return startTime;

 }

 public Time getEndTime()

 {

 return endTime;

 }

 public double getDuration()

 {

 return duration;

 }

 public String getComment()

 {

 return comment;

 }

120

 public Project getProject()

 {

 return project;

 }

 public void setProject(Project newProject)

 {

 if (newProject == null)

 {

 throw new RuntimeException("Cannot set project to

null");

 }

 project = newProject;

 }

 public void delete()

 {

 project = null;

 }

}

PHP Project class

/*This code was generated using the Umple 1.7.4.1970 modeling

language!*/

class Project

{

 //------------------------

 // MEMBER VARIABLES

 //------------------------

 //Project Attributes

 private $name;

 private $contactName;

 private $cotactEmailAddress;

 private $contactPhoneNumber;

 private $hoursEstimate;

 private $colourCode;

 private $archived;

 //Project Associations

 private $parent;

 //------------------------

 // CONSTRUCTOR

121

 //------------------------

 public function __construct($aName, $aContactName,

$aCotactEmailAddress, $aContactPhoneNumber, $aHoursEstimate,

$aColourCode, $aArchived)

 {

 $this->name = $aName;

 $this->contactName = $aContactName;

 $this->cotactEmailAddress = $aCotactEmailAddress;

 $this->contactPhoneNumber = $aContactPhoneNumber;

 $this->hoursEstimate = $aHoursEstimate;

 $this->colourCode = $aColourCode;

 $this->archived = $aArchived;

 }

 //------------------------

 // INTERFACE

 //------------------------

 public function setName($aName)

 {

 $this->name = $aName;

 return true;

 }

 public function setContactName($aContactName)

 {

 $this->contactName = $aContactName;

 return true;

 }

 public function setCotactEmailAddress($aCotactEmailAddress)

 {

 $this->cotactEmailAddress = $aCotactEmailAddress;

 return true;

 }

 public function setContactPhoneNumber($aContactPhoneNumber)

 {

 $this->contactPhoneNumber = $aContactPhoneNumber;

 return true;

 }

 public function setHoursEstimate($aHoursEstimate)

 {

 $this->hoursEstimate = $aHoursEstimate;

 return true;

 }

 public function setColourCode($aColourCode)

 {

122

 $this->colourCode = $aColourCode;

 return true;

 }

 public function setArchived($aArchived)

 {

 $this->archived = $aArchived;

 return true;

 }

 public function getName()

 {

 return $this->name;

 }

 public function getContactName()

 {

 return $this->contactName;

 }

 public function getCotactEmailAddress()

 {

 return $this->cotactEmailAddress;

 }

 public function getContactPhoneNumber()

 {

 return $this->contactPhoneNumber;

 }

 public function getHoursEstimate()

 {

 return $this->hoursEstimate;

 }

 public function getColourCode()

 {

 return $this->colourCode;

 }

 public function getArchived()

 {

 return $this->archived;

 }

 public function getParent()

 {

 return $this->parent;

 }

 public function setParent($newParent)

123

 {

 $this->parent = $newParent;

 }

 public function delete()

 {

 $this->parent = null;

 }

}

PHP TimeEntry class

/*This code was generated using the Umple 1.7.4.1970 modeling

language!*/

class TimeEntry

{

 //------------------------

 // MEMBER VARIABLES

 //------------------------

 //TimeEntry Attributes

 private $date;

 private $startTime;

 private $endTime;

 private $duration;

 private $comment;

 //TimeEntry Associations

 private $project;

 //------------------------

 // CONSTRUCTOR

 //------------------------

 public function __construct($aDate, $aStartTime, $aEndTime,

$aDuration, $aComment, $aProject)

 {

 $this->date = $aDate;

 $this->startTime = $aStartTime;

 $this->endTime = $aEndTime;

 $this->duration = $aDuration;

 $this->comment = $aComment;

 $this->setProject($aProject);

 }

124

 //------------------------

 // INTERFACE

 //------------------------

 public function setDate($aDate)

 {

 $this->date = $aDate;

 return true;

 }

 public function setStartTime($aStartTime)

 {

 $this->startTime = $aStartTime;

 return true;

 }

 public function setEndTime($aEndTime)

 {

 $this->endTime = $aEndTime;

 return true;

 }

 public function setDuration($aDuration)

 {

 $this->duration = $aDuration;

 return true;

 }

 public function setComment($aComment)

 {

 $this->comment = $aComment;

 return true;

 }

 public function getDate()

 {

 return $this->date;

 }

 public function getStartTime()

 {

 return $this->startTime;

 }

 public function getEndTime()

 {

 return $this->endTime;

 }

 public function getDuration()

 {

125

 return $this->duration;

 }

 public function getComment()

 {

 return $this->comment;

 }

 public function getProject()

 {

 return $this->project;

 }

 public function setProject($newProject)

 {

 if ($newProject == null)

 {

 throw new Exception("Cannot set project to null");

 }

 $this->project = $newProject;

 }

 public function delete()

 {

 $this->project = null;

 }

}

126

APPENDIX B

LEIA CASE STUDY SUPPORT MATERIALS

Figure 26. Leia timesheet screen

127

Figure 27. Leia use cases (those grayed out are not relevant to time and activity
management)

128

APPENDIX C

ANUKO TIME TRACKER CASE STUDY SUPPORT MATERIALS

Figure 28. Anuko Time Tracker time entry screen

129

Figure 29. Anuko Time Tracker use cases (those grayed out are not relevant to
time and activity management)

130

Figure 30. Anuko Time Tracker ERD (without foreign keys)

131

Figure 31. Anuko Time Tracker UML class diagram modeled from the ERD

132

APPENDIX D

TIMETREX USE CASE SUPPORT MATERIALS

Figure 32. TimeTrex time entry screen

133

Figure 33. TimeTrex use cases (those grayed out are not relevant to time and
activity management)

134

BIBLIOGRAPHY

Acher, M., Lahire, P., Moisan, S. and Rigault, J.-P. 2009. Tackling high
variability in video surveillance systems through a model transformation
approach. Proceedings of the 2009 ICSE Workshop on Modeling in Software

Engineering, pp.44-49.

Allen, R. and Garlan, D. 1997. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, Vol. 6, Issue

3, pp.213-249.

Anuko International Ltd. 2009. Anuko Time Tracker.
http://www.anuko.com/content/time_tracker/, accessed in 2009.

Ardis, M.A. and Cuka, D.A. 1999. Defining families - commonality analysis.
ICSE '99: Proceedings of the 21st international conference on Software

engineering, Boston, Massachusetts, United States, pp.671-672.

Auer, M., Tschurtschenthaler, T. and Biffl, S. 2003. A flyweight UML
modelling tool for software development in heterogeneous environments.
Proceedings of the 29th Conference on EUROMICRO, Belek-Antalya,
Turkey, pp.267-272.

Batory, D. and O'Malley, S. 1992. The design and implementation of
hierarchical software systems with reusable components. ACM Transactions

on Software Engineering and Methodology, Vol. 1, Issue 4, pp.355-398.

Batory, D., Lopez-Herrejon, R.E. and Martin, J. 2002. Generating Product-
Lines of Product-Families. ASE '02: Proceedings of the 17th IEEE

international conference on Automated software engineering, Edinburgh,
Scotland, UK, p.81.

Booch, G. 1986. Object-oriented development. IEEE Transactions on

Software Engineering, Vol. 12, Issue 2, pp.211-221.

Booch, G., Rumbaugh, J. and Jacobson, I. 1999. The Unified Modeling
Language user guide. Addison Wesley Longman Publishing Co., Inc.

Book, M. and Gruhn, V. 2003. A dialog flow notation for web-based
applications. Proceedings of the Seventh IASTED International Conference

135

on Software Engineering and Applications, Marina del Ray, CA, United
States, pp.100-105.

Book, M. and Gruhn, V. 2004. Modeling Web-based dialog flows for
automatic dialog control. Proceedings of the 19th IEEE international

conference on Automated software engineering, Linz, Austria, pp.100-109.

Cugola, G. and Ghezzi, C. 1996. Program families: some requirements issues
for the process languages. Proceedings of the 10th International Software

Process Workshop, Dijon, France, p.48.

Dashofy, E.M., Hoek, A.V.D. and Taylor, R.N. 2005. A comprehensive
approach for the development of modular software architecture description
languages. ACM Transactions on Software Engineering and Methodology

(TOSEM), Vol. 14, Issue 2, pp.199-245.

Imperial College. 1997. The Darwin Language - Version 3d., http://www-
dse.doc.ic.ac.uk/Software/Darwin/darwin-lang.pdf, accessed in 2009.

Dhungana, D. and Groher, I. 2009. Genetics as a role model for software
variability management. ICSE-Companion 2009. 31st International

Conference on Software Engineering 2009 - Companion Volume,
Vancouver, BC, Canada, pp.239-242.

di Nitto, E. and Fuggetta, A. 1996. Product lines: what are the issues?
Proceedings of the 10th International Software Process Workshop, 1996.

Process Support of Software Product Lines, Dijon, France, pp.51-53.

Feiler, P.H., Lewis, B.A. and Vestal, S. 2006. The SAE Architecture
Analysis & Design Language (AADL) a standard for engineering
performance critical systems. Proceedings of the 2006 IEEE Conference on

Computer Aided Control Systems Design, Munich, Germany, pp.1206-1211.

Forward, A. 2009a. Umple language online,
http://cruise.site.uottawa.ca/umpleonline/, accessed in 2009.

Forward, A. 2009b. VML Online.
http://cruise.site.uottawa.ca/umpleonline/vml.html, accessed in 2009.

Forward, A., Lethbridge, T.C. and Brestovansky, D. 2009. Improving
Program Comprehension by Enhancing Program Constructs: An Analysis of

136

the Umple Language. ICPC '09: IEEE 17th International Conference on

Program Comprehension, 2009, Vancouver, BC, Canada, pp.311-312.

Garlan, D., Monroe, R. and Wile, D. 1997. Acme: an architecture description
interchange language. Proceedings of the 1997 conference of the Centre for

Advanced Studies on Collaborative research, Toronto, ON, Canada, p.7.

Gorlick, M.M. and Razouk, R.R. 1991. Proceedings of the 13th international

conference on Software engineering, Austin, TX, United States, pp.23-34.

Harel, D. 1987. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, Vol. 8, Issue 3, pp.231-274.

Jacobson, I., Christerson, M., Jonsson, P. and Övergaarg, G. 1992. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E. and Peterson, A.S. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Carnegie

Mellon University. Technical report CMU/SEI-90-TR-21, ESD-90-TR-222.

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M. 1998. FORM: A
feature-oriented reuse method with domain-specific reference architectures.
Annals of Software Engineering, Vol 5, Issue 1, pp.143-168.

Kuusela, J. and Savolainen, J. 2000. Requirements engineering for product
families. Proceedings of the 22nd international conference on Software

engineering, Limerick, Ireland, pp.61-69.

Lethbridge, T.C. and Laganière, R. 2005. Object-oriented software
engineering: practical software development using UML and Java. McGraw-
Hill, Inc.

Levin, J. 2009. System generation for time and activity management product
lines - support materials, http://www.site.uottawa.ca/~tcl/gradtheses/jlevin/,
accessed in 2009.

Lixar I.T. Inc. 2007. Leia. http://www.lixar.com/, accessed in 2009.

Loughran, N., Sánchez, P., Garcia, A. and Fuentes, L. 2008. Language
Support for Managing Variability in Architectural Models. Software

Composition, Vol. 4954, pp.36-51.

137

Luckham, D.C. and Vera, J. 1995. An event-based architecture definition
language. IEEE Transactions on Software Engineering, Vol. 21, Issue 9,
pp.717-734.

Lutz, R.R. 1999. Toward safe reuse of product family specifications.
Proceedings of the 1999 symposium on Software reusability, Los Angeles,
California, United States, pp.17-26.

McKeown, R. 2009. Klok. http://klok.mcgraphix.com/, accessed in 2009.

Metzger, A., Heymans, P., Pohl, K., Schobbens, P. and Saval, G. 2007.
Disambiguating the Documentation of Variability in Software Product Lines:
A Separation of Concerns, Formalization and Automated Analysis. RE '07.

15th IEEE International Requirements Engineering Conference, 2007, Delhi,
India, pp.243-253.

Mietzner, R., Metzger, A., Leymann, F. and Pohl, K. 2009. Variability
modeling to support customization and deployment of multi-tenant-aware
Software as a Service applications. Proceedings of the 2009 ICSE Workshop

on Principles of Engineering Service Oriented Systems, Vancouver, BC,
Canada, pp.18-25.

Object Management Group.2008. Object Management Group, Unified
Modeling Language (UML), version 2.1.2.
http://www.omg.org/technology/documents/formal/uml.htm, accessed in
2008.

Object Management Group. 2009. Object Constraint Language.
http://www.omg.org/spec/OCL/, accessed in 2009.

Ommering, R.V., Linden, F.V.D., Kramer, J. and Magee, J. 2000. The Koala
Component Model for Consumer Electronics Software. Computer, Vol. 33,

Issue 3, pp.78-85.

Parnas, D.L. 1976. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering, Vol. 2, Issue 1, pp.1-9.

Ram, A., Kellock, H. and Hjort, P. 1997. Architecting families of software-
intensive products. Proceedings of the 19th International Conference on

Software Engineering, 1997, Boston, Massachusetts, United States, p.580.

138

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. 1991.
Object-oriented modeling and design. Prentice-Hall, Inc.

Sánchez, P., Loughran, N., Fuentes, L. and Garcia, A. 2009. Engineering
Languages for Specifying Product-Derivation Processes in Software Product
Lines. In Software Language Engineering: First International Conference,

SLE 2008. Revised Selected Papers. Toulouse, France, pp.188-207.

Schmid, K., Becker-Kornstaedt, U., Knauber, P. and Bernauer, F. 2000.
Introducing a software modeling concept in a medium-sized company.
Proceedings of the 22nd international conference on Software engineering,
Limerick, Ireland, pp.558-567.

Spenser, J. 2000. Architecture Description Markup Language - Creating an
Open Market for IT Architecture Tools.
http://www.opengroup.org/tech/architecture/adml/background.htm, accessed
in 2009.

Sutton, S.M. and Osterweil, L.J. 1996. Product families and process families,
Proceedings of the 10th International Software Process Workshop, Dijon,
France, p.109.

Taylor, R.N., Medvidovic, N. and Dashofy, E.M. 2009. Software
Architecture: Foundations, Theory, and Practice. Wiley Publishing.

TimeTrex Payroll Services. 2009. TimeTrex. http://www.timetrex.com/,
accessed in 2009.

University of Toronto. 2000. GRL - Goal-oriented requirement language.
http://www.cs.toronto.edu/km/GRL/, accessed in 2000.

Weiss, M. and Amyot, D. 2005. Designing and Evolving Business Models
with URN. Montreal Conference on eTechnologies (MCeTech), Montréal,
QC, Canada, pp.149-162.

