System Generation
for Time and Activity Management
Product Lines

Jenya Levin

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements
For the Master’s degree in Computer Science

Ottawa-Carleton Institute for Computer Science
University of Ottawa
Ottawa, Ontario, K1N 6N5
Canada

© Jenya Levin, Ottawa, Canada, 2009

TABLE OF CONTENTS

List of Figures and Tables ... v
GLOSSALY ... vil
ADSEIACT ottt viii
Chapter 1: INtrOdUCHON «...uuveuieieieiiiiiiiiciiiiiis s sssssssassssssesaesaens 1
1.1. Motivation and ODbJECHVES........ccvieiiuriirieiiieicisiicieiieicisiesssessesssesssesessesaes 1
1.2 AUAIENCE. ... 3
1.3, OrganiZation ... 4
Chapter 2: Modeling and Product LINes...........covviirienininieinininicisisisieieiennnens 6
2.1. Modeling Purpose and NOtationscvivrieimnimnimnenniniiiisnsissnnne: 7
2.2. Unified Modeling Languageccoueueuviuriciniieincinieiniiieinisiesseiessssessennes 11
2.3. The Umple Language.........ccccvuirininiviininiiniiiiiiiisiesinsississississsssssssssssesens 13
2.4. Product Families and Product Lines........cccouvieivininininininininisisicieins 14
2.4.1. Definitions of Product Family/Linec.cococeveneeereneencrnernereenernenenns 16
2.4.2. Issues in Product Family/Line Developmentc.cvceeecencecveneene. 17
2.4.3. CaSE StUAIESouvvvivrieieieiiiiiiiriccieiess s ss e sees 18
2.4.4. Product GeNerationceuuieieiuimnienimieninssiisisssssissssssssssssessesssssnes 23
2.5. Expressing Variabilitiescccuuriciiirieiniiniciiieieisieicesiessseeiessssessessesessenans 24
2.0. Selected TechNOIOZIES.......c.ciiiieciiiiicce e 31
Chapter 3: Case StUAIES......ouiiiiiiiiiii s sssssees 33
3.1 MethOdOlO@y ... sassssssees 33
3.2, KIOKu ot 37
330 LI ettt 39
3.4. Anuko Time Tracker ... 50
3.5, TIMETIEK ettt ss e 53
Chapter 4: Product Line Defivation ... 63
4.1. Product Line Derivation Notation and Methodology...........ccceuvivinniuinnes 63
4.2.1. Product Line Derivation NOtationc.cceueiruenieinicieicieienenenenn: 65
4.2.2. Product Line Derivation Methodology..........cceiicincicincieiennnn. 66
4.2. TAM Product Line Defivation ... 73
4.2.1. Integrating Klok Functionality into the Product Linecccccuuc.c. 73
4.2.2. Integrating Leia Functionality into the Product Line..........ccccoeuuucee. 76

4.2.3. Integrating Anuko Time Tracker Functionality into
the Product LiNe......coiiiiiiccccc s 83
4.2.4. Integrating TimeTrex Functionality into the Product Line............... 87
4.3. Time and Activity Management Product Line Model.........ccccccovuviuriuriunnanes 93
Chapter 5: Contributions, Discussion and Future Work.......cccocciceiveiniiniincincincnnn. 99
5.1, CONIDULONS w..vvvieririircicrir s 99
5.2, DISCUSSION vttt 101
5.2.1. Product Line Derivation Methodology Analysis..........cccceeeeureucnnee 102
5.2.2. Methodology Improvements and AutOMationcccveeeeerevecenee 105
5.2.3. Evaluation of the Chosen Technologies..........cccocvueurivivciricineurennnn. 106

i

5.2.4. Design of the TAM Product Line........cccoveuviuveivirvininiinininisiininnnnes 107

5.3, SUMMALY ...ouiieiiiiiiciciii st 109

5.4. Future WOork ... 110
Appendix A: Klok case study support matefials ... 114
Appendix B: Leia case study support materials.......cocevcveueucueinerneierneinensensenenne. 126
Appendix C: Anuko Time Tracker case study support materialscoccueunee. 128
Appendix D: TimeTrex case study support matetials.......ccecuvceevervieinersicnnennnnens 132
BIbHOGIAPNY ..ooviiiiiiiiiiiccc s 134

LIST OF FIGURES AND TABLES

Table 1. Examples of an optional and an alternative variation point..........c.c.ecee... 34
Figure 1. A requirements definition hierarchy (Kuusela et al., 2000)...........cccc........ 20
Figure 2. Examples of an optional and an alternative variation point 30
Figure 3. Klok class diagram modeled from Ul.......cccccoceuviricnivincnicincnicncinicen, 38
Figure 4. Klok architecture expressed in Umple......cocveuviricininicinieineinieniniennn. 39
Figure 5. Leia single task VIEW SCIEEMN.....ciiuiuriiiiiiiiiiiriiiiisiisisississssessesssessnenes 40
Figure 6. Leia class diagram modeled from user interfaceccoceeuveueverncuevcnnnn. 42
Figure 7. Comparison between Ul- and ERD-based class diagrams........................ 43
Figure 8. Leia class diagram modeled from the ERD with highlighted
CRUSEELS o 45

Figure 9. Leia reduced class diagram modeled from the ERD with
highlighted clusters, showing only the clusters related to time and

ACHIVILY MANAZEMENE oucuiviiuiiiiiieiiiiet st sasns 49
Figure 10. Anuko Time Tracker UML class diagram modeled from the
ERD with highlighted clUSErs......c.ccocuiuiivciciciciciciccccccccenes 52

Figure 11. Anuko Time Tracker reduced UML class diagram modeled from
the ERD with highlighted clusters, showing only the clusters
related to time and activity MANAZEMENLcvuverevecieieeieiereieseienenenaes 53
Figure 12. TimeTrex UML class diagram modeled from the user interface........... 56
Figure 13. TimeTrex UML class diagram modeled from the ERD with
highlighted ClUSTErS.......oiiiriiiiiic e 57
Figure 14. TimeTrex cluster diagram modeled from the ERD.......c.cccccovunruvrinnnnce. 58
Figure 15. TimeTrex reduced UML class diagram modeled from the ERD
with highlighted clusters, showing only the clusters related to

TAMc e 60
Figure 16. Partial product line with base case and Klok functionality — class

QIAGLAIN .o 74
Figure 17. Partial product line with base case and Klok functionality —

VIMLAUMPIE ...t seeessteseaeseseseseseseses s ssessss s ssessessensesseseses 75
Figure 18. Partial product line with base case, Klok, and Leia functionality —

class dIAGIAM.......cuiviviiiicii s 82
Figure 19. Partial product line with base case, Klok, Leia, and Anuko Time

Tracker functionality — class diagramccccvieieciniciniinicininiciniencneeas 86
Figure 20. Complete product line with base case, Klok, Leia, Anuko Time

Tracker, and TimeTrex functionality — class diagramccccvvvvevvennnee. 94
Figure 21. Mandatory feature specification in the VML4Umple model.................. 95

Figure 22. Invocation of the base case system and the resulting Umple code.......96

iv

Figure 23. Invocation of the system based on Klok and the resulting Umple

Figure 24. Klok timesheet SCIEEM ...
Figure 25. KIOK USE CASES....civimimiiiriiicicicicieicieiciecesisessssesssssssesssssssesenas
Figure 26. Leia timeShEEt SCIECI ...uuuiuiriuiiiciiiciciieicicieeie e
Figure 27. Leia use cases (those grayed out are not relevant to time and
ACHVILY MANAGEMENL) w.vuvuivieiirisciireicrie s ssssaes
Figure 28. Anuko Time Tracker time entry SCIEEN.....cvuvivrirnirreriimrircerinneineanae
Figure 29. Anuko Time Tracker use cases (those grayed out are not relevant
to time and activity MANAZEMENL)ccururcririeciieienieeieseesesessessesenaens
Figure 30. Anuko Time Tracker ERD (without foreign keys)ccccoocuvivviurirniunce.
Figure 31. Anuko Time Tracker UML class diagram modeled from the

Figure 32. TImeTrex tiMe ENtrY SCIEEM ...veuimieiiiriieiitriaeisieeisessesessesseaessessssesessseenas
Figure 33. TimeTrex use cases (those grayed out are not relevant to time
and activity MaNagemMENL)ccvceerruemiereresenesesesesssssssssesssssssssssenees

GLOSSARY

Base case. The smallest unit of functionality that allows the system to
perform its primary function. In the case of time and activity management
systems, the base case allows the person to enter a comment describing the
activities they performed for a certain amount of time on a certain date.

Cluster. A group of classes that together provide particular functionality
(implement a particular group of features) for the application.

Common base. A group of clusters that is common to most applications
within a domain. In the case of time and activity management systems, the
common base includes clusters related to time entry, user management, task
management, company structure, and excludes payroll, accrual, invoice
generation, etc.

CRUD. Create, Read, Update, Delete — basic functions in data storage and
uset interfaces.

ERD. Entity-relational diagram used to model relational data structures.

Feature. As used in this work, denotes a particular functional property of
an application. Features are documented via use cases. Classes addressing
closely-related features are grouped into functionality clusters. During the
system generation stage, each invoke() statement in the VML invocation file
corresponds to a feature.

Invocation file. File containing VML invoke() statements, each of which
corresponds to a feature. By parsing the invocation file, the VML4Umple
compiler generates code for each feature in the order listed.

Product line. Several products that have many common elements and a
few elements that differ from one to others.

TAM systems. Time and Activity Management systems — systems that deal
with time entry against activities, such as personal time management utilities

and business employee time tracking.

UL User Interface — means by which the users interact with a system. Used
here to primarily denote graphical user interfaces.

UML. Unified Modeling Language, general-purpose modeling language
accompanied by graphical notation.

vi

UMLet. Tool geared towards graphical UML modeling.
Umple. Textual modeling language based on UML.

VML. Variability Modelling ILanguage, language for modeling
commonalities and variabilities in software product lines.

VML4Umple. Product line modeling language where VML is used for

hierarchical model of features, whereas Umple is used to model the actual
feature implementation.

vil

ABSTRACT

This thesis investigates a product line derivation methodology to create a
variability model of a whole domain. From this variability model, we can
then use one-step code generation to create distinct products that meet

differing sets of requirements.

We derive a time and activity management (TAM) product line from four
existing systems using our methodology. We describe the product line using
the VML4Umple language we adopt by combining the strengths of VML
and Umple notations. From this we show how it is possible to generate any
number of Umple models of TAM systems, each with a different
combination of features. The results can be compiled to either Java or PHP,

allowing for rapid development of TAM system:s.

viil

CHAPTER 1

INTRODUCTION

1.1. Motivation and Objectives

Every business needs to track the time worked by employees. Many companies
that perform work for multiple clients need a more precise time tracking scheme
that captures the amount of time spent working on a particular project, so that
the corresponding client can then be billed accordingly. The time tracking needs
vary based on the nature of a business: what works well at a medical clinic or a
lawyet's office might not work at a software development company or a
university. Additionally, individuals need to manage time on personal projects, be

it paid work, study time, or errands.

The need of tracking time leads to development of time tracking applications. A
business can either buy an off-the-shelf application to track its employees' time,
pay a subscription fee to access a remotely-hosted application, or develop an in-
house system to address their needs. Many time tracking systems have sprung to
life — both commercial and open source, — similar in goals but differing in
implementation. As a result, unless a company can afford developing an
application in-house, they have to settle for one of the existing systems, which
might not fit their business model well. This leads to adjustments where a

company either has to modify its business processes to fit the time tracking tool,

1

or has to pay for customization of the tool to suit its needs. This in turn leads to
the existence of many versions of a tool, each slightly different from the others,

making maintenance a nightmare.

Based on the commonalities among the time tracking tools, as well as some
differences among them that address varying business needs, the time tracking
tool domain appears to be a good candidate for a product line. Once a product
line is created, an application suiting a particular set of business needs can be
rapidly developed from the common base. The product line can then be
expanded with new features if needed without having to re-develop the

functionality used in the existing systems.

This work addresses the following problems:

P1. The need to re-write systems from scratch within a domain where most

systems are similar.

P2. Difficulties maintaining multiple versions of the same system that have slight

differences.

P3. Inability of the current generation of product line tools to work in a way that

is model-driven.

Our objectives to combat those problems are:

O1. Generate a product line for a domain where most systems are similar. This
will remove the need to re-write systems from scratch (addressing P1) and

simplify maintenance (addressing P2).

O2. Find a combination of product line tools and notations that allows for

model-driven development (addressing P3).

03. Attempt to derive a general methodology from the steps used to achieve O1

(allowing to solve P1 and P2 for multiple domains).

1.2. Audience

The TAM product line research is intended to make the rapid application
development possible in the time and activity management domain. Thus, the
target audience of this research includes the developers working on TAM

systems.

The product line approach, applicable in the TAM domain, can be applied in
other domains, in which case the methodology used in this research would be of
help. Someone might like to model a more specific case of TAM applications,
such as appointment-based time tracking used in clinics, or a course-based time
tracking used in universities. Domains other than time tracking might benefit
from a product line approach as well. In each case our methodology and

modeling language choices would serve as an example. The case studies are

extensively documented (Levin, 2009) with each modeling stage captured in UML

models as well as explained in text.

We also showcase the model-driven analysis using the Umple language, which has
compact syntax and powerful capabilities. It allows for the model and code
synchronization, as well as generation of object-oriented application code.
Developers or modelers interested in using Umple in their projects might find

our case studies useful.

1.3. Organization

In Chapter 2, we begin with an overview of purpose of software modeling, and
several modeling notations. Our focus is primarily on UML and Umple notations,
as they are used in our case studies. We also review the research on product

families and product lines, focusing on ways to express application variabilities.

Chapter 3 contains case studies of the four time and activity management
applications: Klok, Leia, Anuko Time Tracker, and TimeTrex. Klok is a free,
stand-alone, closed source application. lLeia is a proprietary web-based
application, although we do have access to its database design and source code.
Anuko Time Tracker and TimeTrex are both open source web-based
applications. The case studies are extensively documented: all the models that

could not fit into this work can be viewed online (Levin, 2009).

In Chapter 4, we describe the methodology used to derive the time and activity
management product line, followed by the detailed step-by-step analysis of each
application's features and ways they are represented within the product line. At
the end of Chapter 4, we present the complete TAM product line together with
invocation examples for the time tracking applications. More examples can be

seen online (Levin, 2009).

Chapter 5 contains the summary and discussion of our findings, as well as

possible directions for future work.

There are four Appendices, each containing support materials for a particular
case study, including an application interface screenshot and use cases addressed
by the application. Additional support materials for the case studies can be

viewed online (Levin, 2009).

CHAPTER 2

MODELING AND PRODUCT LINES

In our research, we use architectural modeling to provide a high-level overview of
time and activity management systems. Modeling allows us to operate on a high
level of abstraction, so that we may compare varying systems while disregarding
implementation differences. Section 2.1 provides a brief discussion of concerns

that are addressed by our models and the details we have chosen to omit.

Time and activity management applications are similar in their data models, as
they all keep track of the same information. Thus we have chosen to use UML
class diagrams in our case studies to model and compare different applications. A

brief description of UML follows in Section 2.2.

UML, being primarily a graphical notation, is not well-suited for automated
model processing, analysis, and code generation. To address this, we have turned
to Umple — a textual language based on UML, allowing us to express class

diagrams as textual models. Umple is described in Section 2.3.

As we are looking at applications that exhibit certain similarities, while still having

a few differences among them, we have chosen to treat them as a product line of

time and activity management software. An overview of product lines and

product families is presented in Section 2.4.

There are multiple ways to express commonalities and variabilities among
products that comprise a product line. Section 2.5 contains a discussion of
existing methods, their advantages and shortcomings, focusing on VML — a
notation we chose to model the time and activity management product line.

Section 2.6 gives an overview of the technologies we selected for our research.

In this work, we analyze and model only the data structures of the applications.
This is done for simplicity. Our methodology, however, is not constrained to the
data layer. Umple (and thus VML4Umple) is capable of handling arbitrary Java
code, so it can theoretically be used for business logic. A more formal
representation of logic in state machines and constraints would be an
improvement, and is already under development. Automated Ul generation from
Umple models is also in progress. Thus, our product line model allows for

generation of data structures and business logic.

2.1. Modeling Purpose and Notations

According to Taylor et al, “An architectural model is an artifact that captures
some or all of the design decisions that comprise a system’s architecture.
Architectural modeling is the reification and documentation of those design

decisions... An architectural modeling notation is a language or means of
7

capturing design decisions.”(Taylor et al., 2009) Additionally, some modeling
notations (for instance, UML) are used to capture requirements, functional
design, and data design. We have compiled a technical report on modeling
notations, which details a variety of Architecture Description Languages (ADLs).
Here we summarize our findings. For more detailed view, please see the report

itself at (Levin, 2009).

In the report, we have analyzed and compared the following modeling notations:
natural language; informal graphical styles; Unified Modeling Language (Booch et
al., 1999; Object Management Group, 2008); early Architecture Description
Languages — Darwin (Imperial College, 1997), Rapide (Luckham et al., 1995), and
Wright (Allen et al., 1997); domain-specific and style-specific Architecture
Description Languages — Koala (Ommering et al., 2000), Weaves (Gotlick et al.,
1991), and AADL (Feiler et al, 20006); extensible Architecture Description
Languages — Acme (Garlan et al,, 1997), ADML (Spenser, 2000), and xADL
(Dashofy et al., 2005); User Requirements Notation (Weiss et al., 2005; University
of Toronto, 2000); and Dialog Flow Notation (Book et al., 2003; Book et al.,

2004).

One of the modeling notations covered in our report is especially interesting, as it
concerns architecture of a product family. Koala (Ommering et al., 2000)
language developed by Philips is used to describe the architecture of consumer

electronic devices. Koala models are closely tied to implementation and thus can
8

be automatically verified for correctness and completeness. Ideally, this is the
point at which we would like to arrive with modeling, implementing, and

verifying the systems belonging to the time and activity management product line.

Basic architectural concepts captured in the models are components, connectors,
interfaces, configurations, and rationale for architectural decisions. Architectures
may include static as well as dynamic aspects (those that change over time), and
modeling notations exist to capture both. Dynamic aspects can be modeled using
static models or dynamic models (those that visualize the behaviour of a running
system and are updated on-the-fly). Modeling in our case studies is concerned
with static aspects, as we are dealing with use cases and data representations of

the systems, neither of which changes at run-time.

Systems may include functional aspects (system’s functionality) and non-
functional aspects (constraints on what a system does). We focus on modeling

functional aspects, as we try to generalize behaviour of several systems.

A model can be associated with several visualizations, where each visualization is
a different way of representing the information organized by the model. Some
notations, like UML, have a canonical visualization. There are three types of
visualizations: textual, graphical, and hybrid. Textual visualizations are easily
accessible and editable; they can store the entirety of the model in one file; they

can be parsed, processed, and automated if their syntax is associated with a

particular meta-language. However, textual representations are linear and do not
work well for graph-like structure depiction. Graphical visualizations are best at
depicting spatial information, presenting additional information such as colours,
symbols, and other decorations, scrolling, zooming, showing and hiding elements,
and being directly manipulated with a mouse. However, they depend on costly
tools and cannot be directly used in automated processing. Hybrid visualizations
combine graphical and textual elements (such as UML with annotations in OCL

(Object Management Group, 2009)).

In our research, we use graphical visualizations to represent the time and activity
management systems during the modeling stage. This allows us to determine the
similarities and differences in models easily, based on visual models. At later
stages, to facilitate automated code generation, we convert the models from the

UML graphical visualization to the textual representation in Umple.

Modeling includes a trade-off between flexibility of being able to describe a
variety of systems and being able to utilize the semantically powerful features of
more strict notations for automating model manipulation. We focus on class
diagrams textually represented in Umple, since that allows us to automate code

generation.

The majority of models developed during our work are presented in UML, using

the UMLet (Auer et al., 2003) graphical modeling tool. To manipulate the models

10

textually, we use Umple (Forward et al., 2009), a text-based modeling language
that compiles to Java or PHP. We have written a converter in Java to transform
UMLet XML-based files to the Umple notation. To model the product line
variabilities and the invocation for the TAM applications, we used the Variability
Modelling Language (VML) (Loughran et al., 2008). The final product line model
is thus expressed in our adaptation of VML combined with Umple which we call
VMILAUmple. To generate a particular system from the domain, we create a file
that uses VML invoke() statements to list the required features for the system.
The combination of the product line model and the invocation file can then be
processed by the VMIL4Umple compiler that can generate the application code
either in Umple, of in an object-oriented language. Currently Java and PHP code

generation is supported.

2.2. Unified Modeling Language

Unified Modeling Language (UML) brings together concepts from several eatlier
notations: Booch diagrams (Booch, 1986), OMT (Rumbaugh et al., 1991), OOSE
(Jacobson et al., 1992), and Statecharts (Harel, 1987). It is an extensive notation
with multiple viewpoints, allowing for both static (class and use case diagrams)

and dynamic (activity and state diagrams) aspect modeling.

UML started as a design modeling language and as of UML 2.0 support has been

added for architectural modeling (Taylor et al., 2009). UML is supported by a

11

variety of open source and proprietary tools. In our research, we use an open-
source UML visualization tool called UMLet (Auer et al., 2003). It is available as a
stand-alone application as well as an Eclipse plug-in. The models are stored in a
notation that uses XML and can be exported to JPG, PDF, EPS, and SVG. In
the course of our research, we have also written an UMLet to Umple converter

for UML class diagrams, in Java.

UML has several advantages over other notations: there is a multitude of
constructs such as classes, associations, states and activities; multiple viewpoints
are supported; it allows for static and dynamic aspect modeling; and it is widely
adopted. Through a variety of viewpoints, UML can capture the information at
different levels of abstraction, thus aiding design and architecture stages of

development.

Details of UML semantics can be found in the UML specification (Object
Management Group, 2008), or the many books written about it (for instance,
(Lethbridge et al, 2005)). In our time and activity management application
research, we make use of UML class diagrams and use case diagrams, so below is

a short review of the elements involved.

In class diagrams, classes and relationships between them are key elements. A
Class describes a set of objects that share same operations, relationships,

attributes, and behaviour. A Class implements one or multiple interfaces. An

12

Association is a relationship that specifies a connection between objects, such as
aggregation, for instance (where a link is between a whole and its
parts). Generalization is a relationship where child objects (specialized

elements) can be substituted for the parent object (a generalized element).

In use case diagrams, actors, use cases available to them, and relationships
between the actors are involved. An Actor is a role played by a user or a system.
A Use case is an element that represents a set of actions available to a particular
actor. Actor generalizations are used to denote overlapping roles by extending

use cases available to another actor (Object Management Group, 2008).

2.3. The Umple Language

Umple (Forward et al, 2009) is a model-oriented language family based on
object-oriented language concepts. It has support for domain concepts such as
classes, attributes, associations with different multiplicities, and several software
patterns. State machine support is currently in the works as well. Umple tools are
available in IBM's Rational Software Modeler, and as an Eclipse plug-in. There is
also the Umple Online application (Forward, 2009a) that allows one to try out

Umple without the need to install any software.

We chose Umple based on several advantages it has over object-oriented
languages for implementation of our models. Umple produces significantly fewer

lines of code with higher readability, as compared to Java or PHP (Forward et al.,
13

2009). It can be generated directly from the data model of an application, as
Umple classes map to database tables, attributes to data fields, and associations to

key - foreign key relationships.

Code to manage associations and code to access and modify attributes with single
as well as multiple values is generated by the Umple compiler. Thus Umple takes
care of the boilerplate code, and the amount of hand-written code is minimized.
This in turn minimizes time spent in development and faults encountered during
implementation. Umple provides a concrete syntax for key elements of UML

class diagrams, thus being a natural choice to model an application's data objects.

Using Umple allows us to take the model-driven approach to the research. We
are able to adjust the models and quickly generate the corresponding data objects
by converting the UML graphical model created in the UMLet tool to Umple,
and compiling Umple code into either Java or PHP. Any small change in a model

can be easily propagated to the code base.

2.4. Product Families and Product Lines

In the global markets coarsely segmented by different cultural factors and
standards, some segments are too small to warrant independent product
development. For such segments, it makes sense to pursue a product family
approach, where assets can be reused across products created for different

segments. (Kuusela et al., 2000)
14

The need to design, implement, and maintain applications that have a set of
similar functions, but differ from each other based on platform, version, or target
audience, has given rise to research in product families, product lines, and process

families.

The notion of a program family was first mentioned by Parnas (Parnas, 1976). He
explored and contrasted the approaches to development of program family

applications.

Several works addressing the subject were published in 1996. For example,
Sutton et al. described product and process families, their properties, and
relationships between them (Sutton et al, 1996). Cugola et al. looked into
requirement definition for process languages (Cugola et al., 1996) based on the
work of Parnas (Parnas, 1976). Di Nitto et al. addressed the differences between
product families and product lines and identified areas of further research needed

(di Nitto et al., 1996).

The majority of the product line research described below deals with analyzing
the results of switching to product line development (Cugola et al., 1996; di Nitto
et al, 1996). The literature describes how the requirement definition,
documentation, organizational processes and development practices are affected
(Lutz, 1999; Schmid et al, 2000). Other researchers look into requirements

definition for product lines from the start (Kuusela et al., 2000; Ram et al., 1997).

15

There is also research that deals with modeling commonalities and variabilities
(Loughran et al., 2008; Ardis et al., 1999; Dhungana et al., 2009; Acher et al.,
2009; Metzger et al., 2007; Mietzner et al., 2009; Sanchez et al., 2009) and product

generation (Batory et al., 2002).

Our objective of creation a product line from several similar systems that come
from different sources and belong to the same domain is not addressed. We have

also not found any description of a generic product line derivation methodology.

We have built on the research of Sanchez et al. in adopting VML for our

VMLA4Umple notation for variability modeling (Sanchez et al., 2009).

2.4.1. Definitions of Product Family/Line

Sutton et al. described a product family as a collection of products similar in
some ways and systematically different in others, the emergence of which is
usually caused by one of the following: successive revisions of a single
application; versions of a single application for different platforms; or versions
with different sets of features (e.g. an “educational” versus a “professional”

version of the same software) (Sutton et al., 19906).

Di Nitto et al. addressed the lack of a common lexicon when talking about
product lines and families, and attempted to derive a definition incorporating

existing descriptions (di Nitto et al., 1996). They defined product family as a

16

"collection of softwate products based on the same set of assets" (requirements,
designs, software components), "but still having significant variations". In
contrast, product line was defined as a "collection of different software products,
each based on different assets", offering complementary features, designed to
jointly operate through integration and interoperation. An example of a product
family would be programs with the same features running on different platforms,
whereas an example of a product line would be an office suite that includes
separate applications: a text editor, a spreadsheet application, etc. - while sharing

common assets, such as the help system.

In subsequent parts of this work, we shall be using the term “product line” to
describe a group of applications having some commonalities as well as some

variabilities.

2.4.2. Issues in Product Family/Line Development

Di Nitto et al. touched upon several issues involved in development of product
line software (di Nitto et al.,, 1996). These include design for reuse, reuse of

existing components, configuration tracking, and maintenance of common assets.

Cugola et al. addressed the structure of the design process for a product family,
and concluded that process does not necessarily need to be modified to
accommodate product families, but it might be more important to follow in case

of product families (Cugola et al., 1996).
17

2.4.3. Case Studies

Ram et al. looked into issues that arise while developing software for the Nokia
Synfonet line of products (Ram et al., 1997). Requirements for it include being
configurable, distributed, embedded, real-time, dependable, as well as including
several optional levels of software and hardware fault tolerance and function
protection. The authors suggested that "architecting should start with specifying
the partition in different component domains along with a scheme for integration
and coordination of the parts". It should also include an explanation of how the
partition and its integration address the specified architectural concerns, such as
timeliness, capacity, availability, effective division of work, standards compliance,

existing parts utilization, or controlled propagation of change.

Lutz has focused on an interferometer (telescope) subsystem design (which was a
part of a product family), and the evaluation of this as a reusable component
(Lutz, 1999). Several stages of the case study are discussed: product family

definition, hazard analysis, and design evaluation.

They suggest that near-commonalities (features common among almost all
product family members) can be represented as variabilities. Product family
requirements need to anticipate both future feature additions and possible

reductions. Dependencies among options need to be represented. Ardis et al.

18

suggest writing such constraints as commonalities, where the commonality is the

required relationship between the parameters of variation (Ardis et al., 1999).

Most of the case studies mentioned above have focused on design of product
lines and evaluation of feasibility of product line development. They have also
focused on creating product lines either from the very beginning of product
development, or from multiple versions of the same system. None of them have
described a methodology to derive a product line from several different

applications in the same domain, which is a part of our objectives.

Lutz also has touched on the possibility of organizing the products into a
hierarchy where products at the same node share the same value for many
parameters of variability (Lutz, 1999). They note that it did not add any insight in

their application, but might be beneficial for larger product families.

At the end of Lutz’ study (Lutz, 1999), a review was conducted by an engineer
experienced in interferometers. It resulted in deletion of 9 out of 29
commonalities, inctease of variabilities from 23 to 35, and modifications to 4
variabilities. Among the lessons learned, they mentioned thorough
documentation of variabilities as a safest course of action, even at the cost of
minimizing possible commonalities. Safe reuse largely depends on the undetlying

assumption of commonalities being true.

19

Kuusela et al. introduced another hierarchy approach (Kuusela et al., 2000). They

proposed a definition hierarchy
: C REQ.1
where design objectives are defined A major design
ahjeciive
by other design objectives or design {P1,P2,P3}}
decisions (see Figure 1 for an |
example of a requirements definition
REQ.1.1 p a2
= esign decision
hierarchy). They are arranged into a A dpe?gg ‘:'hllje;:m
P1aPLP3 (P1,P2,P3;
logical AND tree subject to the
following rules: |
REQ.1.1.2 REQ.1.1.1
Another design Ancther design
1) Child requirements define the ohjective decision
{P1,F2,P3,} {P1.P2,P3)
meaning of parent
requirements.
Figure 1. A requirements definition
2) Top nodes represent hierarchy (Kuusela et al., 2000)

architectural drivers and quality attributes.
3) Edges represent refinement of design objectives and/or design decisions.
4) Each key architectural driver defines a sub-tree under the root node.
5) Parent nodes have higher priority than their child nodes.
6) Lowest priority is "irrelevant” - it represents design decisions or objectives

that do not belong to the description of the specific product.

Product families in this approach share most of the quality attributes, even

20

though their definitions can vary significantly among product family members.
This approach simplifies testing: if all sub-nodes pass their tests, the super node
can be assumed to pass the test as well. Requirements are more easily visualized
in a hierarchy than if they were to be explained through textual description.
Structuring helps resolving missing requirements and inconsistencies: by
reversing the tree, it can be determined whether the collection of the sub
requirements fully and unambiguously defines the super requirement. If that is
not the case, some requirement is missing and needs to be added. This process

must be repeated for every member of the product family.

The requirements-based hierarchical approach was of interest to us, since
isolating similar interdependent clusters of functionality in different systems is

similar in nature.

Another case study by Schmid et al. deals with introducing a software modeling
concept in a supermarket chain subsidiary company, founded to develop a family
of new merchandising information systems (Schmid et al., 2000). They attempted
to address the following documentation problems that frequently occur in

practice:

« Standard approaches to documentation do not fit real requirements;

e Documentation requirements may change over time and make old

documentation and processes obsolete;

21

« The entrance barrier to changing the documentation approach is high due to

re-documentation effort;

« There is a lack of time and expertise to devise a new approach.

Schmid et al. present QIP (Quality Improvement Paradigm) - an iterative, goal-
driven framework for the continuous improvement software development,
closed-loop process for planning, executing, evaluating improvements to software
development environments, and incorporating experience gained from
improvement efforts into future development (Schmid et al., 2000). Application
of QIP resulted in a brief start-up phase with improved documentation, and also
with ease of documentation reaching a reasonably good level. Training, trial
usage, active cooperation of the people involved, comprehensive examples, as
well as detailed guidance and support in the eatly stages were needed to

successfully complete the project.

A company switching from individual product development to development
based on a product line model will likely face the documentation issues described
in (Schmid et al, 2000). This might be a factor affecting adoption of our

methodology.

22

2.4.4. Product Generation

Batory et al. look at two classifications of software components: 1) object-
oriented: method, class, package; and 2) feature refinement (or layer): module

encapsulating a feature (Batory et al., 2002).

Refinements cross-cut classes. Layers (features) are building blocks of software;
facets are building blocks of layers. Facets are not classes - they arise when feature
refinements encompass more than an individual program or package.
Refinements can be broken down into gluons - elements arranged in regular ways

to form both facets and "atomic" elements.

Batory et al. introduce Origami - a model of gluons, revealing a mathematical
structure of software (Batory et al., 2002). It is based on GenVoca (Batory et al.,
1992) - a methodology and technology for generation of product lines from
feature refinements. Software is extended based on component additions and
removals. Origami can be scaled to generate product families as well as

standalone products.

GenVoca function (set of classes and class refinements) is applied to a GenVoca
constant (set of classes) - some classes are extended and some classes are added.
Class extensions encapsulate new data members, methods, and method overrides
of the parent class. Linear inheritance chains (or refinement chains) are

constructed by application of several functions to the constant, and in the

23

resulting application, only the bottom-most classes of the chains are instantiated,

as they implement all the roles assigned to them.

Layers are orthogonal to facets, so the relationship between them can be
expressed as a matrix, where each entry (gluon) lists the name of a module that is
implemented as a facet within a layer. If each row is a layer, each column is a

facet, and vice-versa.

GenVoca models are 1D - they are composed by the sets of constants and
functions. Gluon models are 2D, and can be #-dimensional. The Origami model
scales to 7 dimensions. Each new row in a matrix requires a gluon for every
existing column (or the identity function if no implementation is needed). The
same is true if a new column is added. An application is created by folding an

Origami matrix.

2.5. Expressing Variabilities

Dhungana et al. present an interesting perspective on variability (Dhungana et al.,
2009). They suggest similarity between software variability and genetic variability,
comparing individual species to natural product lines and individuals to products.
For these natural product lines, both commonalities and variabilities are coded in
genes, which can be “turned on” and “turned off”, corresponding to each feature
to be either present or absent in an individual. Reproduction is compared to

product instantiation, allowing for assignment of features to a particular
24

individual by binding the corresponding variation points. The primary difference
between the customization processes in nature versus that in software is the
presence of random aspects in nature, whereas software customization is
deterministic (Dhungana et al., 2009). Complex dependencies among features in
software (similatly to those among genes in biology) are common, making

arbitrary combinations of features (or genes) not viable.

To further explore the similarities between the product lines in software versus
those in nature, Dhungana et al. map the several other genetic concepts to those
of software development. Genotype (“the set of genes present in the DNA of an
organism” (Dhungana et al., 2009)) is compared to how variability in software is
implemented. Phenotype (the appearance of particular traits in an individual) is
compared to the characteristics of a software application visible to the user.
Alleles (“alternative forms of the same gene” (Dhungana et al., 2009)) are similar

to alternative forms of the same feature.

The work of Dhungana et al. is recent and largely exploratory, inviting the reader
to consider the similarities between software product lines and genetics
(Dhungana et al., 2009). Considering the success of genetic algorithms in other
areas of computer science (such as neural networks, for instance), this approach

seems promising,.

25

Archer et al. explore variability expression in video surveillance domain (Acher et
al., 2009). They use feature models, one to describe tasks (domain variability) and
the other to describe software variability. The authors suggest applying modeling
techniques not only to software implementation, but to the specification of the
software features as well. To model the variabilities, they use the Feature-
Oriented Domain Analysis (FODA) method presented in (Kang et al., 1990)
which uses feature diagrams. Features in the diagram are organized by hierarchy,
with edges breaking the features down into sub-features. Each feature is
represented by a node on the tree and can be either mandatory or optional.
FODA also supports “requires" and “excludes” constraints, specifying
dependencies among features. The FORM method (an extension of FODA)

allows for additional kinds of constraints (Kang et al., 1998).

As Metzger points out, the FODA method focuses on “separating the
documentation of software variability from the base models” (Metzger et al., 2007)

(original emphasis).

Mietzner et al. look at the variability modeling in Software as a Service (SaaS)
applications (Mietzner et al., 2009). These applications can be hosted on the same
infrastructure for multiple tenants while being customizable to suit each tenant’s
needs. The authors distinguish two types of variability: external — that
“communicated to the customer of the product line” (Mietzner et al., 2009); and

internal — that “only visible to the developers of the product line” (Mietzner et al.,
26

2009). The language used by the authors is the OVM — Orthogonal Variability
Model language, presented in (Metzger et al., 2007). It includes variation points
and variants. Fach variation point documents a variable item. Each variation
point can have several variants, which document “possible instances of a variable
item” (Mietzner et al., 2009). Both variation points and variants can be either
mandatory (they have to be bound) or optional. OVM also supports “requires”

and “excludes” constraints.

The authors are undecided on a formalism to use with their model diagrams,
suggesting several systems that are worth exploring, such as Object Constraint
Language (OCL (Object Management Group, 2009)). They are also looking into
transformation engines so that the rules can be executed (Mietzner et al., 2009).
Thus even though OVM operates with useful concepts, such as mandatory and
optional variation points and variants, there does not appear to be a

corresponding textual notation we can use in our models.

Sanchez et al. note that there are several modeling languages involved in product
line modeling: (a) a language to specify the variability of the product line; (b) a
language for modeling the assets (such as UML), and (c) a language directing the
composition of reusable assets (Sanchez et al., 2009). The goal, they state, is to
come up with a notation that can handle all the aspects of the software product

line modeling. Sanchez et al. use a Smart Home System to demonstrate the

27

capabilities of the Variability Modelling Langauge (VML) described in (Loughran

et al., 2008).

A VML model can include multiple Concerns. Each Concern deals with a
particular set of features (a particular cluster of functionality). In the case of time
and activity management systems, for instance, there are single-user and multi-
user systems (reflected by the User cluster). Thus one of the Concerns would deal

with the user-related data and the interaction between a time entry and a user.

Within each concern there could be multiple VariationPoints (either Optional - to
be optionally included, Parameter (the parameter determines the implementation
of a feature), or Alternative - one of the alternatives must be included). In our
model we do not use the Parameter VariationPoints, so we shall omit them in
turther discussions. Alfernative VariationPoints have multiple Variants within
them. A VariationPoint corresponds to a feature, while a Variant represents a
possible implementation of that feature. In the time and activity management
systems, for instance, the time can be entered as duration (e.g., 1 hour) — which
would correspond to Variant 1, or as a combination of start time and end time

(e.g., 10:00 to 11:00) — corresponding to Variant 2.

To derive a model for a particular system, a seties of invoke statements is used.

Each statement can either invoke a single Variant within a particular _Alfernative

28

VariationPoint of a particular Concern (see (1) below); or invoke a single Optional

VariationPoint of a particular Concern (see (2) below).

1) invoke (ConcernA, VariationPointB, VariantC) - include the code from

VariantC of the Alernative VariationPointB in ConcernA.

2) invoke (ConcernA, VariationPointD) - include the code from the Optional

VariationPointD in ConcernA.

Figure 2 shows examples of an optional and an alternative variation point.

VML seems the most promising for the purpose of expressing variabilities in the
time and activity management product line. It is hierarchical, allowing for
modeling features belonging to different feature sets. Concerns map to clusters of
functionality (a set of related features), VariationPoints to features, and Variants
to feature implementations. VML also allows for modeling dependencies among
features. We have combined VML with Umple which is used to model the
reusable software assets. Umple allows us to define code in fragments, while the
compiler takes care of combining the fragments into class definitions. The Umple

compiler generates Java or PHP code directly from the Umple model.

The combination of VML and Umple allows us to describe the product line and
invoke specific features for a particular product, as well as generate the

corresponding object-oriented code directly from the product line model. We call

29

this combined language VML4Umple, following the naming convention

presented in (Sanchez et al., 2009).

Concern CTimeEntry({
// time entry can have a rejection comment
VariationPoint VPTimeEntryRejectedComment {
Kind: Optional;
class TimeEntry{
String rejectedComment;
}
}

// either duration or both start and end time are required
VariationPoint VPEntryDuration/{
Kind: Alternative;
Variant VDuration({
class TimeEntry{
Double duration;
}

}
Variant VStartEndTime {

class TimeEntry{
Time startTime;
Time endTime;

Figure 2. Examples of an optional and an alternative variation point.

VML is still evolving and some of the syntax has changed since the papers on
which we base our work have been published. However, since the variability
elements that need modeling stay the same, our syntax can be adjusted once the
VML notation becomes stable. Our methodology and the results of our research,

however, should not be affected.

30

2.6. Selected Technologies

Modeling is key in software development, be it architectural modeling, software
specifications, or software asset modeling. Keeping models consistent with the
implementation is an important aspect of software documentation and

maintenance.

UML is an effective notation to model vatious aspects of a software system. We
are primarily interested in modeling use cases and data structures of the time and

activity management systems. UML is well-suited for both.

Furthermore, expressing our UML models in the Umple textual notation gives us
the ability to quickly edit the models and automate some stages of

implementation, such as generation of the application code.

Product lines allow for asset reuse. Developing products via product lines allows
for speedy development, incremental testing, and streamlined deployment. Thus
our intention of creating a product line for the time and activity management
applications should allow for efficient creation of customized time tracking

systems.

To model the TAM product line, we have adopted the VML4Umple notation — a

combination of VML control structures with the software assets modeled in

31

Umple. This allows us to express the product line and product invocations in

textual notation, providing means for automated product generation.

32

CHAPTER 3

CASE STUDIES

3.1. Methodology

To understand time and activity management applications and to see how they
could be considered cases of an abstract product family, we have conducted the
case studies described below. We have selected four applications: Klok - a small
one-person time tracking system; Leia and Anuko Time Tracker - two medium-
size multi-user applications; and TimeTrex - a large multi-user time and activity
management system. See Table 1 for the feature summary of the four

applications.

For each of the four applications that we have chosen for analysis, we followed a
number of steps, to make sure they are analyzed in a consistent manner. We had
access to the source code for three out of four applications: Leia, TimeTrex, and
Anuko Time Tracker. Klok — the simplest time tracking application we analyzed

— did not have the source code available.

33

Features and
characteristics

Klok
(McKeown,
2009)

Leia (Lixar LT.
Inc., 2009)

Anuko
TimeTracker
(Anuko

International
Ltd., 2009)

TimeTrex
(TimeTrex
Payroll
Services, 2009)

License

Free, closed-
source

Commercial,
closed-source

Open source

Open source

Users

Single-user

Multi-user

Multi-user

Multi-user

Database
tables

2

55

16

99

Time Entry

Project

Task

User

Company

Helper

ANIANENENENEN

Pay Period

ANIANANENENE NN

Accrual

Cron

Department

Help

Hierarchy

Holiday

Message

Pay Stub

Policy

Tax

AN NENENENENENANENENENENENEN

Table 1. Case study applications - summary and feature comparison

34

First, we created the class diagram for an application, based on its user interface
(UI). Secondly, if we had access to the database schema, we generated the Entity
Relationship Diagram (ERD) from it, and used the ERD to create another, more
accurate, class diagram for the application. Both diagrams were modeled using
the UMLet modeling tool (Auer et al, 2003). We analyzed the differences
between the class diagrams modeled from the UI and those modeled from the

ERD, to determine the reasons for the discrepancies (if there were any).

Thirdly, by looking at all four applications, we determined similar clusters of
functionality present in more than one application, and attempted to group
together classes related to the same cluster. Each cluster is a group of classes that
work together to provide a particular feature of a system. For instance, classes
related to project management, project review, project milestones, etc. are all

grouped into the Project cluster.

We modified the class diagrams by colour-coding separate clusters. To assist in
this step, use cases were created for each application, helping us isolate the

common usage patterns within the domain of time and activity management.

To simplify use cases, instead of creating separate use case for creation, updating,
listing, and deleting entities, we used a combined use case for CRUD (Create,

Read, Update, Delete) for a particular entity if the user type (actor) was allowed to

35

fully manage it. If the user type was only allowed to create an entity, the use case

was included only for the “Create” action.

To avoid confusion due to naming differences, for generalization purposes we
use the definitions of project, activity, and task as they appear in Leia: project is a
large unit of work done for a client (the organization or individual itself can be a
client as well); activity is a unit of work to support the main project work (such as
project management, human resource management, company meetings, etc.); and
task is the smallest unit of work that can belong to a project or an activity. All

three of these are commonly referred to as work items.

Fourthly, we looked at the clusters with functionality not directly related to time
tracking, such as overtime and accrual policies, payroll, currency management,
helper system information, invoicing, and so on. Classes related to these clusters
were then removed from the class diagrams, leaving only the classes that

represent the core functionality for time tracking.

At this stage, we compared the four resulting colour-coded class diagrams, to
determine the common elements as well as the variabilities between systems,

together with the constraints and dependencies among the system elements.

For each system, we translated the complete UML class diagram and the reduced
diagram with only the core classes into the Umple language (Forward et al., 2009),

using a helper script we wrote. We then compiled the Umple code generated
36

from the reduced diagram of the studied application, to produce skeleton time

tracking systems in Java and PHP.

Below are more detailed descriptions and highlights of the four case studies
described above: Klok (3.2), Leia (3.3), Anuko Time Tracker (3.4) and TimeTrex
(3.5). Some support materials for the case studies (application screenshots, class
diagrams, and use case diagrams) are included in Appendices A through D. The

complete set of support materials can be viewed online (Levin, 2009).

3.2. Klok

Klok (McKeown, 2009) is a single-user time-tracking application, aimed at
logging time for personal and professional projects. Klok keeps track of projects
and sub-projects, allowing explicit time allocation to them. It also provides a
timer that a user can manually start and stop to keep track of time spent working
on a particular project. Klok allows for view and export of weekly timesheets. It
also has functionality for viewing weekly, monthly, and project-based summary

reports.

We have modeled the structure of Klok by analyzing the user interface only, as
the source for the application is not available. As can be seen in Figure 3, Klok
consists of the Project class storing project name, related contact information,
work time estimate, archived status, and colour code. Projects can have zero or

more sub-projects.

37

The time entries are logged against a project. Because the application is simple,
there are only two clusters that can be isolated, each consisting of one class:
Project class belongs to the Project cluster, and TimeEntry class belongs to the
Time Entry cluster. Klok is the simplest system that we have analyzed. Time

entry is the central

functionality of :
Project
fime trackin name: String =
& contactMame: String =09
. contactEmailAddress: String pargntk
applications, contactPhoneMumber: String
hoursEstimate: Double *
keeping records of colourCade: String
archived: Boolean
dates and times M
—— N ! TimeEntry
worked. Klok gl dale Date
Proje startTime: Time
expands the base . endTime: Time
.| duration: Double
. Time Entry comment: String
case of time
tracking by addin:
acking by a & Figure 3. Klok class diagram modeled from Ul

the Project class, allowing the time entry against a particular project, thus making
logging and reporting more precise. Since even in personal time tracking multiple
projects are usually involved, both classes of the application would be essential
even for a single-user system (more so for a multi-user one). Thus for Klok the

cluster diagram was not further reduced.

38

The Umple code resulting from the Klok class diagram is shown on Figure 4. To
view the Java and PHP code generated by the Umple compiler, please see

Appendix A.

class Project{

String name;

String contactName;

String cotactEmailAddress;
String contactPhoneNumber;
Double hoursEstimate;
String colourCode;

Boolean archived;

class TimeEntry({
Date date;

Time startTime;
Time endTime;
Double duration;
String comment;

}

association {

0..1 Project parent <- * Project;
}
association {

1 Project <- * TimeEntry;

}

Figure 4. Klok architecture expressed in Umple

3.3. Leia

Leia is a multi-user application developed by Lixar LT. (Lixar LT. Inc., 2009),
allowing for several user types, each having different access permissions. There
are two main work entities in Leia: project (an item of work to be done for a
particular client) and activity (support work item, such as human resource

39

management, infrastructure management, time off, etc.). Smaller units of work —

tasks — can be created within projects and activities. Time can be logged against

tasks, or directly against a project or an activity.

Bldla

Home Projects Activities Tasks Time Users Clients Admin

My Tasks Created by Me Projecks Activities Unzassociated

General Histary

Task Information o Add time [4* Edit task
Task: #8735

Name: Use cases for TAM systems

Description: Analysis of Klok, Leia, Anuko Time Tracker and TimeTrex,
Priority: Routine

Due Date: 2009-11-30 [€

Estimated Hours: .00 [

Hours Spent: 0.00

Status: Mew

Assigned To: Jenya Levin

Activity: Research

Created By: Jenya Levin

Created On: 2009-11-06 12:34

Updated On: 2009-11-06 12:34

Date User MNote

Mo notes to display

Date User Attachment Description

Mo attachrents to display

Figure 5. Leia single task view screen

< Resolve taslk

The use case diagram is included in Appendix B. Employees can create and

manage tasks, log time against tasks, projects, and activities, export timesheets,

and adjust their preferences. Payroll users can create and manage pay periods and

approve timesheets. Division managers can approve timesheets and run time

40

entry reports. Project managers can create and manage projects, assign project
roles, and approve time entry. Administrators can do all of the above, as well as
create service items, project codes, client and user accounts, grant access rights,

and run extensive reports.

First, we created a class diagram for Leia from the Ul To demonstrate this
approach, we include Figure 5 which shows a screenshot of the Leia single task
view screen. This screen includes a task’s name, description, priority, due date,
estimated hours, and status attributes. These correspond to the attributes of the
Task class. The associations of the Task class can be deduced from this
screenshot as well: a task is associated with an activity, with one or more users to
whom it is assigned, as well as with a user that created the task. This corresponds
to the associations between Task and Activity classes, and two associations
between Task and User classes. The other classes and associations were modeled

through similar analysis of the user interface screens.

To see how accurate the class diagram created from the Ul was, we then
generated the ERD (since we did have access to the database schema for Leia)
and created a more precise class diagram based on the ERD. There were several
differences between the two models. The Ul-based model is shown in Figure 6,
the table discusses the differences between the UI- and the ERD- based models

can be seen on Figure 7. The ERD-based model is shown on Figure 8.

41

0

el
spopatold = aiel
po WaRdaa =

UoNAnEp | .
SURRLALRLLZERE
Auap e +
Wawnpeny 5

PAETYIS|
suweu| T -

wan =

Bl
ABopourpay

| T0saBeuew +

EUEE]
i

uonsoguabeuely =]

T
g 1 | piomssed
sa0u ¢ e BUEUIGE TgsodssT .
saqqisuods ayqn: +
230N sweu Aungisuodsareion 5 |
1 b
s " - T
bt
uondinsap t
g P e,
IpopsmaNsod
Apomsmanzid T JuawBIssYaI0Y]
£1eqpUELOReZIRLIOL
SjeqpuIIUBLIdOEISR | S0l - i
1RaVElS S
SINOHUEPZIEWSS sjeqesespel
186pNng faud s, 2 0
apeidwodjofenE) 170 - 301530
adA 112l o e LTS
sy aucyapaURLNI +
smels 10 bl
O s oelo/d FURESTARTS N S U3 o =
veloids [T petorgio) +
TR
spafonge +
T
sauoBajeises + Bl ioBajes [E] meuwu«mnﬂmxwmp_
hiobareyses = . odgouny 5 vEMSEY
B N 10 JWBWLDISSYRPODSSANY
fughaaes + 2 LR T ,
T e lsapogssanie s
.| Anuzewnppeloa 5 Anuzoun; g . 1
i FseLAuAIY 5 yse130al01d 5 S
«f adi 18po)
pogssany
abueynaloid T
JuBLILIG3
uoneinp N UohdipsEp
=1ep . N ey
Anuzouny = TR T saaubise + dnosgssaray =
I persosiLEsed v = 4
cpou glegiie + SEGRUE| SUuuR siilgotine | osuauie
aeaims Pl S 1 B il
* pouadhed = |1 Ao | T aweNgse| | 17 | _SENAjg e
L . i SWAE | fpanoudde vE
Bkl UL e ap r e
T = b - . T ool
ol e -] P

T
weyenIS

T

Figure 6. Leia class diagram modeled from user interface

42

Module Leia from ERD Leia from Ul Notes

Client Client Client

Project Project Project

Project ProjectURL LIRL

Project enum in code Departrment

Froject Projectiilestone FrojectMilestone

Project Technology Technology

Froject ProjectTechnology association between Project and Technology

Project TechnologyGroup dropdown option groups
Froject QEBBillingCode e not obvious from U!
Project QBProjectCode ProjectCode

Froject ProjectType aitribute of Project

Project Projectintensity attribute of Project

Project ProjectStatus attribute of Project

Project ProjectHistory ProjectChange

Project ProjectReviewScale e Jocked conditional access
Project ProjectReview Jocked condittonal access
Project ProjectReviewSignature Jocked conditional access
Froject TimelineExpectationsScale Jocked conditional access
Project ProjectReviewResource Jocked conditional access
Froject ProjectReviewResourceRole - Jocked conditional access
Project ProjectlserRole association between User and Project Task

Froject ProjectUserRoleHistory - not obvious from U!
Activity Activity Activity

Activity QBActivityCode Seniceltem

Activity Activity QBActvityCode association between Activity and Senicelterm

User Role Role

Liser RoleGroup attribute of Role

Liser RoleGroupltern s association between Role and RoleGroup
Liser AccessGroup AccessGroup

Liser UserAccessGroup AccessGroup

User AccessCode AccessCode

Lger AccessCodeType attribute of AccessGode

Liser AccessFlagsGroup AccessCodeAssignment

Liser AccessFlagsUser AccessCodeAssignment

Lser User User

User UserFilterSesgion e not obvious from Ul

User Userhanager association between User and ManagerPosition

Liser Manager ManagerPosition

Fayrall PayrollTimesheet Jocked conditional access
FPayroll PayrollTiresheetStatus Jocked conditional access
Fayroll PayPeriod FPayPeriod

Task TaskUser association between User and ProjectTask | ActivityTask

Task Task Froject Task, Activity Task

Tazk TaskHistory s issing

Task TaskStatus aitribute of Task

Tazk TaskAssignmentHistory - issing

Task WorkltemMote Mote

Task WaorkltemAttachment Attachment

Tazk WaorkltemTask Category TaskCategory

Task Waorkltem Task

Task WaorkltemHistary - rmissing

TirneEntry WaorkltemUserTime TirmeEntry, ActivityTimeEntry, ProjectTimeEntry

TirneEntry TirmeType TirmeType

TimeEntry WorkltemUserTimeStatus aftrbute of Task

System Error e not obvious from Ul

Figure 7. Comparison between Ul- and ERD-based class diagrams

Some of the classes have not been modeled due to locked conditional access to
the functionality they represent (such as ProjectReview and associated classes, as

they are only accessible to the Project Manager for a particular project). Some

43

other classes were not obvious from the UI (such as QBBillingCode which is a
supporting class to associate projects with those defined in QuickBooks
accounting software; or UserFilterSession that keeps track of user-defined filters).
Some classes have been modeled as associations (RoleGroupltem class is
represented in the diagram as an association between Role and RoleGroup).
Others have been modeled as attributes of the classes they described (such as

ProjectType being modeled as the attribute of the Project class).

Based on the use cases, we have isolated the following clusters within Leia
structure: Pay Period — payroll functionality, such as pay period management
and timesheet approval; Project — functionality dealing with projects, their
history, status, milestones, clients, user roles within a project, and project reviews;
Time Entry — everything that has to do with logging time against a work item;
Company — internal company project and activity codes, as well as their mapping
to QuickBooks codes; User — user management, user session filters, role groups
within the company (such as Project Manager, Developer, Graphic Designer),
roles, and division management; Task — small units of work against which time is
being logged, their status, history, attachments, and categories; and Helper
functionality — helper classes that deal with user permissions, error handling, and

other cross-cutting concerns. The colour-coded clusters are shown on Figure 8.

44

g uopdinsap
BuLnS Jace|
wianies

[EEEEEEE

[EEsEaa BN Jeregag |

ABojouyIaL

e

UEa|00g REMIE

Ju1 386png
ues|oog smansor
UE3|007 ‘SMaNaId

1 gRuawedan
) J8Bpng
Wi aeunsa

Sumg aweu | [
dnoiga0y

o HanEiEs (9ol

wEndnoioany

ueajoog ‘uap|

uanbas

Py

1008 ‘pajalduIo
AUEINUEISALIBLIT

z Lol duiesau

!

Uealong pakE

Bug sueu

L

ueaoog

duwejsaun wBosE)

=

) Bauaizialduaneuibed [-

L [SE

Buis taLeNSHo0naINk

BuENISE|
BUENISI
asn
Bus Jewe

UEal008 e aub s sy e L wea L e

5

1L

Ayeaiduiod
gpu3LIoy

duielsaui] EQRUZHaP
LIS ElEqels

BuL5 poa

Tateuen

) a0
=R |

sanoIdE &

Y

ENIVEEREEI

fups ‘auley

UE8|008 PaIE
Bums

3PoohMIYED

B Aobsiea

apoofuligan

e
BUS in
a1 DAUBISAEH s [EEERTRY BULIS ‘el
| N0 sinoy a1ep Tanpanig
Bl ey

—
B

A5BL
s
[CIEETTR
[

S s

lass diagram modeled from the ERD with highlighted clusters

Leia c

Figure 8

45

Compared with Klok, Leia is a more complex application. By looking at the two
together, we considered how we can reduce ILeia to Klok without losing
functionality absolutely required for a time and activity management application.
To accomplish this, we started with the full class diagram that had clusters
highlighted in different colours, and one-by-one removed the classes deemed
unnecessary. The reduced diagram is shown on Figure 9. Below is the

explanation of the reasoning why the particular classes are to be removed.

First, we kept the Time Entry cluster as it is the essence of time-tracking
applications. Another cluster that has to be present is the Project one. However,
several classes within that cluster can be removed from the diagram without

affecting time and activity management functionality of Leia.

We chose to exclude the ProjectReview class and its associated classes, as this
functionality differs among companies and often takes place offline.
ProjectTechnology and its associated classes can also be removed, as it either can
be omitted (in case a company is not a technology company, or if the company
uses the same technology for all of its projects) or can be modeled as an
association of the Project class. ProjectURL can be modeled as an attribute of the
Project class. ProjectHistory and ProjectRoleHistory classes keep a log of changes
to the project and so are helper classes that can be left out of the model as

housekeeping functionality. This also applies to the classes in the Helper cluster

46

and the UserSessionFilter class, which have been removed from the diagram as

well.

Klok does not include user management, as it is a single-user application.
However, most time and activity management application include multiple users.
Usually there are at least two user types: Employee and Manager (which also
might be called Supervisor or Admin). Therefore, for Leia, we chose to leave in
the User cluster, including the Manager, UserRole, and UserRoleGroup classes.
The latter defines positions within the company and is also often present in time

and activity management systems.

Internal project and activity codes included in the Company cluster were also
removed as these are specific to this application. We did keep the Activity class

since it is central to activity management.

The Task cluster has been trimmed to remove WorkItemAttachment and
WorkItemNote that can be modeled as WorkItem attributes. TaskCategory has
been removed as it is a helper class that provides additional grouping. Other
companies might have other ways of grouping tasks, such as parent-child
relationships, for instance. TaskStatus can be modeled as a Task attribute. The
TaskHistory, WorkItemHistory, and WorkltemAssignment classes have been

removed based on the same reasoning as the ProjectHistory class.

47

We have removed the entire Pay Period cluster as it is specific to payroll
practices of a particular company. Some time and activity management
applications will not have payroll at all (personal or academic activity
management, for instance), others will have contractors invoicing the company at
irregular intervals. Therefore, the Pay Period cluster is not essential for the time

and activity management applications.

The resulting diagram contains five clusters: Time Entry, Project, Task,
Company, and User. Compared to the simplest application, such as Klok, we
have added user and company management. Project and task management can be
considered to be a part of the same module, where Project is a grouping
encompassing multiple other, smaller, projects — tasks. Klok has a similar

functionality by allowing for creation of child projects.

The reduced class diagram shown in Figure 9 contains fewer classes than the full
one, and so the Umple code generated from the reduced diagram is more
compact. From the Umple code we have generated Java and PHP classes for Leia
in a manner similar to Klok. The Umple, Java, and PHP code for Leia can be

viewed online (Levin, 2009).

48

EEE—
JEE
=——————

Auedwing

INTEETTIR

1aloid

I3
=

| BT

Buuis aweu

dnoloaloy

wiaydnoigs|oy

uealoog uappiy

Aupgs uopduasap
uea|oog pinw

alogiasnalilg

u| ;aauanhas
Buus apou

BULES e

EER

duwesaw] wbomse|

| Euasaalduoneubed
UEBI00g (|IEWIPan0Sa Y SELanEIal
uegajoog amjae

Aunlg BwepsoY

Bulls plomssed

| uojsUapa

Buuys awersyoogyaink
AULS BLUEpSEe|

AuUlLS aLUENSsI

[=R ETEES

Buus cjiewsa

1850

uEa|ong JIEWTpaUlISSySE | WEa | BME08)
uEs|n0g BalE
Auis ap

L 2 I
\Wj
N

Buus snels

FEENE

FEGEETEE)]

aums ismels | L

SAIE}S A LIB S WEHA 0,

OTREFINTET]

Aus Juswiioppagaalal
UEB|00g paUOcxE
ALIS JUBLLILLIOD |

W sainuiuoneng

sannidde »

Py *

ueajnog paayale Apole[ioesE

= ajeq Eep

Auyg aweu
adilatul]

ALILIASALUENHIONA

| npapIn
Buus aweu ;
Misusjupasliong UEa|00g (pasyLe
ju| B6png
g Uea|o0g smanisod
Ul npapIn ueajoog smapaid
Bups uonduasap U] BB
Bups awed | L * AUIE SIUBLLILIOD
shjelgaalold U] el
diiejzalul] ajegpuIwaou
W] N RERID dliElSaLWIIL SBlEQpUAaR
Buus uonduasap duwelsaw] aleguels
Bums aweu | | # fuus apoa
adi sl0ld 128(ol4
1[0 1
1 Aualed
dLUBIS AL] UOGEIMIORISE]

ajep EEaseaal
AUpS ey

EDEEERE]

IBY |anaTe|s
Bums aweu

31D

Figure 9. Leia reduced class diagram modeled from the ERD with highlighted
clusters, showing only the clusters related to time and activity management

49

3.4. Anuko Time Tracker

Anuko Time Tracker (Anuko International Ltd., 2009) is a multi-user application
with two user types differing in access permissions: Employee and Manager.
Employee users can edit their profile, enter time, view and export their
timesheets. Manager users can do all an Employee user can do, as well as create
projects, tasks, users, clients, and export the timesheet data. The use case diagram
is included in Appendix C. This application is slightly more complex than Klok,

but simpler than Leia, due to fewer user types and use cases.

In Anuko Time Tracker, there are projects to designate a larger unit of work and
activities to represent smaller units of work. In the use case diagram, we kept to
the previously stated definition of work items, so activities are specified as tasks.
However, in the class diagrams, to keep consistent with the application’s ERD,
we kept the table names as class names. Therefore, the Activity class in the class
diagram maps to the “CRUD Task” use case in the use case diagram, because it
deals with creation and management of the smallest units of work within the

system.

We have modeled the full Anuko Time Tracker class diagram based on its ERD.
The ERD is included in Appendix C, and the class diagram is shown in Figure
10. As in the previous case studies, we have identified clusters within the class

diagram, to group the similar functionality. Once again, we colour-coded similar

50

clusters to those of Leia and Klok: Project — corresponding to projects and users
involved in them; Users — containing user information and preferences;
Company — containing company and client entities; Task — classes dealing with
“activities”’; Time Entry — ActivityLog class; and Helper — TmpRef class used in

user creation, report filters, and system configuration data.

In the Anuko Time Tracker ERD, the client records are not connected to
particular projects, as they are in Leia. Therefore, instead of putting the Client
class into the Project cluster, as we did for Leia, it was put into the Company

cluster, together with other data defined for the company using the product.

After colour-coding the separate clusters, we once again went through the class
diagram removing classes that we deemed not necessary for time and activity
management applications. This included all the classes in the Helper cluster, as
well as the InvoiceHeader class needed only for specifying information related to

invoices, and thus not required.

51

FrojectStatus Froject
name: String name: Sring 0.1 *
hidden: Boolean * | timestamp: Timestamp
Client i
idUm: Int
name: String
addryour: String
addrCust: String g
carmmernt: String A mananar || -5 {A::w?.Lu.g. —
tax: Double URElESAC IR I
fSubtatals: Boalean L date: Date
discount: Double rate: Double from: Time A mapager
ctatus: Int checked: Int duration: Tirme
comment: String
L * | proaf Int.
charge: Int
InvoiceHeader User il
nurmber: String = | login: String o &
addryour: String passward: String Clusters
addrCust: String nare: String
cormment: String lewel: Int 1 4
tax: Double active: Int O —
fSubtotals: Boolean rate: Dauble
discount Double comanager: Int
showPie: Int 1
pieMaode: Int 1 mandgerk
5t e
UserStatus g ade Ding
AR email: String Campany 5
e timestamp: Timestamp | * ;
hidden: Boalean * £ P . o} lame String ——
e String
currency:Sting
locktirne: Int |
—————

Figure 10. Anuko Time Tracker UML class diagram modeled from the ERD with

highlighted clusters

All the other clusters were kept, arriving once more to the five core clusters:

Project, User, Company, Task, and Time Entry. The Anuko Time Tracker

reduced class diagrams with clusters highlighted is shown in Figure 11.

We have generated Umple code, and from it in Java and PHP for both full and

reduced versions of the class diagram. The code can be viewed at (Levin, 2009).

52

ProjectStatus

Project

name: String

hidden: Baalean

*

name: String
timestarmp: Timestamp

r

locktime: Int

currency; String

Client -
idUrm It A mapager " ActivityLog
- o d timestamp: Timestamp
name: String 3
addrvour String UserBind date: Date
addrCust: String rate: Double fram: Time
comrment String checked: Int duration: Time
tax: Douhle - comment: String
fSubtatals: Boolean L proof Int
discount: Double charge: Int
status: Int Usar hillable: Int
login; String
password: String
name: String
lewvel: Int
active: Int
rate: Double
comanager. Int 4 manager
showPie: Int 1
pietade: Int 1 mandgere
IsarStatus language: String
name: String Bt Strmg_ 7] Cornpany
hiddeﬁ: Roslas 1+ timestamp: Timestamp name: Sting
* T weww: String

Clusters AN

Project

Tirme Entry

Uger

Figure 11. Anuko Time Tracker reduced UML class diagram modeled from the ERD
with highlighted clusters, showing only the clusters related to time and activity
management

3.5. TimeTrex

So far, we have looked at the very small application with minimum functionality

required for time tracking (Klok) and two medium-size applications (Leia and

Anuko Time Tracker) which also include user management, company

information, and at least two types of work items: projects and tasks. The fourth

test case (TimeTrex) deals with a large application, supported by 99 database

53

tables. Our goal was to see if we can isolate the same functionality clusters within
this large application and create from them an implementation with minimal

functionality that would still support time and activity management tasks.

TimeTrex (TimeTrex Payroll Services, 2009) is a multi-user system which
includes two user types: Employee and Administrator. The use case diagram is
included in Appendix D. Employee users can enter time, view and export their
timesheets, edit their profile and preferences, create and manage messages, and
create requests directed to managers. Administrator users can do everything
Employee users can, plus authorize, decline, and pass requests; create and manage
tasks, projects, users, clients, task and job groups, recurring and current
schedules, user access rights, company information, policy and payroll
information; create, manage, and export lookup data; and run administrative

reports.

We have created the TimeTrex class diagram based on the user interface. It
contains 21 classes, the attributes and associations for which we could deduce

from the Ul This diagram is shown in Figure 12.

TimeTrex is an Open Source application, so we were able to create a database
and generate the ERD from it. Unfortunately, since the TimeTrex MySQL
database uses an engine that does not support foreign keys, we had to determine

the associations between classes ourselves, based on database field names that

54

referred to other tables. In the case of Anuko Time Tracker we were faced with
the same issue; however, it did not hold us back significantly, due to the small
number of tables involved. For the TimeTrex database, the task was much more
complicated, because of the sheer size of the database and the number of
associations among entities. Several tables did not appear to exist in the database,
yet their IDs were referenced from other tables, and so we created classes for
those. In the class diagram, they are identified using the fuchsia colour (for those
classes that appear to deal with hierarchy of objects in the application) and gray

(for the rest of the objects referenced from other tables).

Once the class diagram was completed, we attempted to identify classes
belonging to common functionality clusters. We have categorized the classes into
17 clusters: Accrual — data on employee time accrual; Company — company and
branch information, company deductions, user count within the company;
Helper — authentication and station information, error handling, system log,
bread crumbs, user date totals, etc.; Cron — data used in running cron jobs;
Department — department information; Help — data used in the help system;
Hierarchy — object hierarchy data; Holiday — public holidays; Message —
messages passed between users; Pay Stub — pay stub entries, as well as current
and recurring amendments; Pay Period — payroll data; Policy — exception,
accrual, meal, overtime, premium, and absence policies; Project — job data

against which time is logged; Task — recurring and current schedules; Tax —

55

income tax forms and rates for Canada and USA; Time Entry — punch in/out
data; and User — identification, preferences, wages, status, and other data on

users within the system.

TimeEntry

Shift

startTime: Time
endTime: Time

date: Date
reportedStartTime: Time
reportedEndTime: Time
actualStartTime: Time
actualEndTime: Time

TaxDeduction isTransfer. Boolean
Ty ErnployeeTax fipe: Enum
taxPercentage: Double quantityGood: int
status: Enum 9 quantityBa: int
name: String nate: String
calculation: Double station: String
percent: Double it
annualvWageBase: Douhle o)
annualExemptAmount: Double
e W Employee 1
Mpeyeeiage 17| firstame: String
fype: Enum middieName: String
wiage: Double lasthame: String
effectiveDate: Date sex: Siring
laborBurdenFercentage: Double addressLinel: String
note: String 1 1| addressLine: String
R province State: String Department
e g country: String narne: String ‘
ostalip: Strin
amauntHours: Double \’LDrkF‘hnan Smgng
date: Date homePhane: Siring
TypesEnum = T | mobilePhone: String [mrancn | [company |
feRStngL o, name: String name: String
warkEmail: String
PayStubAmendment Eﬁmggg_aga?;mg
status: Enum S Absence
ginSsn: trin:
st A E e s e Sting date: Date z
armnountType: Enurm + T | hireDate Date 1 = [iinaiTirme narne: String
rate: Double terminationDate: Date defabite | accrualPaolicy: Enum
units: Enum owerride: Boolean
amount: Double
description: String
effectiveDate: Date
apphyvearToDateAdjustment: Boolean defaulte
ax
ErployeeException
e olicyGroup
name: String
User 7 7
ol* username: String
wiehPassward: String
phonelD: String Message
phonePassward: String subject: Strin
EXEE_DUD” bankRoutingMumber. Int ! a
code: Strin body: String
- slring bankaccountNumber: Int 7 7| reciplent: Strin
name: String i P o
currency: Enum
severity: Enum ayPeriodSchedule: Enum Statis Enum
payl tvpe: Enum
\ﬁ isAutharized: Boolean

Preferences
dateFormat: String
language: Enum
timeUnits: Enum
timeFormat: String
timeZone: Enum
weekStartsOn: Enum
rovwsPerPage: Int
notifiMessages: Boolean
notifyExceptions: Boolean
sendMotiicationToHomeEmall: Boolean

Figure 12. TimeTrex UML class diagram modeled from the user interface

56

The diagram with clusters highlighted is shown in Figure 13. Due to the
complexity of the application and the number of classes and associations, the
diagram is rather large, and so is not readable. We include it here for purposes of
illustration of the size and complexity of the TimeTrex system. A large version of
the diagram can be viewed online (Levin, 2009). To assist further discussion, we
are also including an abstracted diagram showing all 17 clusters and relations

between them, in Figure 14.

Figure 13. TimeTrex UML class diagram modeled from the ERD with highlighted
clusters

57

For the large systems such as TimeTrex we could have created several smaller
UML package diagrams with defined interfaces. This would be useful if we were
to examine each cluster (or package) on its own and have a more clear view of
the interfaces among clusters. However, the huge numbers of associations (such
as those among TimeTrex classes) would potentially result in the package
diagrams being more complex than one large model, making it harder to view all

the relationships within the model and to see the big picture.

Campary

Accrual

\@l
A7
el

Time Entry
===

Figure 14. TimeTrex cluster diagram modeled from the ERD

We tried to be as granular as possible in our groupings, to allow for more flexible

analysis later. The UMLet tool we used to create the class diagrams and highlight
58

the clusters has a limited number of colours available, so we tried to keep to

those allowing for best readability.

Once the clusters were identified, our next step was to try reducing the diagram
to a smaller subset of classes that would allow us to generate a simple time and

activity management system from the same objects used in TimeTrex.

To reduce the diagram to a set of essential clusters, we started with removing the
entire clusters that did not provide necessary functionality. Accrual, Pay Period,
Pay Stub, and Tax clusters are all related to payroll; Policy, and Holiday
clusters deal with lookup and policy data. Cron, Hierarchy, and Help clusters
are used for Ul generation and housekeeping scripts. Message cluster relate to
messages sent between users. All these clusters could be removed without

affecting the core functionality of a time and activity management system.

The Department cluster classes were moved into the Company cluster, as they
relate to organizational units within the company. Most of the Helper cluster
classes were removed. The only two that remained were UserDate and
UserDateTotal as they are involved in time entry. Both of these classes were

therefore moved into the Time Entry cluster.

There are 5 clusters remaining. The Project cluster contains Job and Jobltem
classes, and Task cluster contains the Schedule class. All three classes are

involved in managing work items against which time can be logged.
59

parents

Company.
name: siring

shoriName: String

address1: Siring

adiress2: String

city: String

province: String

country: String

postalCore: String

wiotkPhone: Sting

faxPhone: String
businesshumber. String
adminContact: Sting
bilingCantact String
supportContact String
eriginatorlD: String

dataCenterlD: String
enablesecondLasiName: Boolean

Branch
name: tring B
address1: String
address2: String
city. String
provinee: String
country. String
postalCade: String | default
wiatkPhone: String
faxPhane: Sring

Job DeparimentBranch cly: Bty
7 province: Sting
narme: Sting f&———————— country: String

wOrkEmail: String

Depariment

< default

defaulte

B

UserDefault
employeeNumber. String

defaulte workPhone: String
Joblern workPhaneExt String
[arne: sting |1 hireDate: Date

dateFormat Stimg
timeFarmat String
fimeUnitFormat String
timeZone: String
itemsPerPage: Int
timeshestyiew Int
startieekDay. Int

szanmsmarancnUss@ language: String
enableEmailhatificalionException: Boolean

enableEmailNotificationhessage: Boolean
enableEmailhiotificationHome: Boolean

UserDateTatal
Punch UeerTile quantity: Float
timeStamp, Timestamp AEE g badQuantiy: Float
ariginalTimestamp: Timestamp startTimeStamp: Timestamp
actualTimeStamp: Timestamp endTimestamp: Timestamp
trangfer: Boolean fatalTirme: int
longitude: Float overide: Boolean
latitde: Float actualTotalTime: int
PunchControl -

guaniity: Float

badQuantity Float s

totalTime: Int e—

astualTotalTime: Int userNarne: String

overiap: Boolean password: String

otherld1: String UserGroup passwordResetkey: String

otherld2: String 1 = | passwordResetDate: Date

otherld3: String honelD: Stiing

atherldd: String phonePassword: String

otherlds: String iButtaniD: String

note: Siring firstame: String

middleName: String

lastName: String
seD: int

address1: Sting
addressz: String

Userbate | ciy. String
7 [[@ateStamp: Date] - provinceState: String
country String
postalZip: String
workPhone: Stting

Clusters

UserPreference sl

dateFormat. Stimg tnabilePhone: Stin
fimeFarmat: Sing b ipcany 5 Userldentiication
timeUnitFormat Sting hormeEmail: Sting - number int
timeZone: String e value: String
itemsPerPage: Int oD extraValue: Sting
timesheetview: Int hireDate: Date
starteekDay: Int
language: Sting ! 1 e

IahourSiandardindustry: Int
enableEmaiNotincationException: Boolean thnliceN nbar SR
enablsEmaiINctcationhessage: Boolean el
enableEmai NotificationHame: Boolean oAbl DAt

D Int

rGUpdateDate: Date

otherld3: Siring
otheddd: String

atherlds: Siring

fingerPrinti: String
fingerPrint2: String
fingerPrint3: String
fingerPrintd: String
fingerPrinti UpdateDate: String
fingerPrint2UndateDats: String
fingerPrint3UpdateDate: String
fingerPrini4UpdateDate: String

Figure 15. TimeTrex reduced UML class diagram modeled from the ERD with
highlighted clusters, showing only the clusters related to TAM

60

Time logging happens against the job and the job item, whereas the schedule
separates work on the same job into separate time periods. This is why we have
separated the classes in such a manner, although other interpretations are

possible. The reduced cluster class diagram is shown in Figure 15.

We have kept Company and Branch classes in the Company cluster, and have
included with them the classes from the Department cluster. We have dropped
all the other company-related classes as they are either involved in housekeeping

or in payroll-related functionality.

In the User cluster, we have kept the classes that deal with user contact data,
identification, preferences, default settings and grouping, and the user role within
the company. The rest of the classes have been dropped, as they deal with
financial information and additional user data not essential for time and activity

management applications.

We retained the entire Time Entry cluster consisting of Punch and
PunchControl classes, and included with it the UserDate and UserDateTotal

from the Helper cluster, as discussed above.

After the reduction, we ended up with a diagram containing 18 classes grouped

into 5 clusters: Project, User, Company, Time Entry, and Task.

61

Based on the reduced class diagram for TimeTrex, we have created the
corresponding Umple code, and from it have generated Java and PHP classes for

a reduced time and activity management application. The code is available at

(Levin, 2009).

62

CHAPTER 4

PRODUCT LINE DERIVATION

4.1. Product Line Derivation Notation and Methodology

We have looked at four time and activity management applications — one small
one, two medium ones, and one large one. For each application, we were able to
identify clusters with similar functionality, reduce the application set of classes to
those required by a time and activity management system, and generate textual
UML models (using Umple) and source code (in Java and PHP) for the classes

and associations of each system.

It is clear that applications in the time and activity management domain have
certain similarities (the clusters we identified as common) and certain variabilities
(the different classes and associations within the clusters). Therefore, it should be
possible to express time and activity management application architecture as a
product line architecture. The main obstacle in this process is the difference in
design of these four systems: the same functionality is achieved using different

classes, attributes, and associations, making generalization difficult.

One possibility would be to encode variabilities in such a way that we could

generate the four systems precisely as they are in their reduced form. This would

63

be an interesting exercise but the resulting architecture would ultimately be
useless, as no other time and activity management system could be generated

from such a specification.

The second way would be to try reducing the four systems even further,
removing all but absolutely necessary classes and attributes. This still however,
would not solve the problem of generalizing the different ways of implementing

the same feature.

The third way would be to follow a bottom-up approach by starting with the
simplest case of time entry and building the other features upon it. This way we
would not be following precisely the naming convention of each of four systems
or the exact same attributes represented in each. The resulting generalization,
however, should allow us to generate a variety of time and activity management
systems based on a selection of required features. Among those, we should be
able to generate the four systems closely resembling our case study applications in

feature sets.

We have decided to follow the third approach, as it potentially results in the most
useful definition of the product line. The resulting model could then be further
extended to generate full-fledged time and activity management applications,
including accrual calculations, policies, and other modules we have removed

during the reduction process.

64

4.1.1. Product Line Derivation Notation

We shall use the following notation elements in the product line model building

below:

1. Application.Class (for instance, Klok. TimeEntry) to refer to a model of

Class in Application (class name and attributes);

2. Application.Class1 — Application.Class2 (for instance, Klok. TimeEntry —
Klok.Project) to refer to an association of Classl and Class2 in

Application;

3. TAM.Class (for instance, TAM.TimeEntry) to refer to a model of Class in

the Time and Activity Management (TAM) product line;

4. TAM.Class1 — TAM.Class2 (for instance, TAM.TimeEntry -
TAM.Project) to refer to an association of Class1 and Class2 in the TAM

product line;

5. attribute (for instance, duration) to refer to a class attribute;

6. o:attribute — optional attribute (for instance, o : comment);

7. anmrattribute where #>0 denotes the alternative attribute index, and
m>0 denotes the option index within the nth alternative attribute (for

instance, all:duration, al2:startTime, al2:endTime to

65

denote that either duration or a combination of startTime and

endTime are required).

4.1.2. Product line derivation methodology

1. Select several systems from the domain and model each system in UML

When selecting the systems from which to derive your product line, several
things are important to keep in mind. Select systems that differ in size and
complexity. Otherwise you might miss essential features that arise only in large
systems or arrive to an ovetly complicated base case if you do not examine
smaller systems. It is good to have access to the database schema as it simplifies
the modeling. However, if you only go with open source software because you
can get access to the database schema, you might overlook features provided by
closed-source software, which might be essential to the domain. If you do not
have access to a copy of a closed-source application that you would like to
analyze, look into a possibility of using a trial version to analyze the user interface

and model the application features that way.

People applying our approach, particularly as it involves reverse engineering,
should be aware of possible licensing issues and contract violations (prohibitions
against reverse engineering). In our research we reverse engineered the systems
based on the available code, databases and UI, and did not copy any code from

the existing systems so we are not breaking copyright.

66

If you are modeling the system from the database, each table can become a class
and each field an attribute. If you have a database model that supports foreign
keys, the associations can be derived from those. If not, look for the references to
other table IDs as indications of relationships among tables. A database table
reflecting a many-to-many relationship among tables becomes a class in UML

model, associated to the classes that correspond to those tables.

If you do not have access to the system’s database, you can still try to model its
data structures based on its user interface. The resulting model might not reflect
the application’s data structures exactly, but it will capture the features supported

by the system.

2. Identify clusters of functionality

Look for groups of classes that together address a particular set of features (or a
module). For instance, in the TAM domain, all the classes with the project-related
data would be grouped into a Project cluster, whereas all those dealing with pay

period calculations would be grouped into a Pay Period cluster.

Some classes logically belong to more than one cluster. For instance, classes
related to user roles on projects relate to both User and Project clusters. Those
can be put into either cluster. In step (7) when you are building the model, you
will include these classes with that of the two clusters that you model last. For

instance, if you choose to model the User cluster first, you will include project
67

role classes and associations with the Project cluster. These classes will require
variation points and variants that model classes to which they are associated from

both Project and User clusters.

You can create a variability model without grouping classes into clusters.
However, it will make identifying related classes more difficult as you try to

determine which features are essential to your domain and which are peripheral.

The clusters can be quite big if there are many related classes. If that is the case,
see if the cluster you have identified is really addressing only one feature set that
cannot be broken down further. For example, in the TAM domain, classes related
to project reviews are as much project-related as the project milestone class.
However, time entries can be made against milestones, so project milestone class
is relevant to the time entry systems. Project reviews have more to do with
project management and thus are from a neighbouring domain. Therefore they
can either be separated into their own Project Review cluster and be removed in

step (3) or stay in the Project cluster and be removed in step (4).

3. Remove clusters that are not directly related to the domain, together

with the associations that connect them to the remaining classes.

Look for clusters that deal with additional features not essential to your domain.
These could be helper classes that are system- or platform- dependent and will

not be needed by all systems, or those that belong in the display layer. They can
68

also be features from the domains closely related to yours. For example, the
Accrual cluster in TimeTrex is related to accounting and is only relevant to time
entry if a company that uses the tool for time entry needs to tie the time entries
into their accrual policies. This cluster is thus not essential for the TAM domain

and can be removed.

Keep in mind that these clusters can later be added to the system if desired after
the essential features have been modeled. Removing them here allows you to
concentrate the modeling effort on those clusters that are essential to the system,

which can be hard with multiple associations and classes cluttering the model.

4. From the remaining clusters remove classes that are not directly related
to the domain, together with the associations that connect them to the

remaining classes.

The reasoning and the process are similar to step (3). Removing the unnecessary
classes here allows us to further simplify the model. If desired, they can later be

added to the product line.

5. Identify a base case for the domain.

Think of the smallest set of features that allows one to accomplish the main task
of a system within the domain. For example, for a TAM system, we need to be

able to track time spent each day on various activities. So, the minimal amount of

69

information we need to track is the date, the duration of time spent, and the
activity it is spent on (which can be achieved with a comment). Thus our base

case becomes a class with a date, duration, and comment.

The base case does not have to be present in each application. For example,
some systems will track all time entries against a project. Later, when we add a
project-related concern to the product family, comment will become part of one
of the variants within an alternative variation point, the other one being the time

logged against a project.

It might be possible that a domain does not have a single base case, as the task
can be accomplished by more than one set of features. In that case, identify each

set of features, so that you have multiple "base cases".

6. Model the base case in VML4Umple

If there is functionality that is required for all systems in the domain (a
commonality), include an invoke statement for the corresponding features in the
product family. For example, in the TAM domain, each time entry in the system
must include a date. Thus, invocation of this field becomes part of the product

line model.

In the case of more than one base case, we need to create an alternative variation

point where each such base case is a variant.

70

7. Build the product line from the base case up

For each of the applications, go through each cluster in the order of simpler

clusters to more complicated clusters with more associations.

1.1f a cluster does not exist in product line, create a concern for it.

Otherwise, find a corresponding concern.

2. For each class in the cluster: if a class exists with the same or different
name that has similar functionality, find a corresponding class, renaming

it for clarity if desired.

3. For each attribute in the class, if it is not directly related to the domain (UI-
related, device-specific, etc.) skip the attribute, do not include it. Most

likely it needs to be a part of a different layer or of additional clusters.

4. For each attribute in the class, if the attribute exists - find a corresponding

attribute, renaming it for clarity if desired.

5. For each attribute in the class, if an attribute does not exist with a same ot
different name that has similar functionality, create a variation point for
the class with the attribute. If the attribute is optional, make the variation
point optional, otherwise make the variation point a/ternative and create two

variants, one for each alternative.

71

6. For each attribute in the class, if the variation point depends on another
variant or variation point previously defined, use the "requires" keyword

to indicate the dependency

7. For each class, if a class is associated with others, add all the associations
to the classes that are already modeled. If a class is associated with
another class which has not yet been defined, make a note of the
association and when you model the corresponding class, include the

association.

You should now have a full product line based on the reduced systems you
derived in (4). If you now wish to include any of the classes or clusters you
discarded in steps (2) and (3), you can do so by following the process described in
(7). The difference is that you are now not building on the base case from (6), but

on all of the features you modeled in (7).

A similar process can perhaps be used to connect a VML4Umple product line
model for one domain (such as TAM) to a VML4Umple model of a
neighbouring domain (such as accounting). Theoretically, the two models can be
linked together by associations among related classes, similar to the way packages

are linked though interfaces.

To generate a full system from the product line you derived, create a VML invoke

file with an invoke statement for every feature you wish to include in the end
72

system. If you have an existing invoke statement that you have used before to
generate a system, you can adjust it to reflect the set of features required for the

new system, instead of writing an invoke file from scratch.

4.2. Product Line Derivation

The simplest possible case in time and activity management is entering time in a
spreadsheet-like fashion, with minimum information. This would include time
entry by a single user filling out the date, time duration, and comment for each
time entry. No tasks, projects, company or user information would be present.
Thus we shall take this scenario as our base case. All the required information can
be captured in a single class that we shall name TimeEntry, with three required

fields: date, duration, and comment.

4.2.1. Integrating Klok Functionality into the Product Line

Our simplest case study, Klok, is a step above the base case: it logs time against a
project. Thus in addition to our TimeEntry class, we now also have the Project
class connected to the TimeEntry by an optional association such that for each
TimeEntry instance there is a 0 or 1 project. In the case of the Klok. TimeEntry,
comment is optional, and startTime and endTime are used instead of
duration. So, we write it as all:duration, al2:startTime,

al2:endTime.

73

Client Froject
hame: String hame: String
0 emaildddress: String 01= | ™ hoursEstimate: Douhble 0.1 pargnte
o phanekumber: String o: archived: Boolean
ol TimeEntry
date: Date

al1: duration: Dauhle
o: comment: String
al2: starfTime: Time
a1 endTime: Time

Figure 16. Partial product line with base case and Klok functionality - class diagram

From Klok.Project, we add the name, o:hoursEstimate, and o:archived.
We leave out the attribute colourCode, as it is Ul-related and not essential for
the model. For the remaining contact fields, we shall add another optional class
Client that will keep track of client-related data. Even though Klok does not have
a Client class, Anuko and Leia do, therefore we choose to isolate the client-
related data in a separate class. Each project can have 0 or 1 client associated with
it. We also keep the parent association between projects, as it is present in

multiple time and activity management systems.
p g Y

The resulting small product line model is shown in Figure 16 and the

corresponding VMIL4Umple code — in Figure 17.

At this point, we have a small product line with a few optional and alternative
attributes, and optional classes. We can generate a time management system for

the base case as well as one with the functionality of Klok.

74

Concern CRequired{
// base case - date is required for time entry

VariationPoint VPTimeEntryDate({
Kind: Optional;
class TimeEntry{
Date date;

}
invoke (CRequired, VPTimeEntryDate);
// either duration or both start and end time are required
Concern CTimeEntry({
VariationPoint VPEntryDuration{

Kind: Alternative;

Variant VDuration({

class TimeEntry({
Double duration;

}
Variant VStartEndTime {

class TimeEntry({
Time startTime;
Time endTime;

}
Concern CTimeEntryAgainstProject{
// time can be entered against project or via a comment for each time entry
VariationPoint VPEntryAgainstProject{
Kind: Alternative;
Variant VComment {
class TimeEntry({
String comment;

}
Variant VProject{
class Project{
String name;
}
association {
0..1 Project <- * TimeEntry;
}
association {
0..1 Project parent <- * Project;

}

// project can optionally include estimate expressed in hours
VariationPoint VPEstimate requires VPEntryAgainstProject (VProject) {
Kind: Optional;
class Project{

Double hoursEstimate;

}

// project can optionally be set as archived
VariationPoint VPArchive requires VPEntryAgainstProject (VProject) {
Kind: Optional;
class Project{
Boolean archived;

}
// client information for a particular project can optionally be stored

VariationPoint VPClient requires VPEntryAgainstProject (VProject) {

75

Kind: Optional;
class Client{
String name;
}
association {
0..1 Client <- * Project;
}
}
// client can optionally have an email address
VariationPoint VPClientEmail requires VPClient{
Kind: Optional;
class Client{
String emailAddress;
}
}
// client can optionally have a phone number
VariationPoint VPClientPhoneNumber requires VPClient{
Kind: Optional;
class Client{
String phoneNumber;
}
}
}

Figure 17. Partial product line with base case and Klok functionality - VML4Umple

4.2.2. Integrating Leia Functionality into the Product Line

Now that we have a product line that incorporates the base case and the smallest
time entry system, we can extend it to include the functionality of a medium-size
application. Both Leia and Anuko are fit candidates. We picked Leia as we would
like to apply the terminology used in its model for Activities and Tasks. We will
then adopt the same terminology when incorporating Anuko functionality into

the product line.

We start from the product line derived in 4.2.1 and proceed by examining each
class, attribute, and association from the Leia model for inclusion into the

product line model.

76

Leia.WorkItemUserTime serves the same purpose as the TAM. TimeEntry. Date
and comment fields are already present in TAM.TimeEntry. The
durationMinutes attribute in Leia corresponds to the duration attribute in
the product line. We need to add two optional fields to TAM.TimeEntry:
exported and rejectedComment. These are used in timesheet submission
and approval process. Leia.TimeType and Leia.WorkItemUserTimeStatus
represent lookup tables. Both of these together with their associations to the
TimeEntry class will be added to the product line model as optional classes. We
will omit the orderNum attribute of Leia. TimeType as it is used for ordering
items during display, and is not directly relevant to the data model. We shall
rename the WorkItemUserTimeStatus class to TimeEntryStatus for consistency.
As in Leia the time entry type and status are required fields, both associations are
1 — * To make the product line more flexible, however, we shall convert the
cardinality of both to 0.1 — *. The required fields can then be enforced in the

business logic layer if needed.

Another cluster which is already represented in the product line is the Project
cluster. Thus we will look at the Leia model of the Project cluster next.
TAM.Client already has a name attribute. We will add an optional slaLevel
attribute to it, which is used to keep track of a client’s level under the Service
Level Agreement (SLA). All the attributes of Leia.Project will be added to

TAM.Project as optional attributes with the exception of name, estimate, and

77

archived (as their equivalents already exist); preNews and postNews (as
those are preferences for whether to notify selected people of the project
beginning and end respectively, and are better managed through user email
preferences); and devEndDate and normEndDate (that stand for end of
development and end of normalization phases respectively). The last two
attributes are dependent on the internal process of a company that manages the
projects, and thus will only be relevant in a small subset of cases. Instead, we shall
add an endDate attribute that would signify the completion due date of a
project, to provide a process-independent counterpart to the startDate
attribute. We will also change the type of the hoursEstimate attribute of
TAM.Project to Double to accommodate the way it is used in Leia, and will

rename it to timeEstimate for flexibility.

Leia.Project is associated with three lookup classes: ProjectType, ProjectStatus,
and Projectlntensity. In each of these we shall ignore the display-related
orderNum attribute. The cardinality of the associations is changed to 0..1 —* for

the most flexible product line definition.

Projects in Leia can be associated with several milestones. This is a common
functionality in project management applications, so we shall keep the
ProjectMilestone class with attributes name and releaseDate. The attribute
lastNotification is relevant to email preferences and is better managed

elsewhere in the application, so we will omit it.
78

The remaining class in Leia that we associated with the Project cluster is
ProjectUserRole. Since it requires the User cluster with both User and Role
classes present to be useful, we shall include it in variants related to the User

cluster, which ate discussed later.

So far we have covered the TimeEntry and Project clusters present in both Klok
and Leia. The next cluster that appears in Leia is the Company cluster, containing
entities relevant to the internal company structure. In the case of Leia, the only
class in this cluster is Activity. As we noted before, we shall keep to the
terminology used in Leia for defining what constitutes a Task, Project, and
Activity. A Task is the smallest unit of work against which users can log time. A
Project is a larger unit of work done for a particular client. In cases where a single
user tracks their time spent working on personal projects, the user themselves can
be thought of as the client. A typical software project can have multiple
milestones. An Activity is a larger unit of support type of work. This includes
office and infrastructure work, project and team management, human relations
management, vacation and time off, company functions, and so on. Both Project
and Activity can be divided into multiple Tasks. For example, there can be a
“Deployment” task for a software project, or a “Recruitment” task for the

“Human Relations Management” activity.

Leia.Activity, Leia. Task, and Leia.Project all extend Leia.WorkItem. This is a

design choice made by the developers. We will not preserve it, to keep the classes
79

separate, so as not to create additional overhead if only one of them is used. Thus
the TAM.Activity class will have the following attributes: name, description,
and optional attribute archived. We shall omit the contactInfo and
percentageCompleted attributes, as they are deprecated in the newer
versions of Leia due to lack of use. Just like time can be logged against a project,
it can also be logged against an activity, so we will create the 0..1 Activity «— *

TimeEntry association.

Leia Task cluster contains Leia.Workltem, Leia.Task, and Leia. TaskUser. The
latter is used to keep track of assignments of tasks to users and requires the User
cluster. Thus we shall include it in variants related to the User cluster, which are

discussed latet.

Following the discussion regarding the Activity class, we shall omit the WorkItem
class from the Task cluster for similar reasons. The TAM.Task class will include
Leia.WorkItem attributes name and description, as well as optional attributes
priority, dueDate, and estimatedTime (as a more generic version of the

estimatedMinutes attribute).

TAM.Task can be associated with TAM.Activity, TAM.ProjectMilestone, or
directly with TAM.Project. Also, time can be entered against a task. Thus we have

4 classes potentially associated with TAM.Task.

80

The last remaining cluster to add to the product line is the User cluster. It is
optional, as systems can be either multi-user or single-user. We shall keep the
following attributes from Leia.User: firstName, lastName, username,
password, isActive. The attributes email, extension (renamed to
phoneExtension), hostName, and lastLogin will be added as optional. We
shall omit the attributes receiveTaskResolvedEmail and
paginationPreference, as they are better related to user preferences, and
not directly to the user. We will also omit quickbooksName, as it is closely tied

to a particular payroll implementation.

TAM.User is connected to all the other clusters. The TimeEntry cluster is
connected by an association between TAM.User and TAM.TimeEntry (a time
entry is logged by a particular user). The Task cluster is connected through
TAM.TaskUser (a task can be assigned to a particular user). The Activity cluster is
connected by an association between TAM.User and TAM.Activity (in Leia, each
activity has assigned to it a user that approves the time entries against that activity
—we will call that person that activity’s manager). The Project cluster is connected
through the ProjectUserRole class to both TAM.User and TAM.Role (a user can
have one or more roles in a project). For the latter, we have to include the Role,
RoleGroupltem, and RoleGroup classes. Even in a system where each project
has only one role, a user can be assigned to the project by being assigned to that

role. For TAM.Role we will omit note, sequence, and hidden attributes (as

81

they are related to the UI), and keep the attributes name, description, and
multi (whether more than one person can be assigned to a role), which we will

rename tomultipleUsersAllowed.

0: ProjectType o: ProjectStatus a: User
nare: Btring name: String firsthame: String
description: String description: String lastMame: String

username: String

0.1 ol 0.1 password: String

isActive: Boolean
o: emnail: String

01" | 0: phaneExtension: Int
Project o: hosthame: String
name: String 9. Aciity A MNANAGE: o: lastLogin: Time
o: timeEstimate: Double name: 5_"‘”_95tmg * 0.1
o: archived: Boolean ik
o code: String o archived: Boolean| 0.1
o gtartDate: Date
Client n: endDate_ Date o1
P o: complesity: Int
fiamassting o comrrants: Strin
o emalladdress: Sring S5 o budget Int g 0.1 pargnie
o phoneMumber: String -
o slaLevel String *
o1 01
TimeEnty | o: TimeType ‘
*
o e G e e |
- | 211 duration: Double = 0T
o: ProjectMilestane 0: comment: String
name: String 312 starTime: Time o: TimeEntryStatus
re\eaéeDate date drd E"r?T"ij? T"me = 0T
o: exported: Boolean
o: rejectedComment: String

o1

0: Task
name: String
description: String
o priority: Int

0 dugDate: Date -
o estirmatedTirme: Int = [o TaskUser | T

|

0: ProjectUserRaole

g]

0: Role 0: RoleGroupliemn
narne: String 1] —
multipleUsersAllowad: Boolean
desctiption: String

0: RoleGroup

Figure 18. Partial product line with base case, Klok, and Leia functionality - class
diagram

The remaining two classes in the Leia model are UserManager and Manager.
Manager class designates a user as a manager of a particular team, whereas

UserManager maps users to their managers. This arrangement is counter-

82

intuitive. It would make more sense to have a Department class that keeps track
of specific department information including the department’s manager user, and
a class mapping users to a particular department. TimeTrex has a concept of a
Department that appears to be applicable. Thus we shall keep this functionality
out of the product line until we examine TimeTrex to see if there is a way to

define departments and managers in a more scalable and flexible way.

This concludes the integration of Leia classes into the TAM product line. So far
we should be able to produce systems that closely resemble the base case, Klok,

and Leia. The resulting model is shown on Figure 18.

4.2.3. Integrating Anuko Time Tracker Functionality into the Product
Line

To integrate the Anuko Time Tracker classes into the product line, we start with
the ActivityLog class. It serves the same purpose as the TAM.TimeEntry class.
We shall add the following attributes as optional: timestamp, proof, charge,
and billable. As the last three appear to be flags, we will change their type
from Int to Boolean. Anuko.ActivityLog is connected to the Project, Activity,
and User clusters. Since these connections already exist in our product line

model, there is no need to add them.

83

The Anuko.Project class has the name and timestamp attributes. We shall add
the latter to TAM.Project as an optional attribute, renamed to lastModified
for clarity. Anuko.ProjectStatus contains the hidden attribute that appears to be
used for display purposes. Therefore we shall omit it. The name attribute is
already represented in TAM.ProjectStatus. Anuko.UserBind keeps track of
assignment of a user to a project. In the product line model, this role is played by
TAM.ProjectUserRole. We shall add the optional attribute rate used in

Anuko.UserBind to TAM.ProjectUserRole.

Task cluster in the Anuko Time Tracker is represented by three classes: Activity,
ActivityBind, and ActivityStatus. Anuko.Activity is similar to TAM.Task (we shall
add the optional attribute timestamp to TAM.Task, renamed to
lastModified for clarify). Anuko.ActivityBind functionality is presented in
TAM.TaskUser (we shall add the optional attribute rate to TAM.TaskUser). We
shall add TAM.TaskStatus and include the Anuko.ActivityStatus name attribute,
omitting the hidden attribute as we did for TAM.ProjectStatus before. In
Anuko Time Tracker, an Activity can have a manager, so we shall include a

corresponding optional association between TAM.Task and TAM.User.

The Company cluster in Anuko Time Tracker includes two classes: Client and
Company. Client appears to be a look-up class not connected to other classes by
associations. In our product line, client is connected to a project and thus belongs

to the Project cluster. We shall keep that as a reasonable assumption: after all, if a
84

client is being invoiced, some work has been performed for them, which means a
corresponding project must exist. TAM.Client already keeps track of the client’s
name. The rest of the attributes from Anuko.Client will be added to TAM.Client
as optional fields, with the exception of fSubtotals (as it appears to be
display-related) and addrYour (as it appears to stand for the company’s address
and is better represented in the Company class). We will rename addrCust to

address for clarity, and will use it to represent the client’s address.

In Anuko Time Tracker users belong to a company. Leia was designed to be used
by a single company, so our model up to now associated users with an implicit
company. However, even in case of a single company it might be useful to keep
company-centric information in the system, such as company name for branding,
address for invoice generation, or company’s web site URL for reference. Thus
we shall include the Company class into our product line connecting it to the
TAM.User class by an optional association. We will keep the name attribute, www
(renamed to url), address (formerly addrYour from Anuko.Client),
currency, and locktime. All the attributes except for the name will be

optional.

The Anuko TimeTraker User cluster contains User and UserStatus classes. We
will add the UserStatus class to the product line omitting the hidden attribute as
we did before for the ProjectStatus and TaskStatus. From Anuko.User we will

keep level, rate, language, and timestamp (renamed to
85

lastModified). The attributes showPie and pieMode appear to be display-
related, so they are omitted. The attribute language will be used to mean the
primary language used to interact with a user in the workplace, as opposed to the
user interface language preference that will be addressed when we look at user

preference representation in TimeTrex.

0: User
firsthlame: String
lasthlame: String
ugemame: String
o: ProjectType o: ProjectStatus password: String 0: Company
name: String name: Siring isActive: Bonlean name: Siring
String i Siring 0 email: String = 0.1 o address: String
0: Projectintensity o: phoneEstension: Int o url: String
T o: hostMarme: String o currency: String
a1 a1 o: lastLogin: Time o: lnckiime: Int
o: level: Int
Project 0.17 | o: rate: Double
name: String o Activity s aaE oflanguage S!V\Tng
o:timeEstimate: Double name: String 7 r o Tire = 0.1 | hame: String

0:archived: Boolean String

o eode: String o archived: Boolean| 0.1 o
o: stariDate: Date

o:endDate: Date
Client 0: complesity. Int
name: String a: comments: String
o:emallAddress: Sting [o Fuumgnmu‘rmu - n 1 narjnt»
o2 phonehumber String o:lastModified: Time

o: slaLevel: String . TimeEntry

o1
o: address: String - TMEEm: o
o1 a1 date: Dats
0: eomment: Srin aterDate o: TimeType
o:tax: Double g alfeduratinngnodnlg name: String
a: comment: String PO

o discount: Double B
alZ starTime: Time

4

o: status: Int o: ProjectMilestone : .
W a12:endTime: Time o: TimeEntryStatus
o: exparted: Boolean - 0a
releaseDate: date o: rejected Comment String el
o: timestamp: Time
ol o proof Boolean

o charge: Boolean
o: billable: Boalean

Tm},ll 0: TaskStatus
name: String

deseription: String

™ | o: priority Int i
e et R - -
o: estimatedTime: Int
o ified: Time A mapager

o ProjectUserRole

0: rate: Double

o Role
name: Siring 2] Pz
multipleUsersAllowed: Boalean
description: String

o: RoleGroupltem

0: RoleGraup

Figure 19. Partial product line with base case, Klok, Leia, and Anuko Time Tracker
functionality - class diagram

The attribute comanager is related to the management hierarchy within the

company. We shall deter its inclusion until we examine the TimeTrex company

86

structure model, as it is the most complex one. For the same reason we shall omit

the manager reflexive association on the User class.

At this point, we have specified a product line model, from which systems closely
resembling the base case, Klok, Leia, and Anuko Time Tracker can be generated.

Figure 19 shows the corresponding model of the product line.

4.2.4. Integrating TimeTrex Functionality into the Product Line

Due to the large number of classes in the original TimeTrex system and the large
number of associations among them, in the reduced TimeTrex system almost
every class has a large number of associations to other classes. In order to more
effectively generalize the TAM product line model, we shall drop many of these
associations and re-connect the classes in a more logical manner, allowing for a

more scalable design.

The Project cluster in TimeTrex incorporates two classes: Job and JobItem. Each
time entry is logged against both the Job and the Jobltem, and there is no
apparent relationship between these two classes, so it seems logical to combine
them into one class, against which the time is logged. The only field of this class
is name, and so the logical choice for its equivalent in the TAM product line

model would be TAM.Project. Since we already have associations between

87

TAM.TimeEntry and TAM.Project, there is no need to create an additional class

or extra associations in the product line model.

The Task cluster in TimeTrex is represented by one class — TimeTrex.Schedule,
with attributes startTime, endTime, and totalTime. TimeTrex connects
this class with TimeTrex.Job class in a way similar to how TAM.Task is
connected to TAM.Project. We shall add startTime and endTime as optional
attributes to the TAM.Task class to indicate the planned start and end time of a
task. The totalTime attribute is equivalent to the estimatedTime attribute
in TAM.Task, so we shall omit it. TimeTrex.Task is connected to the User
module via the TimeTrex.UserDate class, which is equivalent to the TAM.Task —
TAM.TaskUser association. TimeTrex.Task is also connected to
TimeTrex.Branch and TimeTrex.Department classes from the Company cluster.
We shall return to these associations later when we are examining the Company

cluster of the TimeTrex system.

The time entry in TimeTrex is performed with “punch in” / “punch out” actions.
An employee uses a particular device to indicate the time they start and end a
particular job, thus creating time entry records of an equivalent duration on a
given date against a particular job. In addition to entering the time by hand, a
wide variety of hardware “punch” devices is supported: fingerprint readers,
phones, cell phones, proximity card readers, etc. The TimeTrex.PunchControl

class appears to deal with the hardware sampling of the “punches” entered
88

(stored by TimeTrex.Punch) and determining quantity of “good” (legitimate)
entries in the total number of entries. To abstract from the implementation
details, we shall only use the TimeTrex.Punch class and assume that a provided
punch is legitimate. The controller then can be programmed in a way suiting a
particular application, without enforcing a specific data model. TimeTrex.Punch
attributes originalTimestamp, actualTimeStamp, transfer (as
optional), longitude, and latitude will be included in TAM.Punch. We shall
also add the Boolean attribute direction, to distinguish between “in” and
“out” punches. TAM.TimeEntry will be connected with the TAM.Punch class by
an optional association, where each time entry can be associated with multiple
punches. The punch timestamp fields would tell the story of when the work on

the task started and ended.

Two other classes within the TimeTrex TimeEntry cluster are UserDate and
UserDateTotal, both of which are connected to TimeTrex.PunchControl.
TAM.TimeEntry already includes the time entry date, start, end, and total time.
Attributes quantity, badQuantity, and actualTotalTime in the
TimeTrex.UserDateTotal class seem to depend on the punch controller
implementation, so we shall omit them. The override flag shall be added to the
Punch class as an optional attribute, to mark whether the punched-in time entry

has been overridden.

89

The Company cluster is quite extensive in the TimeTrex system. A company can
contain multiple departments and branches. We shall add the following classes to
the TAM product line: Department (including the name attribute), Branch
(name, address, city, province, country, postalCode, phoneNumber,
and faxNumber), DepartmentBranch class to represent the many-to-many
association between the two, and DepartmentBranchUser to represent the ability
of an employee to belong to several departments in different branches, allowing
for organizational flexibility. Additional fields from TimeTrex.Company shall be
added to TAM.Company as optional attributes: shortName, city, province,
country, postalCode, phoneNumber, faxNumber, businessNumber,
adminContact, billingContact, supportContact. We shall omit
originatorID, dataCenterID, and enableSecondLastName, as the first
two appear to be related to business logic, and the last one — to

internationalization.

A parent reflexive association shall be added to TAM.Company. Associations
between TAM.Company and TAM.Department as well as TAM.Company and
TAM.Branch shall also be added. TAM.User will optionally be associated with a
company, or with a branch within a company, or with a department within a
company, or with a combination of a branch and department. A department can
potentially have sub-divisions, so we shall add a parent reflexive association to

TAM.Department. Each department can be associated with one user in the

90

manager role. This will allow us to model the organizational structure of
companies with multiple branches, each containing a hierarchy of departments,
each of which has a manager (with one person being able to perform manager
roles for multiple departments). For example, if a company has two branches in
two different cities, and each branch has a Development and a Business
department, where a Development department contains several development
teams, each team might have a separate team leader (manager) and each
department can have a manager as well. A wide variety of organizational

structures can thus be accommodated.

In the TAM product line, a user can be assigned to any task, project, or activity,
and can log time against any project, task, or activity. Any restrictions to this
arrangement based on the organizational structure can be enforced by business
logic. This approach allows us to avoid a complicated network of optional and

alternative dependencies between classes at the data model level.

The last remaining cluster in TimeTrex is the User cluster. It consists of several
classes: User, UserTitle (within a company), UserGroup (within a company),
Userldentification, UserPreference, and UserDefault. We shall omit UserDefault,
as it can potentially be associated with Department, Branch, Company,
DepartmentBranchUser, or UserTitle, depending on the company structure. It
primarily has to do with the initial display settings and newly-created users,

contributing to usability, so we shall omit it in the data model. We shall keep the
91

UserGroup class as it allows for additional grouping of users within a company
(albeit a user can only belong to one user group), and UserTitle class. We already
have a role-based system for user roles within the projects, but that does not
include user roles within the company. As TAM.User already exists, we need only
to add more optional attributes to it from TimeTrex.User: phonelID,
phonePassword, middleName, sex (instead of sexID as that would require
a look-up table), address, city, province, country, postalCode,
workPhoneNumber, homePhoneNumber, mobilePhoneNumber,
faxNumber, homeEmail, workEmail (well rename email for Cclarity),
birthDate, hireDate, socialInsuranceNumber (instead of sin),

employeeNumber, note, and terminationDate.

The following attributes shall be omitted. The attributes passwordResetKey
and passwordResetDate are dependent on the authentication system;
iButtonID only applies when iButton device is used to punch in time;
labourStandardIndustry is related to labour policies; rfID and
rfIDUpdateDate only apply when RFID is used to punch in time; otherId
attributes are placeholder fields; and fingerprint-related attributes are only

relevant when fingerprint readers are used.

We shall omit the Userldentification table as it appears to be implementation-
dependent. We already have a way to keep track of the last time a user logged into

the system through the TAM.User lastLogin attribute.
92

We will keep the UserPreference table while omitting the following fields:
enableFmailNotificationException, enableEmailNotification
Message, enableFmailNotificationHome, and timesheetView, as
they are application-dependent. The other preferences have to do with date and
time format, time zone, user interface language, and number of items displayed

per page, which are relevant in a large variety of applications.

The resulting product line model is displayed on Figure 20. The corresponding
VMLA4Umple code is not included here as it is rather long. The complete product
line VML4Umple model contains annotations for each feature, listing from

which of the case study systems it originated. It is available at (Levin, 2009).

4.3. Time and Activity Management Product Line Model

To be able to work with the product line expressed in VMIL4Umple, a parser had
to be created to process the VMLAUmple code for the product line together with
the invoke statements and output the Umple code for the resulting system. A.
Forward has extended the current Umple compiler implementation to allow for
this functionality. He created a command-line tool that given the product line
VMILAUmple file, the invocation file for a desired system, and the name for the
resulting Umple file, generates the Umple code for the application with specified

features.

93

G uoydiasap
UEBID0 PamD| 3185 N3 N

BULIS Ul | | s L BuLIS BlWEu
[droigeiog o | [endnom0smy o | B
* 21an0g e 0 [«
SIEIssAaId D
— swiL suiLpus 0
13SNUIEIGIUAUIE a0 0 auwIL BWILHes 10
o . BLIIL paLIpOKASE] [0
aeq ARa a Wi BUILPIIEWNSE 0
Buus ‘sj0U 0 ‘abeuzuly aleq sEqanpo |
BULG BN B0 HE 0 s P L i Aoud o
IR S0 815 JB0LNNBIUENEL 08 0 - ABSCMSELO Guwng uonduosap |~
g eiegaiy 0 . Bus ‘s f.o
[5uss " aleq alequulg o HEEL D R
BUS HRgwnNRe) Duigs e | |'g s o STBISHSEL 0 7 vl
B siaguinysuoyd SnEISiEsn 0 BUMIS JaaUInNeL 0
Bupg BpogiEsod BUIS USLINNEUDYAS|IGOW D ueslo0g apLIEko 0
BUIAS AN BULIS 18GUINNBUDY JBLLDL 0 Jeols ap . 1 TP aep taegasesal
Auls :aausoid BUMIS JERUNNEUOYHI0M .0 1804 BpNUBUO] uea|nog ‘afieya 0 fulS Bweu
Buis 1 fuins apooleised o UERI00@ IS 0 RSSO [uoEaiRpaleig ©
Buins ssaippe |V bl Bus mwen Bung Aunoa ‘o duesaun | duiegau Enjae St
Auns iawey | = * L0 Buis :Bauned (0 duelsaw L dWEISaw L EuBLD BULS U LILIOAPEAE 0 |
IEEE] Ul A 0 uEal00g UoNIAIM fus aweu | g . fisanng Baiodmzo
Buiyg ssaippe ‘0 TPunga BIEEEETG| BuiIL AW LR T e Ko o
it BUlIS s 10 Wil BunuEs je
SUIS [BWIENBIPDI 1O o s By} UBLILIOS 0 SWIL BAUPORISE 0
Bumg peuogpoddns o Bumg pdomssedauoyd .0 Buing aweu BIGNOQ UDNEp L LE u| 186pNg 10
1 I = 1anog uoneinp L j i 386pnG
ULg JaeoD) o BuLs ‘qieuoyd 0 ECTE) aeq aen Wi lewS 3aLIL D
BUINS T9EMODUILIPE 0 WL BAUpORISE| 0 TS Bulgs SusLWDI 0
uLis .MQQE:meQ(:m:s 0 fuls ebenfue| o k- BUTRAEET LR
UG 8 OUINRE D % ainoq el 0 & awq aeqpua 0
BUMIS JagwiniaUoyd o S 0] Jana) 1o L0, :mmmaum umznismmg ajeq BEQUES 0
fug :apealeisad .o o awiL uBoSE 0 (zmm.q_m; ;mu:«_mm ajupred 10 U P03 0
Buus fqunoaca [Lo “awergsoy o |40 2 IS Uealoog paryae 0
Bupg soupaid o | 1o . Wb ua b P EIEDT S T B e
BULIS A3 0 Jewigppom. o [0 Buig sweu |~
15 JAWENUoYS 0 -
o« [ounsewed] . UEa|00g BAYSI i
Wi awao) 0 st S i sed Buyyg @benbus| T8l
Bupg HaUsLN 0 Bliie Slbuieen Wl eiaappels
- SuLs :n o BUINS [BUIENISE] Wieber e Lol
m::.mm ssaippe 0 ; GUllS ‘ARSI g i
Azrmn [g auen | | Ly) T ' ' Vo
Fueduiog o L E Mnﬂ_m UM&HTMM_; Buys uogduasep | | Bug uonduasap
S L BUMG BUED B BuEl Bupg ey
SOHRIBIeIdeRN D [fusuawmaloid o | sneLshald [0 atiLalud (0
TS

) 15nes 0

BUlS UBLILIOI 0
fuLIS ‘9584PE 0

BuLls aaaels o
fuins aquinyauoyd o
BULIS 'SSaIppIIELE 0

BuLg BBl

Figure 20. Complete product line with base case, Klok, Leia, Anuko Time Tracker,

and TimeTrex functionality - class diagram

94

The Umple code thus created can then be piped into the Umple compiler to
generate the Java or PHP implementation of the particular system. An online
implementation also exists for demonstration purposes — by pasting the product
line code followed by the invocation code into the text field at (Forward, 2009b),
the corresponding Umple, Java, or PHP code can be generated. Further in this

work an example of a system’s invocation is provided.

Due to VML not explicitly addressing the expression of commonalities, we had
to make an adjustment to the product line family VMIL4Umple code, to be able
to specify the single mandatory feature for all of the time and activity
management systems. All the TAM systems must have a date attribute in the
TimeEntry class. VML does not allow for “mandatory” variation points, and so
we specified this variation point as “optional”, immediately followed it by its
invocation within the product line specification itself, instead of including it in all

the invocation files. See Figure 21 for the corresponding VML4Umple code.

Concern CRequired{
VariationPoint VPTimeEntryDate({
Kind: Optional;
class TimeEntry{
Date date;
}
t

}
invoke (CRequired, VPTimeEntryDate);

Figure 21. Mandatory feature specification in the VML4Umple model.

95

Once the product line is expressed in VMIL4Umple, each system can be

generated by the following steps:

1) Create an invocation file by writing a series of invoke statements to build the
system’s features. See Figure 22 for the invocation of a base case system (time
can be logged against a particular date, with a particular duration and a comment
to note what the time was spent on). See Figure 23 for the invocation of a system
that has features similar to those of the Klok system. The other case study
systems require more extensive invocation and so the code is too long to be

included here. It can be viewed in the case study materials listed online (Levin,

2009).

// Base case invocation in VML

// Time Entry

// log time duration

invoke (CTimeEntry, VPEntryDuration, VDuration);

// log time entry comments

invoke (CTimeEntryAgainstProject, VPEntryAgainstProject, VComment) ;

// Unmple code for the base case system

class TimeEntry{
Date date;

}

class TimeEntry({
Double duration;

t

class TimeEntry{
String comment;

}

Figure 22. Invocation of the base case system and the resulting Umple code.

2) Using the VML parser (Forward, 2009b), compile the product line VML
96

model together with the invocation file created in (1). The parser outputs a series

of Umple statements.

3) Run the Umple code output by the parser through the Umple compiler, which

generates the code for the desired system (at this time, in either Java or PHP).

// Invocation of a system similar to Klok

// Time Entry
// log time start and end times
invoke (CTimeEntry, VPEntryDuration, VStartEndTime) ;

// Project

// enter time against projects (client-related work items)
invoke (CTimeEntryAgainstProject, VPEntryAgainstProject, VProject);
// store optional comments for time entries

invoke (CTimeEntryAgainstProject, VPTimeEntryComment) ;

// allow projects to have parent projects

invoke (CTimeEntryAgainstProject, VPProjectParent);

// store project time estimates

invoke (CTimeEntryAgainstProject, VPProjectEstimate);

// allow archiving projects

invoke (CTimeEntryAgainstProject, VPProjectArchive);

// associate projects with clients

invoke (CTimeEntryAgainstProject, VPClient);

// store client email

invoke (CTimeEntryAgainstProject, VPClientEmail);

// store client phone number

invoke (CTimeEntryAgainstProject, VPClientPhoneNumber) ;

// Umple code for the system based on Klok

class TimeEntry{ Date date; }

class TimeEntry{ Time startTime; Time endTime; }
class Project{ String name; }

association { 0..1 Project <- * TimeEntry; }
class TimeEntry{ String comment; }

association { 0..1 Project parent <- * Project; }
class Project{ Double timeEstimate; }

class Project{ Boolean archived; }

class Client{ String name; }

association { 0..1 Client <- * Project; }

class Client{ String emailAddress; }

class Client{ String phoneNumber; }

Figure 23. Invocation of the system based on Klok and the resulting Umple code.

97

You will notice that the Umple code that is output by the VML parser declares
the same classes repeatedly, with different attributes. In a programming language
like Java this would not be a proper syntax. However, the capabilities for merging
properties in the Umple language allow this syntax. The separate class
declarations are accumulated to create a complete specification of a class. So the

following syntax examples in (1) and (2) are equivalent for the Umple compiler:

class TimeEntry { Date date; } class TimeEntry { Double duration; } (1)

class TimeEntry { Date date; Double duration; } (2)

After gradually integrating the features from our four case studies into the model,
we have arrived at a time and activity management product line that allows us to
generate applications closely resembling all four of our case studies, the base case
application, and a large variety of “in-between” applications using subsets of the
features we have modeled. This includes single- and multi-user applications,
systems suited to a variety of organizational structures, project user role

definition, and time entry against projects, project milestones, tasks, and activities.

98

CHAPTER 5

CONTRIBUTIONS, DISCUSSION AND FUTURE WORK

5.1. Contributions

The contributions of this work atre as follows:

C1. Case study in the time and activity management domain.

We have modeled four systems within the time and activity management domain.
We have analyzed the commonalities and variabilities among the systems, and

identified similar clusters of functionality.

C2. Time and activity management product line.

We have generated a usable product line in the TAM domain. We have
thoroughly documented the derivation process, including intermediate and final
models, generated code, and suggestions on possible future extensions and

automation.

C3. Creating a variability model of an entire domain.

We have modeled the commonalities and variabilities in the time and activity

management domain in such a way that other applications in this domain can be

99

added to our variability model, as long as they are built on the date -

duration - comment base case.

C4. Variability in UML modeling and VML4Umple notation.

We have introduced the notation for UML optional and alternative variability
modeling for classes and class attributes. We have also come up with
VMLAUmple notation, leveraging the hierarchical feature-based VML notation
and compact UML-based Umple language, allowing us to define product line
features with Umple fragments and generate object-oriented code from the

product line model.

C5. One-step generation of code from a variability model.

To generate a code for a system based on a product line model, the only step
required is to run an invocation file listing the features desired in the resulting

system.

C6. Generic product line derivation methodology.

We have described in detail and presented with the TAM example the

methodology to derive a product line for domain with several similar systems.

100

5.2. Discussion

As previously stated, the majority of businesses need to keep track of the time
spent by employees on work tasks. Instead of re-inventing the time tracking
applications with similar features, with our TAM product line it is possible to
rapidly create an application fitting the needs of a particular business. This would

also be useful to individuals keeping track of their own time.

As stated eatrlier, in this work for simplicity we are modeling only the data
structures of the application, but our methodology overall is not intrinsically
constrained. This is due to the ability of VML4Umple to handle arbitrary Java
code, allowing for business logic specification. Further improvements to the
Umple language will allow more formal business logic modeling using constraints

and state machines.

Our target audience (software developers and maintainers) can benefit from our
research in several ways. Our time and activity management line product line
derivation could be used by developers as an example of the steps needed to
derive a product line. The generic product line derivation methodology we have
described can be used in other domains. Once a product line is derived, product
development can be done via product line model modification and code
generation. New products can be created by invoking a required combination of

product line features from the product line. Maintenance can also be done

101

through modifying the model and generating the code to update all affected
versions. This model-driven development reduces the amount of boilerplate code
that has to be written by hand, reduces the number of defects (as a large portion
of code is generated), and helps ensure the synchronization between the software

documentation and implementation.

Our approach can be used to either create a product line from scratch, or to
derive one from the existing products. In the former case, a base case has to be
identified by analysis of the requirements and taking into account possible
variations on the functionality. In the latter case, by analyzing existing products, a
common base case can be identified among the existing systems. Starting with the

base case the remaining variability model can then be built.

5.2.1. Product Line Derivation Methodology Analysis

Our methodology can be used in domains other than time and activity
management, allowing for the creation of other product lines. We are considering
here form-based applications, such as point of sale systems, shopping carts,
product catalogues, conference and university registration systems, and so on.
Mature domains with multiple systems implementing similar functionality can

benefit from automated application creation based on required feature sets.

Initial derivation of the product line for any of these types of systems can be

done in a manner similar to that used in this work. First, several existing systems

102

would have to be analyzed — the more complex the domain the more case studies
would be required to be able to effectively generalize the domain. Secondly, these
systems would need to be iteratively brought to the common base. Thirdly, by
analyzing each system separately, a product line can be built that encompasses
features from all the case study applications. Once the product line is complete,
any of the case study systems, as well as systems with any other possible
combination of features which have been modeled, can be generated from the

product line with the help of an invocation file.

Other approaches to creating a product line might be possible. One might decide
to pick a particular application design and attempt to generalize it to a product
line. However, this approach might not suit other (perhaps more often used)
designs that address a different set of features. For instance, one might decide
that time will always be logged against a project, and build a product line where
that is the base case. This will prevent generation of the systems that log time
against smaller units of work, or by simply providing comments for each time
entry. Thus we believe that analysis of several applications from the domain is
essential. Picking applications different in complexity, as well as a combination of
open source and proprietary applications, is also important, as each covers a
feature set targeted at a slightly different audience. This helps ensure the

generality of the resulting product line.

103

Through research of existing literature, we have not found any mention of an
existing time and activity management product line. It is possible that another
quite different TAM product line would be created if a different set of
applications had been analysed. However, to be possible to generate the systems
we used in our case studies, this other TAM product line would have to allow for
the same base case. Since the only mandatory features of our product line are:
having a date for a time entry, having either duration or start and end time for a
time entry, and having a comment or an associated project for it, any other set of
features can be built on top of our product line. Thus any other TAM product
line can be combined with ours to create a more extensive set of features from

which time tracking applications can be generated.

This last conclusion is also supported by our observations during the derivation
of the product line. After adding features originating from Klok, the
corresponding features from Leia did not have to be added (such as logging time
against a project). Features from Anuko TimeTracker did not add much to the
intermediate version of a product line based on Klok and Leia. TimeTrex analysis
contributed mostly to the company structure (departments and branches) and to
additional attributes for Company and User classes, but the time tracking
functionality did not significantly change. If we were to analyze several additional
applications, it appears that each next one would have only a small subset of

features to offer for the inclusion in the product line.

104

5.2.2. Methodology Improvements and Automation

The approach we used in creating the TAM product line is somewhat time-
consuming. The greatest amount of time is taken to model the complex
applications, such as TimeTrex. It is helpful if the application is developed with a
model-driven approach and already has UML class diagrams documenting the

underlying data model.

Once the UML class diagrams are created, they have to be analyzed and reduced
to a common base. This requires human involvement, since judgment calls need
to be made as to the similarities and differences among the systems. This is hard
to automate as different systems might name and arrange the structures

addressing the same functionality differently.

Once the systems are reduced to a common base, product line construction
requires the identification of a base case and required features. The remaining
features are manually added to the product line as optional. Perhaps this stage can
be automated, if during the previous analysis stage the similar structures in
different systems are mapped to each other. For instance, in the TAM product
line, Anuko TimeTracker ActivityLog class signified the same functionality as
Leia WorkItemUserTime class. Naming them both TimeEntry after realizing that

they perform the same function, simplified the generalization stage.

105

After the product line is created, generation of a particular system requires
creation of an invocation file for that system. We have done this manually.
However, during the derivation of the product line the features can be annotated
with a list of systems from which they came (which we have done with
comments) in a way that can be automatically parsed. The parser can then be
extended to take those annotations into account if a system to be invoked is one

of the original case studies.

5.2.3. Evaluation of the Chosen Technologies

The technologies used during this work proved to be helpful. UML is a good
choice for models as they are closely related to the ERD representations of
applications’ data structures. The UMLet tool we used allowed for rapid creation
of UML diagrams, their export to JPG and PDF formats for documentation, as
well as their storage in a textual notation that could be processed in an automated

way.

The Umple language was helpful in specifying classes, attributes, and associations
in a compact notation with subsequent possibility to rapidly generate the
corresponding object-oriented code. The property of Umple that allows
specification of classes in fragments was extremely useful in the specification of
the product line. Otherwise the definition of the product line would have to

involve “remove feature” statements as well as “add feature” statements to be

106

able to define classes with more or fewer attributes. The Umple Online tool

(Forward, 2009a) was very useful in trying out quick code examples.

VML proved a good choice as well, containing the number of concepts sufficient
to construct a functional product line, yet requiring a parser to deal with only a
few keywords. The hierarchical nature of VML in combination with a way to
specify alternative and optional features as well as requirements dependencies
makes it easy to learn and use. It would be helpful, however, if we had access to
more examples of VML use: the examples provided in VML papers and online
are partial and not always unambiguous. The VML Online tool written by

Andrew Forward was a big help at the product generation stages.

5.2.4. Design of the TAM Product Line

The systems generated from the TAM product line which are based on the
original applications used in the case studies, do not support all the features of
the original systems in exactly the same way. This is due to two factors. First of
all, between the original systems and the “reduced” systems, many elements were
removed. Those were the elements not directly relevant to time tracking (such as
policies, currency, payroll functionality, and so on), elements related to user
interface (such as order in which to display the elements on the screen), and
support structures (such as currency and tax tables, cron tasks, etc.). These

features can be added into the product line as optional. However, some design

107

decisions will have to be made on whether each feature belongs to the data
structure layer, the business logic layer, or the display layer of the TAM

applications.

The second factor is due to the fact that the data structures in the original systems
were designed differently from each other. For instance, in Klok, the time is
logged directly against the Project class. In Leia, however, even though through
the user interface the time appears to be logged directly against the Project class
(or the Activity or Task classes), the Project class extends the WorkItem class.
Thus, at the data structure level, the time is logged against the WorkItem class.
This is based on different design decisions in the architecture of Klok versus
Leia. However, to make the product line general, we had to settle on one way of
representing the Project — TimeEntry association. Thus the model we selected
would not exactly match that of all the original applications, but the initial

functionality is preserved.

Due to the two factors described above, it is hard to estimate how “close” the
generated systems for the original case studies would be to the original
applications. The features in the generated systems should completely correspond
to those of the original applications in the reduced stage (once the functionality
not directly related to time entry has been removed). The similarities in the design

of the generated systems with those of the original ones will vary.

108

The changes in design might result in the generated applications being “superior”
or “inferior” to those of the original applications. This will also vary based on the
design of the original system and the design decisions made during the
construction of the product line. This quality of the application design is
dependent on the skill of the individuals involved in design decisions and the

complexity of the application’s feature set.

5.3. Summary
We have addressed the problems stated in the Introduction:
P1. We can now generate any TAM system with a combination of features that

have been modeled directly from the product line model. The applications similar

to those we analyzed no longer have to be written from scratch.

P2. To introduce a modification to the code base of multiple systems, all we have
to do is to modify the product line. The subsequent code generation will
propagate the modification to all systems based on the product line, thus

alleviating maintenance issues.

P3. The code for the systems is generated directly from the product line model

using the VML4Umple compiler, which allows for model-driven development.

We have achieved the following objectives:

109

O1. We have generated a product line for time and activity management
applications, allowing for generation of a variety of TAM systems and for

maintaining multiple systems from one product line model.

O2. The combination of VML and Umple allowed us to describe systems in a
flexible way. VML has the ability to define multiple concerns (each to address a
particular feature within the system) through the hierarchical structure of
variation points and variants. This, combined with Umple’s ability to define code
in compact fragments and generate object-oriented code, makes VMLA4Umple a

good notation to facilitate model-driven development.

03. We have derived a general methodology to allow the creation of product

lines in other domains.

5.4. Future Work

There are several avenues for future work based on our findings.

As mentioned in the section 5.1.2, the generation of the systems based on the
original applications that were used in the case study can be automated. To
achieve this, the product line features would need to be annotated with the name
of the application(s) in which they originated. The parser would need to be

modified to take annotations into account when generating a time tracking

110

application. For instance, a statement “invoke(TimeTrex)” could invoke all the

features from the product line that originated with the TimeTrex application.

An application can be written to simplify the feature selection for time tracking
applications that are to be generated from the TAM product line. The product
line features (VariationPoints and Variants) can be represented through a user
interface as a dependency tree, allowing a developer to pick which features in the
time tracking application would need to be supported. A selection of features that
require presence of other features would automatically trigger the selection of
those requirements. Once all the features for a system have been selected, the
invocation file, the Umple code and the object-oriented code for the
corresponding application could be generated. The invocation file and the Umple
code would serve as documentation of the generated application, as well as to

allow manual modification to further tweak the resulting system.

The application described above could accept an invocation file to pre-select
features in the dependency tree presented to a developer. That way, if a developer
does not wish to manually adjust the invocation file, it could be done through the

user interface.

Another part of the process that can be partially automated would be the addition
of features from a new application into an existing product line. Using a UML

model of the new application, the corresponding feature set can be presented as a

111

dependency tree, alongside the dependency tree of the product line. The features
from the new application can then be either mapped to the existing features
(resulting in no need for their implementation), or can be designated as
alternative or optional (resulting in their inclusion in the tree). Not all features
would be easy to migrate in this way (for instance, an alternative feature might
require modifications to an existing alternative feature). However, allowing some
of the features to be integrated in this manner, would allow for the focus on the
remaining features, shortening the integration time. The more feature sets from
different applications are added to the product line in such a manner, presumably
the more the future integrations can be shortened. This is because the product
line would be able to accommodate a larger number of permutations of feature

sets.

Product lines can be created for a variety of domains other than time and activity
management. Applications such as registration systems for events, blogs and
forums, budget applications, shopping cart and point-of-sale systems, task
management and scheduling, calendars, and many others can benefit from being
generated from a product line. Moreover, there are enough applications on the
market to make into case studies for product line development in all of the

aforementioned domains.

This work focuses on generating the data structure layer of applications.

However, in combination with the existing work on automation of user interface
112

creation for Umple systems, it would be possible to also generate the
corresponding CRUD user interface code for the systems generated from UML
models. This would allow a developer to pick a set of features they need in an
application, and both the data structure code and the wuser interface
implementation would then be generated by the VML4Umple parser. This would
take care of a large amount of boilerplate code in both the data and the Ul layer,
leaving the developer to tweak the code as required and add the business logic.

This approach would significantly speed up custom application development.

113

APPENDIX A

KLOK CASE STUDY SUPPORT MATERIALS

.Klok Currently working on: nothing = Week View |
Week of 08/16/2009 m

Sun Mon Tues

Design -

Testing Klok

Meetings

Design

HTML

Scripting

Testing

r-side Dev

Evaluation
of Kl
& Testing -

@ M Testing

Common tasks

Figure 24. Klok timesheet screen

CRLD project

Lser Wiewrexport

timesheet

Figure 25. Klok use cases

114

KLOK JAVA AND PHP CODE GENERATED FROM UMPLE

Java Project class

/*This code was generated using the Umple 1.6.0.1717 modeling
language!*/

public class Project

{

//Project Attributes

private String name;

private String contactName;

private String contactEmailAddress;
private String contactPhoneNumber;
private double hoursEstimate;
private String colourCode;

private boolean archived;

//Project Associations
private Project parent;

public Project (String aName, String aContactName, String
aContactEmailAddress, String aContactPhoneNumber, double
aHoursEstimate, String aColourCode, boolean aArchived)
{
name = aName;
contactName = aContactName;
contactEmailAddress = aContactEmailAddress;
contactPhoneNumber = aContactPhoneNumber;
hoursEstimate = aHoursEstimate;
colourCode = aColourCode;
archived = aArchived;

115

public boolean setName (String aName)
{

name = alName;

return true;

}

public boolean setContactName (String aContactName)
{

contactName = aContactName;

return true;

}

public boolean setContactEmailAddress (String
aContactEmailAddress)
{
contactEmailAddress = aContactEmailAddress;
return true;

}

public boolean setContactPhoneNumber (String
aContactPhoneNumber)

{
contactPhoneNumber = aContactPhoneNumber;
return true;

}

public boolean setHoursEstimate (double aHoursEstimate)

{
hoursEstimate = aHoursEstimate;
return true;

}

public boolean setColourCode (String aColourCode)

{
colourCode = aColourCode;
return true;

}

public boolean setArchived (boolean aArchived)
{

archived = aArchived;
return true;

}

public String getName ()
{

return name;

116

}

public String getContactName ()
{

return contactName;

}

public String getCotactEmailAddress()
{

return cotactEmailAddress;

}

public String getContactPhoneNumber ()
{

return contactPhoneNumber;

}

public double getHoursEstimate()
{

return hoursEstimate;

}

public String getColourCode ()
{

return colourCode;

}

public boolean getArchived()
{

return archived;

}

public Project getParent()
{

return parent;

}

public void setParent (Project newParent)

{

parent = newParent;

}

public void delete()
{

parent = null;

}

117

Java TimeEntry class

/*This code
language!*/

import java
import java

was generated using the Umple 1.6.0.1717 modeling

.sqgl.Date;
.sgql.Time;

public class TimeEntry

{

//TimeEntry Attributes
private Date date;
private Time startTime;
private Time endTime;
private double duration;
private String comment;

//TimeEntry Associations
private Project project;

public TimeEntry(Date aDate, Time aStartTime, Time

aEndTime, double aDuration, String aComment, Project
aProject)

{

date = aDate;

startTime = aStartTime;
endTime = aEndTime;
duration = aDuration;
comment = aComment;

setProject (aProject);

public boolean setDate(Date aDate)
{

date = aDate;
return true;

118

}

public boolean setStartTime(Time aStartTime)
{

startTime = aStartTime;
return true;

}

public boolean setEndTime (Time aEndTime)

{
endTime = aEndTime;
return true;

}

public boolean setDuration(double aDuration)

{
duration = aDuration;
return true;

}

public boolean setComment (String aComment)

{
comment = aComment;
return true;

}

public Date getDate()
{

return date;

}

public Time getStartTime ()
{

return startTime;

}

public Time getEndTime ()
{

return endTime;

}

public double getDuration()
{

return duration;

}

public String getComment ()
{

return comment;

119

public Project getProject()
{

return project;

}

public void setProject (Project newProject)
{
if (newProject == null)
{
throw new RuntimeException ("Cannot set project to
null");
}

project = newProject;

public void delete()
{

project = null;

PHP Project class

/*This code was generated using the Umple 1.7.4.1970 modeling
language!*/

class Project

{

//Project Attributes
private $name;

private $contactName;
private $cotactEmailAddress;
private S$contactPhoneNumber;
private S$hoursEstimate;
private S$colourCode;

private $archived;

//Project Associations

private S$parent;

// CONSTRUCTOR

120

public function __construct ($aName, $aContactName,
SaCotactEmailAddress, S$aContactPhoneNumber, $aHoursEstimate,
SaColourCode, $aArchived)
{
Sthis->name = S$aName;
Sthis->contactName = $aContactName;
Sthis->cotactEmailAddress = $aCotactEmailAddress;
Sthis->contactPhoneNumber = $aContactPhoneNumber;
Sthis->hoursEstimate = $aHoursEstimate;
Sthis->colourCode = $aColourCode;
Sthis->archived = $aArchived;

public function setName ($SaName)

{
Sthis->name = S$aName;
return true;

public function setContactName (SaContactName)

{
Sthis->contactName = $aContactName;
return true;

public function setCotactEmailAddress ($aCotactEmailAddress)

{
Sthis->cotactEmailAddress = $aCotactEmailAddress;
return true;

public function setContactPhoneNumber ($aContactPhoneNumber)

{
Sthis->contactPhoneNumber = $aContactPhoneNumber;
return true;

public function setHoursEstimate ($aHoursEstimate)

{
Sthis->hoursEstimate = $aHoursEstimate;
return true;

public function setColourCode ($SaColourCode)

{
121

Sthis->colourCode = $aColourCode;
return true;

}

public function setArchived ($aArchived)

{
Sthis->archived = $aArchived;
return true;

public function getName ()

{

return $this->name;

public function getContactName ()

{

return S$this->contactName;

public function getCotactEmailAddress ()
{

return $this->cotactEmailAddress;

public function getContactPhoneNumber ()

{

return $this->contactPhoneNumber;

public function getHoursEstimate ()

{

return S$this->hoursEstimate;

public function getColourCode ()
{

return S$this->colourCode;

public function getArchived()
{

return S$this->archived;

public function getParent ()

{

return $this->parent;

}

public function setParent (SnewParent)

122

Sthis—->parent = S$newParent;

public function delete ()
{

Sthis—->parent = null;

PHP TimeEntry class

/*This code was generated using the Umple 1.7.4.1970 modeling
language!*/

class TimeEntry

{

//TimeEntry Attributes
private $date;

private S$startTime;
private $endTime;
private S$duration;
private $comment;

//TimeEntry Associations
private S$project;

public function ___construct ($aDate, $aStartTime, $aEndTime,
$aDuration, $aComment, $aProject)
{
Sthis->date = S$SaDate;
Sthis->startTime = SaStartTime;

Sthis->endTime = $aEndTime;
Sthis->duration = $aDuration;
Sthis->comment = $aComment;

Sthis—->setProject ($SaProject) ;

123

public function setDate ($aDate)

{
Sthis->date = S$SaDate;
return true;

}

public function setStartTime ($aStartTime)

{
Sthis->startTime = $aStartTime;
return true;

}

public function setEndTime ($SaEndTime)
{

Sthis->endTime = $aEndTime;

return true;

}

public function setDuration ($aDuration)
{

Sthis->duration = $aDuration;

return true;

}

public function setComment ($aComment)

{
Sthis->comment = $aComment;
return true;

public function getDate ()
{

return S$this->date;

public function getStartTime ()
{

return S$Sthis->startTime;

public function getEndTime ()
{

return Sthis->endTime;

public function getDuration()

{
124

return S$Sthis->duration;

public function getComment ()

{

return S$Sthis->comment;

public function getProject ()
{
return $this->project;

}

public function setProject ($newProject)
{
if ($newProject == null)
{
throw new Exception("Cannot set project to null");
}

Sthis—->project = $newProject;

public function delete()
{
$this->project = null;

125

APPENDIX B

LEIA CASE STUDY SUPPORT MATERIALS

E‘}m /@le‘nn

Home Projects Activities Tasks Time Users Clients Admin

Help Logout

Export Time Activities Pay Period Calendar Reports

Logged in: jlevin

Start: [2002-08-16 | [} End: [2009-08-31 B _Go | Pay Period: s Prev | Curent | Nexts Submit Timeshest far Appraval

B ceneral Timer Infarmation
Tireshest cutoff is August 31, 2009 at 23:59,

= Clipboard Contents
The clipboard is empty.

Time List

Saturday Aug 29

I work Item Name Duration Task Service Item Comments

[T Leis Labs 01.50 Time:Training literature review for product
lines and product families

[T Leia Labs 01.50 Time:Training Klok support materials and
generated code

[T Leis Labs 01.50 Time:Training Leia support materials and
UML diagrams

[T Leia Labs 02.00 Time:Training anuka TimeTracker support
materials and UML
diagrams

I Leia Labs 0z.00 Time:Training TimeTrex support materials

and UML diagrams

o Add a time entry

Status

pending

pending

pending

pending

pending

Edit

Figure 26. Leia timesheet screen

126

|V

i i
/< Edit preferances
oy By e

«ex‘t?nds» sextdndss

- 7 4

- o 5

|
|
- - £ |
- - P :

- - P

” [CRUD project
e
. Assign
A projectroles
\ A T —
¥ Approve

o Project : -
Payroll Division Sales Manager H__hj_me ey

Manager Manager Representative ﬂ\

WANWANRYS

CRUD ™ 7 Apptove @Viewmieft/ «exigndss -

pay period timashest —
— - — - | CRUD sewice iterm
entry reports | R —
I :
| -~ CRUD 0B
: /Kprnjectcude_r
Admnatratur\.

i

Run admﬁ.x_
_ reports g

—
er

A CRUD us)
*w HCCESS I'Ig!’]tS

Figure 27. Leia use cases (those grayed out are not relevant to time and activity
management)

127

APPENDIX C

ANUKO TIME TRACKER CASE STUDY SUPPORT MATERIALS

Anuko Time Tracker
Sydney 517 AM|ITokyo 417 AM|(London &:17 PM(NewYark 3:17 PM|(Seattle 12:17 PM)

logout edit profile - feedback + help

my time . reports . projects . activities . people . clients . export data

Jane Lane {manager), UofOttawa

project (*): |‘v'eddma site ;I <<= august 2009 =>=
activity (*) |Site design ;I

start: I now | Chhrnm’
finish: I now | {hhmm)

mo tu we th fr

. 0z 04 05 06 O7F
duration: | {hh:mm or 0.0h}
O 11|12 |13 14
17 |18 19 |20 21
24 | 25|26 | 27 | 28
31
note:

today
2009-08-10 15:17

I hillable

weekly total: 6:35 hrs

Figure 28. Anuko Time Tracker time entry screen

128

_—

=il "-_\
Edit prtmle)

Employes Viewlexport
fimesheet
i

|
setdndss

r

|
|
|
: CRUD project

mManager

o

Export data _f

Figure 29. Anuko Time Tracker use cases (those grayed out are not relevant to
time and activity management)

129

report_filter_set

user_bind

project_status_list

clients

fs_id ik (11,00

rfs_id_u @ ink (11,00
rFs_name : warchar (200}
rfFs_d_p ¢ ink (11,00

rFs_jd_a ¢ int (11,00
vfs_users : varchar (250)
tfs_period ; varchar (20)
rfs_period_start : date
rfs_period_finish : date
tfs_ch_project : Hvyint (4,00
tfs_ch_ackivity : tinyink (4,0}
rfs_ch_nate @ tinyint (4,00
rfs_ch_start : tinyink (4,0)
rfs_ch_finish : biryink (<, 0)
rFs_ch_duration : tinyint (4,0}
rFs_cb_idle : tinyint (4,00

vFs_cb_totals_only : tinyint (4,0)

fs_aroupby 1 varchar (20
tfs_billable : varchar (10}

% ub_id 1 int (4,00

ub_jd_u:ink (11,00
ub_jd_p:int (11,00
ub_rate ; float
ub_rhecked : tinyint (4,00

d it (10,0)

[

sysconfig

psl_id : smallint (6,00
psl_hidden : tinyint (4,0)
psl_name : varchar {40}

% sysc_id ¢ ink (11,00
sysc_name @ varchar (32)
sysc_walue : varchar (70)
sysc_jd_u ¢ ink (4,0}

tmp_refs

tr_created : timestamp
tr_code : char (32)
tr_userid ¢ int (11,0}

activity_bind

<% ab_id : int (11,0)
ab_id_a :int (11,0)
ab_id_p :int (11,0)

projects

activity_log

user_status_list

wsl_id i smallint (8,0}
wsl_hidden : tinyint (4,00
usl_name : varchar (40)

al_timestamp : timestamp
“al_user_jd rink (11,00
al_date : date

al_from : time
al_duration : time
al_project_id : int (11,0}
al_activity_id ¢ int (11,00
al_comment : blob
al_proof : int {11,0)
al_charge : tinyink {4,0)

Y

.

al_hilable : tinyint 4,00

[7

Zop_id int (11,00
p_timestamp : timestamp
p_name : varchar (200}
p_manager_id : ink (11,0
p_status : smallint (6,00

N

companies

clnk_id & ink (11,0}

clnk_id_um :ink (11,00
clnt_name : varchar (255)
clnt_addr_your : blob
clnt_addr_rust : blob
clnt_camment ; varchar (255)
clnt_tax : Float
clnt_fsubtotals : char (1)
clnt_discount : Float
clnt_status : smallint (6,07

& cid ¢ int (11,0
c_name ! varchar {200}
c_ww ¢ varchat (250)
c_currency : warchar (7)
c_locktime : int (4,0)

users

activity_status_list

asl_id : smallint (6,0}
asl_hidden : tiryint (4,00
asl_name : varchar (40)

invoice_header

activities

aF ad:ink(11,0)
a_fimeskamp : timestamp
a_name ; varchar (200}
a_manager_id : int (11,00
a_status : smallint {5,0)
a_project_id ¢ int (11,09

|4 ih_user_jd : int (11,0

ih_nurber : varchar {20}
ih_addr_your : blob
ih_addr_cust : blob
ih_comment : varchar (255)
ih_tax : Float

ih_fsubkatals : char (1)
ih_discount : Float

A

e

u_jd ¢ ink (11,00
u_timestamp ; Hmastamp
u_login : warchar (100}
u_password : varchar (50}
u_name : varchar (100}
u_company_id : int (11,0}
u_manager_id ! ink (11,0}
u_lewel @ tinyint (4,0)

B u_active : smallint (6,00

u_rate : float
u_comanager ; tinyint (4,0)
u_shaw_pie i smallint (2,03
u_pie_mode : smalint (2,0)
u_lang : varchar (20)
u_emai : warchar (100}

Figure 30. Anuko Time Tracker ERD (without foreign keys)

130

ActivityBind

rate: Double
* | checked: Int *

ProjectStatus

Project

name; String
hidden: Boolean

name: String

timestamp: Timestamp

Activity

ActivityStatus

Client

idUrm: Int

name:; String
addryour: String
addrCust: String

+ | name: String +

timestamp: Timestamp

name: String
hidden: Boolean

3

ReporFilterSet

name: String
users: String

comment; String Ukl L o | | ACNV_'W!‘DQ period; String
tax; Double R llmegtamp.Tlmestamp periodStart: Date
fSubtotals: Char date: Date periodFinish; Date
discount: Double rate: Double from: Time praject; Int manggere
status: Int checked: Int duration: Time activity: Int
comment: String hitasint
b * | proof Int start: Int
charge: Int finish: Int
InvoiceHeader User Alllaklexint duration: Int
nurmber: String login: String idle: Int
addrvour: String password: String totalsOnly: Int
addrCust: String narme: String aroupby. Siring
comment; String level: Int 1 = | billable: String
tax: Double active: Int
fSubtotals: Char rate: Double
discount Double comanager: Int
showPie: Int 1
pieMode: Int) 1 manggerk
UserStatus Iangyage; String
A email: String = Company Sysconfig
hiddan: Booglean timestamp: Timestamp narne: String narme: String
* T | wewwwr: String value: String
currency: String idl: Int
locktime: Int
b

TmpRer

created: Timestamp
cade: String

Figure 31. Anuko Time Tracker UML class diagram modeled from the ERD

131

APPENDIX D

TIMETREX USE CASE SUPPORT MATERIALS

ABC Company - John Doe TimeTrex I
ﬁ In f Out TimeSheet Schedule MyAccount Logout Payroll and Time Management

Home > Reguest List > My Timesheet

% TimeTrex - Google Chrome

hitkp://dema timetrex, com/interface/punchiPunch. php

Daty
ﬁ a % Mon Tue
B i E Employee: | John Coe
In| 8:00 &AM 3:00 &M

Time: |[EI7FM ie: 8:09 PM
Date: |[@agds ie: 25-Feb-0t
Transfer: | T
Punch Type: | [Normal =]
In/Out: |[On =]

out| 11:00 AM 11:00 &M
In| 11:00 &M 11:00 &M
Out 1:00PM L 1:00PM
In| 2:00PM L 2:00PM
out| 5:00 PM 5:00 PM

Lunch Time 01:00 01:00
e Branch: | [Mew York *
Department: |[Sales -
Total Time 08:00 05:00
RegularTime| _ 05.00 08:00 Jelzn | Heuse 10 ¢#15) |
OverTime (=8hrs) Task: ||+ [Cand Scaping (#) x|
Newyork] 05:00 | 02:00 Quantity: | Good: o / Bad:fo
Seattle| (02:00 | 06:00
Note: || 4

Sales] 0500 [05:00
Construction| 03:00 | 03:00
Submit
(#10)House 1| 05:00 | 05:00
PP EETTI. Al o0 1 coon e — 1 e e — - =

Figure 32. TimeTrex time entry screen

132

—

CRD messzage
Edit profile

Emplovee\
M,
: Wiewiexport
| timesheet
|
I
: Authorizeideclineipass
«Extdnd s, request
CRUD

I
|
|
|
|
@DM |
repaors

project
CRUD payrall entity_)—— —
i—_-___“ﬁ_‘h CRUD job group
CRUD compary entity Administrator @

CRUD lookup data
Export data
CRUD recurring
schedule
CRUD user R
ACCESS Hghts Schedule
employes

Figure 33. TimeTrex use cases (those grayed out are not relevant to time and
activity management)

133

BIBLIOGRAPHY

Acher, M., Lahire, P., Moisan, S. and Rigault, J.-P. 2009. Tackling high
variability in video surveillance systems through a model transformation
approach. Proceedings of the 2009 ICSE Workshop on Modeling in Software
Engineering, pp.44-49.

Allen, R. and Garlan, D. 1997. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, Vol. 6, Issue
3, pp.213-249.

Anuko International Ltd. 2009. Anuko Time Tracker.
http://www.anuko.com/content/time _tracker/, accessed in 2009.

Ardis, M.A. and Cuka, D.A. 1999. Defining families - commonality analysis.
ICSE '99: Proceedings of the 21st international conference on Software
engineering, Boston, Massachusetts, United States, pp.671-672.

Auer, M., Tschurtschenthaler, T. and Biffl, S. 2003. A flyweight UML
modelling tool for software development in heterogeneous environments.
Proceedings of the 29th Conference on EUROMICRO, Belek-Antalya,
Turkey, pp.267-272.

Batory, D. and O'Malley, S. 1992. The design and implementation of
hierarchical software systems with reusable components. ACM Transactions
on Software Engineering and Methodology, Vol. 1, Issue 4, pp.355-398.

Batory, D., Lopez-Herrejon, R.E. and Martin, J. 2002. Generating Product-
Lines of Product-Families. ASE '02: Proceedings of the 17th IEEE
international conference on Automated software engineering, Edinburgh,
Scotland, UK, p.81.

Booch, G. 1986. Object-oriented development. IEEE Transactions on
Software Engineering, Vol. 12, Issue 2, pp.211-221.

Booch, G., Rumbaugh, J. and Jacobson, I. 1999. The Unified Modeling
Language user guide. Addison Wesley Longman Publishing Co., Inc.

Book, M. and Gruhn, V. 2003. A dialog flow notation for web-based
applications. Proceedings of the Seventh IASTED International Conference

134

on Software Engineering and Applications, Marina del Ray, CA, United
States, pp.100-105.

Book, M. and Gruhn, V. 2004. Modeling Web-based dialog flows for
automatic dialog control. Proceedings of the 19th IEEE international
conference on Automated software engineering, Linz, Austria, pp.100-109.

Cugola, G. and Ghezzi, C. 1996. Program families: some requirements issues
for the process languages. Proceedings of the 10th International Software
Process Workshop, Dijon, France, p.48.

Dashoty, E.M., Hoek, A.V.D. and Taylor, R.N. 2005. A comprehensive
approach for the development of modular software architecture description

languages. ACM Transactions on Software Engineering and Methodology
(TOSEM), Vol. 14, Issue 2, pp.199-245.

Imperial College. 1997. The Darwin Language - Version 3d., http://www-
dse.doc.ic.ac.uk/Software/Darwin/darwin-lang.pdf, accessed in 2009.

Dhungana, D. and Groher, 1. 2009. Genetics as a role model for software
variability management. ICSE-Companion 2009. 31st International
Conference on Software Engineering 2009 - Companion Volume,
Vancouver, BC, Canada, pp.239-242.

di Nitto, E. and Fuggetta, A. 1996. Product lines: what are the issues?
Proceedings of the 10th International Software Process Workshop, 1996.
Process Support of Software Product Lines, Dijon, France, pp.51-53.

Feiler, P.H., Lewis, B.A. and Vestal, S. 2006. The SAE Architecture
Analysis & Design Language (AADL) a standard for engineering
performance critical systems. Proceedings of the 2006 IEEE Conference on
Computer Aided Control Systems Design, Munich, Germany, pp.1206-1211.

Forward, A. 2009a. Umple language online,
http://cruise.site.uottawa.ca/umpleonline/, accessed in 2009.

Forward, A. 2009b. VML Online.
http://cruise.site.uottawa.ca/umpleonline/vml.html, accessed in 2009.

Forward, A., Lethbridge, T.C. and Brestovansky, D. 2009. Improving
Program Comprehension by Enhancing Program Constructs: An Analysis of

135

the Umple Language. ICPC '09: IEEE 17th International Conference on
Program Comprehension, 2009, Vancouver, BC, Canada, pp.311-312.

Garlan, D., Monroe, R. and Wile, D. 1997. Acme: an architecture description
interchange language. Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research, Toronto, ON, Canada, p.7.

Gorlick, M.M. and Razouk, R.R. 1991. Proceedings of the 13th international
conference on Software engineering, Austin, TX, United States, pp.23-34.

Harel, D. 1987. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, Vol. 8, Issue 3, pp.231-274.

Jacobson, 1., Christerson, M., Jonsson, P. and Overgaarg, G. 1992. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W_.E. and Peterson, A.S. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Carnegie
Mellon University. Technical report CMU/SEI-90-TR-21, ESD-90-TR-222.

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M. 1998. FORM: A
feature-oriented reuse method with domain-specific reference architectures.
Annals of Software Engineering, Vol 5, Issue 1, pp.143-168.

Kuusela, J. and Savolainen, J. 2000. Requirements engineering for product
families. Proceedings of the 22nd international conference on Software
engineering, Limerick, Ireland, pp.61-69.

Lethbridge, T.C. and Laganiere, R. 2005. Object-oriented software
engineering: practical software development using UML and Java. McGraw-
Hill, Inc.

Levin, J. 2009. System generation for time and activity management product
lines - support materials, http://www.site.uottawa.ca/~tcl/gradtheses/jlevin/,
accessed in 2009.

Lixar I.T. Inc. 2007. Leia. http://www.lixar.com/, accessed in 2009.

Loughran, N., Sanchez, P., Garcia, A. and Fuentes, L. 2008. Language
Support for Managing Variability in Architectural Models. Software
Composition, Vol. 4954, pp.36-51.

136

Luckham, D.C. and Vera, J. 1995. An event-based architecture definition

language. IEEE Transactions on Software Engineering, Vol. 21, Issue 9,
pp.717-734.

Lutz, R.R. 1999. Toward safe reuse of product family specifications.
Proceedings of the 1999 symposium on Software reusability, Los Angeles,
California, United States, pp.17-26.

McKeown, R. 2009. Klok. http://klok.mceraphix.com/, accessed in 2009.

Metzger, A., Heymans, P., Pohl, K., Schobbens, P. and Saval, G. 2007.
Disambiguating the Documentation of Variability in Software Product Lines:
A Separation of Concerns, Formalization and Automated Analysis. RE '07.
15th IEEE International Requirements Engineering Conference, 2007, Delhi,
India, pp.243-253.

Mietzner, R., Metzger, A., Leymann, F. and Pohl, K. 2009. Variability
modeling to support customization and deployment of multi-tenant-aware
Software as a Service applications. Proceedings of the 2009 ICSE Workshop
on Principles of Engineering Service Oriented Systems, Vancouver, BC,
Canada, pp.18-25.

Object Management Group.2008. Object Management Group, Unified
Modeling Language (UML), version 2.1.2.
http://www.omg.org/technology/documents/formal/uml.htm, accessed in
2008.

Object Management Group. 2009. Object Constraint Language.
http://www.omg.org/spec/OCL/, accessed in 2009.

Ommering, R.V., Linden, F.V.D., Kramer, J. and Magee, J. 2000. The Koala
Component Model for Consumer Electronics Software. Computer, Vol. 33,
Issue 3, pp.78-85.

Parnas, D.L. 1976. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering, Vol. 2, Issue 1, pp.1-9.

Ram, A., Kellock, H. and Hjort, P. 1997. Architecting families of software-

intensive products. Proceedings of the 19th International Conference on
Software Engineering, 1997, Boston, Massachusetts, United States, p.580.

137

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. 1991.
Object-oriented modeling and design. Prentice-Hall, Inc.

Séanchez, P., Loughran, N., Fuentes, L. and Garcia, A. 2009. Engineering
Languages for Specifying Product-Derivation Processes in Software Product
Lines. In Software Language Engineering: First International Conference,
SLE 2008. Revised Selected Papers. Toulouse, France, pp.188-207.

Schmid, K., Becker-Kornstaedt, U., Knauber, P. and Bernauer, F. 2000.
Introducing a software modeling concept in a medium-sized company.
Proceedings of the 22nd international conference on Software engineering,
Limerick, Ireland, pp.558-567.

Spenser, J. 2000. Architecture Description Markup Language - Creating an
Open Market for IT Architecture Tools.
http://www.opengroup.org/tech/architecture/adml/background.htm, accessed
in 2009.

Sutton, S.M. and Osterweil, L.J. 1996. Product families and process families,
Proceedings of the 10th International Software Process Workshop, Dijon,
France, p.109.

Taylor, R.N., Medvidovic, N. and Dashofy, E.M. 2009. Software
Architecture: Foundations, Theory, and Practice. Wiley Publishing.

TimeTrex Payroll Services. 2009. TimeTrex. http://www.timetrex.com/,
accessed in 2009.

University of Toronto. 2000. GRL - Goal-oriented requirement language.
http://www.cs.toronto.edu/km/GRL/, accessed in 2000.

Weiss, M. and Amyot, D. 2005. Designing and Evolving Business Models
with URN. Montreal Conference on eTechnologies (MCeTech), Montréal,
QC, Canada, pp.149-162.

138

