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Abstract

Software maintenance (SM) for large legacy systems is a very inefficient process; on

average, 70% of software costs are spent on maintenance [Swanson 89]. The inefficiency

of SM has been related to the difficulty comprehending software systems; therefore

program comprehension is considered to be a key bottleneck of SM. Reverse engineering

tools have been used to alleviate this bottleneck with lower than expected success.

We present a cognitively based approach for reverse engineering tool development. We

use ideas from cognitive psychology and other disciplines to formulate the approach. We

also describe a case study in which we applied the approach in a telecommunication

company. The case study resulted in the development of DynaSee, a reverse engineering

tool which helps software engineers analyze dynamic program information.  DynaSee

reads routine call traces, and provides several processing and visualization features that

make the use of traces much more useful for software maintenance and program

comprehension. Next, we describe and evaluate the various features of DynaSee that

compress, abstract and augment traces to make them comprehensible and useful for SM

tasks.  Finally, based on our experience in developing DynaSee, we generalize the aspects

of our findings and techniques that are based on psychology by relating them to the

mainstream psychological literature and to other disciplines where similar techniques

have been used.
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Chapter 1 Introduction

1.1 Introduction

It is well known that software maintenance (SM) is the most expensive part of the

software life cycle. It is estimated that about 50-75% of software costs are spent on this

phase [Swanson 89, Lientz 78]. The greatest part of the software maintenance process is

devoted to understanding the system being maintained. Fjelstad and Hamlen [Fjelstad 83]

report that 47% and 62% of time spent on enhancement and corrections tasks,

respectively, are devoted to program comprehension

Maintenance is particularly expensive for large systems that are developed over a long

period of time by generations of programmers. Such software programs are often

described as "legacy systems". Legacy systems are old software systems that have stayed

alive and are maintained despite their high maintenance cost because they are vital to their

owners and/or users.

Part of the reason for the expense of maintaining legacy systems is that such systems are

hard to understand and to learn. This is because they tend to be very large, to be poorly

structured and to have little or no documentation [Tilley 96]. A software engineer (SE)

typically has to spend a long time trying to find where a change should be made and to

understand how the system is functioning so that his change can satisfy a requirement

without creating new problems.

At a high level, this thesis deals with the problem of the high maintenance cost of large

legacy systems by seeking means to facilitate the comprehension of these systems. In

particular, we want to achieve that by providing a conceptual framework, in terms of an

approach for RE tool design that increases their chances to be efficient and adopted. Given

that comprehension is a cognitive activity, justifications and foundations of this approach

will use, in addition to the software engineering literature, certain psychology literature.
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1.2 The reverse engineering tools approach

The classical way to address the inefficiency of program comprehension has been to

develop reverse engineering tools. The field of reverse engineering concerns how to

extract relevant knowledge from source code and present it in a way that facilitates

comprehension during SM.

Reverse engineering (RE) tools are developed with the goal of increasing the productivity

of SM. However, the chain of causality from tools to increased productivity is non-trivial.

MIS research deals extensively with this chain [Compeau 95]. In fact, research about this

chain is even older than information science itself and goes back to research on the role of

technology in productivity and on technology acceptance [Compeau 95, Davis 89].

From our perspective, we abstract this chain by assuming that to increase productivity in

SM, an efficient tool has to be developed and this tool has to be adopted by its users.

However, as we will discuss next, both designing an efficient tool and having a tool

adopted are serious research questions.

1.2.1 The adoption problem

The first problem to consider is that RE tools in general have “low adoption” by software

engineers (SEs) in the industry. Despite the considerable amount of research in the field of

reverse engineering, SEs still largely rely on using brute force approaches such as reading

system logs and source code, or using primitive search tools like "grep" [Singer 98].

The issue of adoption is particularly relevant in the case of RE tools since their adoption is

generally voluntary. Unlike most software, the users of such tools are not obliged to use

them because they tend not to be necessary to complete a task. In other words, without a

RE tool a software engineer would eventually be able to perform the required
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maintenance. The trouble is that software engineers often do not know how much benefit

tools could give them, or do not believe it will be worth their time to try out the tools.

As we said, adoption of RE tools is not something that we can cover completely; it is part

of a larger and older new technology acceptance problem. The success of adoption is

dependent on many factors often unrelated to the tool itself such as managerial, social,

logistical and economic factors. Nevertheless, we want to focus on those factors related to

the tools so as to design tools in a way that increases their characteristics that help in their

adoption

1.2.2 The efficient tool

The second problem to consider that is not totally separate from the first problem (because

efficiency increases adoption) is that of designing efficient tools. The nature of the

problem that the tool should solve makes the design of efficient tools a research problem

by itself [Storey 97]. In general, to have an efficient tool means that some of the tasks that

are done without the tool should be done with the tool with less cost.

Designing tools that increase the efficiency of tasks implies many research questions

derived from the need to identify the tasks to be targeted by the RE tool. For example, how

is cost in SM defined and measured? And, according to the cost definition, how do we find

and identify costly tasks given the diversified and creative nature of SM?

In other words, it is the creative and implicit nature of SM that leads to many research

questions. Unlike most of classical software development where the goal is to process

explicit information, our task involves targeting the mental activities in humans; that is

why we adopt a “cognitive” approach.
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1.3 The current state of RE tools

Most existing RE tools belong to two camps, those that are based on static analysis of code

and those that deal with graphical visualization of the software system components and

their interactions. Before assessing these two camps, we note that they are both built on

intuitive assumptions about how these tools will increase productivity. No systematic

analysis of the factors that increase efficiency and adoption are typically considered during

tool design; as Lakhotia put it,  “we are not listening to the user, but we are instead

building what we think the user needed.”  [Lakhotia 93].

In recent literature [Lethbridge 96,98], more attention to the users needs has been

displayed, particularly by the study of their work practices. Lethbridge’s work, however,

belongs to the static program analysis camp. These tools only cover part of the information

requirements of SM. Also the static analysis tools have reached their maturity in terms of

possible additional research effort especially with the availability of many sophisticated

commercial products.

We think that what is needed is a re-examination of the assumptions about what makes a

RE tool efficient. New findings beyond the classical assumptions are necessary to leap

beyond the two classical camps (visualization and static analysis) that are exhausted by

now by so many tools that use the same paradigm but with different designs. These

findings should relate to all influencing aspects that make a tool efficient and productive.

1.4 Our research approach

Unlike in computer science, rather than contributing to the solution of a problem that

belongs to particular thread of research, we take a practical software engineering approach

to provide a solution for an actual industrial problem. We do not restrict ourselves to any

discipline or paradigm but rather we are goal oriented, seeking answers and solutions in

order to reach satisfying results with respect to our goal of reducing SM cost.
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Although the initial ideas for this thesis come from the difficulties experienced by the

author in maintaining a large legacy system in an industrial setting, we do not begin with

any assumption about how to design a productive tool. Instead, we backtrack to the basic

high-level assumptions touching on human nature and behaviour.

Since we are result-oriented and some of the results we seek touch on human nature, we

had to tap into psychology and certain other disciplines. For example to answer the

question, “what makes a person adopt a new technology?”, we had to go back to social

psychology and MIS to conclude that it is the perception of positive outcome. Then later to

find how to reduce memory load we had to tap into the memory literature in cognitive

psychology. However, although the ideas we use come from different disciplines, they

have a synergistic effect across all of our research effort to achieve the simple goal of

increasing productivity in SM.

Assumptions taken about human behaviour have to affect all the steps from detecting

users’ problem, to generating tool requirements, to designing a tool, and finally to

implementing the tool. For example, the assumption that perception is what matters in

adoption caused us to target the tasks that are perceived as difficult by the SE so that

facilitating these tasks will show up in term of improved perception.

Another consequence of being result oriented concerns the depth at which we deal with

investigating problems. In order to report practical conclusions with industrial

significance, we have not to spend too much time and effort at any particular problem or

stage of the research cycle so that the cycle’s end can be reached and results reported. We

call this a breadth-first approach as opposed to depth-first approach. So, instead of going

deep into any particular problem, we tackle all encountered problems with enough depth to

have satisfying results. Yet, we keep the door open for future research on any of the

problem that we dealt with.

For example, in the definition of the problem space, it is unrealistic to try to exhaustively

define SM. Hence attempts that claim to define the entirety of the SM concept often end
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up being oversimplifications of reality. Consequently, solutions based on such definitions

rarely become useful. Lakhotia [94] writes: “While it is common practice for researchers

and developers to claim that their tool is a panacea, it is equally common knowledge that

this is very rarely true.”

Focusing on a limited context allows us to deeply analyze such context with an acceptable

amount of effort and to achieve more certainty about the problem we are solving.

Characterization is one phase of the solution cycle; spending too much time at one part

may cause losing contact with the big picture of the solution.

In general, the trade-off between scientific certainty, methodology and generalization on

one hand and the practical need to cover the entire research cycle, on the other hand, is

evident throughout the thesis and is also revisited later on in the thesis.

1.5 Research objectives

The broader motivation for the thesis, at a high level, is to reduce the maintenance cost of

large software systems. To contribute to this goal, we tap into the area related to the

problems that stand in the way of reducing cost using reverse engineering (RE) tools;

particularly we want to research methods that may increase the efficiency and adoption of

RE tools. Efficiency of a tool increases the productivity of software engineers who use the

tool; .i.e. the tool should let the SEs do their tasks faster and with less effort. Adoptability

of a tool is about increasing its chance of being used. The quest for increasing efficiency

and adoptability generates additional research questions that we need to address such as

how to identify the real problems and difficulties of SM and how to rank these difficulties.

The vehicle to contribute in this area is to propose an approach for developing RE tools

that incorporates guidelines, design principles and conclusions which, taken together,

provide a theoretical framework for the development of efficient and adoptable RE tools.

This framework that includes aspects from different disciplines will be illustrated through

a case study and a RE tool that will developed within this framework. The evaluation in
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the thesis will be oriented toward validating the internal assumptions of the approach and

also those related to the role of approach with regards to the higher level goals.

Findings from the case study that contribute to the support of SM will be illustrated to the

level where they begin to have a general utility beyond the case study. The tool will also

be treated as an artefact that has a life of its own beyond its initial role as a product of the

case study. All aspects that are required to produce a tool with practical value in the

industry, including those unrelated to the case study or approach, will be addressed.

Finally, a special emphasis will be given to the use of psychology as a contributing science

in computer science research. There is considerable interest among researchers to bring

these two domains closer.

1.6 Overview of the thesis

The thesis begins by discussing the related literature. Then, justifications for our approach

are presented, followed by the details of the approach itself. A case study, as an

implementation of the approach, is described next. This includes a description of the RE

tool and its features. Finally, evaluation of the tool will be presented.

Chapter 2 is about defining the common terminology and describing the background of

the main related concepts. We elaborate on the areas that are related to our approach such

as dynamic analysis and program comprehension. Then we describe attempts in the

literature to understand the SM process and its sources of difficulties. Examples of

different existing tools and approaches will be provided.

In Chapter 3, we first present the theoretical justifications for our approach and defend

the fundamental assumptions of this work. In the next part of the chapter, we describe the

case study where we applied our approach in a realistic setting. We begin by defining a

task view of how we perceive SM in the context selected by the case study. Within the

problems identified in this model, we prioritise these problems and analyse them in
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cognitive terms generating a difficulties model that forms the basis for the tool

requirements. Possible generalization from the case study findings will also be discussed.

In Chapter 4, we describe DynaSee, the RE tool produced within the case study.

DynaSee, among other things,  is used to validate our assumptions about the users’

problems and the provided solutions. The design rationale and functionality of each

feature are discussed.

In Chapter 5, we evaluate DynaSee by measuring the success of each of its features using

data analysis. The tool’s effectiveness will be evaluated as a whole with respect to the high

level goals in the same context from which we derived the original requirements. We also

try to capture the users’ perception of the usefulness of the tool and their feedback.

Finally in Chapter 6, we summarize the thesis, highlighting our contribution, presenting

our conclusions, and discussing possible future work.
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Chapter 2 Background

In this chapter, we describe the commonly used terminology and the background of the

main concepts related to our research. We survey the literature on reverse engineering in

general and dynamic analysis and program comprehension specifically. We also survey

various tools and approaches related to SM support.

2.1 Terminology

2.1.1 Cognition and cognitive

Cognition is defined by Britannica [Britannica 98] to include, “every mental process that

can be described as an experience of knowing as distinguished from an experience of

feeling or of willing” . As such, it represents a large scope of study allowing for several

interpretations.

In general, the confusion about the use of the terms cognitive and cognition relates to the

existence of two disciplines that use these terms with different interpretations: cognitive

psychology and cognitive science. The difference will be illustrated next based mainly on

a paper by Wilson [01] .

2.1.1.1 Cognitive psychology

Cognitive psychology generally refers to the branch or paradigm of psychology that

succeeded the behaviourism paradigm “which accepted that humans learn and act

 in the world as a result of stimuli which they encounter". For behaviourism, only the

relationship between stimuli and response was a valid subject of argument, thus reducing

the human into a black box with input (stimuli) and output (response or action).

Later, it was realised that behaviourism “has been too restrictive in the range of questions

that it could address” opening the door for a new paradigm, cognitive psychology, that
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“permitted arguments to postulate mental processes and intermediate representations

between stimuli and actions.”

Cognitive psychology is concerned with information processing, and includes a variety of

processes such as attention, perception, learning, and memory [UACSD]. It is also

concerned with the structures and representations involved in cognition. The greatest

difference between the approach adopted by cognitive psychologists and by the

behaviourists is that cognitive psychologists are interested in identifying in detail what

happen between stimulus and responses thus looking at human as a white box. With the

cognitive approach, actions become related to how human understand the world rather

than treating his action as an automatic response to a stimuli.

2.1.1.2 Cognitive science

Yet, even cognitive psychology was found to be still too limiting for providing answers to

broad questions concerning mental life that require broad theories encompassing many

aspects of that mental life. The limitations were mainly due to the restricting legacy of the

experimental rigour of psychology. So, "the trend towards further softening the

methodological demands on theory led to the development of cognitive science in the mid

70's.”

By definition, “cognitive science is concerned with the understanding of mental life, and

the expression of that understanding in the form of theories and models” [Wilson 01].  It

develops frameworks and models of human behaviour which can be used to provide

insights into human computer interaction (HCI). So unlike cognitive psychology that deals

with the mental life of human in general, cognitive science was coupled with a specific

domain of cognition – HCI.

Although cognitive science was initially based on cognitive psychology, the theoretical

demands of cognitive science, that went beyond its experimentally testable theories,

necessitated the incorporation of findings from linguistic as well as modeling techniques
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used in artificial intelligence. As such, cognitive science became a synergy of different

disciplines.

2.1.1.3 The cognitive approach and cognitive load

By the term “cognitive” in the “cognitive approach”, we aim at paralleling the concerns of

cognitive psychology i.e. to look at the human as a white box, investigating the conscious

mental life that takes place between the observable actions during SM. For a discussion of

why we focus on the conscious parts of mental processes see sections 3.5.5 and 3.5.6.

These sections explain why only conscious processes are relevant for optimization of

human cognitive performance.

Our use of the term cognitive load (CL) follows the cognitive psychology view of

cognition. Particularly, the view that the working memory (WM) is the primary

workbench where all conscious, attention-consuming mental effort is applied  [Baddely

74, 86] (see section 3.5.1.1 for an illustration of a psychological view of WM).  Viewing

the WM as the primary workbench makes the term CL very much equivalent to memory

load. However, reducing conscious cognition to only WM may be too much of an

assertion for two reasons. First, WM is a non tangible construct with no universally

accepted precise definition. Second, even conscious processes interact with perception;

e.g. one can solve a problem that he sees on a paper and thus it does not have to be

maintained entirely in the WM (i.e. memorized). Later in the thesis, we argue that

reducing the need to maintain pieces of information in memory by delegating it to the

perceptual system can be helpful for general cognitive performance.

2.1.1.4 ICS

The cognitive psychology view of cognition, having the WM as the central processor and

of limited capacity, is fundamentally different from some models of  cognition in the

cognitive science literature such as the Interacting Cognitive Subsystems (ICS) of Barnard

[93].
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ICS represents the human information processing system as a highly parallel organization

with a modular structure. The ICS architecture contains a set of functionally distinct

subsystems, each with equivalent capabilities specialized to deal with a different class of

information representation (e.g. incoming sensory information and meanings abstracted

from it). The ICS subsystems exchange representations of information directly, with no

role for a central processor or limited capacity working memory.

This deviation from cognitive psychology has its reasons. ICS is concerned with low level

details of perception during HCI which makes it feasible only for critical HCI situations

such as air traffic control [Busse 98] . In such situations,  the  focus is put on the details in

which the human acquires and deals with information – i.e. the sensory and perceptual

information as well as their path to mental representation. As such, ICS “relates primarily

to approximation over activity that occurs within the very short term dynamics of human

cognition” [Barnard 93].

Such critical short term cognition makes sense for a perception-centred approach where

more direct links can be made between perception and action. Accordingly, instead of

dealing with general mental life, ICS provides a “framework for answering such questions

as, “how many information channels can be used simultaneously?” [Wilson 01].

The use of CL in such special purpose models of cognition obviously implies different

meanings than our use. This special use of CL, however, is not strong enough to invalidate

our use of this term since classical cognition is about mental life and not about information

flow within the perceptual subsystem. In fact, the separation of perception as a parallel

unconscious process from cognition as a mental conscious process can even be seen in

some cognitive science models such as that of Card [83] who, in his model of cognition,

breaks human information processing into three parallel macro-level  mechanisms –

perception, cognition, and motor activity
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2.1.2 Task analysis and modeling

Task analysis and task modeling are not generic terms; they have been used with

specific meanings in the literature. In general, task analysis is defined as, “the process of

gathering data about the tasks people perform and acquiring a deep understanding of it”

[Welie 01]. The process of structuring data and gaining insights into the data is called task

modeling. As such, a task model is the product of task analysis then modeling.

According to Welie [01] task analysis and task modeling, “have always been relatively ill-

defined activities, where no commonly accepted models, or representations were used.”

Task modeling methods have been mainly formal. This formality “made them more

powerful and at the same time less usable.” They often used textual representation and

“large textual representations need to be constructed and it is often difficult to understand

what exactly is being represented.” Tools that were needed to make these modeling

activities feasible for practitioners hardly appeared.

2.1.2.1 GOMS

Due to the different variations used in the representation of task modeling, the term task

model has had many interpretations. Also, specific formal methods for task modeling have

been developed. GOMS [Card 83] is a well known task modeling methods. It is perhaps

the most influential technique that, in addition to its followers, dominated the research on

models in HCI [Welie 01]. GOMS is intended to estimate user performance based on a

description of the system before the system is actually built; it is a task-based dialog

description technique [Wilson 01].

GOMS helps in predicting interaction time for a specific interface with a user once a

system has been designed.  It also helps in highlighting some aspects of complexity for a

clearly specified task.

GOMS is derived from cognitive science models of human information processing, but

does not deals with the detail of processing itself, rather it only provides representation

languages.
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2.1.3 Software Maintenance (SM)

ANSI [Chikofsky 90] defines software maintenance as: “The modification of a software

product after delivery to correct faults, to improve performance or other attributes, or to

adapt the product to a changed environment”. As such, this term describes a very large

problem space. Our focus will be only on one of its sub activities related to program

comprehension and the use of related reverse engineering techniques.

A common classification is to divide SM into Corrective, Adaptive, Perfective and

Preventive [Pfleeger 98]. Another way to describe SM is to subdivide the maintenance

space into sub activities; i.e. to describe a process for it. Many processes have been

suggested, including the one in  [Chen 90] that describes SM as the following steps:

1. Problem identification: Identifying the specific functionality to be added or modified

and understanding how the new functionality is different from the old one.

2. Program understanding: Determining which program elements are involved in the

functionality to be changed.

3. Program modification: Design and implementation of the changes, including assessing

the impact of the changes.

4. Program revalidation

5. Redocumentation

2.1.4 Reverse engineering

The most general sub domain that our work belongs to is reverse engineering.  Reverse

engineering is related to SM because it is the part of the maintenance process that helps to

understand the software so one can make appropriate changes [Chikofsky 90].

Reverse engineering is loosely defined as the process of extracting critical information that

is necessary for product maintenance and/or reengineering including design and

specification [Erdos 98]. Many other definitions exist for reverse engineering: one of the
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most cited is that of Chikofsky [90]: “Reverse engineering is the process of analysing a

subject system to identify the system’s components and their inter-relationships and to

create representations of the system in another form or at a higher level of abstraction”.

Chikofsky states that the main purpose of reverse engineering is to increase the

comprehensibility of software systems. He then refined the objectives of reverse

engineering in 6 points:

1. Cope with complexity

2. Generate alternate views

3. Recover lost information

4. Detect side effects (using observation to detect faults)

5. Synthesise higher-level abstractions

6. Facilitate reuse

The tool that we produced in our work is considered to be reverse engineering because it

involves generating a view of the software – the dynamic view –  in a way that supports

answering many questions related to maintenance in general and program comprehension

specifically. We focus particularly on coping with complexity when dealing with large

legacy systems and with the dynamic information generated by their execution. Among

other things, we synthesis higher-level abstractions out of the raw data.

2.2 Main research in reverse engineering

Research in reverse engineering belongs to several thrusts that are evolving in parallel. In

the following subsections we will describe some of the most important of these thrusts.

Note, however, that reverse engineering is not an exact science, and its terminology is not

always consistent [Tilley 96].
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2.2.1 Program Analysis

Most commercial systems focus on source-code analysis and simple code restructuring

using the most common form of reverse engineering: program analysis. Program analysis

is performed by a parser that generates a new representation out of the source code

[Rugaber 95]. Generated representations are usually stored in a database and vary in the

scope of the captured information. Abstract Syntax Trees (AST) are the most

comprehensive representations, and permit other sophisticated program analysis

operations.

Several analyses can be performed to generate alternative views of software [Rugaber 95].

Control flow analysis can be intraprocedural and thus provides a determination of the

order in which statements can be executed within a sub-program and yield a control flow

graph. A control flow graph is a graph whose nodes represent basic blocks and whose

edges represent possible control flow between blocks. The basic block is a maximal set of

statements or instructions with single entry and single exit (also called branch since it does

not contain branching). Interprocedural analysis determines the calling relationships

among procedures and yields a call graph.

Data flow analysis is concerned with answering questions related to how variable

definitions flow to uses in a program. A structure chart is a call graph in which arcs are

annotated with the names of the formal parameters and an indication of whether the arc is

supplying values to the called procedure or returning them.

2.2.2 Slicing

Slicing – the process of extracting a program slice – is another derivative of data flow

analysis.  A program slice consists of a valid program containing only those statements in

program P that may affect the value of variable V at some point [Korel 97]. A program

slice can either be a static slice that preserves the program behaviour with respect to a

variable for all program inputs, or a dynamic slice that preserves the behaviour for a

particular program input [Korel 98].



26

2.2.3 Plan Recognition

Plan recognition is a technique that involves searching the program text for instances of

common programming patterns [Tilley 96]. Those patterns that are common and

stereotypical are known as clichés. Tools that use this technique provide and accumulate a

“plan library” against which they automatically perform the search.

Patterns can be structural or behavioural, depending on whether one is searching for code

that has a specified syntactic structure, for code components that share specific data-flow,

control-flow, or dynamic (program execution-related) relationships.

Program plans are abstract representations of source code fragments. Comparison methods

are used to help recognise instances of programming plans in a subject system. This

process involves pattern matching at the programming language semantic level.

Due to the variety of ways a pattern may be represented in the program, plan recognition is

a difficult research problem. In fact, Woods and Yang [Woods 96] proved that complete

program understanding using plan recognition is NP-hard.

2.2.4 Concept Assignment

The need to locate source code of interest to programmers is widely recognised [Wilde

95]. In particular programmers need to find the correspondence between high-level

domain concepts and code fragments.

One approach to this problem is concept assignment. Concept assignment is the task of

discovering individual human-oriented concepts and assigning them to their

implementation-oriented counterparts in the subject system [Rugaber 95]. This type of

conceptual pattern matching enables the maintainer to search the underlying code base for

program fragments that implement a concept from the application.
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Concept recognition is still at an early research stage, in part because automated

understanding capabilities can be quite limited due to difficulties in knowledge acquisition

(e.g. the identification of comments) and the complexity of the matching process.

2.2.5 Design Recovery

Design recovery [chikofski90] is a subset of reverse engineering in which domain

knowledge and external information, as well as deduction or fuzzy reasoning are used to

identify higher levels of abstraction beyond those obtained by examining the system itself.

Thus design recovery is characterized by utilising multiple sources of knowledge that may

include knowledge from the heads of human experts to reconstruct vital design

information.  An especially important type of design recovery is architecture recovery.

Documentation has traditionally served an important role in aiding program understanding

[Tilley 96]. However, there are significant differences in documentation needs for

software systems of large size compared to the small programs. Most software

documentation is “in-the-small,” since it typically describes the program at the algorithm

and data structure level. For large systems, an understanding of the structural aspects of

the system’s architecture is more important than any single algorithmic component.

Architecture recovery is particularly relevant in large legacy systems because such

systems tend to have poor structure and out of date documentation [Tilley 96]. Even if

documentation of lower-level details is still good, the size of the system still makes it

difficult to navigate.

Architecture documentation provides a compact functional overview of the whole system.

Typically, architecture is represented using diagrams where boxes represent functional

subsystems and arrows connect boxes to show how the subsystems interact.
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2.3 Dynamic Analysis

Most reverse engineering work is based on examining static aspects of software. Less

studied are approaches based on examining dynamic aspects; such approaches are called

dynamic analysis. One reason of why dynamic analysis attracts much less attention is

because of limitations in the data it provides. Such data may not be trivial to collect,

usually are of large size, and are typically hard to comprehend [Jerding 97].

Dynamic analysis involves collecting information about the software during execution.

This information should describe aspects of its dynamic behaviour such as control flow,

data flow and event sequences. Testing and profiling are the most common domains that

use dynamic analysis [Rugaber 95]. In the context of reverse engineering, the goal of

dynamic analysis is to understand dynamic characteristics of a design (execution

sequences and relative time ordering of events) [Wilde 95].

2.3.1 Overview

In general, dynamic analysis approaches are based on running the software, collecting

information about the execution, analysing this information and potentially visualising it.

The classical way of generating dynamic information is to instrument the source code i.e.

to insert probes (print statements) at interesting points in source code. The system is then

run for some scenarios where probes execute, directing their output to a trace file. The

trace file is then the input into dynamic analysis tools where its data is analysed and

visualised.

Generally speaking, a trace file contains a recording of the execution sequence and relative

time ordering of events [Wilde 95] during program execution. Events are visible points in

the execution; they can be on several levels of granularity and usually reflect important

points in the control or data flow. For example, if inter-process communication is the

focus, probes would be inserted before inter-process operations so that the generated traces

reflect inter-process activities.  The trace entry can contain more information than just the

fact that an event occurred – it might contain the value of certain variables.
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The proposed thesis research mainly concerns dynamic analysis, although some static

information is used to augment the analysis of dynamic data.

2.3.2 Basic activities in dynamic analysis

Tilley [1996] identified three basic activities involved in the general reverse engineering

process:

• Data gathering – either through static or dynamic analysis

• Knowledge organisation – creating abstractions for efficient storage and retrieval

of the raw data

• Information exploration – through navigation, analysis, and presentation.

Similarly we describe the general approach for dynamic analysis to involves 3 phases:

Data gathering, data processing and analysis, and data visualisation.

2.3.2.1 Data gathering:

Several design decisions at the data gathering phase determine the nature of the dynamic

analysis. One of the most important is the choice of events or the interesting points to

capture.

At one hand, the classical choice of event granularity in dynamic analysis related to

profiling and testing is the basic block. Such capturing may require instrumenting at every

branch of the program (if and case statements). On the other hand, most work on dynamic

analysis for program comprehension deals with process-level granularity  [Kunz 94, 97].

Another design decision concerns the method of producing the data. As mentioned above,

the most common way of gathering dynamic data is to instrument the source code of the

target program by inserting probes (print statements) and generating a corresponding trace

file. This is an example of a code-intrusive approach because it involves modifying the

source code. Such modifications will not affect the function of the software (i.e. perturb its
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execution) except in a timeshared (e.g. multithreaded) system where race conditions could

be present.

Non-invasive approaches are those that do not affect the source code. Data can be

generated, for example, by polling the runtime compiler/executor for information on the

state of control or variable contents.

2.3.2.2 Data Processing and Analysis

Data processing and analysis involves acquiring knowledge that is not directly evident

from the data and changing the data form to be more suitable for particular tasks. The most

common form of data processing deals with compressing the trace or extracting from it

higher level abstractions to facilitate its navigation and comprehension.

Trace compression is well studied in the contexts where traces are used for performance

monitoring of distributed or parallel systems or for program simulation [Larus 93,

Elnozahy 99, Yan 98].

2.3.2.3 Data visualisation

A rich area of research is the visualisation of dynamic data. One way of dividing

visualisation approaches is by their time relation with the generation of data. Run time

approaches involve visualising data during the program’s execution (as it happens) while

post-mortem visualisation approaches look at previously recorded execution traces.

Other dimensions for categorisation involve the unit of data to be visualised (e.g. at what

granularity) and the method of interaction between units (e.g. animation versus still

display.)

Section 2.7 will describe several tools that use the different approaches discussed above.
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2.4 Program Comprehension and cognitive models

Researchers in this domain have tried to define and validate cognitive models that describe

how a programmer understands code during software maintenance and evolution. A

cognitive model describes the cognitive processes and knowledge structures used to form a

mental representation of the program under study [Rugaber 95]. It is a theory about the

various cognitive activities and their interrelationship used as a programmer attempts to

understands a program.

Several cognitive models have been described for program comprehension. Most models

have been developed based on observational experiments. Various empirical works have

been conducted to explain and document the problem-solving behaviour of software

engineers engaged in program understanding. Von Mayrhauser and Vans surveyed this

area in [Von 95] and compared six cognitive models of program understanding.

In the following section we will briefly go over the earlier models, then concentrate on the

integrated model that encompasses the crème of several models. Cognitive models are

usually classified as either bottom-up or-top down:

2.4.1 Bottom up

Bottom-up comprehension models propose that the program understanding is built from

the bottom up, by reading source code and mentally chunking together low level

programming details to build up higher level abstractions. These abstractions are also

grouped into higher-level concepts until a high-level understanding of the program is

reached [Storey 99].

In the Pennington model [Pennington 87], a program model is first constructed by the

comprehender. This construction involves chunking the microstructures of program text

(statements, control structure and relationship) together into macrostructures that

correspond to control flow abstractions that capture the sequences of operations in the
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program (i.e. programmers follow the execution flow in code and assimilate it into high

level meanings). Once the program model has been fully assimilated, the situation model

is developed. The situation model involves data-flow abstractions and functional

abstractions. Functional abstractions are the cross-referenced mappings between source

code and corresponding domain concepts such as program goals.

2.4.2 Top Down

Top down models suggest that comprehension begins with the formulation of general

hypotheses about the program functionality and then the hypotheses are refined into sub-

hypotheses to form a hierarchy until sub-hypotheses can reach a level where they can be

matched with code. The top-down model is considered to be behavioural because the

comprehension process begins from external program behaviour.

Brooks [Brooks 83] proposes a top-down model that describes program understanding as a

hypothesis-driven reconstruction of the mapping between domain level concepts

(application domain) into the low level programming constructs (source code) using

intermediate domains.  To achieve this, a global hypothesis describing the program is

defined.  The comprehender then tries to verify this hypothesis. This in turn can cause

further hypotheses to be created, building up a hierarchy of hypotheses to be verified.

This continues until a level is reached where the hypothesis is matched with code and thus

can be verified or proven to be false

2.4.3 Discussion about cognitive models

The early cognitive models, in our opinion, are of little practical value in providing useful

solutions for supporting software maintenance. They are more of theoretical value and are

only loosely related to the real problems experienced by engineers in industry. Pennington

for example used earlier psychological work on text comprehension while Brooks used

work on problem solving in other domains such as physics and thermodynamics. They all

used observational experiments to develop their models (except for Brooks). These

experiments have been limited by the fact that they were on programs of small size
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(between 20 and 500 LOC). As such, there is little evidence the models’ results can be

generalized to explain the task of programmers in real life situations where typically

systems are much larger.

We argue against the validity of experiments alone to theorize about program

comprehension during SM because there are too many variables to be considered. Storey

[99] notes that application and programming domain knowledge, maintainer expertise and

familiarity with the program, all affect the comprehension strategy used by the

programmer during program comprehension.  Jorgensen [95] empirically confirms the

influence of many other variables such as the language used, the age and education of the

programmer, and the size of code needed to be modified.

In fact, these variables largely explain the difference between the different models [Storey

99]. Brooks however theorized without using experiments; we along with other

researchers [Lakhotia 93-b] heavily use and support his findings.

2.4.4 The Integrated model

Recently, the work of Von Mayrhauser and Vans [Von 93, 96 98] moved cognitive model

research closer to the software engineering domain and solutions. Their subject systems

were about 50-80 KLOC as opposed to early work that was in the range 20-500 LOC, and

involved industrial engineers as opposed to students.

In their integrated model, Von Mayrhauser and Vans integrated ideas from the major

theories in program comprehension into one consistent framework that can explain a

significant portion of SM activities. They also explained how each component of this

model complements the others. Their suggested cognitive model uses the work of

Pennington and Brooks the most and it consists of:

1. Program model (bottom up)
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2. Situation model

3. Domain model (top down)

4. Knowledge base

The first three corresponds to different cognitive comprehension processes that are used by

the programmer, and the fourth is used by the first 3 models. Each process has its own

mental model of the program being understood. During maintenance, any of these 3

processes can be activated from any of the other processes. Maintainers during

experiments have been observed to switch frequently between these different models

depending on the problem-solving task at hand and their familiarity with the code. The

switching is related to beacons (clue recognition), hypotheses, and strategies.

In particular, when the code is familiar, the top-down model is used, and when the code is

unfamiliar, the bottom-up strategy is used.  For example, when a maintainer is reading a

program in the top-down manner, he may come across an unknown section of code; then

the maintainer switches to the bottom-up strategy to determine what this new section does.

Typically, switching from program to situation models happens because the engineer is

trying to link a chunk of program code to a functional description in the situation model.

Switching from situation to program model occurs when the engineer may be looking for a

specific set of program statements to verify the existence of certain functionality.

The integrated model describes each sub model and the major tasks exercised within its

context as follows:

The domain model is a top down model that is invoked when the code is familiar. The

domain model incorporates domain knowledge that describes program functionality as a

starting point for formulating hypotheses. It guides understanding. The major sub-tasks in

this model are:

1. Gain a high level view of the system

2. Determine the next statement to examine

3. Determine the relevance of code to current hypotheses or mental model

4. Generate hypotheses about the program statements under study.
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The program model is invoked when the code is new to the SE. This is almost the same as

the Pennington model described earlier.  The major sub-tasks in this model are:

1. Read comments or other related documents

2. Examine next statement

3. Go to next module

4. Examine data structure

5. Data slicing and tracking changes to variable contents during program execution

6. Learning by chunking information and storing it in long term memory

The situation model (bottom up) is an intermediate model that uses the program model to

create a data flow or functional abstraction. This model is constructed by mapping

functional knowledge to high level plans or by mapping from the program model bottom

up. It is concerned with algorithms and functional data structures. The previously acquired

situation knowledge together with hypothesis-generation drive the acquisition of new

knowledge and help to organize it as chunks of information for storage.

For example, at the domain level of an OS, we may have a picture of the process control

block (PCB). At the situation model, a PCB corresponds to a table, while in the program

model we will be concerned with a C struct and how it is used and updated in the code.

The knowledge base is some of the long-term memory and is usually organized as

schemas. It contains different schema for the 3 processes in 3 separate models.  The

knowledge base acts as a repository for any newly acquired knowledge. Newly acquired

knowledge is associated with the corresponding models.

2.4.5 The integrated model and tool capabilities

Von Mayrhauser and Vans maintain that “the first step in satisfying a maintenance

engineer’s information needs is to define a model of how programmers understand code”
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[Von 93]. To validate and refine this model they produced a large body of empirical

results based on several experiments that cover different variations of software

maintenance, such as adaptive maintenance, corrective maintenance and reengineering

[Von 98].

Most of their experiments were based on the integrated model that they developed; results

were arranged according to the model’s classification of tasks and models. Their work

yielded a large harvest of empirical data that ranked task’s and subtask’s importance

depending on experimental variables such as the type of maintenance and the expertise of

the participants.

Unfortunately however, the size and the granularity of their tables that serve to confirm or

disconfirm some hypotheses made it hard to convert this data into directives or guidelines

for tool development. Additional valuable information can be found in the informal

conclusions that they wrote at the end of their many papers. We present next a compilation

of their main conclusions:

1. A tool should support the natural process of understanding and not enforce a new one.

This can be done mainly by satisfying the information needs and the cognitive processes

of programmers.

In particular, there is a need to support the switch between different mental models and the

connection between them, since this connection is an integral part of comprehension. They

observe that most available tools support one model only. They suggest the use of

bookmarks or hyperlinks to establish cross-referencing knowledge between different

models.

2. Memory, and in particular short-term memory – an old name for working memory

(WM) –  is vital during comprehension, so a tool should alleviate its capacity limitation.

Incorporating more domain and specialized knowledge will support the WM: “domain

knowledge facilitates retention and retrieval of knowledge about the code,” as it provides a
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“motherboard into which specific product knowledge can be integrated more easily.”

3. Bottom up comprehension should be reduced. They write: “Chunking of small pieces

leads to many layers of program model until the situation model level can be reached. This

is cognitively taxing.” They argue that incorporating more domain and specialized

knowledge will reduce bottom up comprehension, saying: “lack of specialized knowledge

leads to slower code cognition because understanding has to proceed bottom up”.

Von Mayrhauser and Vans summarise what a tool is required to do to speed up the process

of comprehension: “Tools must quickly and succinctly answer programmer questions,

extract information the programmer asks for without extraneous clutter, and represent the

information at the level at which the programmer currently thinks.”

2.4.6   Discussion

The  approach of von Mayrhauser and Vans is based on defining the information needs of

programmers during SM. The definition process begins by defining a comprehension

model with a level of detail sufficient to identify and observe these details.

The authors, after generating a template out of their model of what the activities of SM

are, begin to experiment and observe in order to allocate frequency and spent-time

numbers for each of the activities in their template. Their results fill many tables, each

containing between five and twenty rows with multiple columns full of quantitative data.

We argue that such work can be valuable per se but gives little help to someone trying to

develop a tool. A large conceptual gap exists between these tables and tool design

concepts.  The authors were not developing a tool but rather collecting data about what

programmers do and need. However expressing what someone is doing or needing can be

greatly dependent on what the inquirer needs to know or do. The choice of the abstraction

level (what activities to observe) and the language in which the observation is expressed

can be critical. The authors’ shortcomings are in their assumption that the mere collection
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of data would be enough for a solution to be developed without considering the challenges

of tool developers.

We think that better help can be provided by generating comprehensive theories about

how to alleviate the difficulties of SM in a way that is tractable by a tool. In other words,

what is needed is information about how certain big user problems can be solved with a

solution that can be translated into a working software tool instead of detailing

quantitatively what the maintainer actions are and how much they spend time on each

action.

2.4.7 Partial comprehension

Erdos and Sneed [Erdos 98] propose a simplified model that covers the information

requirements and tool capabilities necessary to support SM activities. They base their

proposal on their vast experience in SM (40 years).

The authors begin by arguing that researchers in program comprehension have paid too

little attention to the real requirements of maintenance programmers.  In their opinion,

complete program comprehension is not always necessary. They note that tools that assist

with complete program representation are not useful or usable for two reasons. First, most

of the tools focus on one dimension of a program such as control flow only or data flow

only, while a program is an interwoven multidimensional artefact. Second, in their

opinion, due to the multidimensional nature of a program, a full representation of more

than 10 KLOC becomes impossible.

Instead, they argue in favour of a question-answering model as the basis for tool design to

support SM activities. Program representation should be localized around a certain type of

concern, i.e. enough to answer individual questions raised by the SE.  They argue that an

SE needs, “local views of subsets of procedures, data structures and interfaces affected by

a particular maintenance request i.e. local comprehension “. They proceed to note, “local

representation should only be produced on demand and in response to a particular
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question.”

They suggest that most SM needs can be met by answering seven basic questions. These

questions are:

1. How does control flow reach a particular location?

2. Where is a particular subroutine or procedure invoked?

3. What are the arguments, results of a function?

4. Where is a particular variable set, used or queried?

5. Where is a particular variable declared?

6. What are the input and output of a particular module?

7. Where are data objects accessed?

The authors then describe a static program analysis tool that they claim helps in answering

these 7 questions. However, they admit that maintenance is a complex task that has an

unlimited need for information about the problem domain and on the solution space so

their solution is also a partial solution. However, by answering the most common

questions they hope their tool will increase the productivity of maintenance work by a

significant percentage.

They also concluded that finding a starting point in the code remains a necessary

prerequisite before asking or answering any of their questions. The authors approach in

defining a model of the difficulties of SM then developing a tool that directly addresses

these difficulties is a step in the right direction. However, they did not provide a

methodology or a framework for the path beginning at identifying difficulties to producing

a solution; they presumed that it is enough to trust their experience and believe their

assumptions. More importantly, they limited themselves to static analysis techniques that,

as we discussed in the first chapter, only covers part of the problems of SM.
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2.4.8  Tools and program understanding

Storey et al.  [97] conducted an experiment on three different program understanding

tools. The experiment involved 30 students who were given a set of maintenance problems

to solve on a subject system of 17,000 LOC. Participants were asked to think aloud and

they were videotaped. The videotapes were later analysed by the authors.

The aim of the experiment was to obtain an insight into, “how do program understanding

tools affect how programmers understand programs.” The authors produced a set of

observations and conclusions out of their experiment.

They observe, “for larger software systems, the true strength of a program understanding

tool lies in its abilities to manage the inherently large amounts of information. Although

our test program was relatively small, there were several issues related to managing

complexity, minimising disorientation, and reducing cognitive overhead.”

Their observations showed that participants spent considerable time looking for the code

that needed to be modified. As a result, they conjecture that there are two aspects that need

to be addressed in a program-understanding tool. First, there should be integrated

capabilities to search the code. Second, there should be support for a combination of

comprehension strategies and for switching between them as well as, in general, to reduce

the cognitive overhead in program explanation.

Also in [Storey 99], Storey and her colleagues developed a hierarchy of cognitive issues to

guide the development of tools to help in software exploration and development. The

hierarchy has two main branches, one for cognitive processes and strategies during

software comprehension and the other for cognitive overhead related to how could the user

interface reduce disorientation during browsing and navigating the visualisation of

software structure.

Storey et al. examined various cognitive models, and highlighted many issues that should

be a concern during tool design. They examined existing tool capabilities, and how they
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address these concerns. They also applied software exploration techniques that reduce

disorientation during exploration of hyper documents.

The hierarchy, however, does not provide sufficient insight as to how the identified issues

can be resolved, nor does it tell when certain information should be made available.

Nevertheless, the authors draw useful conclusions regarding supporting cognitive

processes; they write,  “more support for mapping from domain knowledge to code and

switching between mental models would be useful.” Regarding cognitive overhead in

navigation they write, “better navigation methods which encompass meaningful

orientation cues and effective style for browsing large software systems are also needed”.

2.5 Methodologies to identify the problems in SM

A major theme in this thesis concerns understanding SEs problems and tasks in a way that

ensure good tool design. In this section, we investigate various approaches cited in the

literature that tackle this issue.

2.5.1 Empirical and ecological study of SM tasks

Most empirical work on SM tasks is considered to be of the theory validation type

[Jorgensen 95]. These classical empirical studies are based on setting a hypothesis and

then gathering a large amount of information from many contexts to confirm or disconfirm

the hypothesis. We believe that empirical work should have a more active role, generating

ideas and hypotheses instead of passively validating pre-set ones.

Fortunately, a new paradigm that satisfies these requirements is evolving. Such a paradigm

is sometimes called the ecological study of programmers, a term introduced by

Shneiderman and Carroll [88].  Shneiderman and Carroll define ecological study as, “the

thrust in software psychology where usability researchers are direct participants in the

definition and creation of new software artefacts.”
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The ecological study of programmers represents a new paradigm in empirical studies

where the emphasis is:

1) Realistic software situations should be confronted on their own terms

2) The work is directed toward design results, not merely toward evaluation and

description in the service of design goals. The trajectory of this paradigm is the

development of ideas that directly impact productivity and quality in software.

Shneiderman and Carroll argue that such a realistic approach is more suitable to generate

good results compared to research based on experiments, “because software design takes

place in software shops not in psychological laboratories.” They describe ecological

studies as allowing a richer style of task analysis that, “can not stem from simply

hypothesis testing procedures.” It has to be, “imperative, inductive, it seeks to discover,

not merely to confirm and disconfirm”.

The main research setting for ecological studies is the case study. It is based on collecting

lots of information from perhaps a small number of individuals. They argue that studying

unique situations at a fine grained level will not be useful for statistical analysis but it will

help understand the most important events in the use of software: the meaningful

interactions and how they break down. We fully agree with and adopt the ideas of this

paradigm that is clearly influential on our approach.

Soloway et al. [88] used an ecological design approach to studying software professionals.

They dealt with the design of software documentation for maintenance. Their goal was to

investigate the types of representation that might help programmers when they attempt to

make changes to a program.

They used a research methodology based on: a) collecting data on realistic and real

software tasks, b) characterizing the behaviour they observed in cognitive terms, and then

c) developing some artefacts based on the theoretical analysis in order to enhance the

programmers’ productivity.
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A set of software professionals was chosen and was asked to think aloud as they carried

out tasks in their realistic setting. Audio records were later analysed. Subjects were given a

200-line program and were asked to solve several maintenance questions.

The observation and analysis of the authors focused on one major source of difficulties,

the delocalised plan. They define such a plan as, “pieces of code that are conceptually

related but are physically located in non-contiguous parts of a program.” They note that a

programmer who fails to develop a correct modification is often the one who fails to

understand the causal interactions inherent in one of the delocalised plans.

The authors’ work represents an improvement over methods based on laboratory

experiments to understand the sources of difficulties in SM. They went to an industrial

environment and experimented with professional developers. However, their subject

system was not fully realistic and neither was the approach of directing their work by

providing tasks instead of watching the subjects’ own tasks. Yet, we agree with their self-

evaluation when they define the value of their work as: “identifying specific cases in

which programmers have particular difficulties.” In our opinion, such a not-too-ambitious

approach would eventually yield more reliable and valuable results than trying to solve

everything at one time.

2.6 TkSee and the work practice approach

In this section we present the background of the research in the KBRE group to which the

author belongs. The work described in this thesis can be considered as a continuation of

the KBRE work described in [Lethbridge 98]. This thesis will augment their work and use

the data they collected from studying work practices. All the programming work of this

thesis will eventually constitute an extension to the TkSee tool developed by the KBRE

and which is serving as the infrastructure for various studies of program comprehension.
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2.6.1 TkSee

Figure 1: Screen dump of TkSee: the exploration pane (left) shows symbols. The
source code for the selected routine is displayed in at the right pane. The top-left
history pane shows the current task.

TkSee is a software exploration tool that allows software engineers to explore and

understand source code. TkSee provides two major types of functionality: software object

based exploration and string based search facilities. The former facility allows the users to

pose queries about "software objects". The software objects can be such things as files,

routines, variables, types, and lines in a file.

Query results form a hierarchy where indentation in the hierarchy represents any kind of

relationship between the parent software object and the child (indented) software objects.
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Indentation in the hierarchy represents relationships such as: 'routine calls routine', 'routine

called by routine', 'variable defined in routine', 'type used in routine',  'line found in file',

etc.

Users can perform many operations on the hierarchy such as deleting branches or

expanding others by requesting new displays of related objects. TkSee is designed to

satisfy many of the information needs of a SE, particularly those related to static relations

between software objects.

The string based search facility is a sophisticated way of performing search that would

normally be done using grep. An advantage of TkSee over grep is that a search result can

be saved and refined.

2.6.2 Work practices

The importance of TkSee to our research is not only that it will be the infrastructure on

which we will build DynaSee but also because we benefit from the research methodology

used to develop TkSee.

TkSee has been designed with the goal in mind of having a tool that is highly likely to be

adopted. As such, the design requirements were generated using a new approach for the

identification of tool requirements. This approach is based on studying the work practices

of SEs. Singer and Lethbridge [Singer 97] argue, “By focusing on workplace activities, the

study of work practices increases the likelihood that tools can be smoothly integrated into

the users' daily activities. This, in turn, should increase the acceptance and use of software

tools designed on the basis of work practices.”

In studies of work practices, data are generally collected by following and recording the

work that people do. Singer and Lethbridge [Singer 98] used various techniques to collect

SE work practice data such as using web questionnaires that asked the SEs what they do,

observing an individual SE doing his work for several weeks, interviewing many SEs and
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obtaining company-wide tool usage statistics.

These studies enabled to determine the time spent on different activities. Activities with

high time allocation were targeted in the requirements. For example, search was found as

an important component of real, day-to-day, software engineering. They observed that SEs

repeatedly search for items of interest in the source code, and navigate the relationships

among items they have found. This observation was addressed in requirements

[Lethbridge 98] to provide advanced search capabilities that in the same time allow

software engineers to keep track of search results across different search sessions.

The TkSee tool that was designed to satisfy the requirements did not cover all the

activities with high time allocation. Lethbridge and Singer [Lethbridge 98] observed that

significant time is spent on dynamic analysis and in investigating the routine call

hierarchy. Our work in this thesis targets this part of dynamic analysis.

Singer and Lethbridge  [Singer 97] present the work practice study approach as an

alternative to the cognitive models approach as a means to identify design requirements

for tools. They write, the “work practice study approach can reduce, or perhaps even

eliminate, the need to study cognitive processes and mental models”.  In section 0 we

discussed the cognitive models approach and its shortcomings that included the presence

of a gap between the cognitive findings and tool requirements.  Lethbridge et al.

emphasise this point and write [Singer 97], “it is not at all obvious how to design a tool

given a specification of the programmer’s mental model”. Their contribution is not only in

implementing a new way to derive tool requirements but also in actually implementing the

derived requirements in a tool (TkSee) that is operational and is under evaluation.

2.7 Examples of approaches and tools

In this section we describe actual implementations, rather than the theories, of various

tools and systems that can be considered related to the tool that we describe in this work.
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2.7.1 Debuggers and dynamic analysis tools

Classical debuggers such gdb, dbx or those integrated within the development

environment of most modern languages can be considered as dynamic tools that help in

program comprehension (to understand the execution of a program)[Korel 98]. They can

be used to bridge the gap between source code and the sequence of execution by

projecting the order of execution onto the static order. Classical debuggers can be either

interactive, e.g. highlighting the statements that are executing, or post-mortem, e.g.

generating traces of execution.

Interactive debuggers are useful to get an insight into the dynamics of a program but suffer

serious limitations. They can be useful for limited exploration when the problem is finely

localized within a small part of the code. They are, however, considered as an inefficient

and time-consuming approach to understanding program execution [Korel 98]. Attempting

to follow the execution of a program in a debugger for long periods causes disorientation.

Interactive debuggers are perfect examples illustrating the “lost in hyper space”

[Marchionini  88] syndrome, since they involve continuous bouncing to different locations

in the code. On the other hand, traces generated by debuggers are hard to comprehend

because they are low-level, large in size and flat. The problem of traces will be discussed

later as one of the problems in dynamic analysis.

2.7.2 IsVis

Jerding and Rugaber [Jerding 97] describe a tool, IsVis, which combines static and

dynamic analysis in order to aid in the process of program comprehension. Jerding

observes that, “program executions are made up of recurring interaction scenarios and that

these interaction patterns occur at various levels of abstraction.” His general thesis

statement was: “Visualising interaction patterns in program executions can facilitate

program behavioural understanding during design recovery, design/implementation

validation, and reengineering tasks”.  Part of Jerding's work was to the creation of the

IsVis tool.
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Under IsVis, the target system is instrumented to record interaction events such as object

instantiation and function calls and returns. The system is run for several scenarios and the

generated trace is loaded into IsVis. Using the trace data, the analyst begins by

interactively creating “interaction scenarios” that visually describe the relation between

different software components in term of events between software components.

Components are also defined by the human analyst out of the software artefacts involved

in the trace. The interaction scenarios can be visualised using an event trace diagram based

on temporal message flow diagrams (TMFD).

IsVis also provides several aids to help analysts locate useful recurring interaction

scenarios by using several pattern matching techniques. These techniques include a visual

“Information Mural”, regular expression matching to find similar patterns corresponding

to an identified one, and automatic detection of repeated sequences of interaction.

The Information Mural exemplifies a breed of dynamic data visualisation based on visual

pattern identification. The information mural is a two dimensional graphical representation

used to visualise large amounts of information.  On one dimension, the components are

shown (e.g. classes); messages between components are shown on the other dimension

(axis).

The real innovation in the Information Mural is in the visual techniques that allow creating

a global overview of message traces containing hundred of thousand of messages. The

technique utilises grey scale and colour shading along with antialias techniques to create a

miniature representation of an entire large information space. Using these techniques,

areas that are brighter in the Mural are denser with information, conveying the same visual

patterns that would be apparent if a huge trace diagram of the entire program was observed

from a distance.

In IsVis, the information mural can be used to navigate through the interactions in time

order, or can be used to spot patterns. Groups of interactions can be selected, highlighted

and coloured. Then the graphics display can be updated to show how the interactions look
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with the selected groupings, ideally simplifying the interactions, producing more patterns

and greater understanding of the executing program.

In [Jerding 97-b], Jerding et al. describe the details of the trace compressing technique

used in IsVis. The compression is based on a call trace representation that they developed

as a middle ground between call graphs and dynamic call traces. They note that a call

graph is a very compact representation of the call trace because it only shows a summary

of the actual call sequence. It thus hides individual sequences of calls and their temporal

order. On the other hand, a dynamic call trace is an unbounded data structure that creates

many problems due to its large size, such as finding relevant information. The distinction

is similar to the distinction between sequence and collaboration diagrams in UML.

Their developed data structure is a directed acyclic graph (DAG) and its construction is

based on removing redundancy caused by loops, recursion and reuse of repeated subtrees.

Hashing is used to guarantee that each identical tree structure is only represented once. In

such a case, only a new edge is added from the new parent to the root of the shared

structure. This representation allows preserving information about the unique call

sequence and facilitating detection of repeated patterns. However, this representation does

not preserve the temporal order of call sequences that is instrumental for many program

comprehension activities.

In general, IsVis is more oriented toward a "global understanding" of the software. It

provides an architecture level description of the behaviour, focusing on components and

connections. As such, it provides an object-oriented description that is created by humans

and only aided by the tool. The literature about IsVis, like most of the RE tools, does not

even discuss why the tool is supposed to be useful. The author presents the tool as an

achievement per se without any discussion about where it is needed and what is its role in

the actual practice of SM.
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2.7.3 Jcheck

JCheck from NUMEGA [Jcheck] is a visual debugger used to analyse and debug multi-

threaded programs written in Java.  It builds a real-time graphical model of a program as it

executes, and provides information on Java threads, program events and synchronization

objects. Different threads and their interactions are animated and colour coded to depict

their state (waiting, sleeping, etc.)

The graphical model allows one to visually analyse program behaviour and diagnose

difficult runtime problems, such as thread deadlock, live lock, starvation, thrashing, and

synchronization problems.

JCheck provide an excellent insight into the dynamics of a program but it emphasises the

performance issues rather than program comprehension.

2.7.4 Jinsight

Jinsight [Jinsight] is a Java visualisation tool created by IBM that shows the execution

behaviour of Java programs. Jinsight gets its information from traces of previously

executed programs. The Java program is compiled as normal, and then a modified Java

virtual machine (VM), which is supplied with Jinsight, is used to run the code.  As the

program is running, the modified Java VM creates trace information and stores it in a trace

file. This file can then be loaded into Jinsight, where different views are available to

analyse the trace information.

Jinsight has the ability to show object populations, messages, garbage collection, CPU and

memory bottlenecks, thread interactions, and deadlocks.  Jinsight has several different

displays available from which to view program execution.  The Histogram view displays

calling and reference relationships among objects.  The Execution, Invocation Browser,

and Execution Pattern views display sequences of messages among objects as a function

of time.  There is also a Reference Pattern view, which displays patterns of references

among objects.  This view can also be used to help find memory leaks.  In this view, it can
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be seen which objects are holding references that are causing problems for the garbage

collector.

To help alleviate the problem of information overload with very large traces, Jinsight

provides a pattern extraction facility.  This allows recurring patterns to be displayed in a

single view.  This can help remove large amounts of redundant information, simplifying

the display of interactions.

Many of Jinsight's views involve sequences of messages.  A primitive abstraction

mechanism is provided to clear up the cluttered and sometimes confusing views.  No

conversions between graphics and code are available, but several presentation modes for

visually displaying how the program executed are provided.

Jinsight like Jcheck provides several ways to examine the dynamics of a program but its

emphasis is on performance issues rather than program comprehension.

2.7.5 RunView

RunView [McCrickard 96] is a program visualisation tool designed for understanding and

debugging large programs. It provides the user with an overview of programs by replacing

program elements with graphical objects.

The code-display window shows each file in the program as a column and each function in

a file as a block within the column. The size of the block corresponds to the size of the

function. By highlighting files or functions of interest with different colours, the user can

run the program and visually trace its execution. The execution-display window shows the

current call stack at each function call with the right portion of the window. Each

horizontal line in the display represents the call stack at some point in time, with each

function in the call stack appearing as a line segment.
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To semantically connect the windows, each line segment in the execution display has the

same colour as the corresponding function in the code display. At any time, the user can

highlight a function representation in either view to determine when the function was

called, which functions called it, and which functions it called.

The RunView Dynamic run time view of module activity proves particularly helpful in

interactive applications. At each interaction, RunView shows which portions of the code

were executed.

2.7.6 View fusion

Pal [98] used dynamic information to augment a static architecture diagram. This approach

integrates high level architectural knowledge with call relationships captured during

critical moments of code execution. His technique can be discussed in terms of view

fusion, with the goal of creating a diagram that illustrates the dynamic interactions of high-

level software components. Dynamic interactions between components are represented

using numbered and directed edges between high level components.

Pal uses a non-intrusive dynamic data collection method. Using a debugger, low-level

interactions are gathered by examining debugger call stack information produced by

placing breakpoints on all procedures and functions in the software.

2.7.7 Run Time Landscape

The Run Time software Landscape (RTL) [Teteishi 94], like the approach by Pal, belongs

to the group of tools that do program visualisation at the architectural level. Dynamic

information is visualised using view fusion with a static layout of software components.

The Run Time Landscape is intended to, “manage and present run-time information about

large software systems in a manner that is comprehendible to a programmer”. It is an

extension of an architecture view of software called the Software Landscape.  The Run

Time Landscape uses a hierarchical containment view of software hierarchies provided by
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the Software Landscape to represent the flow of execution as a moving dot called the

execution marble.

Animation techniques are used to make the marble easier to follow as it moves between

viewed components as each component receives the control locus. At any point of

execution, additional windows can be opened that display various program-state related

information such as the program stack or values of different variables.

2.7.8 Software Reconnaissance

Wilde [92, 95] describes a technique that uses program traces to localize the source code

that corresponds to a piece of functionality. Software Reconnaissance is based on the

comparison of traces of different test cases. The target program is first instrumented so

that a trace is produced of the components executed in each test. Then test cases are run,

some 'with' and others 'without' the desired functionality.

For example, a programmer who wants to find where call forwarding is implemented

might run one or two tests that involve forwarding a call, and then one or two tests that are

similar, but do not forward a call. The traces are then examined to look for software

components that were executed in the first group of tests and not in the second.

Software Reconnaissance (SR) instruments each conditional statement in the target system

so that the trace records each executed branch (basic block). When a branch is found in the

trace generated by some test cases that exhibit a feature f and not in the trace of test cases

that do not exhibit f, it is designated as the marker branch for f. While marker branches

were not always directly related to the feature in question, Wilde reports they were mostly

considered as good starting points to find the relevant code.

2.8 Support for program execution comprehension

Korel [98] notes that the typical tool to understand program execution and behaviour is the

conventional debuggers that support breakpoints and stepwise execution. He, however,
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notes that debuggers are inefficient and time consuming ways to understand large program

behaviour.

He presents a tool that describes program execution at a higher level of abstraction than

statements. His tool represents a survey for methods that support comprehension of

program execution, a subset of dynamic analysis and reverse engineering. The tool

includes the following techniques for program execution presentations:

1. Execution on the call graph level where executed modules (e.g. routines) are highlighted

on a call graph or a sub call graph that displays only the executed modules.

2. Execution on the call tree level where each executed module is displayed as a rectangle

and a line connecting the calling and called module. Korel notes, however, that this

technique only works for short execution sequences and that it is “impossible to visually

represent the program execution; especially, for large programs and long program

execution”. On the other hand, he suggests that some techniques can be used to alleviate

this problem such as removing repetitions caused by loops, zooming in/out and collapsing

the parts of execution that are not of interest to the programmer. He did not mention,

however, any support in his tool for these techniques.

3. Execution on module trace level, where the executed modules are shown as

corresponding bars in a viewing window (looking like a linear bar chart). The height of

each bar represents the length of the execution race during each module execution

(measured by the number of statements executed). The viewing window is of fixed length

with all bars having the same width. So the more modules are included, the thinner the

bars become in order to all fit inside the window.

Korel’s tool allows for synchronized viewing among all different views. A highlighted

module in call tree view, for example, will cause its corresponding module to be

highlighted in the graph window and in the linear module-viewing window. Also, it would
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be possible to open up a module in these windows (represented by a rectangle) to see its

actual source code with the executed statements highlighted.

2.8.1 Inter-process dynamic analysis

Dynamic analysis for inter-process interactions is a well-studied area. However, most of

the work on dynamic data focuses on evaluating performance [Wilde 98]. In recent years

some research has emerged to utilise inter-process interaction traces in program

comprehension. We describe some of this research below:

2.8.1.1 POET

Figure 2: POET screen dump

POET [Kunz 97] is described as a tool for collecting and visualising event traces from the

execution of distributed or parallel applications. It displays the events as an online form of

a process-time diagram. In the display, each horizontal line, called line trace, corresponds

to one process. Time flows from left to right, and a scroll bar allows scrolling in the

vertical (process) dimension. An event is shown as a circle or square on a trace line,

different kinds of squares and circles correspond to different events such as process

creation, termination and message sending or reception. Interaction between processes can

be shown as pairs of events connected by an arrow. Different kinds of arrows correspond

to different kinds of interactions.
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2.8.1.2 Event abstraction

Kunz [94] describes a tool that automatically abstracts inter-process events (e.g. send,

receive) that are recorded in a trace file. Trace events are considered primitive events and

the tool derives out of them abstract events. An abstract event groups together several

primitive events, thus it “abstracts” them. A hierarchy of events can be constructed where

the lower level abstract events are abstracted into higher-level abstract events.

The abstraction process begins by matching traced events with the corresponding source

code that produced them. Once matched, several rules that use information about the

control flow and data flow of the code are applied to group events into higher level ones.

For example, if several events are produced by a set of statements belonging to one basic

block, then these events are considered as one abstract event because these events will

occur always together thus they are likely to correspond to one higher-level abstract event.

Similarly, if several abstract events are derived from statements of one routine then they

can be grouped in one higher-level event because a routine is likely to achieve a higher-

level functionality.

While Kunz claims that it is possible to assign meaningful interpretations for derived

abstractions, he notes that significant time is required to understand the derived

abstractions. He also suggests allowing the user to modify such abstractions because they

don't always match the user's high-level definition of abstract events.

2.8.1.3 Pattern detection in traces

Kunz and Seuren [97] describe an application for compressing traces of inter process

communication by detecting patterns of communication in the traces.  Patterns are first

defined by the user using a graphical interface and stored in a patterns library. Then a

search is performed on the trace to locate any occurrences of any patterns in the library.

The user can also automatically define a pattern by inserting special probes in the source

code. On execution, these probes produce annotations in the trace that group a set of trace

entries and constitute a user-defined pattern.
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2.9 Dynamic slicing

An interesting approach that can be related to our work is dynamic slicing. A dynamic

slice is a valid program containing only those statements in program P that may affect the

value of variable V at some point [Korel 98] for a given input. A dynamic slice is

computed from the backward analysis of a program trace.

2.9.1 Dynamic slicing and program comprehension

Originally program slicing has been proposed to guide programmers during debugging but

in many cases it may also be used for program comprehension during SM by reducing the

amount of details a SE (or programmer) see.

Korel [98] pushes the idea of dynamic slicing as a mechanism for program comprehension

by assuming that, “each program function can be represented by a variable or a set of

variables at a certain program point” and therefore by slicing for the representing variables

we can get a slice for a function. Seeing only the details related to a function of interest to

a SE is very desirable especially in large systems.

Dynamic slicing is more appropriate at this task because it produces a much smaller slices

than static slices, only those statements that contribute to the computation of a selected

function for a given program execution (input) are included in the slice.

Dynamic slicing was used to improve comprehension of program execution by limiting the

execution presentation to the contributing part only. It is important to understand that

contributing statements for a function are not equivalent to executed statements; not all

executed statements contribute to the computation of a function of interest that is

represented by a variable. Using dynamic slicing algorithms, it is possible to identify

statements that affect the variable and step only through these statements or through the

modules that contain them.
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Alternatively, dynamic slicing can be applied on all program execution presentations (see

Section 2.8). For example, contributing modules can be highlighted in a module level

presentation of a program execution; alternatively, non-contributing modules can be

simply removed from the presentation. Moreover, the degree of contribution can be

computed from the number of contributing statements and this degree will be reflected in

the visual appearance of the module representation.

2.9.2 Discussion

The use of dynamic slicing for debugging is very likely to be of great use. It is more

controversial to use it to support program comprehension for large programs. A dynamic

slicing algorithm that requires statement level tracing is likely to suffer from scaling

problems.

Also, there are questions about the validity of the assumption about whether all or at least

most program functions that are of interest to a software maintainer can be represented by

a practical number of variables. More importantly, the identification of such variables, if

they exist, is not a trivial task and Korel [98,97] did not mention anything about

supporting this activity.

According to our task views presented in the next chapter, typically a software maintainer

needs to have a good comprehension of the program before he can identify the variables

that represent his function of interest, making this activity a vicious cycle. However, we

think that dynamic slicing, as a way to augment techniques for comprehending program

execution, is of definite value.
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Chapter 3 Justifications for our approach and case study

In the first part of this chapter we will discuss the theoretical justifications for this thesis.

Based on these justifications, we propose the general idea of our cognitively based

approach for RE tool design. In the second part of the chapter, we describe a case study

where we applied our approach on a realistic industrial setting.

3.1 Theoretical Justifications

The first theoretical justification for our approach is that the low adoption rate of reverse

engineering (RE) tools is largely due to a gap in perception of software maintenance (SM)

problems between tool designers and the software engineers (SE) who play the role of end

users. This generates the following research question: given that there is no universal

characterization of SM, how can one identify the real problems of SM? That in turn can be

divided into two questions: Q1: How to characterize SM tasks, and Q2: What criteria can

be used to rank the difficulties of SM tasks.

The second justification is that a RE tool can increase efficiency by reducing cognitive

load (CL) spent on performing SM tasks. This leads to the need to define a theoretical

framework based on the nature of CL and how it can be reduced.

3.1.1 Tool adoption and the real problems of SM

The problem of tool adoption is not a new one. It relates to an older problem that has been

addressed in MIS research since the mid-1970’s, regarding the factors that influence an

individual’s use of information technology [Compeau 95].

The major theoretical thread in this domain is derived from social psychology theories and

relates to behaviour and attitude toward technology. It conjectures that adoption results

from the individual expectations of positive outcomes. This thread matured with the well-

known and validated technology acceptance model [Davis 89] that states that adoption of
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new technology takes place when there is perception of usefulness and ease of use in the

candidate adopter. We rely on this model to assume that, to be adoptable, a tool that

supports SM has to convey a perception of increased efficiency and reduced complexity of

the tasks.

More specifically to our concern, it is largely accepted that a major source of low RE tool

efficiency is due to a gap in perception of the real difficulties in SM between tool

designers and their users (the SEs) [Storey 99, Lakhotia 94]. When tool designers have a

different perception of a user’s tasks and problems, they will design a tool to solve

irrelevant problems. The success of a tool’s adoption is dependent on how much the tool

solves real and hard problems, and how much the sources of difficulties are eliminated or

alleviated so that the reward (positive outcome) in using the tool can be perceived by the

end users.

A detailed SM characterization is needed in order to be able to identify and understand the

main problems and difficulties of SM in a way that allows for the design of an efficient

tool. This understanding should clarify the details of SM at various levels, particularly the

cognitive level, as program comprehension is mainly a cognitive process. Even after a

characterization has been performed, a proper indicator of what makes a certain task

“difficult” should be identified and used.

3.1.2 How to characterize SM tasks?

Several approaches have been used to tackle the problem of characterizing SM (see

Chapter 2 on some of the details of different approaches). Empirical methods have been

used frequently; however, most empirical work on SM tasks is considered to be of the

theory validation type [Jorgensen 95, Shneiderman 88]. These classical empirical studies

are based on setting a hypothesis and then gathering a large amount of information from

many contexts to confirm or disconfirm the hypothesis. We believe that empirical work

should have a more active role to generate ideas and hypotheses instead of passively

validating pre-set ones.
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Our approach for the characterization of SM can fit under the ecological study of

programmers paradigm. As discussed in Chapter 2, in this paradigm proactive methods of

investigation are used seeking to discover big problems rather confirming or disconfirming

hypotheses. The methods are applied on a limited context or a case study where the

targeted context is thoroughly analyzed and the results are oriented toward designing a

solution in terms of software artefacts.

The decision to work on a limited context that is also narrowed down to a difficulty model,

as opposed to supporting all the activities performed during software maintenance, is not

only based on our preference of approaches but also has additional rationale related to the

nature of SM. Software maintenance is a sophisticated creative process that is far from

being fully understood [Ducasse 99]. In fact, SM [Pfleeger 98] is defined as any work

done to change the system after it is in operation. As such, SM defines a large space of

tasks and problems. The nature of SM differs dramatically between different contexts, so

SM means different things to different people in different contexts.

In our opinion, neither a universal characterization nor a universal solution is possible or,

at least, it is not possible to get everybody to agree on a universal description. Focusing on

a deep but narrow problem has more chance of quick success, and can contribute to

knowledge that will eventually help people to build up better general SM understanding

and tool support.

This approach also allows us to focus better on a manageable space and thus better

determine the usefulness of any of the SM support techniques. In the context of a full

program comprehension tool, it would be hard to isolate the strengths and weaknesses of

individual approaches.

In other words, instead of designing panacea tools for all the SM, we use the craftsman’s

tool approach. A tool becomes useful and needed when it helps in some settings (task

view) that are difficult enough to justify its use and eliminate particular difficulties in these
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settings (problem model). Although a tool may be developed within the context of a

particular problem, most tools ends up being used in many other contexts. The magical

tool that solves the entire set of craftsman’s problems in all settings is unrealistic, and so is

the tool for all the SM problems.

3.1.3 What criteria can be used to rank the difficulties of SM tasks?

As we said before, after a clear model for SM is defined, the next phase is to analyze this

model in order to identify the sources of difficulties that make SM such an inefficient

process. A prerequisite for this identification is the adoption of a criterion to rank activities

and difficulties.

Classically, the amount of time spent on an activity or the frequency of performing the

activity was used as the indicator to evaluate its efficiency. While time can detect many of

the inefficiencies, it hides many underlying factors affecting cost and productivity.

Reliance on time alone means that all units of time spent have an equal cost in terms of

productivity, regardless of the cognitive effort required (e.g. an hour reading a newspaper

would be equal to an hour of reading a math proof!).

3.1.4 Cognitive load (CL) as a criterion

We argue that a better indicator of efficiency is the amount of cognitive load (mental

effort) spent; the more cognitive load (CL) is needed, the more inefficient is an activity.

We hypothesize that CL is a better indicator (a more accurate gauge for efficiency in

reducing the SM cost) than time because we believe it accounts for  more aspects affecting

the successful adoption of tools (and thus productivity) than time alone. One of these

aspects is the likelihood of succeeding in a task: it seems reasonable to state that as tasks

increase in CL, the chances of errors will increase, and the performer's confidence in the

correctness will decrease. The reader can verify this by introspecting about the possibility
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of making an error on a simple task such 1000 * 30 versus a more complex task such as

6973 * 31. Some necessary tasks during program comprehension of very high CL may be

ignored or approximated, thus negatively affecting the efficiency of SM. A time-only

based metric will not capture such implicit inefficiency.

Of course, CL also affects directly the time required to perform a task. Note however that

we don’t claim that all sources of inefficiency are detected by CL, rather CL increases the

accuracy of such detection. It can be complemented by other measures such as time and

frequency of use.

3.1.5 The notion  of CL

The notion of CL is well grounded in cognitive psychology. The human cognitive system

has limited resources and using its resources near their capacity causes a perception of

difficulty. But as the load increases, errors begin to occur and finally a complete failure in

performing the task occurs. In decision-making tasks, it has been proved that as

information increases beyond certain limits, the performance decreases parabolically

[Umanath 94].

The most important and scarce resource of the cognitive system is in working memory

(WM). WM is considered to be the bottleneck of the cognitive system [Card 83 p. 392].

WM has a well-characterized limited storage and processing capacity. Storage and

processing resources are hard to differentiate, since processing requires space to store

intermediate results. For simplicity, we will combine both kinds of loads under the term

CL (see the discussion about the definition of CL in terminology section of Chapter 2).

CL, even when there are no overloads, will have negative effect on performance. The

support for this assumption comes from the work of Steinberg whose experiments

demonstrated that the retrieval time from the WM is linearly proportional to the number of

items stored in the WM [Ashcraft 98 p.116]. In other words, the more WM is occupied,

the longer the retrieval time is.
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3.1.5.1 Measuring CL

Retrieval time in laboratory experiments signifies the mental effort and thus CL under our

definition. In fact, the only way to quantitatively measure CL in experimental settings is

by measuring the mental time to achieve a task. However, for this to be valid, the task

should be small and well determined to prevent multitasking and to ensure that the elapsed

time was purely spent on mentally processing the task. Examples of such experiments are

measuring the time a subject takes to find an answer for a mental task such as rotating

objects (note the mental rotation experiment of Shepard described in the next section) or

by measuring eye fixation during reading to determine which words are harder to

comprehend.

Outside the laboratory setting, such as in our case, the time spent on a task has to be

carefully used as an indication of CL since it is hard to isolate atomic tasks in realistic

settings dominated by multitasking. With respect to our own objective where perception is

central, we don’t need to quantitatively measure CL but rather just identify levels of CL

usage(e.g. identify cognitive overload). Humans can easily perceive their mental level of

difficulty [Turner 96], especially when asked to make a conscious effort to do that

(introspection). For example, the user may be following a call hierarchy, he will be more

able to describe that the task of following a deep tree is disorienting and exhausting.

3.1.6 Efficiency increase and CL

As we mentioned, our second theoretical assumption is that an RE tool can increase

efficiency by minimizing the CL required for the SM tasks. We next describe the

theoretical framework of how a tool can do that.

The general theoretical framework that describes how a tool can reduce CL is the

distributed cognition model [Flor 91]. If we consider the reverse engineering (RE) tool and

the human cognitive system as two processing/storage nodes in one system, with the tool
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as the resource-abundant and inexpensive node and the WM as the opposite, then the

problem will be reduced to moving load from WM to the tool.

In the design and implementation stage of a tool, the goal should be that the tool “sub-

contracts” from the WM whatever possible sub-activities it can. This can be compared to

using a hand held calculator as an external aid to sub-contract some of the processing load

(the arithmetic) of a larger mathematical problem. Another example is using paper to store

intermediate results of multiplication, instead of storing the results mentally.

Cognitive task analysis should identify, among other things, the implicit processing

constructs and operations that go on in the WM, (e.g. mentally constructing a call

hierarchy). The tool should take over some CL by explicitly representing the mental

constructs using its processing power and the screen display (e.g. constructing and

displaying the call tree on the screen).

3.2 The approach

Based on the above considerations and justifications, we propose a cognitively based

approach for RE tool design that we argue will increase the efficiency and the potential

adoptability of RE tools, therefore reducing the SM cost.

The first step in our approach is to define and focus on a certain context and deeply

analyze it so a precise problem space is defined in terms of a set of inefficient SM

activities within it. The context definition requires sampling in an industrial setting in

order to reduce the complexity of the problem space into a manageable form.

Since our goal is to improve adoption by improving perception, the choice of context (and

the case study in general) has to be one in which there is a strong perception of

inefficiency in SM tasks. Such situations are identifiable by empirical/ecological proactive

techniques such as external observation of SE work practices, by asking the SE to identify

them, or even by introspection [Lakhotia 93].
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Out of the context definition and analysis, we define a model of SM to be the basis for

further steps. We call this model a task view, which is an abstraction of the chosen context

that describes the major activities of SM as we perceive them. In general, a model is a

simplification of reality in a way that facilitates analysis and keeps the focus on relevant

details. Both the abstraction level and the focus of our model would be geared toward the

identification of major difficulties in SM.

A special focus in the construction of the task view is given to the tasks associated with

cognitive overloads (situation where the usage of memory resources is approaching

capacity) in order to reduce these overloads. Cognitive overloads can be identified by

external observation because they can be perceived as such. Even if one argues that some

difficulties cannot be perceived, we say that we are interested mainly in what is perceived.

This is because it is our goal to enhance adoption that, in turn, dependents on the

perception according to the technology acceptance model of Davis [89].

After the identification of the task view, the tasks of the model should be cognitively

analyzed to produce a difficulty model. Such analysis is done by breaking down the

targeted tasks into their elementary micro activities to the level where they begin to have

psychological significance (in terms what is discussed in the literature of this science). At

such a level, psychological knowledge can be used to identify the root causes of overload.

From these causes, we also use psychological knowledge to derive an explanation of the

difficulties. This explanation will be the central design theme that will shape the solution.

Here, the difficulties and their cognitive sources have to be analyzed in terms that explain

why they exist and how they can be alleviated --the cognitively based remedies for these

causes. It is also here where all the theorization will take place, where the information

collected in previous steps are put together in one meaningful theory that will embody

within itself the rationale of the requirement and design of the solution. We call this phase

the theoretical explanation framework; “framework” is better term than “model” because a

model is an abstraction of complexity while a framework is a body of guiding knowledge.
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The suggested explanation of the source of difficulties would be, then, easily translated

into some requirements for the tool to satisfy. The requirements should also cover

additional issues to ensure that the tool will meet its high-level objectives.

Finally, an RE tool would be designed with features to satisfy the cognitive requirements.

The design of the tool does not map directly to the requirements. Rather it is a creative

process similar to any other software solution for a problem, except that the cognitive

factors should be highly influential when making various design decisions.

Evaluation and iteration based on evaluation findings are classical steps in software

development that we also include in our approach. Note however that since tasks and

difficulties models are documented, their details will also be revisited in any iteration so as

to investigate if any of their assumptions could have caused weakness that manifested in

the evaluation. That is, if the modeling is inaccurate then the solution will also be – what

needs to be fixed is the modeling so the tool can be improved.

3.2.1 The cognitive approach in summary

In summary, as illustrated in Figure 3, our cognitive approach involves the following steps

or phases:

1. Sampling a context from an industrial setting where there is perception of

difficulties.

2. Abstracting the tasks in this context into a task view that focuses on the tasks that

most proclaim the perceived difficulties.

3. Performing cognitive analysis on the tasks of the task view to identify a set of

conjectures about the sources of the difficulties in the task view. The result would

be the difficulties model, which represents our perception of the major cognitive

difficulties in the task view and their cognitive origins.
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4. Establishing a theoretical view of the explanation of the causes of the difficulties

model that acts as a framework to infer a set of requirements to be included in the

tool’s design.

5. Beginning the tool development cycle by generating requirements, implementing

the tool, evaluating it and iterating through the steps of the approached based on

the evaluation result.

Industrial
Setting

Sampling Chosen
Context

Abstraction Task
model

Difficulties
model

Cognitive
explanation

Requirement
Generate

RE Tool
ImplementUser

perception

Evaluate

Iterate
Theorize

Figure 3: The phases of our entire research approach.

The case study presented in the next part of the chapter will best illustrate the approach.

3.3 Our approach at work: the case study

We applied our approach in designing a RE tool called DynaSee that we will describe in

Chapter 4. In this section we will describe how we executed the approach as a case study

in a telecommunications company that maintains a large legacy software system. The

company suffers from the high cost of maintaining the system, thus we want to produce a

reverse engineering tool that reduces that cost.
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3.3.1 Identification of a context

As our approach suggests, we have to face problems in their own realistic setting. Within

the complicated SM environment we faced in the targeted company, we used sampling to

define a context that corresponds to a manageable problem space. We wanted this space to

represent the worst-case mixture of environmental parameters.

First, we chose a specific system, a set of SEs to observe, and a subset of activities that

these SEs perform on the selected system. This is because the size and quality of the

system, in addition to the degree of expertise of the SEs, affect the nature of maintenance

tasks.

The system we chose is a telecommunications system, initially written in 1982, that

includes a real-time operating system and interacts with a large number of different

hardware devices. The system is written in a proprietary structured language and contains

several million lines of code. The chosen tasks are small corrective maintenance tasks.

Such tasks are often assigned to an entry level SE who has little understanding of the

structure of the system.

Our choice for this context of tasks and persons coincides with Jorgensen’s findings

[Jorgensen 95]. In his empirical study of SM, he concluded that the combination of

corrective maintenance and less-experienced programmers working on a large system

generates the lowest level of productivity in maintenance work.

3.3.2 SM process as we perceive it: the task view

In order to characterize SM in the chosen context, we applied proactive methods as our

approach suggests. We began by observing the work practices of the targeted SE doing

targeted tasks on the targeted system. We discussed with them their issues and problems

and validated our conclusions. The author’s experience in a similar context was also useful

in the definition of the task view. It is important to note that this view, which we will

present next, does not relate to any formal modeling nor does it represent a general or
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complete description of SM. It just represents our choice of a set of hard and typical SM

tasks identified in our investigation that are abstracted to a level appropriate for the case

study.

In our task view, an  SM activity is typically initiated by a maintenance request. The first

maintenance activity is to understand the maintenance request by reading its description

and/or by reproducing the problem.

Next, the code relevant to the problem has to be located. Given that maintenance requests

are usually expressed in a very domain-oriented language, a process of converging

(homing in) on the relevant code begins.

The primary method for converging is that a starting point in code has to be located. The

starting point typically is a snippet of code that is part of the execution path of the current

problem.

Locating a start point can be a difficult task if not enough pointers or cues are provided in

the problem logs (e.g. call stack dump if the maintenance request is a trap) or if the SE has

no information about the possible location of the relevant code. The SE searches for

different cues in the source code; such cues include strings from the user interface, strings

in comments and symbols names (e.g. variables and routines). Returned matched lines

from the search are evaluated for relevance, not only by examining the lines but also by

examining their neighbourhoods.

Alternatively, if the SE has an idea of about the possible location, he may scan the

suspected modules looking for indications in the comments and in the symbol names that

indicate or refute relevance.

Once the starting point becomes known, further convergence on the problem is done.

Typically, the execution path is followed (beginning from the starting point), by

continuously following (synchronizing) the events in the program behaviour inside the
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code (mapping behaviour to code) until the events directly preceding the maintenance

request are identified and thus the problematic code is localized.  In fact, the

synchronization must identify all relevant code, not only that which needs to be modified

but also all the code that needs to be comprehended for a proper modification.

A particular observation at this phase is that control flow is traced at the level of routines

more than at the level of individual lines (statements). The SE follows the routine call

hierarchy at varied levels of depth, drilling down when a routine is not clear or when it is

particularly relevant, and moving forward otherwise in the same level of the call hierarchy.

The exploration focus is on routine names while individual statements and code comments

are only looked at when the problem is identified within a routine or when the routine

name is too ambiguous to tell about its functionality.

Once relevant code is identified, different strategies of code comprehension are used. In

particular, bottom up comprehension is used for the statements suspected to be directly

responsible for the maintenance request. The code statements are mentally visualised as

executed (symbolic execution) and mapped with the problem behaviour.

Figure 4: The SM phases in our task view

3.3.2.1 Analysis of the task view

 SM is a problem-solving process driven by the practical needs of the problem. Basically,

the cycle begins with a maintenance request that is typically written in a domain language,

i.e. a certain abnormal behaviour that needs to be altered into another desired behaviour.
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The change of the program behaviour (the solution), will be ultimately made in some parts

of the code. So a mapping between the problem behaviour and the corresponding code

causing the problem is the obvious thing to do. This mapping, however, is by itself a

challenging and typically an inefficient process especially when dealing with large

software systems.

Moreover, with large systems, new constraints are added to the mapping and

comprehension tasks.  A full comprehension of the system is impossible; comprehension

is done partially for the parts that directly affect the problem at hand.

The difficulty of mapping and comprehension in large systems implies an increase in the

role of intermediate tasks that has to precede and guide partial comprehension. Namely,

there is a central role for the process of locating relevant code for a maintenance request,

what we designate as manual slicing (as opposed to slicing done by tools as in section

2.2.2). Manual slicing (hereinafter slicing) of code for a problem achieves the mapping

requirement and thus identifies the parts that need to be comprehended. Typically, the path

of execution (the executed code) related to the maintenance request represents most of the

slice, or at least are good start points to find other related code.

3.3.3 The difficulties model

The task view clearly present slicing as the major task that needs attention since it is a key

activity that is difficult and different in large legacy systems. At this phase of defining the

difficulties model we identify why slicing is difficult.

Slicing is done by synchronizing program events with code. In turn, synchronization is

composed of two interwoven processes: locating delocalized pieces of the slice and

comprehending the slice. In this section we try to analyze why slicing is such an inefficient

task.
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3.3.3.1 Code location

Locating pieces of code that are relevant is done in large legacy systems (LLS) using

search, either for the first piece of code (starting point) or for next piece on the control

flow. However, search is inefficient in large legacy systems and when combined with

other tasks, it weighs on their efficiency in a very negative way. Search is heavily needed

in large legacy systems because complete comprehension, exhaustive reading or scanning

of code is non-feasible.

The main cause of the high inefficiency of search is that there is no explicit mapping

between behaviour and code (static to application domain). Most often, because of the lack

of reliable structure in LLS, the whole system needs to be searched for cues, and the

search yields too many false hits (low precision). An excessive  amount of time and effort

is consumed to evaluate the results. This degrades the performance of the higher-level

slice comprehension process, as we will discuss next.

3.3.3.2 Slice comprehension

The biggest problem in SM activities during slicing by search is the WM capacity. Tasks

are more demanding than can be easily handled by the limited WM, thus causing frequent

forgetting of vital information. This is because the information requirements (that need to

be together in the WM) are extensive, thus cognitive overloads occur and degrades the

performance of SM.

The scale of the overload problem was very clear from observations. In [Lethbridge 2000],

Lethbridge describes several problems with exploration by searching. Most of these

problems were related to the ability to remember where different search results (snippets

of code) were stored. Lethbridge observes that some users (the SEs) use paper or editor

buffers to save search results; however, he concludes that, “neither of these solutions is

entirely satisfactory due to the overhead of doing the saving, and then finding the data

again later.”
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Additional signs of memory overload were shown by Lethbridge when he notes that users

lose track of what they have to do and of their mental models when changing the context

of work from one task to another, before completing the first. He points out that users have

problems recalling their plans and models upon returning to an earlier context.

We identify the following cognitive causes of difficulties in slice comprehension that

result in cognitive overloads:

3.3.3.3 The delocalisation of code

Delocalisation of code occurs when different pieces of code are logically related but

physically separated. For example, comprehension of code that executed in a certain run of

a program requires that comprehension follows the logical relation created by the

execution flow between routines that are stored all over the software system (in different

files and directories). The linear order of code execution has to be mentally reconstructed

from delocalized static code.

Unlike text comprehension, where information exists in largely linear order, code

comprehension requires an understanding of not only the looked-at artefacts (code objects

that are the focus of reading), but also other delocalized artefacts. The comprehension

process requires finding each one of the delocalized artefacts, retaining it in the WM, and

then finding the rest so an overall map of the relationships can be mentally constructed. In

moving from the acquisition of one artefact to another, the big problem is in the limitations

of the WM, it either fades or simply cannot keep all of the required artefacts.  The

psychological support for this claim will be presented in Chapter 6.

3.3.3.4 Deeply nested relations

Often, to understand a code artefact, it is necessary to understand some of its nested

components that in turn depend on their own nested components. Deep nesting of this kind

is particularly challenging and occurs mainly in routine call relations, type definitions, and

inclusion relations.
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For example, understanding a routine typically requires understanding the function of

some of the routines it calls, and the same applies recursively for the called routines.

Similarly, understanding a structured type definition requires an understanding of some of

its fields, which may also be of compound types. The depth of routine call nesting is made

even worse because, in our subject system, parts of the operating system are

indistinguishable from other source code. Therefore, tracing functionality that requires an

operating system service may also involve tracing the operating system routine calls that

are used.

Deeply nested relations become particularly problematic because the atomic meaningful

unit that needs to be formed from the nested relations is often larger than the WM

capacity. The notion of a cohesive and connected structure of information is well studied

in text comprehension literature. Turner [96] in his model for text comprehension,

describes the input cycle – the number of propositions accumulated in WM before moving

it to the long term memory (encoding). He notes that the reader will keep inputting

propositions until a connected chain of information has been constructed (so that its gist

can be extracted for encoding) or the WM limit has been reached.

3.3.3.5 Uncertainty

Another cause of difficulties in slice comprehension is manifested in the exploration aimed

at following the execution path in code (control flow), which is a major activity within

slicing. The difficulties stem from the uncertainty involved in determining the path that is

actually followed.

While the SE is only interested in the path that produced the behaviour under

investigation, static source code does not correspond to one possible control flow but

normally allows for many different execution paths. It is often not possible to identify the

desired path from source code with complete certainty because control flow depends on

variables whose value may not be known until run time. This makes code exploration

harder because it has to be carried out under uncertainty, thus many alternative paths have

to be considered. This creates a need to keep track in the WM of additional information
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required to backtrack from one path of exploration to another when a path is judged to be

unlikely to correspond to the actual execution path.

According to Lloyd [99], who referenced classical work in psychology: “Results from

applying information theory on human psychology strongly indicate that the number of

alternatives, and the amount of information are crucial to both the time required to

comprehend information and the degree of success attained in understanding information.”

3.3.3.6 Low meaningful encoding

The cost of symbols (code artefacts) that need to be maintained in WM can depend to a

greater or lesser degree on how or whether they can be related to existing (learned)

knowledge. By encoding the new information in terms of existing knowledge, meaningful

encoding dramatically reduces the WM load [Ashcraft 99 p.103]

What makes meaningful encoding particularly low in our context is that in slicing, code

needs to be dealt with outside its context. The delocalization of code, and the need to deal

with search results that can come from anywhere in the system, lessens the ability to use

contextual knowledge (e.g. functions of the current module) to relate to existing

knowledge.

3.3.4 A framework for the explanation of difficulties

We see that the general framework that explains comprehension tasks and thus their

causes of difficulties is the three domain mapping theory that we will explain next. We

look at program comprehension as navigation in a software knowledge space within and

across its domains. In our view, the software knowledge space can be seen as having three

domains, each one with its own set of useful information:

• The static domain, which consists primarily of source code including comments plus

any additional documentation that describes the design and implementation of software.

The information in this domain is always available, fixed, and explicit.
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• The dynamic domain, which concerns the information and knowledge about what is

taking place between code artefacts during program execution, e.g. control, call and

data flow. Inserted print statements, program traces and debuggers are the primary ways

to obtain an insight into this domain. However, most of the time the knowledge of this

domain is mentally induced from the static source code.

• The application domain, which concerns the external behaviour and the functionality of

the program. This domain includes whatever is visible to the user, such as the user

interface and the program output as well as any detectable event in related application

software or hardware.

During SM, the information requirement for maintainers spans the 3 domains in an

opportunistic manner. Maintainers need to cross reference information from any domain

into the other two domains. The cognitive difficulties of mapping between domains stem

from the natures of these domains. While both the application and static domains are

explicit and visible, the dynamic domain is implicit and invisible.

The dynamic domain is the intermediate domain that allows cross referencing between the

other domains, hence it has to be mentally constructed for the other domains to be bridged.

The mental construction is done, in part, by the mental reordering of code to the sequence

that it follows during execution. For example, to find what code (static domain) produced

a certain functionality  (application domain), the execution path (dynamic domain)

corresponding to the functionality has to be identified.

Slicing and slice comprehension very much correspond to the mental construction of the

dynamic domain.  This is because they involve finding and comprehending the parts of

codes that executed to produce the behaviour of the problem.
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3.3.5 Tool requirements

The tool requirements are the results of what we discussed above. The tool should in

general reduce CL by subcontracting the mental construction of the dynamic domain by

reordering the code according to the dynamic order and by explicitly presenting it in a way

that supports comprehension. However, the new form in which the dynamic domain is

presented should be usable and should not incur significant additional overhead that may

mask its utility (create new sources of load that significantly increase the overall CL).

In particular, the tool should address all the sources of overloads identified in the previous

steps in order to reduce the CL in the tasks that are cognitively overloading:

1. Reduce the need for search aimed at locating delocalized code or increase the

search efficiency.

2. Enhance slice comprehension by reducing the negative CL effects caused by the

issues presented in the difficulties model such as delocalization, deep nesting,

uncertainty and low meaningful encoding.

3. Enhance comprehension by supporting domain tracebility (mapping).

4. Afford exploration flexibility, at least to the level that is available to the SEs

without the tool.  For example, if they do not want to look at low level calls, they

should not have to see them unless they ask for them.

3.4  Evidence and support

In this section we present support for our research assumptions from the literature and

other reported experiences.

3.4.1 Experiment and introspection

The way we viewed software is not unique; several references in the literature support our

view. We find the conclusions of Lakhotia [93], who experimented on SM, remarkably

close to our conclusions. Although he used introspection, which is usually not well

respected scientifically, for identifying the characteristics of SM during his experiments,



79

his conclusions are, in our opinion, much more valuable than many of the sophisticated

pieces of empirical work that have been analysed using rigorous statistical techniques.

This opinion is in line with our support for the ecological approach where one has to be

actively seeking problems instead of depending on confirming or disconfirming

hypotheses. Moreover, introspection is viable because it allows a person to be aware of his

goals rather than staying at the level of externally observable techniques.

Lakhotia [93-b] designed an experiment in which he had to modify a program of medium

size. He executed the experiment while introspecting about the nature, tasks and

information requirements of SM and program comprehension.

3.4.2 Locating pieces of code

In his description of his finding, Lakhotia mentions that the first step is, “to locate the

places where a specific behaviour is implemented.” To do so he scanned and searched the

code looking for clues and says, “the symbols and the comments in the program were used

to locate the code segments that were relevant to the change.” He describes the

convergence on related code by saying that, “the symbols acted as ‘beacons’ that helped us

in ‘homing in’ on the relevant code.” He also notes that he heavily used “grep” to search

the code. He stresses the importance of the task of locating pieces of code that implement

a piece of functionality noting that, “very little research has been done to support this

activity.”

He concludes that: “We don’t always need to understand the design of the whole system to

change it correctly” and the extent to which a program is understood depends on the

“amount of functionality” of interest to the programmer.

Some of his other conclusions that support our assumptions include:

• The importance of the call tree exploration. He mentions that in exploring code, he

“visited only what is called by or calls the routine.”
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• The severity of the gap in perception between the real SM problem and the reality.

Before conducting this experiment, Lakhotia was trying to develop a tool to aid in

SM. After the experiment, his perception of user needs has been changed

dramatically.

• The lack of comprehensive analysis and classification in SM. In  [93] Lakhotia

notes that:  “There is a need for classifying, at various levels of detail, the tasks

performed by a maintenance programmer” and that while discussion for some of

the tasks exists, they may be only found scattered in the literature.

3.4.3 Cognitive models and domains cross-referencing

Despite the difference in details of the various cognitive models, there is a common theme

that coincides with our theoretical framework of comprehension and explanation. We note

that all models include, as part of comprehension, the mapping (matching) or cross

referencing between code and high-level domain concepts through intermediate domains

or models. This mapping can either originate from world domain to code (as in top down

models) or from code to domain (in bottom up). The integrated model [von 95] considers

top down and bottom up as different strategies that can be used in an opportunistic way

depending on whether the code is familiar (top down) or unfamiliar (bottom up).

Pennington who produced a bottom up model [Pennington 87] says that two distinct but

cross referenced mental representations of the program are constructed during program

comprehension: a) Program models that highlight the procedural relation between program

parts in the language of the program, and b) Domain model that highlight the functional

relation between program parts in the language of domain objects.

She theorizes that effective comprehension requires the two mental models to be cross-

referenced in a way that connects program parts to domain objects. Her analysis of

experiments performed on 40 programmers suggests that the best comprehension is

achieved when cross-referencing strategies are utilized. In such strategies, the

comprehender tries to relate program text to domain function. When a ‘trigger”
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(equivalent to a beacon) in text is identified, the programmer forms a hypotheses about

why the program wants to do something in world terms, and then try to verify the

hypotheses in text.

Programmers who have been program-level comprehenders only, understand “what” the

program does but not why.  While domain-level-only comprehenders have vague ideas

about “why” but no idea about “what” happens in the program.

Brooks [83], whose model is top down, defines programming as a mapping from the

problem domain into the programming domain through several intermediate domains.

Hence, he defines comprehending to be the reconstruction of part or the entire mapping.

He writes, “The task of understanding a program becomes one of constructing enough

information about the modeling domains that the original programmer used to bridge

between the problem and the executing program”.

He describes the process of comprehension as a formulation of a hypothesis about the

program functionality and then attempting to verify it in code. If the hypothesis is not

detailed enough to match with code, sub hypotheses are created continuously until the

bottom hypotheses can match against the code to be confirmed or disconfirmed.

In short, both theories regard comprehension as a mapping between code and application

domain via intermediate abstraction and transformation. They disagree, however, on

which is the source and which is the destination.

Finally, the three models of the integrated model of von Mayrhauser and Vans [von 93]

loosely match our three-domain categorisation. The static domain may be identified with

their program model, the dynamic domain with the situation model, and the application

domain with the domain model.
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3.4.4 Support for the difficulties model

The fact that large systems exhibit different challenges and different ways to look at

problems has been noted by von Mayrhauser and Vans [von 95]: “while a lot of important

work exists, most of it centers around general understanding and small scale code” and,

“theories regarding large-scale program comprehension for specialized maintenance tasks

are in their infancy.”

Kozaczynski [89] argues that the crucial difficulty in maintenance work is that change and

modification requests coming from the user are most likely expressed in a very domain-

specific language. Considerable difficulty is encountered given that the actual

modification is to be carried out on the source code, and the mapping between domain and

code may not be trivial.

Corbi [89] also identified the use of domain language as a major source of difficulties. He

also notes that, "studying the dynamic behaviour of a program can be very useful and can

dramatically improve understanding by revealing program characteristics which can not be

assimilated by reading the source code alone".

3.5 Generalization for cognitively based assumptions

Many of the software related tasks or problems targeted by software engineering

researchers have mental performance as the bottleneck. These include, among others,

program comprehension and hyperspace browsing. So it is natural for someone working

on these tasks and problems to try to develop a better understanding of the human

cognitive system and how to enhance its performance. While the assumptions and

techniques we provided are context specific, we hope that the generalization provided in

this section will transform them into general cognitively based design and evaluation

guidelines that can be consulted in any cognitively intensive application. Specifically, we

try in this section to highlight some of the knowledge areas of psychology that may be

illuminating for the tool designer who is designing tools to support mentally intensive

applications.
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An additional objective is to relate our cognitively related assumptions to mainstream

psychology, thus enriching their value, since they become manifestations of well-accepted

theories. We also try to show where similar techniques have been used or proved to be

valid in different contexts and domains.

The following threads of literature were found to be useful: memory literature which is the

heart of cognitive psychology; text comprehension literature which is a quite mature area

aimed at pedagogic goals; as well as program comprehension, human machine interface,

and data presentation research aimed at enhancing decision-making tasks.

3.5.1 Cognitive overload and its cost

Some of our fundamental assumptions in this thesis concern cognitive resources; we

assume, for example that high usage of these resources for some tasks will degrade higher

order comprehension activities. In particular, we assume that the need to maintain a

significant number of items of information in WM (such as search results and symbols) for

a significant time and the simultaneous need (at the same time) to visualize call trees and

control flow relations, will degrade performance.

These assumptions turn out to be highly generalizeable because they greatly coincide with

a new model of WM. This model is also supported by experimental results, as we will

show in the next section.

3.5.1.1 A model for the WM

The view of WM has been evolving continuously from its primitive view as a short-term

memory buffer that is only able to hold 7+-2 items of information. One of the most

credible models for WM is that suggested by Baddely [Baddely 74, 86], the foremost

authority on WM, who views it to be more like a mental workbench.
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Under Baddely’s model, the WM is made out of a central executive and two slave

subsystems: the articulatory rehearsal loop and the visuo-spatial sketchpad. The central

executive is thought to be the primary workbench area of the system where mental work of

all sorts is done. It initiates a variety of mental processes, such as decision making,

retrieval of information from long-term memory, reasoning and language comprehension.

The articulatory rehearsal loop is a sound-based system that can hold and recycle small

quantities of information; it corresponds to a short-term rehearsal buffer.  The visuo-

spatial sketchpad is a specialized slave system that holds visual or spatial codes for short

periods of time.

More importantly for us, Baddely considers that the central executive can be thought of as

a pool of mental resources available for any of several different tasks but which is limited

in overall quantity. Each of the two slave systems also has a limited pool of resources.

However, resources are shared in one direction, from the central executive down to either

the articulatory rehearsal loop or the visuo-spatial sketchpad.

The central executive shares its resources with the slave systems when either one of the

slave systems becomes overburdened  (with an overly demanding task) and needs extra

resources. However, when the central executive shares its resources, it often ends up

having insufficient capacity to do its own work.

This theory has been tested empirically. Experiments have focused on proving that there

are separate subsystems that can work independently when none is overloaded. This was

done by having the central executive perform some mental task, then giving a second task

to one of the slave systems. As the tasks become more and more demanding, interference

effects showed up, usually as a slowing down of performance or as an increase in errors.

For example, in one of Baddely and Hitch’s [Baddely 74] earliest experiments,

experimental participants were asked to hold randomly chosen letters or digits in the short-

term “buffer” (i.e., the articulatory rehearsal loop). The other activity was a concurrent
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(simultaneous) language-based reasoning task. That is, while several items were being

held in the short-term buffer, participants also had to do a mental reasoning procedure

(performed in the central executive).  Results showed that as the number of rehearsed

digits reached the capacity of the rehearsal buffer, the reasoning tasks began to be affected

and performance degraded significantly.

3.5.1.2 Relation to our work

The similarity to our assumptions can be easily observed. When too many intermediate

search results need to be maintained in the WM (rehearsal loop), some of the central

executive resources are used (shared) causing the overall comprehension and other high-

order processes to degrade in performance. The same applies for the need to visualize a

call tree, when such a call tree is large enough, it will drain some of the central executive

resources and thus also degrade the overall performance.

3.5.2 The implicit-explicit and cognitive distance

Increasing the explicit where there are extensive implicit operations was a cornerstone in

our approach. In the requirement section, we required that the tool should reduce CL

caused by the implicit dynamic domain by constructing an explicit representation of that

domain.

3.5.2.1 The implicit explicit dichotomy

The explicit aspects of a task are its input information (raw problem representation); the

implicit aspects are what is not tangibly presented and thus needs to be constructed

mentally to perform the task. In the Shepard experiment, the object picture was shown

only as it existed at the beginning and the end of the transformation – the explicit points,

while the whole rotation path is implicit and has to be constructed or inferred mentally,

within the WM.

A close analysis of this concept reveals a similarity to the classical psychology literature

with the well-known “mental rotation” experiment of Shepard [Ashcraft 98 p.120].
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3.5.2.2 Mental rotation experiment

In his experiment Shepard gave his subjects two pictures of objects; in some cases the

second picture was a rotated view of the first object and in other cases it was a similar, but

different object. The subjects were asked to determine if the two pictures represent the

same object. Different subjects were given pictures with increased rotation and the time

spent by subjects to find the answer was recorded. The results showed that the time spent

on finding the answer is linearly related to the degree of rotation.

To illustrate the relation between a comprehension model and the explicit/implicit

dichotomy, we look at Kintsch’s model for text comprehension [Kintsch 98]. Kintsch’s

theory considers that a main sub-activity of text comprehension involves the mental

construction of a macrostructure – a kind of outline of the text being comprehended.

Under our assumptions, the explicit construction and presentation of the macrostructure

should reduce the effort needed, and therefore increase comprehension. This is exactly

what was demonstrated in an experiment by Beyer, as mentioned in [Kintsch 98 p. 309],

who reported that comprehension was better when the macrostructure of the text was

explicitly presented using headings and subheadings than when macrostructure was

implicit.

Kintsch [Kintsch 98 p. 303] also describes an experiment where two pieces of text were

presented: in the first piece, sentences were explicitly linked by prepositions, and in the

other piece sentences were not. The explicit text was found to be easier to comprehend.

Aschraft [99 p.298] also concludes that in text comprehension, the more indirect the

reference, the slower and more difficult it is to comprehend.

Slovic [72] uses the notion of concreteness to illustrate the importance of the explicit

representation of input data: “Concreteness represents the general notion that a judge

decision maker tends to use only the information that is explicitly displayed and will use it

only in the form in which it is displayed.  Information that has to be stored in memory,

inferred from the explicit display, or transformed tends to be discounted or ignored. “
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Thuring [95], for example, noted that in hyper-document browsing, “readers need to keep

track of their moves, which results in a considerable memory load”. As a remedy, he

suggests to use a graphical map in a navigation tool. The map would show all nodes

visited and their relationships; this way the map would be an explicit counterpart of the

needed memory load. In his opinion, this would help free memory from the burden of

maintaining the map.

3.5.3 Gap in perception between user and tool designer

The first theoretical assumption in this thesis was that reverse engineering (RE) tools’ low

adoption rate is largely due to a gap in perception of software maintenance (SM) problems

between tool designers and the tool users – the SEs. We also suggested that there should

be a characterization of SM’s real difficulties and problem using a cognitive analysis of

the nature of these problems. Finally, we suggested that requirements for tool design

should stem from these requirements.

3.5.3.1 Cognitive fit

The notion of cognitive fit developed by Vessey [91] constitutes an excellent

generalization for our assumption. According to Vessey, cognitive fit exists when the

problem solving aids (tools, techniques, or problem representations) support the task

strategies (methods or processes) required to perform that task. Cognitive fit causes the

complexity in the task environment to be effectively reduced.

Vessey draws on the problem-solving literature and the notion of cognitive effort to

illustrate cognitive fit. Vessey’s model for problem solving views it as an outcome of the

relationship between problem representation and problem solving tasks. The mental

representation is the way the problem solver represents the problem in human working

memory. It is formulated using the characteristics of both the problem representation and

the tasks.
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Vessey conjectures that adoption of problem solving aids results from fit, which is the

degree of match between the processes that one uses to act on the representation and the

processes and strategies that act on the solution. Greater fit implies less cognitive effort in

translating between mental representation of the problem and solution strategies.

Vessey’s cognitive fit experiments were focused on data representation. He empirically

showed, for example, that tabular presentation leads to improved decision making

performance for certain tasks and lower performance for others. The opposite applies to

graphical representations: tasks in which tables fared badly tended to result in better

performance when presented graphically, and vice versa.

Cognitive fit had a ripple effect in the MIS literature. Based on cognitive fit, the notion of

task technology fit (TTF) [Dishaw 98] became a model to predict adoption. TTF is defined

as, “the degree to which a technology assists an individual in performing his or her tasks”.

In the context of a tool, TTF can indicate the correspondence between task requirements

and the functionality of the tool.  Dishaw and Strong [Dishaw 98] conjecture that a higher

degree of “fit” between task and technology leads to increases in both utilisation and

performance. On the other hand, Goodhue [95] conjectures that a higher degree of “fit”

leads to expectations of positive consequences of use. As such, TTF becomes aligned with

other social psychology theories that emphasise expectation as the driver for behaviour.

In revisiting the correspondence between these theories and our work, we note that, in the

cognitive fit theory, the cognitive effort created by low fit can be considered as an instance

of a more general notion of cognitive load as we used it in the thesis. TTF is a direct

generalization of our requirement to have accurate characterization of users’ tasks and to

match these tasks with the tools’ capabilities using cognitive load as the main criterion to

increase the match.
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3.5.4 Problem solving

Perhaps the most general umbrella in psychology that covers our work is the area of

problem solving. This is described as the study of individuals confronted with a difficult,

time consuming task where the solution is not immediately obvious and the person is not

certain what to do next [Ashcraft 98 p. 383]. Almost every textbook on psychology has a

chapter about problem solving. SM and computer programming in general are considered

to be a set of problem solving tasks by experts in domain specific knowledge [Brooks 83].

The problem solving literature suggests many principles to enhance the efficiency of this

process. One of the most important principles is to support the WM. Obviously this

support was central in our thesis, we discuss other principles below.

3.5.5 Automated processes

In addition to supporting WM, the other major principle suggested in psychological

literature to enhance problem-solving capabilities, is to automate some component of the

problem solving solution by increasing the role of automated processes [Ashcraft 99

p.412].  This should not suggest that these two principles are totally separate; rather that

automation can also be sought as a way to relieve scarce cognitive resources, notably the

WM.

In general, tasks and activities both at the macro and micro level, belong to two different

camps: a) automated and unconscious, and b) intentional, serial and conscious. Automated

processes are highly learned and utilized, such that they do not need a conscious effort to

perform and thus they are not competing for scarce cognitive resources such as memory

and attention. In fact, automacity is a continuous value, the more a process is practiced, the

more it gains automacity and the less it consumes resources.

Only those tasks that are conscious are relevant to optimization. Completely automated

tasks do not drain any significant resources from the scarce cognitive resources and thus

several automated tasks can be executed in parallel [Ashcraft 98 p. 412]. Problem solving

is considered an intentional conscious activity; however, it can utilize many automated
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processes (micro activities). For example, writing programming code is an intentional task

that utilizes other automated processes such as keyboard typing. Typing, in this sense,

does not compete with programming for the limited cognitive resources.

The utilisation of this principle in design involves looking at the particular micro activities

that result from a design choice and aim at increasing the automated ones and decreasing

the non-automated (intentional) ones as expected to be found with the potential users.

Lloyd [99] describes this process as mapping or fitting sub-tasks to prior knowledge and

skills in order to use the automated capacities.

3.5.5.1 Other encounters

Kotovsky et al [85] tested adult subjects on various versions of the Tower of Hanoi

problem; their results showed that a heavy WM load was a serious impediment to

successful problem solving. As a solution they suggested to automate the rules that govern

the moves in the problem, doing this frees WM resources to be used for higher subgoals.

Lloyd [99] uses the automation notion with regards to data format. Based on comparative

empirical studies, he notes that, “certain formats for presenting information are more

automated than others (horizontal and vertical lines are better than curved lines and usage

of space, and punctuation is better when at the end of line)”. He proceeds to claim,

“human perception is wired to detect certain symbols more readily than others (e.g. grid

structure as a good example)”.

In fact, Lloyd extends the role of automation when he suggests avoiding using automated

processes in different ways from those that have been learned. He calls this, “unlearning

highly learned processes”. For example, using the scroll bar in a UI, which is automated

for view scrolling, for a totally different purpose results in increased cognitive cost.
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3.5.6 Increasing recognition vs. recall

After supporting the WM and automating processes, a third important principle from the

problem solving literature to enhance performance is the one related to the difference

between the cognitive cost of recognition and recall.  The trade-off between recognition

and recall has a close proximity to the previous trade-off between automated and

deliberate processes.

Recognition is largely done at the level of the perceptual system; therefore it is less

cognitively demanding than recall, which involves memory retrieval. In fact, the cognitive

system is fundamentally parallel in its recognition phase and fundamentally serial in its

action phase [Card 83 p. 42]. Thus the cognitive system can be aware of many things but

can’t do more than one deliberate thing at a time.

A clear manifestation of this notion is in the successful use of menus in graphical user

interfaces. Menus are successful because invoking a command via a menu involves

recognition of available commands; without a menu, extra efforts are required to

remember a textual command (to recall it).

In our RE tool described in the next chapter, we extensively used this notion, although for

different reasons. For example, putting related software symbols (such as the routines of a

call tree) on screen instead of forcing the user to remember them is an example of how we

increased recognition on the expense of recall.

3.5.7 Facilitating meaningful encoding

One of the causes of slice comprehension problems that we identified in our work was

“low meaningful encoding”. Meaningful encoding, which is sometimes called recoding, is

a fundamental concept in cognitive psychology since it is the primary way by which the

WM alleviates its limitation [Ashcraft 98 p. 102]. Recoding is the general process by

which WM can overcome its capacity limitation by chunking separate items into groups.

The success of chunking depends on the ability to relate the new information with learned
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information (i.e. the familiarity of the new information) [Kintsch 98 p.330]. Thus,

meaningful encoding or recoding occurs when a learned high-order meaning can be used

to represent several items of information that need to be maintained. For example, the

three digits “613” can be chunked into one item of information if there is the meaning that

“613” is the area code of Ottawa.

As an example of the role of meaningful encoding in comprehension, Branford and

Johnson  [Kintsch 98 p.287] experimented with the role of titles in text comprehension.

They observe that text was more easily understood when given a title. The title allowed

subjects to use their knowledge and to disambiguate the otherwise obscure text. Without

the title, the text was more difficult to understand since subjects could not interpret the

situation as a familiar one; therefore, subjects could use their knowledge in the title

condition but not in the no-title condition. The title helped activate the proper context in

the long-term memory and thus facilitate the meaningful encoding.

3.5.8 Generalization for code delocalization and deep nesting

In our difficulties model, we identified the delocalization of code and the deeply nested

relations between delocalized pieces of code as causes for cognitive overloads. Related

pieces of code that are delocalized or too nested may exhaust the memory resources while

they are mentally brought together in order to be assimilated. This notion, as we show in

the next section, is fundamental to text comprehension.

The successive acquisition of different pieces of information in order to form one larger

meaningful structure is one of the basic activities in text comprehension [Thuring 95].

Many references in the literature address the necessity of forming a meaningful mental

representation out of multiple items of information that need to be kept in WM or

perceived together.

Turner [96] studied the input cycle during text comprehension – how many propositions to

read before pausing and encoding the input. He noted that as more propositions are input
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(read), the number of propositions in working memory increases. Decisions to suspend

input come from two sources: a) if all propositions form a “connected chain“ i.e. a

connected unit of information so that its gist can be extracted, or b) when the capacity of

the WM is approached or reached.

Turner argues that a reader has some sort of awareness of how occupied his or her WM is:

“Psychologically, this corresponds to the introspection that one’s working memory is

approaching capacity, and the increasing sense that input will soon have to be suspended.”

Thuring [95] applied the same concept on hyper-document comprehension. He describes

this meaningful unit formation as the basic process of comprehension in psycholinguistics

(called “given new strategy”). He writes “in attempting to understand the content of a new

node, readers try to extract its information and relate it to the content of other nodes they

have visited.”   He highlights the importance of being able to perceive all related

information at the same time by saying, “when readers can see the given information of

the previous nodes together with the new information of the current node they can detect

semantic relations between both sources more easily.” Note that this last reference also

supports the principle of increasing recognition versus recall, since “seeing” is a form of

recognition.

3.5.9 The gap effects

In describing what makes delocalized code particularly CL demanding, we mentioned

before that the nature of locating another piece of code (the new information), that

involves searching and evaluating search results, increases the degradation of the cognitive

resources. Search creates a gap between the new and given information, this gap is of time

and complexity.

Cognitive psychology confirms the conjecture of the time gap by indicating that

information can be only maintained in WM for about 20 seconds or rehearsal (a

demanding activity) has to be used [Ashcraft 98 p. 105].  Given that typically the search
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and evaluation cycle takes more than 20 seconds, rehearsal can be of significant effect as

we discussed when we generalized from the Baddely model of WM.

Cognitive psychology also confirms the conjecture of the complexity gap by indicating

that if certain information is stored in WM and another task is initiated, the stored

information becomes very vulnerable due to interference with the new information created

by the new task [Ashcraft 98 p. 105].

Thuring calls this complexity gap cognitive overhead and defines it as, “the additional

effort and concentration necessary to maintain several tasks or trails at one time” [Thuring

99]. He indicates that the primary way cognitive overhead affects cognitive performance is

by interference and competition for the limited capacity of cognitive resources between

different tasks. This is because each task needs to create and maintain its own memory

context.

In the context of hyper-document navigation, Thuring looked at reducing cognitive

overhead as a way to increase comprehension because, in his words: “every effort

additional to reading reduces the mental resources available for comprehension”. He was

primarily concerned with overhead caused by orientation, navigation, and user interface

adjustment.

3.5.10 Conclusion

The above generalizations are attempts to show that our use of psychology in this thesis is

not a specific isolated case but rather a part of a larger well-founded picture. The ideas

presented are opportunities to show how the domain of psychology can be of practical use

for computer science and software engineering.
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3.6 Generalization of the theoretical lessons

Finally, to prove the generalizability of our theoretical findings and conclusions, we apply

some of these findings to identify difficulties in the object-oriented paradigm based on

case studies of different authors.

3.6.1 Object oriented code

The system that we targeted in our case study, in addition to the other systems used in

DynaSee evaluation, were all written in structured (procedural) programming languages.

An interesting question to answer would be how much of our findings in the case study

apply to object oriented (OO) programming languages.

We base our analysis on a paper [Wilde 93] entitled “Maintaining Object-Oriented

Software” by Wilde et al. The authors, in addition to their own experience in OO

development, studied two large OO systems at Bellcore and interviewed their developers

to come up with a set of observations and conclusions about sources of difficulties in

maintaining OO code.

The authors begin by arguing “that a major goal of object orientation has always been to

make change easier.” In their opinion, this can be achieved because, “objects in the

program match objects in the real world more closely, so real world changes should be

easier to map to program modifications.”

This clearly makes sense within our theoretical framework about domains and domain

mapping. In our terminology, the equivalent of what they said is: since domain objects are

realised directly in corresponding source code, mapping between static and application

domain is easier because it is more direct and explicit.

They mention additional maintenance advantages of OO over procedural languages such

as encapsulation that localizes the effects of change, and inheritance that facilitates code
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reuse. On the other hand, they note “object oriented techniques may not make programs

easier to understand.”

In explaining why there are such additional sources of difficulties, they used many

arguments that fit within our own theoretical explanation for the difficulties in our work.

Some of these sources not only still apply in OO code but also are exacerbated by object

orientation, as we show in the following sections.

3.6.1.1 Task view

In trying to characterize how OO maintainers comprehend a program and what are their

information requirements, Wilde et al. present a task view that is largely compatible with

our model presented in this thesis.

Wilde et. al observe that comprehension is partial and that the maintainers try to

“understand program behaviour well enough to modify it safely”. Following control flow

in source code is found to be a central activity. In particular, tracing calling relationships

was identified to have a major role in comprehension, “typically, a maintainer first tries to

find where the fragment is called from to get clues about its purpose from its context of

use.”

They also observe that when a maintainer needs to understand a fragment of code, he must

locate other subroutines called by this fragment and examine them to see what they do and

to trace the flow of data values passed to them. Tracing control flow in OO code is slightly

different from procedural code since it involves tracing messages that tend to be more

deeply nested; also the calling relationships are complicated by polymorphism . This

tracing and study of code allows the maintainer gradually to gain a mental picture of the

fragment's purpose and design.

Therefore we can conclude that OO program understanding also involves slicing in a

similar form to procedural program understanding. In both cases, relevant code has to be

identified by following control flow and sometimes data flow.
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3.6.1.2 Delocalization and atomic unit

One of the major differences between OO and procedural code relates to the number and

size of routines in typical OO systems. The authors argue that the nature of object

orientation causes a, “profusion of relatively small program parts with many potentially

complex relationships”. The large number and small size of methods (routines) in typical

OO programs increases the number of relationships that a maintainer must understand.

As we discussed above, like in procedural programs, to understand the system behaviour

the programmer must trace chains of methods related to the investigated problem. In

performing this tracing, the problems identified in procedural languages are not only

present but are also exacerbated by the small size and large number of methods.

More methods mean that a functionally cohesive chunk of information (an atomic

meaningful unit) is made of more methods and their relations. This is similar to the deep

nesting problem in our difficulties model, except that instead of nesting of routines, there

is a  “lengthening of the chain” of methods and relationships to follow.

Also for this same reason, delocalization increases: “a central problem in program

understanding is the reconstruction of delocalized plan” and, “program plans are often

dispersed through several non contiguous program segments.” In fact, the increase in

delocalization is not only due to the size of routines (methods) but also due to many

inherent properties of OO languages.

In procedural languages designed using functional decomposition, program functions are

often localized in routines. In contrast, OO languages distribute program function across

several classes and the functionality is achieved through the interactions among these

classes. The authors note that, in addition to inheritance,  “Polymorphism and dynamic

binding create more opportunity for delocalization.”
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3.6.1.3 Uncertainty caused by inheritance, dynamic binding and polymorphism

The uncertainty when following control flow in procedural code is exacerbated in OO

code. In procedural code, uncertainty is mainly caused by the absence of dynamic

information such as the value of variables that decide where the control flow would

branch.

In OO code, in addition to these reasons, dynamic binding and polymorphism increase

uncertainty because when a message is sent to an object it may be impossible, from the

source code alone, to determine which of several methods will be executed and,

“maintainers reading the code must consider all the possibilities”.

Each time a message is sent, a programmer may have to examine several levels to

determine how it could be handled by the receiver. Wilde et al determined that in their

studied systems, “libraries frequently contain 10 or more methods that implement a given

message”. They conclude that while dynamic binding and polymorphism give flexibility

for the evolution of software, they also make the program harder to understand.

3.6.1.4 The dynamic domain

It seems that the reasons that we have used to argue about the need for explicit

representations for the dynamic domain in our targeted system are even stronger in the

case of OO systems. There are additional sources of uncertainty that cannot be resolved

until run time. There is also more delocalization as well as larger and more fragmented

atomic meaningful units.

More generally speaking, object-oriented source code tells us less about the program’s

behaviour – the behavioural information is more implicit. That is, the cognitive distance is

even larger since the procedural code parallels better (more explicitly) the function of a

program and its dynamic behaviour. In OO code, although there is better mapping from

application to static domain, the mapping from static to dynamic domain is less obvious

and the mental effort in reconstructing the dynamic domain seems to be larger than in

procedural code.
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The authors of the paper that we used for analyzing OO code [Wilde 93] conclude that,  “a

difficult problem in understanding OO code is detecting and deciphering these interacting

groups of classes. To do so, one must trace many possible sequences.” They suggest using

dynamic analysis tools to alleviate this comprehension problem; such tools might include

animation techniques that animate the message passing between objects and classes.

3.6.2 Conclusion

Most sources of difficulties identified in our thesis were also manifested and sometimes

exacerbated in a different paradigm of programming (objected oriented) than the paradigm

that we worked on (procedural). The same theoretical framework can be applied to OO

systems where many of the existing findings can be reused and others need to be refined.

A fruitful avenue for future research could be to revisit the findings from an OO point of

view. The suitability of the call tree (that we will be using for procedural code) for OO

code should also be investigated. Our conjecture is that the call tree would still be highly

useful, based on our limited experience where we generated the call tree for some code

written in Java. We also think that the call tree will be more useful if the classes to which

the methods belong are shown in addition to the method name.

In fact, we believe that many of techniques that we defined or used could be even further

generalizeable to all analysis of cognitive tasks in software in general. The

implicit/explicit balance notion helps characterizing situations in programming techniques

where cognitive overloads could occur. Take for example recursion, in which a few

explicit statements create a large invisible distance to visualize, making comprehension

harder. Another example is where a system is highly distributed and where process

interaction and message passing can be highly implicit in the code. Again, too little is said

in the code about what is invisibly taking place. Note that in our targeted LLS system,

processes and message traces were indispensable for SM although they were of very low

usability since they were text based.
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Chapter 4 Overview of DynaSee

In this chapter we present DynaSee, the reverse engineering (RE) tool that is designed to

satisfy the requirements presented in the case study in the previous chapter. The

satisfaction of these requirements implies having to solve some of the typical problems of

dynamic program analysis related to making usable presentations for large volumes of

dynamic data.

4.1 General functionality

DynaSee is a dynamic analysis tool aimed at facilitating software maintenance and

program comprehension by bridging the gaps among the static, dynamic and domain

views of software. It is a part of a larger program comprehension tool set named TkSee,

developed by the KBRE group at the University of Ottawa.

DynaSee accepts, as input, a trace file that contains the names and call-levels (nesting

level) for all the routines that are executed during a scenario.  After processing the trace,

DynaSee presents it as a call tree as shown in Figure 1. DynaSee also provides several

features to facilitate comprehension and visualisation of traces in addition to domain

mapping aids.
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Figure 5: A screen dump of DynaSee where the call tree is on the left and code
window on the right

4.2 Instrumentation

Traces can be generated in different ways; one of the most common is instrumentation. In

our approach, the source code is instrumented by parsing the code and automatically

inserting for each routine several print statements (probes) at the beginning of a routine

and at each of its possible return points. Instrumented code is then compiled. The resulting

application is run for several sessions or scenarios. When executed, each print statement

(probe) outputs the name of the host routine and an additional character that signals if the

probe is at the beginning or a return point of the routine. The probes are directed to a trace



102

file that will be used in building the call tree relation between the routines.  Each trace file

will represent a session and thus can be analysed separately.

4.3 The unit of instrumentation

Not all instrumentations are done at the routine level. The granularity of what is

instrumented can vary from high level, such as a module, to the lowest level or the basic

block.  The choice of routine as the unit of instrumentation is supported by the fact that

routines are the fundamental methods of abstraction in programming. A routine name is a

compact description of the important functionality that its contained statements perform.

This abstraction is created by the original software author who would typically have a

clear idea about his intention.

Unlike many abstractions found in software documentation such as design diagrams or

program comments, routine names are reliable and do not become obsolete easily as they

are a compiled part of the source code. Routines can also be arranged in a semantically

rich hierarchy of abstraction – the call tree – as we will show later.

Moreover, the choice of routines as the unit of tracing was also influenced by our task

view presented in the previous chapter where we noted that SEs explore code in order to

trace control flow and that they look at routine calls more than at other programming

constructs.

4.4  DynaSee features

In this section we describe each of the various feature of DynaSee. Figure 6 below shows

the various phases applied to a trace from program instrumentation described above to the

call tree in the DynaSee features. Features can either be for preparing the trace for

visualization (repetition removal, pattern detection, and routine ranking) or visualization

features that are applied on the call tree itself.
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Figure 6: Processing phases in DynaSee where a box corresponds to processing and a
circle to a data in a particular format

4.4.1 Repetition removal

To improve the comprehension of the typically very large traces, we want to reduce the

amount of data to be looked at during visualisation while preserving the information

content of the trace. The primary way to achieve this is by locating redundancies and

compressing them. An important source of redundancy is generated by the routines called

recursively or inside loops. As the trace records each routine’s execution, it will contain a

trace line for each routine inside a loop at each iteration of the loop.

The first processing phase of DynaSee is to apply an algorithm that detects any contiguous

repetitions of routine sequences created by calls to routines within loops or by recursion.

Repetitive sequences are replaced with a single sequence with the number of removed

duplicates concatenated to the routine name and enclosed by brackets (see Figure 8). For

example, ABBBBC (each letter corresponds to a routine name) will be replaced by

AB[4]C, and XABABABABY will be replaced with XA[4..][..B4]Y. Note that the bracket

opens at an entry and closes at another to differentiate from representing the compressed

form of  XAAAABBBBY that should show as XA[4]B[4]Y.
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4.4.2 Patterns

The order of routine calls in a program is not random; rather, several pieces of

functionality tend to be executed repetitively [Jerding 97]. Each of these pieces is realised

from the execution of a determined set of routines in a specific order. These sets may

occur in exactly the same order or as different variations. For example, the "Save

database" or “Initialise preference" functionality may be executed several times during a

program execution; each execution generates the same (or similar) trace of routines.

We mean by a pattern in a trace any sequence of routine entries that occurs more than once

non-contiguously (if two sequences are contiguous they would be simply considered as

redundancy as discussed in the last section). Note that in this context, the word “pattern” is

related to the general English definition of a pattern. In computer science, the word

pattern, as used in the phrase “design patterns” has a meaning different from what we are

discussing in this thesis.

We adapted an algorithm by Tseng [98] and used it to locate the maximal sequence of

entries in a trace that occurs more than once. When found, these sequences are tagged so

they would be visually distinguishable during trace visualisation.

4.4.2.1 Visualization

Patterns identified in the processing phase are visually identified within the trace viewer

by assigning a special “p” icon to each node that belongs to a pattern. Different colours are

assigned to different patterns to distinguish them. Also, a unique pattern number can be

concatenated to the text of each node of each occurrence of that pattern.

Patterns at the syntactic level add little information to facilitate comprehending the trace

besides indicating that a pattern sequence occurred more than once. However, it is this

indication that gives a hint to the SE that the sequence may be a good candidate for

abstraction. This is because if a sequence of routines recurs in several places, then it is

likely to correspond to a common functionality or to a high-level concept. When the SE

identifies this underlying concept during visualization, he can replace the pattern sequence
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with an entered meaningful description. This problem shows similarity to the problem of

identifying reusable components in source code using dominance tree analysis [Cimitile

95].

The entered description and the sequence that constitutes the pattern replaced by the

description are saved permanently in an external file. This saving allows one to create

pattern libraries that accumulate patterns, thus allowing the automatic substitution of

patterns by descriptions when a library is applied to a trace.

So far, only the part of patterns that belongs to one subtree can be abstracted (replaced by

a description) since this significantly simplifies the implementation. Very rarely we

encounter cases where more than one subtree needs to be abstracted as one pattern.

4.4.2.2 Related operations

DynaSee offers the following operations on patterns:

All pattern instances to descriptions: The user selects the root node of a subtree of a

pattern. All instances (occurrences) of the pattern subtree would be removed and replaced

by a user-entered description.

One instance to description: Only the selected pattern instance is replaced with a

description.

All descriptions to pattern: All occurrences of a selected description node will be

replaced with the pattern that corresponds to that description; the nodes of the patterns will

be restored exactly as they were prior to being replaced by a description.

One description to pattern: A selected description node will be replaced with the pattern

that corresponds to that description.

Global patterns to descriptions: Replace all patterns in the tree with their descriptions;

matches are based on the current pattern library file.

Global descriptions to patterns: Replace all descriptions in the tree with their

corresponding patterns; matches are based on the current pattern library file.
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Show this pattern only: After selecting a pattern root node, the entire hierarchy will be

collapsed enough to keep the instances of that pattern visible.

4.4.2.3 Pattern Variations

The notion of pattern variations evolved from experiences with patterns. Many patterns

having the same root nodes, with similar but not exactly the same subtrees (variations),

were frequently present in the traces we studied. We consider the set of similar subtrees as

a set of variations of the same pattern. In other words, if two subtrees are the same, they

are instances of the same pattern, but if two subtrees are very similar, they can be

considered as two variations of the pattern where each variation can have one or more

instances.

Since variations have slightly different syntax, when one variation is replaced as a pattern,

the other variation does not get replaced. The user has to manually replace each variation

and assign it almost the same description with other variations although most of variations

do have the same functionality with respect to the user level of interest. For example,

“browseHierarchyList” is a routine that refreshes the hierarchy window in TkSee.

“browseHierarchyList”, when called, executes a little differently depending on the content

of the hierarchy windows. However, asking the programmers who used it, they say that

they call it within their code they only care about refreshing the window; the routines

called by it have no importance for them.

To address such cases, we developed the pattern variations feature that automatically

replaces all variation subtrees, S1..Sn with description D1..Dn, and saves the sequences

and description in an external file. This is similar to batch patterns replacement by

descriptions except that the tool will automatically locate different variations and assign

different descriptions for each variation. The different descriptions are formed by the root

node name (e.g. the browseHierarchyList) or by a user-entered description concatenated

with a string and a serial number to indicate the variation number. Thus each variation will

be treated exactly as one pattern from now on.



107

The identification of what makes a good candidate for variation replacements depends on

the user’s discretion. Certain visual cues, however, are good indications that a pattern has

many variations. The visual display created by the fact that nodes belonging to a pattern

have special “P” icons and the fact that the colour of this icon changes between successive

patterns gives powerful hints about the existence of similarity with other subtrees. For

example, a subtree that is made mostly of P icons in changing colours with few non-P

icons would suggest that this subtree resemble another pattern with the non-P icons as the

differences.

DynaSee offers the following operations on pattern variations:

Replace variations: The variations of a subtree will be replaced by a description made out

of the name and a string indicating the variation number.

Pattern info: gives information about the number of instances and variations of a subtree.

A regular pattern would have one variation and many instances. While a pattern that has

variations may have one or many instance for each variation.

4.4.3 Routine ranking

A major assumption in the DynaSee design (the use of call tree level and the

expand/collapse features) is that, for comprehending traces, not all routines are equally

important and relevant to the SE’s needs.  There is a hierarchy of importance that loosely

mirrors the call hierarchy itself where the routines at high level of the call tree are closer to

application concepts and those at bottom are implementation concepts.

Observations from interacting with the SEs indicate that it is desirable to look first at a

small number of “important” routines that are typically present at high level of the call

hierarchy in order to comprehend the general functionality of the trace. In some cases, the

SEs need to examine the lower level details where the less important routine shows up.

The selective level display and collapse expand features of DynaSee’s call tree (see

section 4.4.4) are aimed to satisfy this requirement. However, the call tree was found to be



108

crowded with routines that have low importance or relevance even at high levels of the

call tree. In this feature, our goal is to allow filtering out the undesirable-to-see routines to

reduce the overhead in exploring the trace.

4.4.3.1 The notion of utilities

We conjecture that most of the undesirable-to-see routines have a "utility" role.  Typically,

a utility routine does not have an application-related functionality, rather it performs some

generic operation that is used by other routines in different areas of the program.

Removing such routines would not break the integrity of the trace because the routine

trace anyway is not a complete description of the execution, as it does not describe the

control flow inside the routines. As such, these routines may be considered as an extension

to the programming language and thus be considered as lines of code instead of as units of

abstraction. In fact, the line between what is a routine and what is a language feature is not

always crisp. A new version of a programming language could provide new functions that

match those which have been created by programmers in utility libraries.

Utility routines described above represent the least important routines and thus can be

removed first. At the other end of the importance spectrum there is the event handling

routines that are the first to execute as a response to an application event. They typically

appear at the top of the call tree, parenting large subtrees.

4.4.3.2 Weight computation

The routine ranking feature is designed to heuristically suggest what routines are needed to

see first and what are needed least or not needed at all. This is done by computing for each

node in the call tree an importance weight (W). W is computed as a function of proximity

to the typical attributes that characterize utility routines (thus scoring low on W) or to

event handling routines (thus scoring high on W). This weight W will be the means to

automatically allow the SE to accordingly control what is displayed.
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We compute for each routine in the trace a weight W between 10-100 where the least

important routines would have a value 100. So during trace visualization, the user can

choose a value and cause only the routines that have weight below that value to be

displayed. The W is thus an approximation of the order in which the user wants to see

routines.

Figure 7: The general algorithm to compute W

The W value is computed in two phases: first, the weight W is computed as a value

between 1 and 10 using a formula that combines the number of occurrence of a routine in

the trace and its fan-in – the number of different routines that call the current routine. This

formula is an attempt to capture the assumption that the increases in occurrence and fan-in

correspond to an increase in the likelihood that the routine is a utility. The relative weight

of each of these two factors can be adjusted using a coefficient if any additional

investigation showed the usefulness of doing so.

In the second phase, the trace is partitioned into 10 different groups according to distance

from the bottom. This captures the leaf layering of the tree: the user can apply ranking on

one leaf-layer at a time to successively removes leaf layers. The actual leaf nodes are

given W = 100, while their direct parents get a value of 90 and so on until the tenth layer is

reached (if ever) where all the rest of the nodes are given W= 10.

This incorporation of distance from bottom in the computation of W addresses the fact that

routines at the bottom of the call tree are less important as they tend to be generic in

nature. Also, those routines that are far from bottom are important because they caused a

large nesting of calls to occur. More importantly, the layering ensures that no node could

For each node in N the call tree
W(N) =  (FanIn / maxFanIn) *(occurrence / maxOccurence) *10
If distanceFromBottom(N) <  10

W(N) = 100 – distance(N)*10 + W(N)
Else

W(N) =10
              End if
End For
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have a lower W value than any of its children in case that removing the low W parents

may cause the removal of other higher value children.

The user can set a numeric value to represent the utility weight threshold (W) of the nodes

of the call tree that he wants to be visible. That is, when the threshold is equal to 100, all

nodes are visible, but when the threshold is decreased to, say, 87 all the nodes that have W

of more than 87 will be removed.

4.4.4 Call tree

Traces that track routine invocations are overwhelming for human comprehension if

presented as one long linear list of entries. The call tree, as displayed in the trace viewer of

DynaSee, organises the trace in a hierarchy that exhibits many features that facilitate the

browsing and comprehension of traces. The user can expand and contract particular sub-

hierarchies or restrict the entire display to a particular level of depth. We use an

expanding/collapsing tree control for the user interface similar to that of Windows

Explorer.

Expanding/collapsing capabilities are powerful features for dealing with large volumes of

data, especially when data are hierarchical in nature. Call relations form an aggregation

hierarchy of functionality, as the called routines perform part of their parents’

functionality. If the high-level routine is not relevant, none of its children would be, since

calling a routine is equivalent to sub-contracting some of the functionality that the parent

is supposed to do.  For example, a routine that initialises the GUI named Init_gui, may call

init_menu, init_midWindow and so on. If an SE is trying to locate a problem that is not

related to the GUI, he won’t need to look under Init_gui, whose subtree can remain

collapsed.

As we discussed in the routines ranking section, the call level in the tree also mirrors a

hierarchy of relevance. The high level routines (minimum nesting level) in the call tree

reflect more high-level and application domain concepts, while low level calls are more
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generic and implementation oriented.  The ability to look at only the high level routines

and drill down into the lower level only when necessary is particularly useful in

establishing the mapping with the application domain and greatly mirrors the actual code

exploration behaviour of SEs as our task view suggests.

Figure 8: DynaSee call tree, the P nodes belong to patterns while the N node do not.
Note the numbers in brackets: they represents compressed repetitions

4.4.4.1 Call tree operations

Additional operations for tree visualization are:
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Limit to this level:  Select a node and the entire tree will be collapsed, so only the level of

the selected node, and higher levels, are shown

Level 1,2,3,4,5: Collapse the tree to a particular level

Expand all: fully expand the tree

Find same subtree : Find a similar subtree to the subtree whose root is the selected node;

when found, the new root will be made visible and selected.

Find same node: Find a similar node to the selected one, when found; the new found node

will be made visible and selected.

Find string: Find a user-entered string within the text of the nodes of the call tree.

Next string: Repeat the previous string search (continue)

Save: Save the displayed tree as a file to be loaded later in the same layout as saved

4.4.4.2 Call tree visual pattern

Figure 9: Call tree collapsed to form a visual pattern

We experimented with the traces of several systems (see Chapter 5) and concluded that the

call trees are far from being random; rather they share common properties that can be

exploited to facilitate their comprehension. One of these properties is about the nature of

program execution that leads to visual patterns as shown in Figure 9. The figure shows a

collapsed call tree of a trace generated from the trace of the TkSee target system. Most

interactive program execution can be separated in three parts: the initialization routines,
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the event catching loop routines, and the event handling routines. In Figure 9, the

“browseDaemon”, as its name suggests, is the routine that catches users’ events. All

routines before it are for application initialization (note that most of them begin with

“init”).  Each of the routines after it is an event handling routine that corresponds to user

initiated events (clicks of buttons or selecting of menu items). Another observation about

these routines is that their names closely resemble the labels of the buttons or menu

options that initiated them. For example, from the menu “trace”, the option “change

importance level” has a corresponding event handling routine named

“TR_ChangeImportanceLevel”. This pattern, and also the fact that all traces have the same

initialization, event-catching loop, and exit code (exitTksee), make locating the trace

corresponding to an event easier.

4.4.5 Bookmarks

DynaSee supports a special trace entry called a bookmark. A bookmark plays the role of

trace annotation that can be inserted inside the trace to indicate an application-domain-

visible event. Examples of bookmarks include user-entered descriptions, user interface

messages, and logged events. These bookmarks act as cross-reference points, a way to tell

where an application event corresponds in the trace. For example, if an error message is

inserted as a bookmark in the trace, an SE will identify this node and thus identify what

part of the trace occurs before and leading to the error message and what comes after. Note

that the bookmark insertion mechanism inside the trace is application dependent; typically

it would be part of the instrumentation. SEs using the trace can also add bookmarks

manually as they attempt to understand it.

In addition to supporting the display of bookmarks as visually distinguished nodes,

DynaSee offers the “view bookmarks only” operation that collapses all nodes enough to

show all bookmarks nodes. This will offer a bookmark view of the call tree where the user

can easily locate a certain bookmark and expand the tree guided by the bookmarks.
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4.4.6 Code window and TkSee

To achieve traceability between the dynamic and static domain, DynaSee uses a code

window such that when the user double clicks on a routine node, the source code of that

routine will be displayed in this window (the right window in

Figure 1).

An additional feature of the code window is that the user can select a routine (node in the

call tree) and click on the “Show calling lines” menu option; the code window will show

the code of the parent (caller) of the selected routine. In the parent’s code, the line(s) that

may have caused the call to the selected routine will be highlighted.

Moreover, we are working on closely integrating DynaSee with the static analysis part of

TkSee. The integrated product of TkSee and DynaSee will allow the user to select a trace

routine then perform static queries such as examining the definition of variables, types and

routines. Eventually, the user will have full access to all the other features of TkSee, so he

or she can do such things as look at the source code for a routine, study the data it uses or

study its history of maintenance.

4.4.7 Summary of features

The features of DynaSee are attempts to increase the comprehension of the program by

making the trace play the role of a comprehensible representation of the dynamic domain

in a way that, in turn, facilitates domain mapping. The main functions to achieve this are

a) to perform compression of the trace (repetition removal, and pattern detection), b)

insertion of explicit links (bookmarks and pattern descriptions) and c) to permit selective

views of nodes (call tree and routine ranking).

The call tree with its subtree expand/collapse and selective call levels display permits the

user to avoid dealing with a high percentage of non-relevant nodes. Repetition removal

was indispensable for the navigation of the call tree as it reduces the size of traces by

many folds without reducing its information content.
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Patterns, in addition to their role in compressing the trace, facilitate the traceability

between the dynamic domain and the application domain. As pattern descriptions mostly

correspond to application concepts, assigning a description to a sequence of trace routines

corresponds to an explicit mapping from dynamic to application domain.

Bookmarks facilitate the traceability between the application domain and the dynamic one

by representing explicit cross-reference points. Also it reduces the need to search for a

starting point in the code.

Static
domain

Dynamic
domain

Application
domain

Search Patterns

BookmarkCode window/
TkSee

Figure 10: the support for domain mapping in DynaSee.

Figure 10 depicts a diagram of how the different features of DynaSee support all directions

of mapping between domains. Note that “Search” corresponds to allowing the user to

search for a routine name inside the call tree.

Routine ranking reduces significantly the size of the trace and enhances the selective view

by removing the noise caused by frequently occurring routines that have little value for

comprehension (the utility routines).

Many of these features intersect. Repetition removal is the most certain thing to do first as

it is the most necessary and does not interfere negatively with the other features.

Depending on the trace, the target system and the nature of the user’s task, different
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combinations of features may be used (Repetition removal would be the common

dominator).

Patterns are more desirable when the accumulated effect is evident. Assigning descriptions

to patterns is a manual task but the accumulation of saved patterns (a pattern here means

the description and the corresponding routine sequence) from many users over a period of

time would increase their coverage of traces and therefore make the trace a “functional

tree” composed of pattern descriptions.

Pattern variations are appropriate when different variations of the same pattern occur

frequently. Bookmarks are very useful when the trace gets very long; they partition the

trace into smaller search spaces. Routine ranking is particularly useful when there are

many “utility” routines that clutter the trace.
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Chapter 5 Evaluation

The first part of this chapter concerns the success of the solution techniques that we

developed to provide a usable dynamic domain representation. We independently

evaluated each feature by gathering trace files of different systems, and performing data

analysis on these files.

The second part of the chapter focuses on the tool as a whole and its success in satisfying

its high level goals and requirements. Among other things, we perform observational

experiments with the SEs to evaluate their performance and their perceptions.

5.1 DynaSee features evaluation

5.1.1 Trace test set

We evaluated DynaSee by examining two  test systems, and then for each system we

generated several trace files. We applied DynaSee features on these trace files to perform

data analysis in order to evaluate the features.

The first test system is TkSee, developed in the KBRE group to which the author belongs.

TkSee is a software exploration tool that is written in tcl/tk and consists of about 50 files

averaging about 50K lines of code. Three trace files have been generated of small, medium

and large size that were called smallLog, medLog, and largeLog respectively. The choice

of TkSee is for logistic reasons; its developers are always available so they can answer

crucial questions and give insights about the performance of DynaSee.

The second system is the large legacy system (LLS) that we targeted in the case study. For

this system we also collected three trace files representing different scenarios. We also

classified them as small, medium and large as the size of the trace has a significant effect

on most of the presented results. We call these traces MsmallLog, MmedLog, and

MlargeLog respectively.
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5.1.2 Repetition removal

The first feature to evaluate is the repetition removal feature that removes redundancy

created by loops and recursion. Table 1 below shows the results of applying repetition

removal on the trace files. The “Initial lines in trace” represents the original number of

entries in the trace file. “% of distinct lines repeated” represents the percentage of unique

routines that occurred repeated at least once and thus their repetitions were removed.

“% distinct routine compressed” is the percentage of distinct trace lines repeated where

compression applied. “Count after” is the size of the trace after the repetition removal

operation. “% overall compression” is the percentage of compression achieved.

We used the “% distinct lines compressed” criteria to evaluate effectiveness of this feature

because trying to use the percentage of overall compression may be misleading. A loop

that contains inside it a routine call may iterate depending on external parameter N that

can be the number of lines in an input file or other data sources. But since input files are

external to the program, such files may contain one or a million lines and thus one or

million entries in the trace may be compressed giving totally different percentages of

compression. In largeLog, for example, we noted that about half of the lines compressed

were dependent on external parameters such as the size of input file or the number of items

in a list.

Trace File Initial lines
 in trace

% distinct
 lines

compressed

% distinct
routines

compressed

Count after
compression

% overall
compression

SmallLog 3100 3 2 495 84

MedLog 9741 3 1 1229 87

LargeLog 12960 3 1 1712 87

 

MsmallLog 214 13 6 186 13

MmedLog 651 6 2 558 14

MlargeLog 2009 8 4 1723 14
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Table 1: Analysis of compression achievable by compressing repetitions (including
recursion)

As Table 1  shows, traces may be compressed significantly. Removing repetition is found

to be indispensable feature especially for large enough N (the external number controlling

the number of loop iteration). However, in rare cases, minor differences in repeated call

sequences (that is caused by loops) at low levels caused large amounts of redundancy to

remain. This happens when the routines called inside a loop differs from one iteration to

another.  Fortunately, another feature of DynaSee, pattern variations, alleviates this

problem significantly as discussed below.

The large differences in compression percentage between TkSee and the LLS test systems

are due to the nature of the processing tasks between each system and the size of the

samples taken. TkSee mainly operates iteratively on each node of a list, so repetitions are

frequent.  The LLS is a call processing system that does not have multiple items to iterate

on.  Moreover, while TkSee represents several complete events and their handling, the

LLS trace represents only a fraction of the handling of an event due to the complexity of

its events. We could not obtain a larger sample for the LLS due to practical limitations

such as the size of its buffer that holds the trace and because processing in it is distributed

among different processes.

However, it is important to note that the percentage of distinct lines and routines

compressed in the LLS is larger than for TkSee. This suggests that what made the

compression percentage that high in TkSee is a large external factor. The LLS did benefit

significantly from this feature as up to 13% of its lines were exposed to compression.

5.1.3 Patterns

Patterns are a way to suggest what sequences of routines can form cohesive functional

units so that they can be abstracted by a single description, thus achieving some

compression as the description node would replace many routine nodes.
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In order to evaluate the compression contribution of patterns, we manually identified the

patterns that had the properties that make them meaningful and cohesive to be abstracted

by an entered description, and then we replaced them by their appropriate descriptions.

Table 2 below shows the number of different patterns identified and replaced and the

degree of reduction in the number of nodes in the trace caused by the replacements.

“Initial lines in trace” is the size of the trace that is outputted from the repetition removal

operation. A pattern is the unique sequence that occurs more than once non-contiguously

in a trace. A pattern instance is an occurrence of a pattern.

Trace File
Initial lines

in trace

Total # of
patterns
found

Total # of
instances
replaced

Lines after
pattern

replacement

Average # of
instance per

pattern

Average
length of
patterns

%
compression

SmallLog 495 6 32 409 5 4.6 17

MedLog 1229 9 107 921 12 7.5 25

LargeLog 1712 17 319 1204 19 6.7 30

MsmallLog 186 2 13 174 7 3.5 6

MmedLog 558 5 13 496 3 7.5 11

MlargeLog 1723 20 80 1316 4 7.5 24

Table 2: Effects of detecting patterns and compressing traces based on these
patterns.

Note that the percent of compression in both systems increases with the size of the system.

This can be explained by the fact that the larger the trace, the more likely that more

instances of a pattern will be detected. Remember that a sequence has to occur more than

once in a trace to be considered to be a pattern.

5.1.3.1 The accumulation factor

Given that pattern replacement is a manual and exhaustive task, one of the promises of this

feature is that patterns will recur across traces so that when saving patterns and
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descriptions in a permanent pattern library, these libraries will cover a significant

percentage in any new trace.

Trace file
# of

accumulated
patterns

# of
accumulated

instances

% of
accumulated

patterns

% of
accumulated

instances

SmallLog 0 0

MedLog 6 92 67 86

LargeLog 8 133 47 42

 

MsmallLog 0 0

MmedLog 1 3 20 23

MlargeLog 4 24 20 30

Table 3: Accumulation factor of patterns where accumulation is the number of
pattern of instances identified in the previous smaller trace that matched in the
current one

Table 3 helps in analyzing this pattern accumulation factor.  As the table shows,

accumulation can be useful: a significant percentage of instances and patterns detected in a

trace are matched from a previous pattern library of a smaller trace. In Table 4, we

reversed the order of accumulation, instead of beginning with small traces, we began with

large traces to see of how many matched patterns in a small trace can be found in a larger

one.

Trace file

Pattern
library of:

# of patterns
matched

# instances
matched

SmallLog  largeLog 12 42

MedLog  largeLog 11 46

Table 4: Accumulation beginning with pattern library of the larger trace

In SmallLog 12 patterns were matched as compared to 6 patterns when no pattern library

was applied. Applying an accumulated pattern library may identify many patterns that
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were not detected in the trace itself without applying the library given that they have only

one instance (sequence of routines).

The accumulation applied on the LLS system did yield little or no accumulation factor.

That is in line with our explanation that since each trace belongs to a different functional

part of the system, commonality is minimal and little can be accumulated. Pattern library

accumulation is expected to be related to the size of the system since patterns have to

cover most of the areas of the system in order for accumulation to be significant.

The tables above should not give the impression that the only role of patterns is to

compress traces. Another aspect of the patterns, that is difficult to evaluate by data

analysis, is the degree of contribution of patterns in enhancing comprehension, not by

compression, but from incorporating more knowledge through assigning meaningful

descriptions to parts of the trace. Moreover, descriptions can also enhance comprehension

when thought of as explicit links between the dynamic and application domains. We will

evaluate these hypotheses later in the chapter.

5.1.4 Pattern Variations

In Table 5 below we analyze the effect of a replacement of one pattern’s variations for

each trace. The chosen pattern variation is chosen to be the worst-case pattern variation in

term of created redundancy and thus will be a best case for compression when replaced.

Note that “#of variations” is the number of different variations of the worst-case pattern

and “total # instances” is the number of instances across all variations for this pattern.

“Root node” is the name of the root of the subtree of the pattern. “% of overall

compression “is the percentage of reduction in the trace  from the replacements of  all

instances of the pattern variations.
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Trace file
Initial lines

in trace
# of

variations
Total # of
instances

Lines after
variation

replacement

%  overall
compression

Root Node

SmallLog 495 5 5 277 44 browseHierarchyList

MedLog 1229 10 22 498 59 browseHierarchyList

LargeLog 1712 14 25 897 48 browseHierarchyList

  

MsmallLog 186 6 8 176 5 translate_swid_to_ss4_sw

MmedLog 558 4 8 455 18 cp_msgmon_dispatch_with

MlargeLog 1723 8 21 1478 14 cp_msgmon_dispatch_with

Table 5: The effect of one pattern variation replacement in each system, the pattern
variation is chosen to be the most pervasive

Clearly from Table 5 the pattern variation whose root node is “browseHierarchyList” in

the TkSee traces was a remarkable worst-case scenario as it accounted for about 50% of

the displayed trace. It was surprising for us and for the SE who work on this system to

know how pervasive this subtree was.

Trace file Initial lines

in trace

# of pattern

variations

Total

instances

# of line

removed

% overall

compression

LargeLog 1712 25 42 983 57

 

MmedLog 558 11 24 156 28

MlargeLog 1723 13 21 340 20

Table 6: The effect of the 3 most pervasive variations

In Table 6, we further show how pervasive pattern variations are. For each of the traces

presented, we show the result of removing the three most pervasive (worst case) pattern

variations in that trace. Our analysis, however, did not show that it is always possible to
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find frequent pervasive pattern variations such that their replacements would cause a

significant compression rate. That is why we omitted some of the smaller traces in Table 6

since they did not have 3 pervasive pattern variations.

On the other hand, many pattern variations can be found to account for a high percentage

of the trace. In addition to the “browseHierarchyList” example presented above, for a trace

of the LLS (not presented in the tables) that has a count of 1316 entries, performing 9

pattern variations reduced its size to 751, a reduction of about 40%.

Obviously the pattern variations are a very effective compression technique beyond our

initial expectations. Replacing pattern variations should not incur any loss of information

since any replaced variation whose details may become needed can be simply restored

(reversing the replacement).

Our assumption about variations is that their syntactical differences are irrelevant to the

interest of typical SEs. The root routine is only called to perform a simple service

regardless of what routines (children) are called to perform this service. Our consultations

with the software experts on how much this assumption holds were encouraging: all

variations mentioned in our data analysis were considered by the SEs to be compatible

with our assumption.

The remarkable success of this feature may stand alone as a contribution in a separate

thread of research that relates to compressing dynamic data. Particularly, we note the

conceptual similarity between these variations and the concept of utility routines: they

both perform generic services making them both non critical to SM tasks. However, given

the theme of this thesis we leave further development and capitalizing on this technique to

future research.
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5.1.5 Routine ranking

In order to evaluate the routine ranking feature and its ability to elide utility routines, we

began by decreasing the threshold level of importance (W) by one point at a time and in

the same time tracking the routines that are removed after the call tree was refreshed to

reflect the new threshold.

Table 7 shows the routines removed at each new threshold value as applied on largeLog.

Note that for largeLog, removing only 5 routines reduced the trace by 31%. More

importantly, the experts on the subject system ranked all of these 5 routines as low level

and generic; their removal did not reduce the information value of the trace but

significantly eased the browsing of the call tree.

Routines removed Threshold
value

# of nodes
removed

% of nodes
removed

updateHierarchyStatus 98 165 10

startTask 95 107 6

UpdateHierarchyStatusRight,

getInfoFromData
91 186 11

getTypeFromData 90 82 5

 Total 531 31

 Average 135 8

Table 7: the effect on routine removal after ranking applied on largeLog

In Table 7, however, we only reduced the threshold to 90. Reducing it below 90 means

that all leaf nodes will be removed regardless of their importance ranking. When we did

that, a large number of routines were removed, not all of them were ranked as utilities by

the experts.
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Routines removed Threshold
value

# of nodes
removed

% of nodes
removed

Get_ptr_ss4_record 96 115 7
translate_swid_to_ss4_sw,
check_cos

93 93 5

get_ptr_brdcst_record 91 37 2

dpnss_party,
check_call_setup_state,
user_class_of_service,
get_ptr_acd2_ss4_to_agen

90 63 4

 Total 308 18
 Average 77 4

Table 8: the effect on routine removal after ranking applied on MlargeLog

Table 8 shows the effect of the gradual decrease of the threshold on a LLS trace file. Table

9 gives the total compression achieved when the W threshold is set to 90 on all traces.

Trace File Initial lines
in trace

Count with
threshold 90

Number of
distinct routine

removed

Compression %

SmallLog 495 144 6 29

MedLog 1229 397 6 32

LargeLog 1712 531 5 31

 

MsmallLog 186 40 5 22

MmedLog 558 80 5 14

MlargeLog 1723 301 8 17

Table 9: the effect on routine ranking with threshold equal 90 on all the trace files
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Removing routines beyond the 90 threshold was found however to be very useful in

showing a skeleton of the entire trace. That is, it clearly showed the major branches of

execution/functionality as diagonal lines (see Figure 11) giving a good quick overview of

execution events. The diagonal shape of the branch of the call tree can be explained by the

fact that when leaves were removed, only the routines falling in a deeply nested series of

calls remained. This coincides with our assumptions that important routine are the root of

large subtrees which means that they will be the last to be removed in a removal order

based mainly on distance from the bottom.

Figure 11: the diagonal shape of the call tree branches after W is set to 71
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5.1.6 Combining features

So far in this chapter, we evaluated each feature independently (except for repetition

removal that was applied before all other features). The combination of features and the

order in which they are combined should affect each feature’s results in addition to the

overall results (e.g. the total compression percentage). For example, pattern variations will

remove many of the utility routines thus reducing the achievements of routine ranking. On

the other hand, removing utility routines will improve pattern matching as some of the

removed routines may have caused some subtrees not to match.

Table 10 shows one possible permutation of applying features in succession from left to

right. Each column shows the remaining number of lines after applying the feature

mentioned in the column heading.

Trace File Initial
Count

Repetition
Removal

Patterns
replacement

Routine
ranking at 90

Pattern
variation 1

Pattern
variation 3

Count of D
node

TkSee largeLog 12960 1712 1204 903 576 464 142

MlargeLog 2009 1723 1316 1033 937 734 73

Table 10: count after applying the operation in succession

“Pattern variation 1” is the replacement of one pattern variations per trace file while

“Pattern variation 3” is the replacement of three pattern variations. The “count of D nodes”

is the number of nodes that are either pattern description nodes that are entered by the

users during patterns replacement, or generated descriptions by the pattern variations

replacement feature.
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Trace File Initial
Count

Repetition
Removal

Pattern Routine
ranking

at 90

Pattern
variation 1

Pattern
variation 3

Combined
reduction

% of D
Node

LargeLog 12960 87 30 25 36 19 98.9 31

MlargeLog 2009 14 24 22 9 22 63.5 10

Table 11: Reduction percentage of applying the operation in succession

Note that 10% of the overall nodes are D nodes that make the call tree heavily populated

with nodes that describe known high-level concepts and thus make the tree close to a

functional hierarchy [Chen 95].

Table 11 shows a counterpart for Table 10. Figure 12 shows the same data in graphic

form, while Figure 13 ignores the repetition removal to better depict the contribution of

the other features.

5.1.7 Conclusion

The concern of this first part of the evaluation has been to determine the success of the

solution techniques that we provided; in other words, have we been able to develop a

usable dynamic domain representation. The goal is to prove the feasibility of reducing

traces corresponding to realistic situations into a manageable form that can serve SM

purposes. Obviously the various features reduced the size dramatically as Table 11 shows.

In addition, a significant percentage of the remaining nodes were high-level abstractions

(D nodes). This figure of 98% shows that, even though it may be exceptional, such

dramatic cases do exist. When these are encountered, without our techniques, SEs would

develop a very bad impression about the usability of traces or call trees. In our opinion,

what is negative for a user is not the size of the trace but its degree of redundancy.

In general, the depth of the data analysis and its statistical validity is not a concern for us

as we are not presenting our features as “the solution” but rather as a proof of what can be

done for call trees and how successful it can be. In fact, as we mentioned in several places,

the possibility for improvements and for the development of additional techniques were
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abundant, but the focus of this work is not to develop techniques, we only want the

techniques to play a role in the overall approach of the thesis.

5.2 Revisiting requirements

The second part of the chapter focuses on the tool as a whole with regard to its intended

goals and requirements. In this section, we begin by revisiting the requirements that we

generated at the end of the case study to verify how much we were successful in realizing

them. Each requirement is expressed in terms of a question that we try to answer.

5.2.1 Does DynaSee create new difficulties or overhead for interpreting the dynamic

view?

To answer this question, a good approach is to compare DynaSee against tools for

exploring code statically, since DynaSee is supposed to replace the need to follow the call

tree (control flow in general) in the static code.  The first source of additional overhead is

the redundancies created by the dynamic program interactions. Most of DynaSee features

attempt to reduce this overhead to an acceptable degree (the call tree becomes useable).

The data analysis and experiments that we provided in the previous section show that, in

DynaSee, traces are compressed significantly, so that most redundancy is removed.

The second source of additional overhead would be that a static explorer would not follow

the whole depth of the call relations and only investigate the next level of call when

needed. The expand/collapse features ensure that no additional level has to be seen if not

wanted. The routine ranking goes a further step to minimize the number routines that have

to be seen within an expanded subtree by removing the undesired utility routines.

In other words, DynaSee brings exploration close to the state where the SE does not need

to look at any more software routines while exploring code using DynaSee than while

performing static code exploration. Even if it is not very close, nevertheless, the gain from

a dynamic view of code compared to having only a static view far outweighs the

additional overhead.
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5.2.2 Does DynaSee Reduce the CL in search?

As discussed earlier, search has been identified as cognitively taxing for the

comprehension of code; therefore reducing the need for search or increasing its efficiency

was a requirement. Comprehending a slice using the call tree dramatically reduces the

need to search for the “next delocalized pieces” of code in the control flow as there is no

need to get such next pieces given that in the tree, code fragments of the slice are made

contiguous and are no more than a mouse click away.

Even when the SE is looking for other pieces that do not immediately follow in the flow

sequence, he or she need not search the whole system but only need consider the trace that

accurately represents a slice as it was really executed. Exploring and scanning the call tree

and its directly related code becomes feasible, whereas if one needs to deal with the whole

system, only searching is feasible.

Moreover, the search for a starting point in code is also alleviated by the call tree as the

tree corresponds to the control flow, something that a start point is trying to catch.

Moreover, the bookmark feature reduces the need for a starting point as bookmarks

represent points that are very close to the most relevant code.

5.2.3 Does DynaSee reduce the negative CL effects caused by the issues presented in

the difficulties?

As for delocalization, as argued in the previous section, the main delocalization in slice

comprehension and the gap caused by search are gone all together when using a call tree.

Deep nesting is significantly alleviated. As we mentioned, the problem of the nesting at its

origin is that the atomic meaningful unit that needs to be formed from the nested relations

is often larger than WM capacity. DynaSee reduces this problem by reducing the need for

memory resources in general. More specifically, making routine names (the components
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of the atomic unit) visually available means that they no longer need to be retained in the

WM but instead are available thru the perceptual system.

Uncertainty about the actual flow of execution within code is removed because the call

tree only displays the actual execution path thus giving total certainty.

In DynaSee, meaningful encoding is facilitated in particular by using pattern descriptions.

A pattern description is derived from existing knowledge, so by assigning the description

to groups of routines, the relation between the new and the existing information is made

explicit.

5.2.4 Does DynaSee support domain traceability?

Under our theoretical framework, the gist of comprehension is a mapping between

domains. The call tree is by itself a mapping facilitator as a representation of the dynamic

domain. Moreover,  the full inter-domain mapping was directly supported by several

DynaSee features as depicted in Figure 10 in chapter 4.

5.3 Holistic evaluation

As a continuation of the evaluation of DynaSee with regards to its high level goals, we try

in this section to evaluate the usefulness of the tool as a whole. In the holistic evaluation

approach, the system is tested without decomposing it into component parts. In this

section, we are concerned with the tool as a whole – how it scores on its main high-level

objectives regarding facilitating slicing and slice comprehension.

As a relaxed form of observational experiments for evaluating the high level objectives,

we created artificial tasks that simulate realistic requirements during SM based on our task

view of SM. We asked a set of SEs to use DynaSee to perform the tasks. The pseudo-

experiments are observational, since controlled experiments are hard to perform in this

domain [Storey 97]. Results will also be observational and analytic, focusing on
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perception, and quantitative where possible. Later in this section we discuss the problem

associated with methods of evaluation and the nature of the results.

5.3.1 Task 1:

The goal of Task 1 is to test the comprehension of a trace: is the trace represented as a

DynaSee call tree comprehensible enough to be a description of the dynamic domain that

can be interpreted by humans? Specifically, we want to test if the trace can allow for the

synchronization between trace routines (dynamic domain) and program behaviour

(application domain).

5.3.1.1 Setting

Two to three traces (call trees) were presented to the participants (five SEs who have

worked on the target system to which the traces belong). The participants did not know the

scenarios and events that created the traces but were familiar with the application in

general, and other high level concepts.

The participants were given a short tutorial and demonstration about DynaSee and its

features. Then they were asked to tell what events are occurring in the application domain

(events that are visible to the user) from browsing the trace using DynaSee; they were

allowed to use all of its features. Examples of application domain events include, events

triggered by the user (e.g. button presses), the display of output to the user.

5.3.1.2 Results

The participants were able to identify from the trace on average of 4 out of the 5

application level events. This was accomplished mostly without looking at code or

expanding beyond the tree’s higher levels (level 2-4). While browsing, participants

frequently used the tree navigation features such as limiting to a call level or collapsing

and expanding the tree. They did not, however, volunteer to use the routine ranking but

they welcomed it when it was suggested to them.
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5.3.1.3 Observations

Routine names at the top 4 levels of the tree were informative enough; i.e. their names

match or connect well to domain concepts. The limited cases where routine names did not

connect, and the participants needed to drill down to lower call levels or to look at code

statements to find the connection (mapping) included situations where:

1. Routines implemented general functionality and thus had vague names.

2. There were non-common areas of the system where the code was unfamiliar.

3. Program behaviour was unexpected by the participants or contradicted their

hypothesis of how it should be.

4. Program behaviour became particularly relevant to the problem investigated and

thus lower level details became more relevant.

5.3.2 Task 2:

The goal of Task 2 is to test the ability of the call tree in helping the SE to locate the

relevant code (the slice) for a certain functionality. In other words, can the call tree

represent a sufficient slice for maintenance tasks? The role that the call tree should play

and that we are testing is to facilitate mapping from the application domain to the dynamic

domain and consequently the static domain. This is where the problem of finding a starting

point occurs.

5.3.2.1 Setting

Two to three traces  (call trees) were presented to the participants. The general

functionality that the call tree represents was described to them. They were asked to find in

the call tree the sequence of routines where a certain piece of functionality (program

event) is implemented. They were asked questions such as: identify the call tree nodes

where the syntax of the input file is checked, pattern painting occurs, or the ID of the

caller is forwarded etc.
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5.3.2.2 Results

The success in locating the desired functionality depended on its conceptual level. An

implementation level functionality was harder to find than a higher-level functionality that

is more related to the application concepts.

Higher-level functionality identification had similar success to what is reported for Task 1.

There were also the same situations in which users needed to drill down (look beyond

level 4 of the call tree). The only differences compared to Task 1 were that exploration

was less systematic and more opportunistic.

Implementation level concepts were less easy to find since as users began looking at more

specific details, there was more need to look at lower level routines, at routine comments

and even at code comments and code lines. At this level of detail, less matching occurs

between routine name and functionality concepts (it becomes more difficult to guess that a

routine implements a functionality from its naming only).

5.3.2.3 Observation

An intriguing observation is that some medium level users (in terms of application

expertise) still wanted to search the call tree for routine names despite the fact that the call

tree represents a small space to explore. Maybe they are wired to search given their

habitual use of this technique. But in some cases search inside the call tree was very

efficient particularly when they know, from previous experience, the exact name of a

routine that performs a piece of functionality. This was not alarming for us given that we

are not targeting experts who usually find search to be a convenient and efficient

mechanism given their accumulated knowledge. Those participants used search intuitively

whenever they expected that exploring was too lengthy and search might yield faster

results. But for a novice, search would be of less help, given that he faces a shortage of

cues on which to base the search.

Finally, it seems that the success in the assigned tasks depends predominately on the

quality of routine formation and naming. The more a routine name accurately describes its
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functionality faithfully and unequivocally, the more the call tree satisfies its objectives as a

means to describe the relevant code and the dynamic domain. Routines at their origin are

means to abstract the functionality of their statements in order to have functional cohesive

decomposition of the program.  If this role is maintained and respected, then the call tree

would be an excellent and reliable hierarchy of abstraction to manage the complexity of

programs.

5.4 Semi-holistic evaluation

In this section, we want to evaluate how the utilization of certain features of DynaSee

would improve its overall usefulness. We repeated Task 2 in two different variations that

we will call Task 3 and Task 4 where in each variation we explicitly asked the participants

to utilize some of DynaSee’s specific features, and then observed the contribution of each

feature.

5.4.1 Task 3

The goal of Task 3 is to evaluate the role and usefulness of bookmarks in reducing some

of the inefficiency of Task 2. That is, given that bookmarks are designed to be aids for

mapping from application domain to dynamic domain, we want to test how much they can

help in locating the call tree nodes that correspond to a piece of functionality. Note that

this experiment was only executed on the TkSee system, as it wasn’t possible to

instrument the LLS.

5.4.1.1 Setting

As we mentioned in Chapter 4, bookmarks are produced by the same mechanism

(instrumentation) that produces the trace at the application level. DynaSee only reads

traces and does not produce traces or bookmarks. In order to generate bookmarks inside

the trace, we modified the TkSee subject system so that it responds to pressing a hot key

(F2) by opening a dialog box where the user can enter a description. This description will

be inserted inside the trace as a bookmark entry (with a special padding to distinguish it
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from routine trace entries). When the trace is displayed as a call tree, the bookmark nodes

will have their special icons that are easily distinguishable from other routine nodes.

We asked the participants explicitly to use the bookmarks after we had demonstrated how

it works. The participants inserted bookmarks before each interactive application event

(when the application is waiting for a user input) that preceded the functionality in

question (functionality that was hard to locate in Task 2). We then asked the participants to

locate the events (functionality) that they failed to locate in Task 2.

5.4.1.2 Results

Using bookmarks with Task 2 greatly facilitate locating the code for an event. The user

can collapse the tree to show only the bookmarks, and then locate a bookmark that he

inserted and only investigate the few subtrees after that bookmarks.

5.4.1.3 Observation

Bookmarks are powerful in mapping between application and dynamic domain but only to

a certain level of granularity. In our case, bookmarks can only cross-reference between

interactive events. That is, a bookmark can be inserted only when the system is a waiting

to accept a new event and not while it is processing the event handling. This granularity is

acceptable in our target system (TkSee) but may not be in other larger and less interactive

systems. Yet, other mechanisms for inserting bookmarks can be used by more selective

instrumentation for the points in code that have application-domain significance such as on

errors or exception handling points. This way, a bookmark can be inserted in the trace to

identify the relative position of such an event within the trace.

5.4.2 Task 4

The goal of Task 4 is to evaluate the usefulness of patterns in increasing the

comprehension of traces. We want to evaluate if patterns reduce the effort required to

explore the call tree and consequently facilitate slice comprehension.
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5.4.2.1 Setting

With the aid of developers for each system we used, we began by replacing all meaningful

patterns by descriptions entered by the developers. After replacing several patterns with

descriptions, we repeated Task 1 focusing on the areas that caused difficulties of

comprehension.

5.4.2.2 Results

With pattern descriptions, user performance improved in many occasions. Many generic

routines that confused the participants during Task 1 were replaced with more meaningful

descriptions that describe the exact functionality of the specific occurrence of that routine

within its corresponding subtree. Note that a generic routine can be the root of different

subtrees and thus perform different functionality.

5.4.2.3 Observations

Contrary to our initial assumptions, pattern descriptions at lower level of the call tree were

more valuable than those at higher level for two reasons. First, as we mentioned before,

there is less match between routine names and functionality concepts at these levels since

they tend to be more generic, and therefore it is harder to identify their exact role. A user

embedded description will facilitate this identification. Second, lower level patterns occur

more frequently; one pattern replacement will replace many instances. This means more

compression and more cases were the benefit of the patterns would occur.

5.4.3 Conclusion

The value of the above observational experiments does not come from “confirming” or

“proving the success” of DynaSee since such confirmation needs a more formal setting.

The goal is rather to “discover” what is working and what is not, consequently what

should be the thing that should be focused on in future iterations, given the learned

lessons. In summary, the experimental results were consistent with our assumptions about

the usefulness of the tool; however, they stimulated many opportunities for the next

version of DynaSee.
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5.5 User perception

One of the fundamental assumptions in this thesis is that, excluding environmental factors,

what matters for adoption and success in general is the user’s perception about the

usefulness of the tool. An important question to answer would then be: is the user’s

perception about the tool’s usefulness positive enough so that he or she would be likely to

adopt it?

Given our choice of the context to study, we had the unique opportunity to have our users

to be at the same time software designers. In fact, some of them may be more experienced

than us in software development, making debriefing a viable method to capture their

perceptions. In addition to debriefing about their perception of usefulness, we also asked

the SEs about their impressions, suggestions and what they liked or disliked about

DynaSee.

5.5.1 Debriefing results

Some of the SE’s that we talked to were well aware of the issues of tool adoption. Their

recommendations gave us useful evaluation knowledge.

An entry-level user (4 weeks in the company) said that DynaSee is exactly what he wants

to comprehend the system that he is trying to maintain. He said that he asked his manager

for any diagram that shows the control flow of the system. For others, DynaSee was

quickly considered as a useful “debugger” that can give a panoramic view of the execution

sequence. Actual debuggers (like gdb) are line based and are very time consuming and

disorienting as they cause frequent jumps among delocalized parts of the code. One user

said that it will be of great help to him if we can make DynaSee to allow the online

construction of the call tree by stepping through routines and then allowing the user to

branch to line-based debugging when he gets closer to the problem. He noted that actually

he does exactly that with a line debugger as he steps over routines (skips the step-wise

execution of routine statements) at higher call levels and drill down to lower-level

routines, then to statements. His comments were a striking observation as they imply that
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programmers, including the author, do construct implicit call trees much more frequently

and in more instances than we originally thought. This will be clear when we realize that

stepwise debugging is actually equivalent to an exploration of a call tree where a “step

into” is equivalent to expanding a node and “step over” is the collapsing of a branch. Of

course the difference is that in stepping one can only see the current node and only move

forward, which explain why the word “panoramic” has been used by a software engineer

to describe DynaSee.

Other comments suggested that DynaSee opens a window on an otherwise invisible

knowledge domain. The SEs reported signs of enthusiasm and surprise at how the call tree

actually looked like, even for the parts of code that they wrote themselves.

5.5.2 Concerns

Users, however, had concerns that DynaSee is only part of their requirements, especially

when it comes to exposing (making explicit) the dynamic domain. The telecommunication

company users wanted, at the high level, to have explicit presentation of process level

interaction. At a low level, they asked for the ability to follow control flow at the level of

individual statements, as well as the ability to track the values of variables.

The telecommunication company users were generally more aware of the importance of

the trace. In fact, an internal company study about the role of traces that surveyed the

maintainers indicated that most of the surveyed users perceived traces in their raw format

to be useful in principle but practically unusable due to their sheer size. Notably, many of

the users suggested restricting the trace to the fourth call level (the trace can often go up to

13 call level in the LLS) as a way to reduce its size.

5.5.3 Discussion about the methods of evaluation

Designing a holistic evaluation in the form presented above was not a straightforward

decision to take. We were aiming at producing a more empirical and quantitatively based

evaluation, but we ended up with an analytic one that we found to be more suitable. We
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found that it is important to report on this issue, as it is relevant to a major theme about the

proper balancing between empirical certainty and problem solving achievement.

In the first chapter we described our approach as “result oriented”, seeking practical

achievement rather than scientific certainty. We want to close the loop from the problem

to the solution in a realistic setting. This requirement implied the need to have an

“economy” of effort: given the limited resources of time and energy of the researcher,

what is the best allocation of research effort with respect to the practical goals. The

rationale is not to spend too much on one particular task so the research would not “sink”

in the task sub-problem and resources are consumed enough to minimize the ability to

eventually reach a practical solution. Also needed is an economy of complexity: humans

are limited in their ability to digest complexity and amount of information as proven in

decision science [Umanath 94]. The goal of this economy is not to complicate the research

so that the complexity will mask the simple conceptual gains in solving big problems that

often float on the surface.

The main vehicle to manage the complexity and effort is to reduce the formalism and to

manage the abstraction to the level that serves the practical goals and avoids any costly

details that do not constitute an optimal investment in the particular problem solving

effort.

What makes holistic evaluation costly in efforts and complexity is that it tries to mostly

capture human factors as opposed to the data analysis that dealt with trace statistics only.

In the holistic evaluation we want to know how the humans (users) perceive the usefulness

of the tool, what they liked or dislike (of features) and how they are willing to behave

(adopt the tool or not).  Dealing with human factors in quantitative manner is of course

challenging. In the next section we discuss some of the encountered challenges:

5.5.3.1 Questionnaire

In one attempt we tried to develop a questionnaire for participants to capture the factors

that would affect their likelihood of adoption such as the perceived usefulness and ease of
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use. As an example of the complications of human factors we noted that politeness or the

tendency to avoid upsetting the author made the answers for some of the questionnaire

questions to be too positive to be reliable. Another example of the difficulties is when

answering the question “would you use DynaSee in your SM work practice (adopt it)?”;

the answer was almost always “it depends”. The “it depends” covers a large number of

interdependent conditions, “if it is totally integrated in my tool set and I get enough

situations that DynaSee helps me enough to overcome the additional overhead of

collecting traces, learning the tool, then running it etc…”. The major shortcoming of

questionnaires seems to be that no discrete set of questions could capture all the factors

that affect a required answer.

More valuable analytic results were obtained from continuing a free-form conversation on

this question with the participants. From the conversations, we understood that adoption

would take place if there exists a perception that the benefit of the tool will outweigh its

cost.  More importantly, the conversation helped identify what are the causes that are

increasing the cost of using the tool. Such results have obviously more influence on the

design of the tool or any further tool than any statistical results.  A direct support for our

conclusion comes from Carroll [89], one of the father of ecological approach, who

criticized human factors psychology that analyses real tasks because it “resolved this

concern into simple and isolated quantitative performance measures (task time and error

rate). Such analysis rarely provide any articulate direction in the design of artefacts”.

5.5.3.2 Task comparison

Another possibility that we tried and found to be more expensive than economically

feasible is the direct comparison between doing tasks with the tool and without it. This

was expensive for the following reasons:

1. There is a task/artefact relationship [Carroll 89]: This means that the artefact used

(the new tool) may dramatically change the nature of the task in a way that makes the

comparison very difficult or invalid (the new tool changes the ecosystem into a new one),
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only the goal of the task remains the same. But when the common goal is as high level as

program or slice comprehension the comparison becomes even more difficult.

For task 1 (tell what events are occurring in the application domain from looking at the

call tree) there is no directly comparable activity. DynaSee here is not enhancing an

existing activity, but actually adding a new activity that was unaffordable, although very

important for SM in general. The goal, which is to comprehend a slice, is done totally

differently without DynaSee. If we really want to compare, the closest we can get to such a

task without DynaSee is to look at the trace in its raw format or to use line based

debuggers; these are out of the question for large enough execution (on large systems).  In

the targeted LLS, the trace generation feature was rarely used even though it was available

with the system since its inception, for the same reason as noted above.

2. It is hard to measure familiarity: User familiarity with the code is crucial in showing

the utility of DynaSee over existing methods. For example, as familiarity increases, so

does the user’s ability to find keywords (cues) that get him what he wants through

keyword search. Measuring or predicting familiarity is hard because familiarity is different

for each user for different parts of code (especially in LLSs). Even if we can do that, we

still cannot do the comparison because when a user performs the first task, his familiarity

improves for the code, and repeating the same task on the same code would make the

comparison invalid.

Of course, the science of empiricism and statistics may provide solutions to these

situations; yet, these solutions require more complex settings, more sophisticated

techniques and many more participants – all making the effort and complexity beyond our

capability (we only had access to about 10 software engineers working on the LLS for

example, and we were only occasionally able to get them to help us). Our approach in this

thesis was to sample a limited number of SEs in a limited context and to work deeply with

them; involving a statistically significant number of users would be contradicting to our

assumption about how big problems are identified and solved.



145

5.5.4 Conclusion

In general, the use of statistics to capture human factors and behaviour, such as in

structured equation models (SEM), is still very controversial and highly challenged [Chinn

95]. We think that we can bring more practical value by staying at the conceptual level

especially since the current practice and understanding of the current “tool development”

community still ignores many of the fundamental and trivial principles of good

development practice that can be as simple as the need to investigate and characterize user

problems in their realistic setting [Shneiderman 88].

In this type of research, quantitative methods are not always required, and sometimes

should be avoided since they may not constitute the optimal investment of effort and

complexity when the focus is not pure science but rather problem solving, as in our

approach. In fact, as we will discuss in the last chapter, it is not that clear what is more

scientific or what is more valuable a scientific contribution as the definition of what is

science is continuously evolving. The recent trends have been of moving beyond

empiricism toward conceptual and problem solving issues [Laudan 96].
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Chapter 6 Contribution, Conclusion and Future Work

6.1 Executive summary

SM is costly mainly because of program comprehension. Reverse engineering (RE) tools

are supposed to help but have not experienced a satisfying level of success, mainly

because of their low adoption rate. We think that this is because tool designers do not

understand real users’ (SEs’) tasks and problems. Consequently, users do not perceive

usefulness from the tool since without identification of real problems, no useful solutions

can be provided. To understand their tasks, we have to use proactive methods of

conversation, observation, and introspection. To understand difficulties we have to think in

terms of cognitive load (CL) and overloads. We argue that the problems of SM mainly

correspond to cognitive overloads. Using some cognitive psychology knowledge, the

overloads can be analyzed and the elementary cognitive sources of difficulties can be

identified. The overloads can then be targeted by requirements for RE tools that should

alleviate them.

We applied this approach on a case study. We sampled a context made from a set of non-

expert engineers doing maintenance on an LLS. Our proactive methods showed that the

major difficulties are related to slicing – the identification of the code relevant to the

maintenance request. The analysis of the cognitive sources of difficulties showed that the

use of search in this process with the nature and size of the system incurs WM overload

due to a) delocalization of code, b) the deep nesting of call relations causing the

meaningful atomic unit to be too large, c) the uncertainty in following the control flow,

and d) the low meaningful encoding. We theorize that slicing, and maybe all code

comprehension, is a process of mapping and synchronization between the code (static

domain) and the program behaviour (application domain) that has to go through the

dynamic ordering of executing code (dynamic domain). Most the cognitive difficulties are

due to the invisibility and implicit nature of the dynamic domain, thus causing the user to

rely on his memory to mentally construct this domain thus overloading his memory.

According to the distributed cognitive model, we propose that this load has to be moved
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from the head of the user to the tool, and thus the tool should build an explicit

representation of the dynamic domain.

DynaSee is an attempt to construct an explicit presentation of the dynamic domain, a non-

trivial task with many design decisions and problems to solve. DynaSee reads routine

traces and processes them for visualization as a call tree.  Several characteristics of

routines made them the ideal trace unit for dynamic data including that they parallel the

actual granularity of code exploration by SEs that we observed.  However, like all

dynamic data, they tend to be very large in size and incomprehensible in their raw form.

To alleviate this problem, we combined classical solutions such as expanding and

collapsing the call tree and removing of redundancy caused by loops, with novel solutions

such as pattern abstraction, pattern variations, selective viewing after routine ranking, and

other visualization operations. Data we used to evaluate our work showed that our

techniques were dramatic not only in reducing the size of the trace but also by presenting

the minimally-needed amount of information to the software engineer. Other features like

bookmarks and pattern descriptions directly facilitate of domain synchronization.

DynaSee evaluation with the users showed that their perception and experience was very

positive. They could perform the tasks that we assigned to them with great ease. However,

they demanded that DynaSee become an integrated part of a larger tool or tool set that

covers more information needs such as process and line based tracing as well as data flow.

Building on the cognitive findings in our experience, we looked in the literature for

examples of how to mesh our findings with more general cognitive principles, and for

opportunities where similar finding have been applied in different domains. The goal is to

construct a scientifically grounded theoretical framework for the design and evaluation of

software tools. For example, we showed how some of the learned theoretical findings

could be applied to analyse the problems of object oriented languages.
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6.2 Contributions

The contributions of the thesis span different areas and different levels of abstraction. At a

high level, we contributed to the knowledge about how to perform analysis and research.

At a low level, our contributions include such things as different compression techniques

for dynamic data.

6.2.1 Research paradigm

We contributed in the development of a relatively novel research paradigm that

constitutes an important improvement over the dominant paradigm which stems from a

restrictive philosophical view of science – positivism.  We have taken an “anti-positivist”

approach in our research (the ecological approach) criticizing much of SM research as

being too positivist (see section 2.4.6 for example).

The current worldview of science is largely dominated by the positivism school of

philosophy that is considered passé by many people because it is extreme and too

restricting [Laudan 96 p. 3]. Positivism still greatly influences the current practice of

science particularly in psychology and other human-factors related domains including

some of the SM work.

Positivism acclaims experience as the sole source of human knowledge. The emphasis is

on theories and hypotheses and how to test and validate hypotheses empirically; claims

that have no empirical backing are treated  as meaningless.

To appreciate our contribution at this level, we next give an overview over recent trends

and opinions of the major philosophers in the philosophy of science illustrating the

shortcomings of positivism [Dyer 01]:

6.2.1.1 Recent trends in the philosophy of science

Popper argued that the positivist emphasis on verifiability only encourages confirmation of

theories rather than genuine discovery. He considered that science should be a process of
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finding the best answer to a problem rather than the sombre application of logic, as the

logical positivists suggest.

According to Kuhn most scientists are conservative  – seeking to apply existing methods

and theories to new problems rather than seeking to develop new and better theories.

Scientists are locked into a paradigm – a common framework for understanding and

tackling problems – that constrains their achievement. Kuhn also sees the aim of science

as puzzle-solving and stresses the importance of the role of a paradigm on what and how

problems will be solved.

Feyerabend emphasizes that, in principle, “all forms of theories are worthwhile”. For

Feyerabend, logical positivism was too cautious since science is far from being unified by

method and can use any of many methods for different types of problems.  Feyerabend

disputes that any one set of rules or system can be taken as the only or best universal

system of scientific enquiry, arguing that such an approach would inhibit scientific

progress, no method should be ruled out if it works.

Laudan [96 p.78] provides a problem-solving view of science. To Laudan the objective of

science lies in solving problems: “The aim of science is to secure theories with a high

problem-solving effectiveness.”  He argues that science progresses “just in case successive

theories solve more problems than their predecessors”.

Laudan maintains that acceptance and rejection are too restrictive to represent the range of

cognitive attitude taken by scientists toward theories. He notes that the continuum of

attitude between acceptance and rejection can be seen to be a function of the problem

solving progress of theories.

Laudan addressed another example of how positivism oversimplified the view of science

when he notes that not all theories are of one type; rather, “there is a range of levels of

generality of scientific theories, from laws at the one end to broad conceptual frameworks
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at the other. Principles of testing, comparison, and evaluation of theories seem to vary

significantly from level to level”.

In the conclusion, he suggests that there is no fundamental difference in kind between

scientific and other forms of intellectual inquiry, “all seek to make sense of the world and

of our experience”.

6.2.1.2 Conclusion about the research paradigm contribution

We argued  (along with a camp of scholars), that the work that is solely based on rigorous

hypotheses proving (positivism) is limited in its ability to generate practical value for

design-based sciences. Scientific research should not be constrained by any philosophical

view or paradigm but rather has to be open to any methods that bring problem-solving

efficacy as it is the ultimate goal of science. We paralleled this conviction when we

focused on not only on effectiveness but also on the efficiency of research effort with

respect to problem solving. This was mainly achieved by carrying out a breadth-first

approach where a problem is investigated to the “necessary” depth relative to its

contribution toward the solution of the higher order problem. In the competing depth-first

approach, a researcher would spend most of his time at one level of the investigation (e.g.

a single problem) without being able to close all the levels necessary to close the practical

problem (the high order one).

In few words, we summarize our contribution at his level as the fostering of a research

paradigm that is free from the residue of positivism. In our opinion, any successful

application of an approach beyond the influence of this philosophy should help to prove

the utility of such an alternative and to illustrate its concepts, thus fostering more adoption

of it. Note, however, that this contribution is independent from the value of the results

reached, it concerns the methodology regardless of how successfully we performed in this

particular work.
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6.2.2 Interface with psychology

Psychology is a science with over 100 years of accumulated knowledge for understanding

and predicting human behaviour and performance; it is a rich and well-established science.

It is very natural and rewarding to be able to utilize its principles in cognitively intensive

software engineering activities that are tightly related to human cognitive performance e.g.

program comprehension. Yet a large gap exists nowadays between psychology as an

academic science and software engineering.

In our attempt to involve psychology in our approach we found that this view  makes our

attempt and perhaps previous attempts of using psychology for practical computer science

applications to be a difficult and challenging task, mainly  because the knowledge of

psychology is not structured in a way that supports applying it on a highly practical

domain like computer science. The negative effect of positivism made psychology a

science that focuses on isolated facts, which makes it hard to benefit from its knowledge

base for software application.

6.2.2.1 The structure if academic psychology

Many scholars complain that academic psychology is still a science of laboratory

hypotheses, evidence and mini-theories rather than comprehensive theories. The lack of

comprehensive theories implies that someone who attempts to use psychology for practical

purposes will come across many knowledge gaps – needed areas that naturally belong to

psychology but are not covered by any of its literature.

Card [83 p.11] complains that psychology is overly concerned with hypotheses testing – to

find out which one of two ideas is right, creating many difficulties in using its knowledge

for practical applications.

Dyer and McGhee [01] note that, “there are many different models of the scientific

endeavour apart from those that most psychologists use. The evolution of ideas about how

to do science indicates that some psychological research is still stuck in an earlier
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framework which has been supplanted by more recent and arguably more challenging and

liberating models of how to carry out empirical investigations.”

Kintsch [98 p.2], a prominent figure in the text comprehension theories, criticizes the

concentration of psychology on narrow empirical results and the lack of comprehensive

theories. He argues that during the last 100 years, scientists have mostly left global

theorization about human cognition to philosophers. He continues to argue that these years

allowed us to acquire solid information, but that this information is limited in practical

value. This data, according to Kintsch, needs comprehensive theories because even good

data are not totally satisfying if they are not tied together within some theoretical

framework.

Carroll [89] who is one of the fathers of the ecological study of programmers, criticizes

academic psychology saying that it has favoured the study of narrow and artificial tasks

not because they are illuminating or useful in real life, but because they are tractable to

study in laboratories. In his opinion, this kind of work ends up instantiating theories so

narrow that they can be only considered theories of laboratory puzzle solutions. In

commenting about attempts to use psychology for HCI, Carroll [89] argues that, “basic

psychology theories and methods are radically unsuited to the scale and complexity of

HCI design problems”.

6.2.2.2 Current state of interface with psychology

Yet as our experience shows, there is still a lot of room for making use of psychology in

software, provided that appropriate education is provided in both domains. More efforts

are needed to bring together these two domains and to find ways to deal with knowledge

gaps in this area.

During our literature review and reading, we did not encounter any deep utilization of

mainstream psychology in computer science. Only psychological terminology or

methodologies were used in a non-formal way, such as in cognitive models of program

comprehension [von 95]. The work of Lloyd [99] on diagram clarity was a prominent
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exception; he referenced literature that goes back as far as 70 years and applied it to

diagram design choices.

6.2.2.3 Our approach for the interface between design and science

Our approach to interface with psychology is to have psychology to shadow the tool

development cycle (i.e. to have it in the background and to be aware of its knowledge) so

that to seize any opportunity where a link can be established between tools development

and psychology. That is, we began from actual problems and tried to obtain psychological

explanations, and from these explanations we tried to influence the proposed solution.

In the opposite direction, exposure to psychology and to other domains where psychology

affected design, illuminated many areas within the development cycle that were otherwise

obscured without this knowledge.

In other words, we do not propose any methodological interface mechanism, but rather an

opportunistic approach where a tool designer with the appropriate educational background

in psychology and its application would identify areas of intersection between the two

domains. That being said, we don’t argue against the possibility of a more methodological

interface that may emerge after maturity in the relationship between the two domains.

Some of the work of the thesis can be considered as a contribution to the educational

background that a tool designer should have.

The gain from this active attempt to interface and mesh with psychology is more than the

illumination that psychology provides for some design decisions. The gain spans the basic

premises of scientific practices. Science grows by the additive accumulation of efforts,

where new information uses existing information and builds upon it to push to edge of

scientific knowledge. The ability to mesh with psychology allows using its cumulative

facts to reduce the effort of new work and to increase the certainty of design decisions and

the generalizability of any finding or observation.

To illustrate how the interface was performed and gain achieved give as an example using

many concepts from mainstream cognitive psychology about the nature of the human
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cognitive system and its limitations, particularly regarding working memory (WM). This

increased our confidence in our conjecture about the existence of bottlenecks and

limitations of mental activities. Based on this, we suggested a cognitively aware approach

that places cognitive considerations as a high priority in cognitively intensive computer

applications.

Perhaps the most important generalization from the cognitively aware approach concerns

cognitive load (CL). This acts as a cross reference between psychology and design in

computer science. We argued that the success of a reverse engineering tool in terms of

adoption is more dependent on how successful the tool is in reducing CL as opposed to

simply reducing the raw time required to perform tasks. As such, CL becomes the vehicle

to interface concepts from psychology and tool development since it has visibility in both

domains.

6.2.2.4 Conclusion

Given the existence of a large gap between basic academic psychology and computer

science, our contribution in this area stems from the approach presented to solve the

difficult relationship between academic psychology and practical design applications such

as the design of computer artefacts (tools to aid humans in their cognitive tasks) and the

demonstration of how this interface can work.

Our work can be the foundation for more elaborate collaboration between the two

disciplines. The ability to generalize beyond the particular case presented in this work has

been shown in the previous chapters. We think that our approach and the theoretical

lessons that deal with cognitively intensive applications in general and supporting SM

specifically, can lead to solid psychologically grounded theories and methodologies for

design and evaluation of computer systems
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6.2.3 DynaSee

DynaSee constitutes a considerable contribution as a dynamic analysis tool even when

taken in isolation from the approach and other theoretical work of the thesis. In general,

the need to have an insight into the dynamic domain is non arguable [Wilde 92, 95].

6.2.3.1 The gap of levels

Existing dynamic analysis tools are either too low level or too high-level; the call tree of

DynaSee fills the gap between the levels. Low level dynamic analysis tools such as line-

based debuggers are useful only for finely localized problems. They are exhausting for any

major code explorations. On the other hand, high level dynamic analysis tools usually

show the dynamic relations between architecture level components [McCrickard 96,

Teteishi 94, Pal 97] as such they are of little help for code exploration. As we noted before

in the task view, complete high-level system understanding is rarely needed or practical

for SM on large legacy systems (LLS) because comprehension is always partial and is

closely related to the particular problem being investigated. Moreover, the actual needs of

SM are closely related to code, so any tool that works on a level that is distant from code

will be of limited usefulness for SM. The call tree of DynaSee affords both the proximity

to code and the ability to work on high-level abstraction.

6.2.3.2 Making traces usable

Despite the fact that the idea of call trees being crucial structure for program

comprehension is old and widely accepted, there is a conviction in the software

engineering community that, because of their large size, they are not useable [Korel 98,

Jerding 97-b].   We did not encounter any work that goes beyond this prejudice into

thoroughly trying to alleviate this non-usability.

DynaSee proved that this is not true. With some creativity and effort, a call tree can

become highly useable, the size problem of data can be made manageable, and therefore

call trees can have an instrumental role in SM. It is this revisiting of what looked

obviously needed, yet was abandoned, that is the essence of our contribution.
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The compression and visualization techniques used to make call trees useable were not all

totally new. The novelty is in the concentrated effort to bring all these techniques together

and to apply them in this context. Next, we revisit the DynaSee techniques discussing their

novelties:

Repetition Removal: This technique has been used in flat trace compression [Larus 93].

Similar algorithms were used to construct directed acyclic graphs [Jerding 97-b]. However

it has been maintained that even when applied on call trees, the resulting trees would be

still unusable [Korel 98]. While we tend to agree that this is true if that was the only

technique used to deal with the size of call trees, we showed that additional simple features

such as bookmarks reduce the size of the call tree that needs to be investigated to one

subtree (succeeding the bookmark). Simple eliding techniques can actually elide

everything else. In fact given that the tree is hierarchically explored, the user can expand a

node at each level to see what he wants and forget about all the rest.

Patterns: Pattern detection is also a well-investigated technique inside and outside trace

processing literature. However, in the context of call trees it has a totally new form and

meaning, given their hierarchical and semantically rich nature. In other words, instead of

looking at the trace at the mere occurrence of trace entries, the call tree entries (routines)

manifest a significance in their location and meaning. Abstracting such patterns becomes

highly integrated with their meaning, since the user is able to see their functional role

within the execution represented by the overall call tree and thus abstracts them into

meaningful descriptions.

The pattern variations feature is only feasible because of the intimacy of patterns to their

semantic (functional) role so to allow the user to identify what could be a variation not

from the syntactic or topological properties of the pattern entries but from their perceived

functional role within the overall execution. We did not come across a similar feature in

the literature, at least as far as SM and program comprehension are concerned.

Routine ranking: This is probably the most novel technique when it comes to our
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context. Its distinction comes from its ability to discriminate the relevance of a routine

from several of its properties, some of them unrelated to its position in the tree which most

of the other techniques depend on. This technique is very promising, yet very research

hungry: there is much more room for improvement and future research.

Call tree: The call tree user interface is the same one that is used in the Windows file

explorer. On the negative side, reusing such a widely known control creates the impression

of déjà vu that a user would have from looking at the tool. This may negatively affect his

perception about the usefulness of the tool since it implies less novelty and sophistication.

On the positive side, this reuse of packaged sophisticated controls allowed us to benefit

from a highly elegant and sophisticated interface that was otherwise very hard to

implement. Various expanding /collapsing operations and selective level displays were

affordable to satisfy the users needs. The pros of this control do not come only from its

sophistication and ease of programming but also from its widespread and frequent use;

remember from the previous chapter that frequent use makes a task more automatic thus of

lighter cognitive load. It is important to note that this control was not available when

others were trying to construct browsing tools, hence limiting their success.

6.2.4 A final note on contribution

We focused on the big picture of the whole cycle of development: the theory, the

methodology, the case study, the tool and the evaluation. Taken in isolation none of these

look particularly deep.

Literature contains a lot of work on software maintenance task analysis and program

comprehension characterization, case studies and on reverse engineering tools but very

rarely there is any work that spanned all these separate threads in a highly theoretically

grounded and integrated way as we claim we are presenting in this thesis.
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6.3 Conclusion & Future work

The final conclusion that we draw from our experience is that we are operating in an area

that has a severe shortage of multidisciplinary theories. RE tool development is being

treated as mere software development without regards to the necessary theoretical

foundations (e.g. cognitive and psychological background). More work is needed both at

the theory level and at the level of techniques that we provided through DynaSee.

6.3.1 About the conceptual issues

One of the main things that this thesis should prove is that the development of reverse

engineering tools is a different breed of software development that has its own priorities.

The different priorities of tool development versus general software development comes

from:

1. The voluntary nature of tool adoption that make the user perception of the tool a

priority

2. The cognitively intensive nature of SM and program comprehension that makes

cognitive factors a priority.

3. The difficulties in gathering requirements given that SM is a cognitive and creative

process (problem solving) that makes characterizing SM by proactive methods a

priority.

All of these factors need theoretical backups, often from different disciplines than

computer science. In this thesis we reviewed aspects of several different disciplines

retrieving relevant ideas and trying to fit these ideas in one practical approach. Therefore,

regardless of how successful or generic is our approach, its value stems from being an

early multidisciplinary attempt to bridge the gaps in the theoretical aspects of tools

development. Moreover, our approach demonstrates how the multidisciplinary theorization

can have a profound influence on actual development effort and decisions.

One thing to pay attention to about theorization is that it is an accumulative and iterative

process; we don’t provide the truth. Our work is more of hypotheses generation than
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validation; many of the ideas are prone to criticism and maybe to invalidation. However, if

we want to think beyond positivism the mere endeavouring to suggest new ideas and new

relations between existing ones is a valid kind of science provided that sufficient logical

support is used. We provided a start so that other researchers may have something to

verify, refine, upgrade or build upon.

6.3.2 Areas that need more effort

To be more specific, we point out to the following areas as having a shortage of

theorization and therefore are in need of additional research effort:

6.3.2.1 A model and theoretical framework for the development of tool

Similar to the evolution from viewing programming as the science of producing software

to the existing software engineering where programming is only a phase within a larger

process that includes analysis, design and testing phases, a larger view of tool

development is required where the production of a tool is only a phase within a more

general process. In this thesis we provided one such model that involves phases such as

task abstraction, difficulty modeling, and cognitive analysis. Yet, as we said, what we

provided is only a start for further research to generate more reliable and validated

processes.

6.3.2.2 Difficulties in program comprehension

Although there is much work on cognitive models for program comprehension, there is

still a theoretical gap in bridging the findings of these models into design decisions for the

development of tools that support program comprehension. This gap is evident in the

separation between these models and any available RE tools as far as we know. In fact, the

gap is more general as we discussed above between the science of psychology and

computer science in general.

The thesis contains many starting points to build upon. The three-domain theory that

explains the difficulties by the implicitness of the dynamic domain that we used
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extensively is an example of such gap bridging. It transformed the work of many cognitive

models such as those of Brooks and Pennington into direct DynaSee features for

increasing the mapping between domains. Future work can generalize, validate (or

invalidate) and refine our work particularly in the areas described above (section 6.3.2).

6.3.3 About the tool

As we said, this work is not about a tool; rather it is about new paradigms for the

development of tools that support cognitively intensive applications. The case study and

the tool were only to support these foundations of which generalization and contributions

can be deduced. That, however, does not mean that the success of our tools to meet its

objectives is not a goal.

6.3.3.1 Adoption

DynaSee adoption was not tracked and studied. In evaluating the success of DynaSee we

stopped at the success of the processing objectives (e.g. compression rate), direct

usefulness (e.g. locate an event in the call tree) and at user perception.

A study of the success of adoption requires the ability to control all the variables that

affect the large-scale adoption, as it is enough to have one negative variable (that can be

unrelated to the tool) for the whole adoption to fail. Controlling all the variables is difficult

as a consequence of the difficult relation between academia and industry; the latter has a

mindset that can be unsupportive for the research. An academic researcher in an industrial

setting is an outsider without the proper authority to push or even to track its adoption in

an effective way, as we found out. Another valuable piece of future work would be to

continue from here, given that there is positive perception of usefulness, investigating

what is needed to obtain full-scale adoption of our ideas in an industrial setting.

For any future researcher, our view is that most impediments for the full adoption of

DynaSee are external to it and are of a logistic nature. The most significant impediment is

the overhead in utilizing DynaSee particularly in the collection of traces. The nature of the
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LLS made collecting the trace particularly difficult as the system runs on a switch and not

on a general-purpose computer where DynaSee runs.

Second, there is the overhead for software engineers in learning and incorporating the tool

in their daily work practice. Many users did not want to deal with an additional new tool;

they say that they are more likely to adopt it if it is an integrated part of their development

environment such as the IDE of many recent programming languages

6.3.3.2 Data gathering

Traces and dynamic data in general are hard to gather and their gathering may cause

disturbance and perturbation. Instrumentation is not trivial; it needs language-parsing

capabilities for inserting probes that can cause subtle errors if parsing is not impeccable. A

better solution should be researched; a good alternative could be using compiler and

debuggers technologies that can poll the run time system to get dynamic data such as the

call stack.

As we mentioned in the evaluation, users consider the mere use of an additional tool as a

significant overhead, so additional overhead in the preparation (e.g. gathering trace) to use

the tool is even more negative. There is a need to find ways to reduce the overhead in

bringing the dynamic data to DynaSee and to reduce the difficulty of generating these data

in the first place.

6.3.3.3 Additional dynamic coverage

While DynaSee covers a significant gap in the requirements for software maintenance

tools, software maintenance is a highly creative and versatile process that has a large

number of needs including needs for dynamic information that are not provided by

DynaSee.  In Chapter 5, we mentioned explicit requirements by the users to add additional

features for the dynamic presentation of as process and message level traces. Additional

coverage of these dynamic aspects is likely to be fruitful and should not be difficult to

integrate with DynaSee.
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In fact, some of the features for additional dynamic coverage are currently being

investigated  (by another group in KBRE) such as the presentation of trace at a statement

level. With this feature, a user can click on a routine to see its source code with actually

executed statements highlighted. Dynamic slicing algorithms are considered in order to

achieve this statement level tracing and additional features provided by dynamic slicing

are to be exploited.

6.3.3.4 Patterns

Discussions with users indicate that the most promising feature of DynaSee that can play a

different role than what is envisioned to DynaSee is trace patterns. The usage of patterns

for dynamic clustering is being investigated to be added to TkSee in order to augment in

order to augment its static clustering capabilities.

Patterns can also have a pedagogic role. We also think that with an accumulation of

patterns description, the call tree can be transformed into a dynamically generated

functional tree of the program. Such a view will be of significant help to newcomers to get

an overview of a particular system.

6.3.3.5 TkSee

Finally, DynaSee is being ported to TkSee so it becomes an additional feature of it,

sharing the same user interface. TkSee encompasses a set of integrated tools such as a

static analyser and a line-based debugger and more features are being added to cover more

information requirement within the same environment. Note that the porting to TkSee that

runs under UNIX caused many compromises in a way that reduced significantly the

elegance and usability of the UI. We are still trying to balance the increased usability vs.

the increase integrity.
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