

Techniques to Simplify the Analysis of

Execution Traces for Program Comprehension

by

Abdelwahab Hamou-Lhadj

Thesis submitted to the Faculty of Graduate and Post-Doctoral

Studies in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Ottawa-Carleton Institute for Computer Science
School of Information Technology and Engineering

University of Ottawa,
Ottawa Ontario Canada

© Abdelwahab Hamou-Lhadj 2005

 2

Abstract

Understanding a large execution trace is not easy task due to the size and complexity of

typical traces. In this thesis, we present various techniques that tackle this problem.

Firstly, we present a set of metrics for measuring various properties of an execution trace in

order to assess the work required for understanding its content. We show the result of

applying these metrics to thirty traces generated from three different software systems. We

discuss how these metrics can be supported by tools to facilitate the exploration of traces

based on their complexity.

Secondly, we present a novel technique for manipulating traces called trace summarization,

which consists of taking a trace as input and return a summary of its main content as output.

Traces summaries can be used to enable top-down analysis of traces as well as the recovery

of the system behavioural models. In this thesis, we present a trace summarization algorithm

that is based on successive filtering of implementation details from traces. An analysis of the

concept of implementation details such as utilities is also presented.

Thirdly, we have developed a scalable exchange format called the Compact Trace Format

(CTF) in order to enable sharing and reusing of traces. The design of CTF satisfies well-

known requirements for a standard exchange format.

Finally, this thesis includes a survey of eight trace analysis tools. A study of the advantages

and limitations of the techniques supported by these tools is provided.

The approaches presented in this thesis have been applied to real software systems. The

obtained results demonstrate the effectiveness and usefulness of our techniques.

 3

Acknowledgments

I would like to express my gratitude to my Ph.D. supervisor Dr. Timothy Lethbridge. His

enthusiasm, vast knowledge, and great skills to explain things clearly and simply added

considerably to my graduate experience. Throughout my studies, Tim provided

encouragement, sound advice, prompt feedback, good company, and lots of great ideas. I

thank him for that.

I would also like to thank the members of my PhD committee for the feedback they provided

at all levels of this research during the candidacy paper defence as well the Ph.D. oral

defence.

I must also acknowledge the software engineers at QNX Software Systems for their

participation to the brainstorming session. In particular, I appreciate the support and interest

expressed by Thomas Fletcher from QNX to the content of this research. Also, I want to

thank the software engineers of Mitel Networks for motivating the necessity to have efficient

techniques for manipulating execution traces. They also provided me with lengthy execution

traces that allowed me to conduct initial analysis that form the foundation of the work

presented in this thesis.

My appreciation also goes to the software developers of the Weka system for creating this

great tool and making it open, and for evaluating some of the results presented in this thesis.

This research would not have been possible without the financial assistance of QNX, Mitel

Networks, CSER, NCIT, NSERC, and the University of Ottawa School of Graduate and

Postgraduate Studies. Thanks to all these organisations.

I would also like to thank my whole family for the support they provided me through my

entire life. In particular, I would like to thank my parents and my brothers Fateh and

AbdelKrim for their continual support and encouragement.

A special thanks goes to my wife Gligorka for always believing in me and giving me the

extra strength, motivation, and love necessary to complete this thesis.

 4

Table of Contents

Chapter 1. Introduction 10

1.1 Problem and Motivations 10
1.2 The Focus on Traces of Routine Calls 12
1.3 Research Contributions 14

1.3.1 A Survey of Trace Analysis Tools and Techniques 14
1.3.2 Trace Metrics 15
1.3.3 Summarizing the Content of Large Traces 15
1.3.4 An Exchange Format for Representing Execution Traces 16

1.4 Thesis Outline 16

Chapter 2. Background 19

2.1 Introduction 19
2.2 Related Topics 19

2.2.1 Software Maintenance 19
2.2.2 Program Comprehension 20
2.2.3 Reverse Engineering 22

2.3 A Survey of Trace Analysis Tools and Techniques 23
2.3.1 Shimba 24
2.3.2 ISVis 25
2.3.3 Ovation 27
2.3.4 Jinsight 28
2.3.5 Program Explorer 31
2.3.6 AVID 34
2.3.7 Scene 35
2.3.8 The Collaboration Browser 36

2.4 Discussion 38
2.4.1 Modeling Execution Traces 38
2.4.2 Levels of Granularity of the Analysis 39
2.4.3 Dealing with the Large Size of Traces 39

2.5 Summary 42

Chapter 3. Trace Metrics 44

3.1 Introduction 44
3.2 The Concept of Comprehension Units 46
3.3 The Catalog of Metrics 48

3.3.1 Call Volume Metrics 48
3.3.2 Component Volume Metrics 50
3.3.3 Comprehension Unit Volume Metrics 52

 5

3.3.4 Pattern Related Metrics 53
3.3.5 Discussion 54

3.4 Case Studies 55
3.4.1 Target Systems 55
3.4.2 Generating Traces 56
3.4.3 Collecting Metrics 58

3.5 Applying the Metrics in Tools 68
3.6 Converting a Tree Structure into a DAG 69

3.6.1 Overview 69
3.6.2 Valiente’s Algorithm 70
3.6.3 Extension of Valiente’s Algorithm to Trace Compaction 71
3.6.4 Matching Criteria 76

3.7 Summary 78

Chapter 4. Trace Summarization 80

4.1 Introduction 80
4.2 What is a Trace Summary? 82

4.2.1 Adequate Size of a Summary 82
4.2.2 Content Selection 82
4.2.3 Content Generalization 84
4.2.4 Our Approach to Trace Summarization 84

4.3 The Concept of Utilities 86
4.3.1 Global Grouping of a Utility 87
4.3.2 Packaging of Utilities 88
4.3.3 Role of a Utility 88
4.3.4 Our Working Definition of the Concept of Utilities 89
4.3.5 Definition of the Concept of Implementation Details 89

4.4 Fan-in Analysis 91
4.4.1 Building a Call Graph 92
4.4.2 The Utilityhood Metric 94
4.4.3 Trace Summarization Algorithm 96

4.5 Summary 99

Chapter 5. Case Study 101

5.1 Introduction 101
5.2 Usage Scenario 101
5.3 Process Description 102
5.4 Quantitative Results 103
5.5 Questionnaire Based Evaluation 107

5.5.1 Background of the Participants 108
5.5.2 Order of Calls of the Trace Summary 112
5.5.3 Quality of the Summary 114

5.6 Summary 121

 6

Chapter 6. The Compact Trace Format 123

6.1 Introduction 123
6.2 Related Work 124
6.3 Requirements for the Design of CTF 126

6.3.1 Expressiveness 126
6.3.2 Scalability 127
6.3.3 Simplicity 128
6.3.4 Transparency 128
6.3.5 Neutrality 128
6.3.6 Extensibility 129
6.3.7 Completeness 129
6.3.8 Solution Reuse 129
6.3.9 Popularity 129

6.4 CTF Components 130
6.4.1 CTF Abstract Syntax 130
6.4.2 CTF Class Description 137
6.4.3 CTF Syntactic Form 147

6.5 Adoption of CTF 149
6.6 Summary 150

Chapter 7. Conclusions 152

7.1 Research Contributions 152
7.2 Opportunities for Further Research 154

7.2.1 Further Formalizing of the Concepts Presented in this Thesis 154
7.2.2 Trace Metrics 154
7.2.3 The Concept of Implementation Details 155
7.2.4 The Trace Summarization Process 156
7.2.5 Extending The Compact Trace Format 156
7.2.6 Exploring Trace Patterns 157
7.2.7 Program Comprehension Models 157
7.2.8 A Tool Suite 158

7.3 Closing Remarks 158

Appendix A: GXL and TA Representations of CTF Traces 159

Bibliography 161

 7

List of Figures

Figure 1.1. Tree representation of a trace of routine calls ..12

Figure 2.1. ISVis scenario view which consists of the information mural view (on the right)
and the temporal message-flow diagram (center)...26

Figure 2.2. The Execution Pattern view of Ovation...27

Figure 2.3. Jinsight Execution View ...29

Figure 2.4. Jinsight Call Tree View...30

Figure 2.5. Four-dimensional event space used by Jinsight to represent trace events31

Figure 2.6. The interaction graph is used by Program Explorer to represent object
interactions. ..32

Figure 2.7. A class graph focuses on class interactions rather than object interactions.......33

Figure 2.8. Interactions among the system clusters as represented by AVID. Here, the
analyst has replayed the execution and stopped at Cel#1434

Figure 2.9. The calls Install and Do have been collapsed. The user can click on these calls
to see the methods they invoke..36

Figure 3.1. The graph representation of a trace is a better way to spot the number of distinct
subtrees it contains..47

Figure 3.2. The two subtrees rooted at ‘B’ can be considered similar if the number of
repetitions of ‘C’ is ignored ..53

Figure 3.3. The initial size of traces and their size after the repetition removal stage for the
three systems ..61

Figure 3.4. The number of components (packages, classes and methods, respectively)
invoked in the traces of the three systems..62

Figure 3.5. Relationship between the number of methods and the number of comprehension
units for Checkstyle – Correlation coefficient = 0.99.......................................66

Figure 3.6. Relationship between the number of methods and the number of comprehension
units for Toad – Correlation coefficient = 0.99..67

Figure 3.7. Relationship between the number of methods and the number of comprehension
units for Weka – Correlation coefficient = 0.87...67

 8

Figure 3.8. A tree (left) and its transformed DAG (right). The integers correspond to the
certificates of the nodes...70

Figure 3.9. A sample tree that will be used to illustrate the algorithm................................73

Figure 3.10. If contiguous repetitions are ignored then the above subtrees will be considered
similar ..77

Figure 3.11. If order of calls is ignored then the above subtrees will be considered similar .77

Figure 3.12. The subtrees T1 and T2 can be considered similar if an edit distance function is
used ..78

Figure 4.1. Our approach to trace summarization..85

Figure 4.2. Example of a routine call graph...92

Figure 4.3. A Java program used to illustrate resolution of polymorphic calls94

Figure 5.1a. The first part of the summary extracted from the C45 trace. This part deals with
building classifiers and classifying the input the dataset109

Figure 5.1b. The second part of the summary extracted from the C45 trace. This part deals
with the cross validation process ...109

Figure 6.1. The CTF metamodel ...131

Figure 6.2. The control node SEQ is used to represent the contiguous repetitions of the
comprehension units rooted at B and E ...132

Figure 6.3. The control node REC is used to represent the recursive repetitions of the
comprehension unit B ...133

Figure 6.4. Extension of CTF to support static components...134

Figure 6.5. a) An example of a trace as a tree. b) The ordered directed acyclic graph
corresponding to this trace ..135

Figure 6.6. CTF instance data ...136

Figure 6.7. GXL representation of the CTF instance data of Figure 6.6...........................148

Figure 6.8. TA representation of the CTF instance data of Figure 6.6..............................149

 9

List of Tables

Table 2.1. Classification of trace analysis tools...43

Table 3.1. Characteristics of the target systems...56

Table 3.2. Checkstyle Traces..57

Table 3.3. Toad Traces ...57

Table 3.4. Weka Traces ..58

Table 3.5. CheckStyle Statistics..59

Table 3.6. Toad Statistics ...59

Table 3.7. Weka Statistics ..60

Table 3.8. The contribution of Checkstyle packages to the size of traces.............................62

Table 3.9. The contribution of Toad packages to the size of traces......................................64

Table 3.10. The contribution of Weka packages to the size of traces....................................64

Table 3.11. Result of applying Valiente’s algorithm to the tree of Figure 3.8.......................71

Table 4.1. Ranking table computed from the call graph of Figure 4.296

Table 5.1. Results after removing implementation details from the C45 trace105

Table 5.2. The participants’ background...111

Table 5.3. The participants’ background by categories..111

Table 5.4. Answers to questions about the content of the summary (Q5, Q6, Q7 and Q8) .114

Table 5.5. Answers to questions about to the quality of the summary (Q11, Q12, Q13)120

 10

Chapter 1. Introduction

The objective of this thesis is to develop and evaluate techniques to facilitate the analysis and

understanding of the content of large execution traces.

The particular techniques that we propose will be of use are, 1) capabilities to compact and

summarize traces that involve removing details such as utilities; 2) an ability to measure

traces so their size and complexity can be more easily seen, and 3) an ability to exchange

information among trace analysis tools in a standard and efficient way.

In the remainder of this chapter we will motivate the thesis and summarize the contributions

in more detail.

1.1 Problem and Motivations

Maintaining1 large software systems is not an easy task. The difficulties encountered by

maintainers are partially attributable to the fact that changes made to the implementation of

systems are usually not reflected in the design documentation. This can be due to various

reasons including time-to-market constraints, the cost of changing the documentation not

justifying the benefit, the initial documentation being too poor to modify, etc. As a result, the

gap between a system’s implementation and its design models becomes large.

Without consistent or adequately complete documentation, maintainers are faced with the

inevitable problem of understanding how the system is implemented prior to undertaking any

1 By ‘maintenance’ we mean any change to software beyond its first release or iteration; i.e. development of software where
there is already an existing system that is to be changed. This is the broadest possible meaning of the term. It includes
adding new features, creating new iterations, as well as classic adaptive and corrective maintenance.

 11

maintenance task. Research into the discipline of program comprehension aims to reduce the

impact of this problem.

The understanding of the dynamics of a program can be made easier if dynamic analysis

techniques are used. Dynamic analysis typically involves the analysis of traces generated

from executing the features of the software system under study [Ball 99].

The usefulness of analysing execution traces to help perform software maintenance tasks has

been the topic of many studies [De Pauw 93, Jerding 97a , Systä 00a]. For example, in

[Jerding 97a], Jerding et al. showed how adding a new feature to a software system can be

made easier if trace analysis is used. The authors conducted a case study that consisted of

enhancing the NCSA Mosaic web browser [MOSAIC] to support user-configurable external

viewers. In order to achieve their goal, they used their trace analysis tool called ISVis to

examine the way Mosaic deals with its built-in external viewers. As a result, the authors were

capable to quickly uncover the components of the system that needed to be modified and

hence insert the changes. Another example would be the study conducted by Systä [Systä

00a]. The author used a combination of static and dynamic analysis to recover the behaviour

of part of a software system called FUJABA [Rockel 98]. The study focused on analysing a

particular feature of FUJABA that was known to have a defect in it. The trace corresponding

to this feature was generated and used to successfully uncover the causes of the buggy

behaviour.

However, the large amount of data generated from the execution of a software system

complicates the process of applying dynamic analysis techniques. To reduce the impact of

this issue, most existing tools turn to specific visualization techniques [De Pauw 93, Jerding

97b, Koskimies 96a, Lange 97, Richner 02 , Walker 98, Zayour 02]. As a result, the problem

of exploring the content of traces is often seen as the problem of developing usable

visualization tools. However, due to the complex nature of most interesting traces, most

existing tools recognise the fact that there is a need for more advanced trace analysis

techniques.

In this thesis, we present a set of techniques that aim to simplify the analysis of large traces.

These techniques are independent of any visualization scheme. In other words, we investigate

 12

what makes traces hard to use and design solutions to reduce this complexity. The techniques

presented in this thesis range from exploring the content of traces to developing a scalable

model for sharing and reusing large traces.

This chapter is organized as follows: in the next section, we discuss the type of traces used in

the thesis. In Section 1.3, we present the thesis contributions. Finally, the detailed thesis

outline is presented in Section 1.4.

1.2 The Focus on Traces of Routine Calls

We chose, in this thesis, to focus on traces of routine calls2. Such traces are at an

intermediate level of abstraction between highly detailed statement-level traces and traces of

interactions, such as messages, among high level system components. The former are rarely

used since they tend to produce vastly more data than needed, whereas the latter can only

reveal the architectural characteristics of the system. Most of the techniques discussed in this

thesis could, however, be extended to any type of traces.

 :C1.m0

Figure 1.1. Tree representation of a trace of routine calls

We will put particular emphasis on a special class of routine call traces: traces of method

calls in object-oriented (OO) systems. It is very important to note that the adaptation of the

techniques presented in this thesis to procedural systems can be done easily. To allow

2 We will use the term ‘call’ and ‘invocation’ synonymously.

 :C2.m1

 :C3.m2

 :C3.m3

 :C1.m4

 13

generalization of the concepts presented here to OO as well as procedural systems, we use

the term ‘routine’ to refer to any routine, function, or procedure whether it is a method of a

class or not.

Traces of routine calls can easily be depicted using a tree structure as illustrated in Figure

1.1. The figure shows an example of interactions among three objects of the classes C1, C2

and C3 respectively.

To reproduce the execution of an object-oriented system, we need to collect at least the

events related to object construction and destruction, as well as method entry and exit [De

Pauw 93]. Additional information can be collected such as events related to thread execution.

It is very common that traces, once generated, are saved in text files. A trace file usually

contains a sequence of lines in which each line represents an event. An example of this

representation is given by Richner and Ducasse in [Richner 02]. Each line records: The class

of the sender, the identity of the sender, the class of the receiver, the identity of the receiver

and the method invoked. The order of calls can be maintained in two ways, either each entry

and exit of the method is recorded, which results is a very large trace file, or an integer is

added to represent the nesting level of the calls. In this case, we do not need to record the exit

event of a method as shown by the following illustration.

Assuming that obj1 is a unique identifier of the object :C1 and that obj2 represents :C2 and

obj3 represents :C3, the trace file that corresponds to the trace of Figure 1.1 should have the

following events:

Sender Sender Receiver Receiver Called Nesting

Class ID Class ID Method Level

c1 obj1 c2 obj2 m1 1

c2 obj2 c3 obj3 m2 2

c3 obj3 c3 obj3 m3 3

c1 obj1 c1 obj1 m4 1

There exist various techniques for generating traces. The first technique is based on

instrumenting the source code, which consists of inserting probes (e.g. print statements) at

 14

appropriate locations in the source code. In the context of object-oriented systems, probes are

usually inserted at each entry and optionally each exit of every method. Instrumentation is

usually done automatically.

Another technique for collecting run-time information consists of instrumenting the

execution environment in which the system runs. For example, the Java Virtual Machine can

be instrumented to generate events of interest. The advantage of this technique is that it does

not require the modification of the source code.

Finally, it is also possible to run the system under the control of a debugger. In this case,

breakpoints are set at locations of interest (e.g. entry and exit of a method). This technique

has the advantage of modifying neither the source code nor the environment; however, it can

slow down considerably the execution of the system.

1.3 Research Contributions

The major research contributions of this thesis are:

 A survey of trace analysis tools and techniques.

 A set of metrics for measuring various properties of an execution trace.

 A set of techniques for trace summarization that can be used to enable top-down analysis

of an execution trace, and recover the system’s behavioural design models.

 An exchange format for exchanging and reusing traces of routine (method) calls.

The remainder of this section elaborates on these contributions. The subsequent section

presents the outline of the thesis.

1.3.1 A Survey of Trace Analysis Tools and Techniques

We studied the techniques implemented in eight trace analysis tools. The contribution of this

part the thesis is to understand the advantages and limitations of the supported features,

particularly techniques used to cope with the large size of execution traces; the levels of

granularity of the analysis permitted by the existing techniques; and the internal formats used

to represent traces.

 15

1.3.2 Trace Metrics

Using existing trace analysis tools, an analyst may apply many operations to a particular

trace and still be left with a large amount of data to analyze. This problem is mainly due to

the fact that none of the existing tools is built upon specific metrics for assessing the work

required for analyzing traces.

To address this issue, we propose that if various aspects that contribute to a trace’s

complexity could be measured and if this information could be used by tools, then trace

analysis could be facilitated. For this purpose, we present a set of simple and practical

metrics that aim to measure various properties of execution traces. We also show the results

of applying these metrics to traces of three software systems and suggest how the results

could be used to improve existing trace analysis tools.

1.3.3 Summarizing the Content of Large Traces

In this thesis, we introduce the concept of trace summarization and discuss how it can be

used to (a) enable top-down analysis of traces, and (b) recover high-level behavioural design

models from traces. Similar to text summarization, where abstracts can be extracted from

large documents, the aim of trace summarization is to take an execution trace as input and

return a summary of its main content as output. The process is performed is a semi-automatic

way. The summary can then be converted into a UML sequence diagram and used as a high-

level behavioural model. Our approach to trace summarization is based on the way software

engineers use traces in an industrial setting. After a discussion that took place at QNX

Software Systems (the company that supported some of this research), the participants

argued that when exploring traces, they would like to have the ability to look at the ‘big

picture’ first and then dig into the details. They referred to the elements of the trace that can

be filtered out as implementation details such as utilities.

Trace summarization is based on filtering traces by removing implementation details such as

utilities. To achieve this goal, we first show how fan-in analysis can be used to detect the

utility components of the system. Then, we present a trace summarization algorithm that uses

fan-in analysis as its main mechanism. The algorithm also assumes that software engineers

 16

will manipulate the resulting summary in order to adjust its content to their specific needs.

We applied our approach to a trace generated from an object-oriented system called Weka

[Weka, Witten 99] that initially contains 97413 method calls. We succeeded to extract a

summary from this trace that contains 453 calls. According to the developers of the Weka

system, the resulting summary is an adequate good high-level representation of the main

interactions of the traced scenario.

1.3.4 An Exchange Format for Representing Execution Traces

Existing trace analysis tools use different formats for representing traces, which hinders

interoperability. To allow for better synergies among trace analysis tools, it would be

beneficial to develop a standard format for exchanging traces.

An exchange format consists of two main components: Firstly, a metamodel that represents

the entities to exchange and their interconnections, and secondly the syntactic form of the file

that will contain the information to exchange [Bowman 99, Jin 02]. In this research, we

introduce a metamodel for representing traces of routine (method) calls referred to as the

Compact Trace Format (CTF). We also validate CTF with respect to well-known

requirements for a standard exchange format. We discuss how existing syntactic forms

namely GXL (Graph eXchange Language) [Holt 00] and TA (Tuple Attribute Language)

[Holt 98] can be used to ‘carry’ the data represented by CTF.

1.4 Thesis Outline

The remaining chapters of this thesis are:

Chapter 2 – Background

This chapter starts by presenting the different areas that are related to our research, namely

software maintenance, reverse engineering, and program comprehension. The remainder of

the chapter surveys the literature on the various trace analysis techniques that are

implemented in eight trace analysis tools. The chapter continues with a detailed analysis of

these techniques and concludes by classifying the studied tools according to the trace

analysis features they support.

 17

Chapter 3 – Trace Metrics

This chapter starts with explaining the usefulness of having well defined metrics of

measuring properties of traces. It proceeds with an introduction of key concepts that will be

used for the rest of the thesis namely the concept of comprehension units. The chapter

continues by presenting a set of metrics that are designed to characterize the work required to

understand the traces. The design of these metrics is compliant with the

Goals/Questions/Metrics (GQM) model [Basili 94]. An empirical study of several traces of

three different object-oriented systems using these metrics is then presented. The chapter

continues by briefly discussing how these metrics should be supported by trace analysis

tools. Some of the metrics presented in this thesis rely on the fact that any tree structure can

be turned into an ordered directed acyclic graph (DAG) by representing similar subtrees only

once. This motivated us to include in this chapter an algorithm that we developed for

transforming a call tree into a DAG. We want to note that many other sections of this thesis

will also refer to this algorithm.

Chapter 4 – Trace Summarization

This chapter starts by discussing the concept of trace summarization, its applications, and its

similarities with the concept of text summarization. An approach for achieving trace

summarization is then presented. The chapter proceeds by discussing the concept of

implementation details including utility components. After this, a utility detection technique

based on fan-in analysis is presented.

Chapter 5 – Case Study

This chapter focuses on a case study used to evaluate the trace summarization concepts

presented in the previous chapter. In the beginning of the chapter, we present the target

system from which we generated the trace to summarise. The chapter continues by describing

the evaluation process. The quantitative results of applying the trace summarization process

are then presented and discussed. The chapter proceeds with a questionnaire-based evaluation

that aims to capture the feedback of the developers of the system under study.

 18

Chapter 6 – The Compact Trace Format

The chapter starts by stating the advantages of having a standard exchange format for

exchanging execution traces. An introduction of the Compact Trace Format (CTF) is then

presented. The chapter continues with presenting related work. It proceeds by citing the

requirements used to guide the design of CTF. The remaining sections discuss the CTF

metamodel, semantics, and syntactic form. In the end of the chapter, we discuss the adoption

of CTF.

Chapter 7 – Conclusions

This chapter starts by discussing the contributions of the thesis as well as opportunities for

future research. Closing remarks are then presented at the end of the chapter.

 19

Chapter 2. Background

2.1 Introduction

Our research is intended to help software engineers understand the content of large execution

traces. In the next section, we present background information and terminology that are

necessary to understand this thesis, and situate it in context. In Section 2.3, we present a

survey of existing trace analysis tools and techniques. A discussion of the advantages and

limitations of these techniques is the subject of Section 2.4. Finally, in Section 2.5, we

summarise the content of the survey by listing the various trace analysis techniques and

classify the tools chosen in this study.

2.2 Related Topics

2.2.1 Software Maintenance

Software maintenance is defined as the modification of a software system after delivery

[ANSI/IEEE Std]. These modifications are usually grouped into four categories [Pfleeger

98]:

• Corrective maintenance: This involves fixing faults that caused the system to fail.

• Preventive maintenance: This is concerned with preventing failures before they

even occur. For example, a software engineer might add fault handlers if the

possibility of a potential fault is noticed.

• Adaptive maintenance: This consists of making changes in existing software to

accommodate new requirements.

 20

• Perfective maintenance: This involves making improvements to the existing system

in order to make it easier to extend and add new features in the future.

The case studies conducted by Jerding et al. [Jerding 97a] and Systä [Systä 00a] and that are

discussed in the introductory chapter of this thesis show how traces can help perform

adaptive and corrective maintenance tasks. However, maintaining a poorly documented

system is a hard task and requires the understanding of its various artefacts including the

source code, run-time information, etc. In this thesis, we focus on techniques for simplifying

the exploration and understanding of large execution traces.

2.2.2 Program Comprehension

Making changes to a software system requires a prior understanding of how it works [Chapin

88]. Understanding a program involves usually four main strategies also referred to as

program comprehension models [Pennington 87, Storey 97, Von Mayrhauser 95]:

Bottom-up Model:

Using the bottom-up model, a software engineer proceeds with comprehending the source

code by building abstractions from it. This strategy usually involves reading the source code

and mentally grouping together low-level programming details, called chunks, in the form of

higher-level domain concepts. This process is repeated until an adequate understanding of the

program is gained [Pennington 87, Storey 97, Von Mayrhauser 95].

Similarly, the bottom-up understanding of a trace of routine calls consists of exploring the

content of various subtrees of the trace. This exploration typically involves

expanding/collapsing subtrees, searching for similar execution patterns, etc. as shown by

Jerding et al. [Jerding 97a]. Most existing trace analysis tools offer a variety of operations

that support this strategy (see Section 2.5).

Top-down Model:

The top-down model is a hypothesis-driven comprehension process. Using this strategy, a

programmer first formulates hypotheses about the system functionality. Then, he or she

 21

verifies whether these hypotheses are valid or not [Brooks 83]. This process usually leads to

creating other hypotheses, forming a hierarchy of hypotheses. This continues until the low-

level hypotheses are matched to the source code and proven to be valid or not. Top-down

analysis is usually performed by software engineers who have some knowledge of the system

under study.

By analogy, we can think of top-down analysis of a trace as a process that consists of two

steps: a) formulating hypotheses about the content of a trace in term of what it does, and b)

validating these hypotheses by matching them to the actual content of the trace.

Formulating hypotheses ought to be easy for software engineers who have some knowledge

of the software under study. However, the level of details represented in a trace can render

the second step (i.e. validating the hypotheses) hard to perform. The problem is that software

engineers do not have a simplified view of a trace they can readily work with. One of the

main contributions of this thesis is to enable top-down analysis by extracting summaries from

large traces. This concept is discussed in more detail in Chapter 4.

The Integrated Model:

Von Mayrhauser and Vans present a model that combines the top-down and bottom-up

approaches that they refer to as the integrated model [Von Mayrhauser 94, Von Mayrhauser

95]. The authors conducted several experiments with real world systems and presented

empirical results that cover a variety of maintenance activities including adaptive

maintenance, corrective maintenance and reengineering [Von Mayrhauser 96, Von

Mayrhauser 97, Von Mayrhauser 98]. One of the most important findings of their research is

that maintainers tend to switch among the different comprehension strategies depending on

the code under investigation and their expertise with the system. We believe that this applies

also to understanding execution traces.

Partial Comprehension:

Erdos and Sneed argue that it is not necessary to understand the whole system if only part of

it needs to be maintained [Erdos 98]. They suggest that most software maintenance tasks can

be met by answering a set of basic questions, which are:

 22

 How does control flow reach a particular location?
 Where is a particular subroutine or procedure invoked?

 What are the arguments and results of a function?
 Where is a particular variable set, used or queried?

 Where is a particular variable declared?
 What are the input and output of a particular module?

 Where are data objects accessed?

The two first questions are clearly addressed by analyzing traces of routine calls. The

remaining questions can be answered using traces in various ways: extending the analysis of

routine-call traces to consider routine arguments and return values; combining trace analysis

techniques with static analysis of the source code, etc. In this thesis, we only focus on

understanding the flow of execution of a system by analyzing the routine calls generated

from executing the software features, leaving the other aspects of this section as a line of

future research.

2.2.3 Reverse Engineering

Program comprehension can be made easier if reverse engineering tools are used. Reverse

engineering can be defined as: “The process of analyzing a subject system to identify the

system’s components and their inter-relationships and to create representations of the system,

in another form at a higher level of abstraction” [Chikofsky 90]. The objectives of reverse

engineering include coping with the increasing complexity of software, recovering lost

information, recovering high-level models of the system, etc. [Chikofsky 90,

Biggerstaff 89].

Tilley identifies three basic activities that are involved in the reverse engineering process

[Tilley 96]:

 23

 Data gathering: This activity covers the techniques that are used to gather the data. This

can be done either by performing static analysis or dynamic analysis. In the context of

this thesis, traces are generated using instrumentation techniques.

 Knowledge organization: Once the data is gathered, we need to structure it in order to

ease its storage and retrieval. In this thesis, we introduce the Compact Trace Format

(CTF) as a metamodel for representing traces of routine calls. CTF is discussed in more

detail in Chapter 6.

 Information exploration: Reverse engineering tools need to implement exploration

techniques to allow fast analysis of the data. Most of the concepts presented in this thesis

such as trace metrics (Chapter 3), trace summarization (Chapter 4), and CTF (Chapter 6)

are designed to help explore the content of traces in an efficient way. However, in order

to be effective, these concepts need to be integrated into a tool suite.

2.3 A Survey of Trace Analysis Tools and Techniques

In this section, we present a survey of existing trace analysis tools and techniques. We

selected several tools in order to achieve good coverage of the types of features available; we

did not attempt to examine in detail all the tools that exist in the literature. Some of the tools

described are not freely available, so our analysis is based on the scientific publications that

describe them. For simplicity, we exclude from our analysis those tools that deal with

distributed systems and multi-threaded traces.

The tools selected for this study are: Shimba, ISVis, Ovation, Jinsight, Program Explorer,

AVID, Scene, and The Collaboration Browser. The next subsections describe these tools and

the techniques they support in more detail. A discussion about the advantages and limitations

of these techniques is presented in Section 2.4. A summary of this study is presented in

Section 2.5.

Pacione et al. [Pacione 03] conducted a study in which they evaluated five general purpose

dynamic analysis tools including debuggers based on the way these tools enable a number of

reverse engineering tasks such as identifying the system architecture, identifying design

patterns, etc. The study presented in this section focuses on the way tools support the analysis

 24

of execution traces to help with program comprehension, which represents a more specific

scope than the work presented by Pacione et al.

Much of the material in this section is adapted and expanded from a paper published in the

14th IBM Conference of the Centre for Advanced Studies on Collaborative Research

(CASCON), 2004 [Hamou-Lhadj 04a].

2.3.1 Shimba

Systä presents a reverse engineering environment, called Shimba, which combines static and

dynamic analysis to understand the behaviour of Java software systems [Systä 01, Systä 99,

Systä 00a]. Static analysis is used to select a set of components that need to be examined later

during dynamic analysis. Systä’s approach is based on the assumption that a software

engineer does not need to trace the whole system if only a specific part needs to be analyzed.

Shimba extracts the system artefacts and their interdependencies from the Java class files and

enables them to be viewed using a reverse engineering tool called Rigi [Müller 88]. In Rigi,

the artefacts are shown as nodes, and the dependencies are shown as directed edges among

the nodes. Shimba considers the following system artefacts: classes, interfaces, methods,

constructors, variables, and static initialization blocks. The dependencies among these

artefacts include inheritance relationships, containment relationships (e.g. a class contains a

method), call relationships and so on. Using Rigi, a software engineer can run a few scripts to

exclude the nodes that are not of interest and keep only those he or she wants to investigate.

Breakpoints are then set at events of interest (e.g. the entry of a method or a constructor) of

the selected classes. The target system is executed under a customized debugger and the trace

is collected.

The next step is to analyze the trace. For this purpose, a software engineering tool called

SCED is used [Koskimies 96b]. SCED is a forward engineering tool that permits the creation

and manipulation of scenario diagrams, which are similar in principle to UML sequence

diagrams. SCED also has the ability to synthesise state machines given several scenario

diagrams.

 25

However, neither Rigi nor SCED allow direct manipulation of the content of traces. By

manipulation, we mean searching for specific components, collapsing and expanding parts of

the traces, etc.

Although the execution trace represents only the classes that were selected using static

analysis, Systä recognizes the fact that these traces may still be large. To overcome this

problem, she applies the Boyer-Moore string matching algorithm [Boyer 97] to SCED

scenario diagrams in order to detect repeated sequences of identical events that she refers to

as behavioural patterns. She distinguishes between two kinds of behavioural patterns: The

first type involves contiguous repetitions of sequences of events due to loops. These patterns

are shown using a repetition construct that exists in SCED. The second type consists of

behavioural patterns that occur in a non-contiguous way in the trace. They are represented

using subscenario constructs, which consist of boxes that are added to SCED scenario

diagrams. A subscenario box encapsulates the events of an instance of the behavioural

pattern. A user can double click on a subscenario box to display the detailed pattern

information.

2.3.2 ISVis

ISVis is a visualization tool that supports analysis of execution traces generated from object-

oriented systems [Jerding 97a, Jerding 97b]. ISVis is based on the idea that large execution

traces consist of recurring patterns, referred to as interaction patterns, and that visualizing

these patterns is useful for reverse engineering. Interaction patterns are in fact the same as the

behavioural patterns used in Shimba.

The execution trace is visualized using two kinds of diagrams: the information mural and the

temporal message-flow diagram (a variant of UML sequence diagrams). The two diagrams

are connected and are presented in one view called the scenario view as shown in Figure 2.1.

The information mural uses visualization techniques to create a miniature representation of

the entire trace that can easily show repeated sequences of events. The temporal message-

flow diagram is used to display the detailed content of the trace. The software engineer can

spot a pattern on the information mural view, select it and investigate its content using the

temporal message-flow diagram.

 26

To deal with the size explosion problem, ISVis uses an algorithm that detects patterns of

identical sequences of calls. Given a pattern, the user can search in the trace for an exact

match, an interleaved match, a contained exact match (components in the trace that contain

components in the pattern) and a contained interleaved match. Additionally, the user can use

wildcards to formulate more general search queries.

Another important feature of ISVis is that trace events can be abstracted out using the

containment relationship. For example, a user can decide to hide the classes that belong to

the same subsystem and only show the interactions between this subsystem and the other

components of the trace.

Figure 2.1. ISVis scenario view which consists of the information mural view

(on the right) and the temporal message-flow diagram (center).

In [Jerding 97b], Jerding et al. describe a data structure for the internal representation of

traces. This is based on the idea that a trace of method calls, which is a tree structure, can be

transformed into its compact form resulting in an ordered directed acyclic graph where the

 27

same subtrees are represented only once. This representation allows ISVis to scale up to very

large traces.

2.3.3 Ovation

De Pauw et al. introduce a tool called Ovation [De Pauw 98]. Unlike Shimba and ISVis,

Ovation visualizes traces using a view based on tree structures called the execution pattern

view (Figure 2.2). According to the authors, the execution pattern view is less cumbersome

than UML sequence diagrams.

This view lets the user browse the program execution at various levels of detail. For example

the user can collapse and expand subtrees, show only messages sent to a particular object,

remove contiguous repetitions of sequences of calls, zoom in and out the trace panel and

many other useful visualization features.

Figure 2.2. The Execution Pattern View of Ovation

 28

To overcome the size explosion problem, similar sequences of events are shown as instances

of the same pattern. The patterns are then color coded to allow software engineers to notice

them easily.

However, the authors notice that exact matching is too restrictive and does not reduce the

size problem very much. They therefore turn to inexact matching: To achieve this, they

present a set of matching criteria that can be used to decide when two sequences of events

can be considered equivalent [De Pauw 98]. The main matching criteria are the following:

 Identity: Two sequences of calls are considered instances of the same pattern if they

have the same topology: same order, objects, methods, and so on. This is the base case,

i.e. exact matching.

 Class Identity: If two sequences of calls involve the same classes but different objects

then they can be considered similar according to this criterion.

 Depth-limiting: This criterion consists of comparing two sequences (which represent

two subtrees of the call tree) up to a certain depth.

 Repetition: It is very common to have two different sequences of calls that differ only by

the number of repetitions due to loops and recursion. If this number is ignored then these

two sequences can be considered equivalent.

 Polymorphism: This criterion suggests considering two subclasses of the same base

class as the same. However, this applies only if they invoke the same polymorphic

operations.

2.3.4 Jinsight

Jinsight is a Java visualization tool that shows the execution behaviour of Java programs [

De Pauw 02]. Jinsight provides several views that can be very helpful for detecting

performance problems. These views can be summarized as follows:

 The Histogram View: It helps the analyst detect performance bottlenecks. It also shows

object references, instantiation and garbage collection.

 29

 The Execution View: This view displays the program execution sequence (Figure 2.3). It

helps the analyst understand concurrent behaviour and thread interactions, as well as

detect deadlocks.

 The Reference Pattern View: This is used to show the interconnections among objects.

For this purpose, Jinsight implements pattern recognition algorithms to reduce the

information overhead. In fact, this view is equivalent to the pattern execution view of

Ovation introduced by the same authors and that was described in the previous

subsection.

 The Call Tree View: This shows the sequence of method calls, including the number of

calls and their contribution to the total execution time as shown in Figure 2.4.

Figure 2.3. Jinsight Execution View

Jinsight is heavily tuned towards performance analysis rather than program comprehension.

However, according to the authors, the reference pattern and the call tree views can be used

for general understanding of the system execution.

 30

Jinsight uses a model for representing the information about the execution of an object-

oriented program introduced by De Pauw et al. in [De Pauw 94]. Events of interest in this

model are object construction/destruction and method invocation and return. The authors

organized these artefacts in a four-dimensional event space having axes for classes, instances,

methods and time as shown in Figure 2.5. Each point corresponds to an event during program

execution. Information is extracted by traversing or projecting one or more dimensions of the

space in different combinations to produce subspaces.

Figure 2.4. Jinsight Call Tree View

However, the event space of even a small system might be very large. To overcome this

problem, the authors introduce the concept of call frames. A call frame is a combination of

events that depicts a communication pattern among a set of objects. For example, consider a

method m1 of class c1 that calls a method m2 of class c2. This sequence typically involves

an object o1 of c1 and an object o2 of c2 (this does not apply if static methods are used). The

whole sequence is saved as one call frame instead of saving every single event of this

sequence.

 31

Statistical information can also be computed at the same time the system executes. For

example, we can associate with the previous call frame the number of times the method m1

calls m2 or the number of times the class c1 calls c2. For this purpose, several data structures

are used to represent the call frames.

Although this technique might result in a significant reduction of the number of events, it is

more tuned towards performance analysis than program comprehension. Indeed. Most of the

visualization views supported by Jinsight exhibit statistical information only and are similar

in principle to the way profilers work.

Figure 2.5. Four-dimensional event space used by

Jinsight to represent trace events

2.3.5 Program Explorer

Program Explorer is a C++ exploration tool that focuses on analyzing interactions among

objects and classes [Lange 97]. The authors start by introducing a common model and

notation for OO program execution. Interactions among objects are modeled using a directed

graph called the Interaction Graph (Figure 2.6). The nodes of the graph represent objects and

the arcs represent method invocations. Arcs are labelled with the name of the method, the

 32

time at which the invocation of the method takes place and the time at which the execution

returns to the caller.

To overcome the size explosion problem, Program Explorer uses several filtering techniques,

which are:

Figure 2.6. The interaction graph is used by Program

Explorer to represent object interactions.

• Merging: Using Program Explorer, the analyst can merge arcs that represent identical

methods among pairs of objects. The resulting graph is called the Object Graph and

emphasizes how objects interact but hides the order and the multiplicity of invocations.

Furthermore, the analyst can merge objects of the same classes into one node to reduce

the number of nodes. The resulting graph is called the Class Graph and focuses on class

interaction rather than object interaction. An example of the class graph is shown in

Figure 2.7. This is similar in principle to the pattern matching criteria that are supported

by Ovation.

• Pruning: Pruning is the process of removing information from the interaction graph in

order to reduce its size. Program Explorer implements three kinds of pruning techniques:

 33

object pruning, method pruning and class pruning. Pruning an object consists of

removing its corresponding node from the interaction graph. The incoming and outgoing

arcs of this node are also removed. Method pruning consists of performing the same task

on specific methods. The subsequent invocations that derive from them are also removed.

Pruning can also apply to inheritance hierarchies and is called class pruning. Class

pruning relies on the fact that pruning a superclass method will result in pruning this

method at the subclasses level. The several pruning techniques are exactly similar to the

many different browsing capabilities that exist in ISVis, Ovation and Jinsight.

Figure 2.7. A class graph focuses on class interactions
rather than object interactions

 Slicing: Object slicing is similar to dynamic slicing [Korel 97] and aims at keeping all

the activation paths in which this object participates. That is, all the other paths are

removed from the graph. Method slicing accomplishes the same task as object slicing

except that it focuses on keeping specific methods of an object.

 34

2.3.6 AVID

Walker et al. describe a tool, called AVID (Architecture Visualization of Dynamics in Java

Systems), for visualizing dynamic behaviour at the architectural level [Walker 98]. AVID

uses run-time information and a user-defined architecture of the system to create a dynamic

view of the system components and the way they interact.

First, the analyst creates a trace describing the method calls and the instantiation and

destruction of objects. Next, he or she needs to cluster classes into components called

entities. In AVID, clusters are represented as boxes and the dynamic relationships extracted

from the trace as directed arcs as shown in Figure 2.8. An arc between two entities A and B

is labelled with the number of calls the methods of the classes in A make to the methods of

the classes in B. Instantiation and destruction of objects are shown as bar-chart style of

histograms associated with each box.

Figure 2.8. Interactions among the system clusters as represented by AVID.
Here, the analyst has replayed the execution and stopped at Cel#14

 35

In AVID, the analyst can control the sequence of events he or she wants to visualize. This is

done by breaking the execution trace into a sequence of views called cels. Animation

techniques allow the analyst to show the whole execution cel by cel (which is also called the

play mode), stop the animation, as well as go forward and backward. These techniques aim to

reduce the information overhead when dealing with large execution traces. Furthermore,

AVID contains a summary view in which all the interactions are shown.

Although animation techniques can help reduce the information overhead, traces are very

large and there is a need to investigate more techniques to reduce their size. In a recent paper

[Chan 03], Chan et al. describe how AVID was improved to consider filtering techniques

based on sampling. The authors describe a set of sampling parameters that can be used by the

analyst to consider only a sample of the execution trace. For example, the analyst can choose

the events that appear after a certain timestamp only, a snapshot of the call stack every xth

event, etc.

However, there is a lack of scientific evidence regarding which parameters are best to use. If

they work for a given scenario they may not work for others; this is demonstrated in the

results of the case studies conducted by the authors of AVID in which some parameter

settings worked for one case study but did not work for the other case study.

2.3.7 Scene

Koskimies and Mössenböck present a tool called Scene (Scenario Environment) that is used

to produce scenario diagrams from a dynamic event trace [Koskimies 96a]. The authors

notice that horizontal scrolling makes the diagrams cumbersome and there is a need for

techniques that center the information conveyed by scenario diagrams on the screen. They

name this problem the focusing problem and suggest several visualization-oriented

techniques to solve it. Among these techniques, we have:

 Call compression: This technique consists of collapsing the internal invocations that

derive from a given call. A click on this call will result in making its internal invocations

visible. Figure 2.9 shows an example of three calls that have been collapsed, which can

be expanded by a click from the user.

 36

 Partitioning: This feature divides the call tree invoked by a given method into parts.

The user can choose to click on a specific part to expand the invocations it encapsulates

without opening the other parts.

 Projection and removal: This operation enables the user to select an object and show

only the interactions that involve its methods. The other interactions are then hidden.

 Single-step mode: The single-step mode allows the user to display the internal

invocations of a given call one step at a time by clicking on the last visualized call.

Scene also provides a summary view which consists of a matrix that shows how the classes

of the system interact among each other.

Figure 2.9. The calls Install and Do have been collapsed. The user
can click on these calls to see the methods they invoke

2.3.8 The Collaboration Browser

Richner and Ducasse describe a tool called The Collaboration Browser that is used to recover

object collaborations from execution traces [Richner 02].

The authors define a collaboration instance as a sequence of method invocations that starts

from a given method and terminates at its return point. This includes a single method call that

does not generate other calls. Similar collaboration instances define a collaboration pattern

 37

(which is similar to Shimba behavioural patterns and ISVis interaction patterns). Similarity is

measured according to three kinds of matching criteria:

 Criteria based on information about the event: An event in the trace contains

information about the sender, receiver and the invoked method. The analyst can choose to

include or omit any of these attributes in the matching process. For example, the analyst

may decide to ignore the invoked method and match two sequences of calls using the

sender and receiver classes (or objects) only. These represent an extension to the criteria

that are supported by Ovation.

 Excluding events: This category allows the analyst to exclude specific events in the

matching scheme. For example, the analyst may decide to ignore events in which an

object sends a message to itself, events that appear after a certain depth in the trace, etc.

 Structure of the collaboration instance: A collaboration instance is a tree of events.

The authors notice that similar collaboration instances may differ in their structure and

still represent the same behaviour. Therefore, one can consider two collaboration

instances as instances of the same collaboration pattern if they contain the same set of

events no matter in which order they occur or their nesting relationships.

Once the classes that constitute a given collaboration are determined, the user can query the

trace or the collaboration pattern to extract the role of each of its classes. The role of a class

is represented by its public methods. In addition to this, the tool enables the developer to

filter out dynamic information by removing classes or methods that are not of interest. It can

also display an instance of a collaboration pattern as a UML sequence diagram.

The authors conducted a case study with a framework for the creation of graphical editors

called HotDraw. They were interested in understanding the implementation of one aspect of

this framework, which is concerned with the tools that are responsible for creating and

manipulating figures. First, they instrumented all the methods of the system. Next, they run a

short scenario that involves the feature under analysis. The resulting trace contains 53735

method invocations.

 38

To extract collaboration patterns, the authors arbitrarily picked several matching criteria. For

example, they decided to ignore self-invocations, limit the depth of invocation to 20 and not

consider the tree structure of collaboration instances during the matching process. 183

patterns were generated.

The next step was to query the patterns to extract only the collaboration patterns that describe

the implementation of the feature under analysis. This process is iterative and assumes that

the analyst has knowledge of the system so as to know what to look for.

2.4 Discussion

In this section, we discuss the pros and cons of the features supported by the above trace

exploration tools. The focus is on the following points:

 The models used to represent traces

 The levels of granularity of the analysis permitted by the existing techniques

 The techniques used to cope with the large size of execution traces

2.4.1 Modeling Execution Traces

In order to analyze large program executions, an efficient representation of the event space is

needed. Unfortunately, most of the literature about the above tools does not even discuss this

aspect.

Among the tools whose literature does discuss modeling issues, ISVis seems to implement

the most interesting approach. It uses a graph-theory concept that consists of transforming a

rooted labelled tree into a directed acyclic graph by representing identical subtrees only once.

This technique has been widely used in trace compression and encoding [Reiss 01, Larus 99]

and was first introduced by Downey et al. [Downey 80] to enable efficient analysis of tree

structures.

Another interesting approach for modeling large execution traces is implemented in Jinsight.

As we showed earlier, Jinsight uses the call-frame principle to represent cumulative

 39

information about the traces such as the number of calls a method ‘A’ makes to ‘B’ and so

on. However, Jinsight’s approach is more useful for performance analysis than for program

comprehension and therefore it will not be considered in this study.

Finally, Trace Explorer uses a graph to represent the execution traces, where the nodes

represent the objects and the arcs represent the method calls. However, this technique

requires extra data structures to keep track of the order of calls, which makes traversing the

graph time consuming.

2.4.2 Levels of Granularity of the Analysis

A key aspect of reverse engineering is to extract different levels of abstraction of a software

system. Depending on the tool used, one can view the content of an execution trace at the

following levels of granularity:

 Object level: This level is concerned with visualizing method calls among objects and is

supported by most existing tools. This can be useful for detecting memory leaks and

other performance bottlenecks.

 Class level: In this level, objects of the same class are substituted with the name of their

classes. This level suits best activities that require high-level understanding of the

system’s behaviour such as recovering the documentation, understanding which classes

implement a particular feature, etc. This thesis focuses on this level of granularity.

 Subsystem level: This level consists of grouping classes into clusters and showing how

the system’s components interact with each other.

2.4.3 Dealing with the Large Size of Traces

A key element for a successful dynamic analysis tool consists of implementing efficient

techniques for reducing the amount of information contained in traces. We classify the

techniques used by these tools into two categories. The first category is concerned with the

ability to browse the content of the trace easily, search for specific elements and so on. We

call this category: Basic Trace Exploration. The second category is concerned with the ability

 40

to reduce the size of the trace by removing (or hiding) some of its components. We call this

category of techniques: Trace Filtering.

Basic Trace Exploration techniques are tightly coupled with the visualization tools that

implement them. Generally speaking, using these techniques an analyst can browse, animate,

slice or search the traces. It seems that there is an agreement about the importance of such

techniques in reducing the information overhead and most of the tools support these features.

Basic trace exploration is also concerned with techniques that allow searching the trace

content for specific components. ISVis, for example, enables the analysts to use wildcards to

formulate sophisticated queries.

Trace filtering techniques operate on the execution traces independently of any visualization

scheme. The goal is to hide some components of the trace in order to abstract out its content.

Most tools process the traces in an off-line manner (i.e. the trace is first generated and then

filtered). We found that the tools discussed earlier implement different techniques that we

present below:

Data Collection Techniques:

The collection of trace data can be done either at the system level or at the level of selected

components. These two approaches have their advantages and disadvantages. The advantage

of the system-level data collection approach is that the analyst does not need to know which

components implement the feature under study. However, the resulting execution traces are

usually quite large and require advanced filtering techniques. The component-level data

collection technique has the obvious advantage of resulting in smaller execution traces but

requires from the analyst to know, in advance, which components need to be instrumented.

Shimba, for example, involves the analyst in the process of detecting the components that

implement the desired feature. We do not think that this is practical for complex features.

There is a need for feature localization techniques such as the ones described by Wilde et al.

[Wilde 95] and Eisenbarth et al. [Eisenbarth 01].

 41

In this thesis, we do not make any assumption with respect to the level of expertise a

software engineer has of the system. The techniques presented in this thesis can apply to any

traces independently of the number of components involved in generating them.

Pattern Matching:

Most of the tools use pattern detection abilities to group similar sequences of events in the

form of execution patterns so as the analyst does not need to look at the same sequence twice.

The concept of execution patterns has been given various names including behavioural

patterns in Shimba, interaction patterns in ISVis, and collaboration patterns in The

Collaboration Browser.

Patterns are efficient at reducing the size of traces if they are generalized [De Pauw 98]. For

this purpose, a variety of matching criteria are suggested such as the ones implemented in

Ovation and The Collaboration Browser. Some matching criteria require the setting of

parameters. For example, the depth-limiting criterion presented in Section 2.3.3 involves

setting the depth at which two sequences of events need to be compared. The challenge is to

find the appropriate settings to achieve an understanding of the feature under study.

Furthermore, the different combinations of matching criteria will result in different filtering

of the content of trace, which poses real challenges to using these criteria in practice. A more

discussion about matching criteria is presented in Chapter 3,

Hiding Components:

Removing specific components from traces is another way to reduce the trace size. For

example, the analyst may simply decide to hide all the invocations of a specific method.

Most of the tools implement capabilities for removing information from the trace. The

Collaboration Explorer and Program Explorer, for example, allow the analyst to remove

methods, specific objects or even classes. Pruning and slicing are two concepts used in

Program Explorer that achieve this. However, it is totally up to the maintainer to uncover the

components that can be filtered out without affecting the comprehension of the trace. There

is certainly a need for automatic assistance. In this thesis, we argue that not all routines

invoked in a trace are important in order to understand its content. Some routines are mere

 42

implementation details and obscure the content of traces. One of the main contributions of

this thesis is a detailed definition of the concept of utilities. We have also developed a

technique for automatic detection of utilities based on fan-in analysis of the system

components (see Section 4.4).

Sampling:

Sampling is an interesting way of reducing the size of the trace and was used in AVID. It is

concerned with choosing only a sample of the trace for analysis instead of the whole trace.

However, finding the right sampling parameters is not an easy task and even if some

parameter settings work for understanding one feature, it is not evident that the same settings

will work for another feature. In this thesis, we do not deal with sampling techniques.

Architectural-level filtering:

Another approach for reducing the size of traces is to show the dynamic interactions among

the architectural components of the system rather than among single objects (or classes). For

this purpose, the analyst first determines the system architecture (if it is not available) and

then the execution trace is abstracted out to show the interactions among the components.

However, this approach can help software engineers understand the system at the

architectural level only. In addition to this, it requires the system architecture to be present.

AVID, for example, assumes that the analyst is familiar enough with the system to cluster

classes into components. However, this is often not true in practice. Often, there is a need for

automatic clustering techniques such as the ones described by Anquetil et al. [Anquetil 03],

Müller et al. [Müller 93], and Tzerpos et al. [Tzerpos 98].

2.5 Summary

Table 2.1 summarizes the trace analysis techniques discussed in the previous section. It also

sets out the selected tools against these techniques. This way we can assess which part of the

trace analysis techniques is covered by existing tools and which part is still left open. For

 43

example, except for AVID, most existing tools do not permit the analysis of the dynamics of

the system at the architectural level.

From the table we can also infer several other facts concerning the tools studied in this

chapter. For example, Program Explorer and Scene do not use any filtering technique. They

rely mainly on the user exploration of the trace content.

In addition to this, we can see that the most used filtering techniques are the ones based on

pattern detection capabilities (they are supported by four tools out of eight). The use of a

static analysis tool for selecting the components that will be traced (i.e. data collection

filtering technique) is supported by Shimba only. This is probably because most existing

tools do not have access to the static representation of the system. Shimba uses Rigi to

achieve this goal.

Table 2.1. Classification of trace analysis tools

Trace Analysis Techniques

Shim
ba

ISV
is

O
vation

Jinsight

Program
 E

xplorer

A
V

ID

Scene

C
ollaboration

B
row

ser

1. Modeling Traces

Tree Structures x x x x

DAG x

Graph with labelled edges x x x

2. Dealing with the large size of traces

Basic Trace Exploration x x x x x x x

Trace Filtering

Data collection x

Pattern matching x x x x

Architectural-level filtering x

Sampling x

3. Levels of granularity

Object x x x x x x

Class x x x x x

 44

Package / Subsystem / Cluster x

Chapter 3. Trace Metrics

3.1 Introduction

Since the outset of our research, our goal has been to find ways to make it easier for software

engineers to understand a program’s behaviour by exploring traces. This necessitates

simplifying views of traces in various ways – in other words, reducing their size and

complexity while keeping as much of their essence as possible.

However, in order to characterize and quantify the techniques we develop, we need to be able

to measure various aspects of traces. Having suitable metrics will allow us, for example, to

compare the outputs of various filtering algorithms. Such metrics might also be built into

tools: One application would be to give an algorithm a goal to reach such as to shorten a trace

by a certain percentage. Another application would be to use colouring or other encoding to

highlight to the user the parts of a trace that are more complex, or the quantity of nodes that

are hidden.

Existing tools, such as those presented in Chapter 2, provide various filtering operations, but

do not give feedback to the user in a meaningful way about how much complexity has been

removed by the filtering. We looked, informally, at the behaviour embedded in most

interesting traces and found that they can be considerably more complex than expected; yet

due to a lack of quantitative guidance, it was not obvious how to combine the filtering

techniques to reduce this complexity.

At first glance, one might imagine measuring a trace could be rather straightforward: A naïve

approach might just be to report the file size or the number of lines in the trace. However, a

myriad of subtleties arise, for example:

 45

• The file size and number of lines depend on the schema used to represent the trace and

the syntax used to convey the data specified by such a schema (See Chapter 6 for more

on this).

• Not all elements of a trace are equally important, or contribute equally to complexity. For

example, a long series of identical method calls would be rather simpler to understand

than a highly varied and non-repetitive sequence of the same length.

• The notion of complexity is itself rather vague, suggesting that we need to be able to

measure a wide variety of aspects that may contribute to complexity so we can later

experiment with various approaches to complexity reduction.

In this chapter, we first present a catalog of metrics for measuring various aspects of traces.

We then report the result of applying these metrics to thirty traces generated from three

software systems.

The outcome of this work can be used in different ways:

 Software engineers can use the metrics to choose which traces to analyze, to generate

traces that are neither too complex nor too simple, and to select parts of traces to analyze

that have a suitable complexity level.

 The designers of trace analysis tools can incorporate the metrics into tool features. They

can design facilities to reduce the amount of information being displayed to some

threshold (by hiding sufficient detail). Tool designers could also ‘color’ each subtree of a

trace to give software engineers a better sense of the complexity to be found in that

subtree before the software engineer ‘opens’ it for exploration.

 Researchers in the field of dynamic analysis (with a focus on program comprehension)

can use the material presented here to help characterize the techniques they develop for

reducing the complexity of traces.

This chapter is organized as follows: In the next section, we introduce the concept of

comprehension units that will help us determine some of the metrics used in this chapter. In

Section 3.3, we describe the metrics and motivate why they are important for characterizing

 46

the effort required to understand an execution trace. In Section 3.4, we show the results of

analyzing traces of three software systems. In Section 3.5, we discuss how these metrics can

be supported by tools. Some of the metrics presented in this chapter rely on the fact that a

tree structure can be represented in the form of an ordered directed acyclic graph (DAG)

[Downey 80]. We therefore, include in this chapter an algorithm that performs this

transformation and present it in Section 3.6.

Much of the material in this chapter is adapted and expanded from a paper published in the

10th IEEE International Conference on Engineering of Complex Computer Systems, 2005

[Hamou-Lhadj 05b].

Initial measurements we performed on traces have been published in the 2nd ICSM

International Workshop on Visualizing Software for Understanding and Analysis, 2003

[Hamou-Lhadj 03a], and the 10th IEEE International Workshop on Program Comprehension

(IWPC), 2002 [Hamou-Lhadj 02].

3.2 The Concept of Comprehension Units

We define a comprehension unit as a distinct subtree of the trace. We hypothesize that in

order to fully understand the trace, without any prior knowledge of the system, the analyst

would need to investigate all the comprehension units that constitute it. It is important to

notice that in practice, full comprehension would rarely be needed because the analyst will

achieve his or her comprehension goals prior to achieving a full comprehension. Also, he or

she will likely not need to try to understand the differences among the many comprehension

units that only have slight differences.

We deliberately choose to use the term ‘comprehension unit’. Both words in this choice of

terminology have been criticised, but we intend to maintain our choices. The word

‘comprehension’ is used so as to emphasise the fact that we are indeed trying to consider the

distinct parts of the trace that need to be comprehended. Also the term ‘unit’ used to indicate

that these are items that can be counted; it is clear that the amount of comprehension required

to understand the internals of two comprehension units will likely differ widely, but the same

would be true of other ‘units’ in software engineering such as lines of code, methods, etc. In

 47

other words, it does not matter that the amount of understanding is different, and it does not

matter that there will be other things (other than simply the subtrees) to understand. The key

idea is that two equal comprehension units will not need understanding more than once.

An efficient technique for extracting comprehension units is based on transforming the trace

into its compact form by representing similar subtrees only once. This transformation results

in an ordered directed acyclic graph (DAG) [Downey 80, Flajolet 90].

Figure 3.1 shows a trace in the form of a tree structure and its corresponding ordered directed

acyclic graph. The graph shows that the trace contains six comprehension units and that the

comprehension unit rooted at ‘B’ is repeated twice in a non-contiguous way. We refer to

comprehension units that are repeated non-contiguously as trace patterns.

Many concepts presented in this thesis consider the DAG form of a trace rather than a tree

structure. For this purpose, we developed an algorithm for on the fly transformation of a tree

into an ordered directed acyclic graph. Using this algorithm, a trace will ever need to be

saved as a tree structure. The details of this algorithm are presented in Section 3.6.

Figure 3.1. The graph representation of a trace is a better way to
spot the number of distinct subtrees it contains

 A

B

C

D
E

F
B

C
D

C D F

B

A

E

 48

3.3 The Catalog of Metrics

In this subsection, we develop a set of metrics that can be used to measure potentially useful

properties of execution traces. We motivate the design of these metrics using the

Goals/Questions/Metrics (GQM) model [Basili 94] as a framework.

The top level goal can be stated as follows:

To enable software engineers to more quickly understand the

behaviour of a running system.

To achieve this goal, and in accordance with the GQM approach, we have designed questions

that aim at characterizing the effort required for understanding an execution trace. We

present these questions along with the metrics that address them.

Software engineers will only benefit from these metrics if they are incorporated into tools, in

ways such as those suggested earlier.

The metrics we present are designed to explore the possible space of size and complexity

metrics. Not all of them will necessarily be of equal value. Later in the chapter we will

present case studies where we use some of them to actually measure some traces. We will

also use the metrics in discussions later in the thesis.

3.3.1 Call Volume Metrics

This category of metrics aim to answer the following question: How many calls does a trace

contain?

Knowing the number of calls in a trace is one factor that will help determine the work

required to understand the trace. The following metrics make this more precise:

Full size [S]: The full size is the raw number of calls recorded in the trace; it is the number of

nodes in the call tree without any of the manipulations described below, such as removing

repetitions. This forms a baseline for subsequent computations and will always be

numerically larger than any of the other size metrics described below.

 49

Note that we say that it is the number of calls recorded. It is possible that some or many calls

are not recorded. For example, a software engineer will often choose to not record

invocations of private methods. He or she may also sample execution during a certain time

period only, or record only invocations in a certain subsystem. S is therefore always relative

to the instrumentation used to gather the trace, but nevertheless represents the size of

everything the software engineer has to work with in a given trace.

Size after removing contiguous repetitions [Scr]: This is the number of lines in the trace

after removing contiguous repetitions due to loops and recursion. In other words, many

identical calls are mapped into a single line by processing the trace. We refer to this process

as the repetition removal stage.

Note that by identical, we are referring to identity between subtrees. At the leaf level of the

call tree, the sequences AAABBB and AABBBB would result in Scr=2 (i.e. the nodes AB),

whereas AABBBAA would result in Scr=3 (nodes ABA). And one level higher,

ACCDDACDBD
3 and ACDDDBDDD would both result in Scr=5 five (nodes ACDBD), whereas

ACCDBDDACD would result in Scr=8 (nodes ACDBDACD).

According to our experience working with many execution traces, it seems that the number

of lines after repetition removal is a much better indicator of the amount of work that will be

required to fully understand the trace. This is due to the fact that the full size of a trace, S, is

highly sensitive to the volume of input data used during the execution of the system. To

understand the behaviour of an algorithm by analyzing its traces, it is often just as effective

to study the trace after most of the repetitions are collapsed. And, in that case, studying a

trace of execution over a very large data set would end up being similar to studying a trace of

execution over a moderately sized data set.

Size, treating all called routines as a set [Sset]: This is the number of lines that remains

after all repetitions and ordering are ignored. So for example ACCDDACDBD, ACDDDBDDD and

ACCDBDDACD would all result in Sset=5 (nodes ACDBD).

3 We use the notation AC to represent ‘A calls C’

 50

Collapse ratio after removing contiguous repetitions [Rcr]: This is the ratio of the number

of nodes after removing the contiguous repetitions from the full trace. Rcr = Scr/S.

Knowing that a program does a very high proportion of repetitive work (that Rcr is low)

might lead program understanders to study possible optimizations, or to reduce input size.

Knowing that Rcr is high would suggest that understanding the trace fully will be time

consuming.

The Collapse Ratio is analogous to the notion of ‘compression ratio’ used in the context of

data compression. However we have carefully avoided using the term ‘compression’ since it

causes confusion: The purpose of compression algorithms is to make data as small as

possible; a decompression process is required to reconstitute the data in order to use it for any

purpose. On the other hand, the purpose of collapsing is to make the data somewhat smaller

by eliminating unneeded data, with the intent being that the result will be intelligible and

useful without the need for ‘uncollapsing’.

Collapse ratio treating calls as a set [Rset]: Analogously to the above, this is Sset/S.

3.3.2 Component Volume Metrics

This category of metrics is concerned with measuring the number of distinct components that

are invoked during the execution of a particular scenario. The motivation behind the design

of these metrics is that traces that cross-cut many different components of the system are

likely to be harder to understand than traces involving fewer components. In addition to this,

it is very common that software engineers exploring traces map the trace components to their

implementation counterpart in order to better understand a particular functionality. Knowing

that a trace involves a large number of the system components (e.g. classes, packages, etc)

would suggest that tools ought to support techniques that would easily allow this mapping.

More specifically, these metrics aim to investigate the following question: How many system

components are invoked in a given trace?

 51

The term ‘component’ is very general. Separate metrics can be used to measure invocations

of different types of components. In this chapter, since the target systems that are analyzed

are all programmed in Java then it may be useful to measure the following:

Number of packages [Np]: This is the number of distinct packages invoked in the trace. By

‘invoking’ a package we mean that some method in the package is called.

Number of classes [Nc]: This is the number of distinct classes invoked in the trace.

Number of methods [Nm]: This is the number of distinct methods that appear in the trace

(i.e. irrespective of how many times each method is called).

It may be useful to create similar metrics based on other types of components, e.g. the

number of threads involved.

The following ratios enable one to determine the proportion of a system that is covered by

the trace. The more of a system covered, the more time potentially required to understand the

trace, but the more complete an understanding of the entire system may be gained. Thus we

may measure the following:

Ratio of number of trace packages to the number of system packages [Rpsp]: This is the

ratio of the number of packages invoked in a trace to the number of packages of the

instrumented system. More formally, if we let:

 NSp = The number of packages of the instrumented system

 Np = The number of packages as defined above

Then: Rpsp = Np/NSp

Ratio of number of trace classes to the number of system classes [Rcsc]: This is the ratio

of the number of classes invoked in a trace to the number of classes of the instrumented

system. This is computed analogously to Rpsp.

 52

Ratio of number of trace methods to the number of system methods [Rmsm]: This is the

ratio of the number of methods invoked in a trace to the number of methods of the

instrumented system.

3.3.3 Comprehension Unit Volume Metrics

The comprehension unit volume category of metrics is computed from the graph

representation of the trace. The question that we are interested in investigating is: How many

comprehension units exist in a trace?

We suggest that metrics based on comprehension units will give a more realistic indication

than call volume of the complexity of a trace.

Number of comprehension units [Scusim]: This family of metrics represents the number of

comprehension units (i.e. distinct subtrees) of a trace. The number may vary depending on

the way similarity among the subtrees is computed. The subscript ‘sim’ is used to refer to the

similarity function used.

Considering exact matches only will result in a maximum number of comprehension units,

Scuexact. For example, consider the tree of Figure 3.2; the two subtrees rooted at ‘B’ differ

because the number of contiguous repetitions of their subtrees differs.

If the number of contiguous repetitions is ignored when comparing two subtrees we use the

subscript cr, and the resulting metric is Scucr, which will always be equal to or less than

Scuexact. We will define Scu (unsubscripted) to mean Scucr, since in our experience, Scucr is a

more useful basic measure of comprehension units than Scuexact.

We can also compute Scuset which compares the set of subtrees, ignoring all repetition

(contiguous or not) and also ignoring order. It will be true that Scuset ≤ Scucr ≤ Scuexact.

Further metrics (with other subscripts) can be computed by further varying the matching

criteria.

 53

Figure 3.2. The two subtrees rooted at ‘B’ can be considered

similar if the number of repetitions of ‘C’ is ignored

Graph to tree ratio [Rgtsim]: This family of metrics measures the ratio of the number of

nodes of the ordered directed acyclic graph to the number of nodes of the trace. We expect to

find a very low ratio since the acyclic graph factors out repetitions. More formally, let us

consider:

 Scr = The size of a trace T after removing contiguous repetitions.

 Scucr = The size of the resulting graph after transforming T to a graph.

Then: Rgtcr = Scucr/Scr.

Using another similarity function, we can also have Rgtset = Scuset/Sset.

If Rgtsim is very low then this suggests that even a huge original trace might be relatively easy

to understand.

3.3.4 Pattern Related Metrics

This category of metrics is concerned with measuring the number of patterns that exist in a

trace. As a reminder, a pattern is a comprehension unit that is repeated in a trace non-

contiguously. As we showed in Section 2.3, most trace analysis tools rely on pattern

detection capabilities to help software engineers explore the content of large traces. In

addition to this, Jerding et al. have shown that patterns play an important role in uncovering

domain concepts or interesting pieces of computation that the software engineer would

 54

benefit from understanding [Jerding 97a, Jerding 97b]. In this category, we therefore

investigate the following question: How many patterns exist in a trace?

We present the following metrics:

Number of trace patterns [Npttsim]: This metric simply computes the number of trace

patterns that are contained in a trace, given ‘sim’ as the similarity function (as before, if it is

omitted, we assume cr). If Nptt is small this suggests that the complexity of the trace will be

high.

Ratio of the number of patterns to the number of comprehension units [Rpcu]: This

metric computes the ratio of the number of patterns to the number of comprehension units. In

other words, we want to assess the percentage of comprehension units that are also patterns.

3.3.5 Discussion

This section discusses the necessity and sufficiency of the four families of metrics presented

in this chapter. In general, the metric families are necessary since they each tell a different

story about a trace: Leaving one or other family out would leave gaps. On the other hand,

sufficiency of a metric is normally evaluated on the basis of whether the metric captures an

underlying concept (in cases where the metric is a surrogate for an underlying concept). The

metrics described here are generally very direct measures, as opposed to surrogates, so

sufficiency is less of an issue.

The call volume metrics can be used to indicate the complexity of a trace by simply looking

at its length (i.e. the number of calls). These metrics also take into account the length of the

trace after removing contiguous repetition (Scr) as well ignoring the order of calls (Sset). The

advantage of these metrics is that they do not require extensive processing. Their limitation is

that they do not consider the non-contiguous repetitions that occur in a trace. In other words,

two identical subrees that occur in a non contiguous way will be counted twice. To address

this issue, we presented the comprehension unit metrics (Scu, Rgt), which measure the

content of a trace by factoring out all kinds of repetitions whether they are contiguous or not.

We believe that these metrics are a better indicator of the work required to explore and

 55

understand the content of a trace since software engineers do not need to understand the same

comprehension unit twice.

Trace patterns metrics are necessary in order to evaluate the number of patterns in a trace. As

shown by Jerding et al. [Jerding 97a, Jerding 97b], software engineers often rely on exploring

trace patterns so as to uncover the core behaviour embedded in a trace. These metrics can be

used in combination with the comprehension unit metrics so as to compute the ratio of the

number of patterns to the number of comprehension units. This ratio can be used to assess the

extent to which a trace performs repetitive work.

Finally, we presented the component volume metrics to assess the number of the system’s

components invoked in a trace. These metrics are necessary given that software engineers

will most likely need to map the content of a trace to the source code in order to get more

information. Knowing that a trace, or part of trace, cross-cuts several system components is

an indicator that this mapping might be complex to perform. These metrics can be used

independently from the other metrics presented in this chapter.

3.4 Case Studies

We analyzed the execution traces of three Java software systems: Checkstyle [Checkstyle],

Toad [Toad] and Weka [Weka, Witten 99]. This analysis has the following objectives:

 Compute a wide variety of the metrics presented in the previous section

 Perform further analysis to interpret the measurements using the metrics

 Draw inferences about the applicability of the metrics by comparing the results from

the three systems

3.4.1 Target Systems

To begin with, we briefly describe the three target systems used in this study. Checkstyle is a

development tool to help programmers write Java code that adheres to a coding standard

[Checkstyle]. This is very useful to projects that want to enforce a coding standard. The tool

allows programmers to create XML-based files to represent almost any coding standard.

 56

Toad is an IBM tool that includes a large variety of static analysis tools for monitoring,

analyzing and understanding Java programs [Toad]. Although these tools can be run as

standalone tools, they can provide a much greater understanding of a Java application if they

are used together. Weka is a collection of machine learning algorithms for data mining tasks

[Weka, Witten 99]. Weka contains tools for data pre-processing, classification, regression,

clustering and generating association rules.

Table 3.1. Characteristics of the target systems

 Packages Classes Non-private
Methods

KLOC

Checkstyle 43 671 5827 258

Toad 68 885 5082 203

Weka 10 147 1642 95

Table 3.1 summarizes certain static characteristics of the target systems relevant to

computing the trace metrics. For simplicity, we deliberately ignore the number of private

methods (including private constructors) both in the table and in the traces: they are used to

implement behaviour that will be localized within a class, so tracing them would provide

minimal value in terms of comprehending the system, when compared to the added cost of a

much larger trace. Abstract methods are also excluded since they have no presence at run

time. Finally, the number of classes does not include abstract classes for the same reason.

3.4.2 Generating Traces

We used our own instrumentation tool based on BIT [Lee 97] to insert probes at the entry

and exit points of each system’s non-private methods. Constructors are treated in the same

way as regular methods. Traces are generated as the system runs, and are saved in text files.

Although all the target systems come with a GUI version, we can invoke their features using

the command line. We favoured the command line approach over the GUI to avoid

encumbering the traces with GUI components. A trace file contains the following

information:

 57

 Thread name
 Full class name (e.g. weka.core.Instance)

 Method name and
 A nesting level that maintains the order of calls

Table 3.2. Checkstyle Traces

Trace Description

C-T1 Checks that each java file has a package.html

C-T2 Checks that there are no import statements that use the .* notation.

C-T3 Restricts the number of executable statements to a specified limit.

C-T4 Checks for the use of whitespace

C-T5 Checks that the order of modifiers conforms to the Java Language specification

C-T6 Checks for empty blocks

C-T7 Checks whether array initialization contains a trailing comma

C-T8 Checks visibility of class members

C-T9 Checks if the code contains duplicate portions of code

C-T10 Restrict the number of &&, || and ^ in an expression

Table 3.3. Toad Traces

Trace Description

T-T1 Generates several statistics about the analyzed components

T-T2 Detects and provides reports on uses of Java features, like native code interaction
and dynamic reflection invocations, etc.

T-T3 Generates statistics in html format about unreachable classes and methods, etc

T-T4 Specifies bytecode transformations that can be used to generate compressed
version of the bytecode files

T-T5 Generates the inheritance hierarchy graph of the analyzed components

T-T6 Generates the call graph using rapid type analysis of the analyzed component

T-T7 Generates an html file that contains dependency relationships among class files

We noticed that all the tools use only one thread, so we ignored the thread information. We

generated several traces from the execution of the target systems. The idea was to run the

systems invoking several features of the system. We deliberately choose features that cover

different aspects of the system and that are not slight variations of each other. This will allow

 58

us to better interpret the results. Table 3.2, 3.3 and 3.4 describe the features that have been

traced for each system.

Table 3.4. Weka Traces

Trace Description

W-T1 Cobweb Clustering algorithm

W-T2 EM Clustering algorithm

W-T3 IBk Classification algorithm

W-T4 OneRClassification algorithm

W-T5 Decision Table Classification algorithm

W-T6 J48 (C4.5) Classification algorithm

W-T7 SMO Classification algorithm

W-T8 Naïve Bayes Classification algorithm

W-T9 ZeroR Classification algorithm

W-T10 Decision Stump Classification algorithm

W-T11 Linear Regression Classification algorithm

W-T12 M5Prime Classification algorithm

W-T13 Apriori Association algorithm

3.4.3 Collecting Metrics

The collection of metrics resulted in a large set of data that we present in Table 3.5, Table

3.6, and Table 3.7. To help interpret the results, we added descriptive statistics such as the

average, the maximum, and minimum.

The Call Volume Metrics

Table 3.5 shows the results of computing the call volume metrics for the Checkstyle system.

The Full Size metric shows that traces are quite large even when they are triggered using a

simple example as input data, which is the case in this study. As we can see in Table 3.5, the

average size is around 74615 calls. The trace C-T9 is the only trace that does not follow this

rule as it generates only 1013 calls. After an analysis of the content of this trace, we found

that it is the only one that does not invoke methods of the “antlr” package, which is a

package that seems to generate many calls in other traces. Future work should focus on

 59

analyzing how the metrics we have defined vary depending on the system components

invoked in traces. The average size of the resulting traces after the repetition removal stage is

33293 calls, which is still too high for someone to completely understand.

The average size of Toad traces is 220409 calls as shown in Table 3.6, which is almost three

times higher than the average size of Checkstyle traces. The collapse ratio after removing

contiguous repetitions, Rcr, is around 5% which is much lower than Rcr for Checkstyle

(46%). The average size of the resulting traces is around 10763 calls.

Table 3.5. CheckStyle Statistics

Checkstyle Call Volume Metrics Component Volume Metrics Comprehension Units and
Patterns Metrics

Traces S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rgtcr Nptt Rpcu
C-T1 84040 37957 45% 14 33% 114 17% 590 10% 1261 3% 515 41%
C-T2 81052 35969 44% 13 30% 109 16% 540 9% 1106 3% 423 38%

C-T3 81639 36123 44% 13 30% 110 16% 561 10% 1153 3% 439 38%
C-T4 84299 37062 44% 14 33% 117 17% 590 10% 1191 3% 464 39%

C-T5 80393 35455 44% 13 30% 106 16% 547 9% 1098 3% 424 39%
C-T6 81550 36087 44% 14 33% 113 17% 562 10% 1125 3% 437 39%

C-T7 89085 41414 46% 14 33% 148 22% 700 12% 1455 4% 532 37%
C-T8 83106 37163 45% 14 33% 114 17% 586 10% 1234 3% 490 40%
C-T9 1013 618 61% 9 21% 70 10% 276 5% 306 50% 27 9%

C-T10 79969 35083 44% 13 30% 105 16% 521 9% 1071 3% 406 38%
Max 89085 41414 61% 14 33% 148 22% 700 12% 1455 50% 532 41%
Min 1013 618 44% 9 21% 70 10% 276 5% 306 3% 27 9%
Average 74615 33293 46% 13 31% 111 16% 547 9% 1100 8% 416 36%

Table 3.6. Toad Statistics

Toad Call Volume Metrics Component Volume Metrics Comprehension Units and
Patterns Metrics

Traces S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rgtcr Nptt Rpcu
T-T1 219507 10409 5% 20 29% 172 19% 615 12% 827 8% 293 35%
T-T2 218867 10141 5% 20 29% 169 19% 592 12% 794 8% 282 36%

T-T3 226026 13132 6% 20 29% 191 22% 704 14% 971 7% 347 36%
T-T4 220438 10811 5% 20 29% 177 20% 626 12% 835 8% 299 36%

T-T5 218681 10002 5% 20 29% 164 19% 558 11% 754 8% 271 36%
T-T6 219171 10394 5% 20 29% 170 19% 605 12% 816 8% 296 36%

T-T7 220170 10450 5% 20 29% 165 19% 568 11% 782 7% 288 37%
Max 226026 13132 6% 20 29% 191 22% 704 14% 971 8% 347 37%
Min 218681 10002 5% 20 29% 164 19% 558 11% 754 7% 271 35%
Average 220409 10763 5% 20 29% 173 20% 610 12% 826 8% 297 36%

 60

Although the full size (S) of most traces of the Toad system is considerably greater than the

full size of Checkstyle traces, the removal of contiguous repetitions indicated by Scr suggest

that the Checkstyle traces might require more time to explore than Toad traces.

The average size of Weka traces is around 145985 calls. Some Weka algorithms generate

much smaller traces such as ZeroR (Trace W-T9). The differences in the size of traces as

shown in Table 3.7 may be due to the complexity of the different data mining algorithms

supported by Weka. The average size of the resulting traces after repetition removal is

around 16147 calls.

Table 3.7. Weka Statistics

Weka Call Volume Metrics Component Volume Metrics Comprehension Units and
Patterns Metrics

Trace S Scr Rcr Np Rpsp Nc Rcsc Nm Rmsm Scucr Rgtcr Nptt Rpcu

W-T1 193165 4081 2% 2 20% 10 7% 75 5% 89 2% 28 31%

W-T2 66645 6747 10% 3 30% 10 7% 64 4% 66 1% 15 23%

W-T3 39049 7760 20% 2 20% 12 8% 114 7% 177 2% 39 22%

W-T4 28139 4914 17% 2 20% 10 7% 116 7% 209 4% 49 23%

W-T5 157382 26714 17% 3 30% 19 13% 188 11% 309 1% 120 39%

W-T6 97413 25722 26% 3 30% 23 16% 181 11% 375 1% 137 37%

W-T7 283980 21524 8% 3 30% 15 10% 131 8% 168 1% 76 45%

W-T8 37095 6700 18% 3 30% 13 9% 114 7% 167 2% 41 25%

W-T9 12395 637 5% 2 20% 10 7% 93 6% 96 15% 29 30%

W-T10 43681 6427 15% 2 20% 10 7% 97 6% 131 2% 35 27%

W-T11 403704 34447 9% 4 40% 16 11% 147 9% 220 1% 78 35%

W-T12 378344 54871 15% 5 50% 26 18% 194 12% 637 1% 301 47%

W-T13 156814 9368 6% 2 20% 9 6% 72 4% 134 1% 51 38%

Max 403704 54871 26% 5 50% 26 18% 194 12% 637 15% 301 47%

Min 12395 637 2% 2 20% 9 6% 64 4% 66 1% 15 22%

Average 145985 16147 13% 3 28% 14 10% 122 7% 214 3% 79 32%

Figure 3.3 illustrates the average initial size and the average size after removing contiguous

repetitions for traces of the three systems. Although, removal of contiguous repetitions can

result in a considerable reduction of the number of calls, the resulting traces of all three

systems continue to contain thousands of calls, which is still high for the users of trace

analysis tools. Therefore, repetition removal is necessary but far from sufficient.

 61

0

50000

100000

150000

200000

250000

Checkstyle Toad Weka

S

Scr

Figure 3.3. The initial size of traces and their size after the repetition

removal stage for the three systems

The Component Volume Metrics

Table 3.5 shows that Checkstyle traces involve on average 31% of the system’s packages;

16% of the system’s classes and 9% of the system’s methods.

Table 3.6 and Table 3.7 show that the other two systems have similar characteristics: The

Toad traces involve on average 29% of the system’s packages, 20% of the classes, and 12%

of the methods; while Weka traces involve 28% of the packages, 10% of the classes and 7%

of the methods. Figure 3.4 illustrates these results graphically.

However, the above results do not indicate the components of the system that contribute the

most to the length of traces. In order to understand this relationship, we decided to analyse

which packages constitute a high percentage of invocations in all traces of the above three

systems. We did not attempt to replicate this analysis using classes and methods for

simplicity reasons.

 62

0%

5%

10%

15%

20%

25%

30%

35%

Rpsp Rcsc Rmsm

Checkstyle

Toad

Weka

Figure 3.4. The number of components (packages, classes and methods,

respectively) invoked in the traces of the three systems

Table 3.8 shows the relationship between the packages invoked in Checkstyle traces and the

size of traces (we use the number of calls after removing contiguous repetitions, Scr). We

notice that the package ‘antlr’ constitutes almost 84% of all total invocations. ‘antlr’ stands

for ANother Tool for Language Recognition and is a language tool that provides a

framework for constructing recognizers, compilers, and translators from grammatical

descriptions of various programming languages such as Java [ANTLR]. It is used by

Checkstyle to build a representation of the Java systems that need to be processed. It is more

a utility library than a package that performs actual checks for design compliance, which is

the main functionality of Checkstyle.

Knowing that particular components are invoked significantly more than others can be used

by tools to suggest automatically various strategies for rapid exploration of the content of a

trace. For example, a tool can simply hide all internal invocations made to the ‘antlr’ package

in order to reduce the amount of information displayed. Another strategy would be to use

color coding to distinguish this package from the other components of the trace.

 63

Table 3.8. The contribution of Checkstyle packages to the size of traces

Packages Number of invocations Percentage
com.puppycrawl.tools.checkstyle.checks.duplicates 11 0.00%
com.puppycrawl.tools.checkstyle.checks.metrics 32 0.01%
com.puppycrawl.tools.checkstyle.checks.javadoc 49 0.01%
com.puppycrawl.tools.checkstyle.checks.blocks 38 0.01%
com.puppycrawl.tools.checkstyle.checks.design 89 0.03%
com.puppycrawl.tools.checkstyle.checks.imports 90 0.03%
com.puppycrawl.tools.checkstyle.checks.whitespace 99 0.03%
com.puppycrawl.tools.checkstyle.checks.sizes 122 0.04%
com.puppycrawl.tools.checkstyle.checks 175 0.05%
org.apache.commons.logging 325 0.10%
com.puppycrawl.tools.checkstyle.checks.coding 549 0.16%
org.apache.commons.cli 640 0.19%
org.apache.commons.beanutils.converters 941 0.28%
org.apache.commons.logging.impl 1236 0.37%
org.apache.commons.collections 1779 0.53%
org.apache.regexp 3014 0.91%
org.apache.commons.beanutils 4420 1.33%
antlr.collections.impl 4536 1.36%
com.puppycrawl.tools.checkstyle 6408 1.92%
com.puppycrawl.tools.checkstyle.grammars 11430 3.43%
com.puppycrawl.tools.checkstyle.api 19087 5.73%
antlr 277861 83.46%
Total 332931 100%

Table 3.9 shows the result of performing the same analysis to traces of the Toad system. We

notice that the packages ‘com.ibm.toad.cfparse’ and ‘com.ibm.toad.utils’ contribute to more

than 63% of the size of the trace (Scr). The cfparse package stands for Class File Parser and

is used by all Toad features to parse Java class files. The package com.ibm.toad.utils as

indicated by its name groups system-scope utilities used by the various components of Toad.

These two packages are clearly low-level implementation details that encumber the content

of traces.

Finally, Table 3.10 shows that the package ‘weka.core’ generates almost 87% of total

invocations. This package implements general purpose operations for manipulating datasets

used in the implementation of the various data mining algorithms of Weka.

 64

Table 3.9. The contribution of Toad packages to the size of traces

Packages Number of invocations Percentage
com.ibm.toad.jan.construction.builders.ehgbuilder 70 0.09%
com.ibm.toad.jan.lib 308 0.41%
com.ibm.toad.analyzer 536 0.71%
com.ibm.toad.jan.construction.builders.rgimpl 1061 1.41%
com.ibm.toad.cfparse.utils 1099 1.46%
com.ibm.toad.jan.lib.cgutils 1239 1.64%
com.ibm.toad.jan.lib.rgutils 1274 1.69%
com.ibm.toad.jan.jbc.utils 1309 1.74%
com.ibm.toad.jan.construction.builders.cgbuilder 1309 1.74%
com.ibm.toad.jan.construction.builders.cgbuilder.cgimpl 1333 1.77%
com.ibm.toad.jan.construction.builders.javainfoimpl 1386 1.84%
com.ibm.toad.jan.construction.builders.hgimpl 1383 1.84%
com.ibm.toad.jan.construction.builders 1589 2.11%
com.ibm.toad.jan.construction 1712 2.27%
com.ibm.toad.cfparse.attributes 2303 3.06%
com.ibm.toad.jan.lib.hgutils 2650 3.52%
com.ibm.toad.jan.coreapi 2915 3.87%
com.ibm.toad.utils 22816 30.28%
com.ibm.toad.cfparse 25501 33.85%
com.ibm.toad.jan.jbc 3546 4.71%
Total 75339 100%

Table 3.10. The contribution of Weka packages to the size of traces

Packages Number of invocations Percentage
weka.clusterers 463 0.22%
weka.estimators 1101 0.52%
weka.associations 1605 0.76%
weka.filters 3014 1.44%
weka.classifiers 6380 3.04%
weka.classifiers.j48 7256 3.46%
weka.classifiers.m5 8612 4.10%
weka.core 181481 86.46%
Total 209912 100%

Comprehension Units Metrics

Table 3.5 shows the number of comprehension units (Scucr) and the ratio achieved by

transforming Checkstyle traces into acyclic graphs (Rgtcr). All Checkstyle traces score a ratio

of less than 4% except Trace C-T9 that scores 50%. This is due to the fact that initially this

trace is significantly smaller than the other traces in terms of the number of calls but still

contains a large number of methods, and that a lower bound on the number of comprehension

units is the number of distinct methods in the trace. Toad traces exhibit a very low ratio as

 65

well, which is around 8%. Weka traces exhibit an even lower ratio of 3%. These results

demonstrate the effectiveness of transforming the traces into ordered directed acyclic graphs.

In fact, a scalable trace analysis tool should never represent traces as tree structures. In

Chapter 6, we will use the graph representation of a trace to build CTF, the exchange format

for representing traces.

Furthermore, a closer look at the above results reveals that the number of distinct methods

(Nm) invoked in the traces of all three systems is significantly smaller than the number of

calls generated, Scr, even after removal of contiguous repetitions. For example, the

Checkstyle trace C-T1 invokes 590 methods but generates 37957 calls. This means that

1. Either traces contain several sequences of calls that are repeated in a non-contiguous

way and/or

2. There exist several comprehension units that are similar but not exactly identical.

The first point emphasises the fact that a better estimation of the size of traces should not

only rely on collapsing contiguous repetitions but also factoring out the non-contiguous ones

justifying the importance of having metrics based on the number of comprehension units.

The second point reiterates the necessity to have tools implement various matching criteria

(i.e. vary the ‘sim’ function) in order to reduce the number of comprehension units. In

Section 3.6.4, we will discuss the implementation of matching criteria that can be applied

while the trace is being generated. However, using matching criteria comes with a very

challenging set of research questions. One of the issues is that it is difficult to predict how

these criteria should be combined. Another problem is that it is not really clear how various

combinations can help with specific maintenance tasks (e.g. debugging, adding a new

feature, etc).

In this thesis, we do not attempt to address these issues. Our approach for reducing the

amount of information contained in a trace (hence the number of comprehension units) is

based on the fact that some components of the trace encumber the trace without adding any

value to its main content. For example, the ‘com.ibm.toad.utils’ package is a clear example

of such components. More details about our approach are presented in Chapter 4.

 66

Finally we want to note that the number of comprehension units (Scu) and the number of

methods (Nm) usually correlates as one can expect. Figure 3.5 illustrates the correlation

between the number of methods (Nm) in the trace and the number of comprehension units

(Scu) for the Checkstyle system. The graph shows, as expected, that the number of

comprehension units (i.e distinct subtrees) of traces depends on the number of methods that

are invoked. This also applies to Toad and Weka as illustrated in Figure 3.6 and Figure 3.7.

Interestingly, the dependency in Weka is somewhat more variable than the other two

systems, suggesting that some traces of Weka, and hence the corresponding pieces of

functionality are particularly complex.

0

200

400

600

800

1000

1200

1400

1600

C
-T
1

C
-T
2

C
-T
3

C
-T
4

C
-T
5

C
-T
6

C
-T
7

C
-T
8

C
-T
9

C
-T
1
0

Nm

Scu

Figure 3.5. Relationship between the number of methods and the number of
comprehension units for Checkstyle – Correlation coefficient = 0.99

Patterns Related Metrics

We notice that many of the comprehension units of the analyzed traces are repeated non-

contiguously, which qualify them as trace patterns.

 67

0

200

400

600

800

1000

1200

T
-
T
1

T
-
T
2

T
-
T
3

T
-
T
4

T
-
T
5

T
-
T
6

T
-
T
7

Nm

Scu

Figure 3.6. Relationship between the number of methods and the number of

comprehension units for Toad – Correlation coefficient = 0.99

0

100

200

300

400

500

600

700

W
-
T
1

W
-
T
2

W
-
T
3

W
-
T
4

W
-
T
5

W
-
T
6

W
-
T
7

W
-
T
8

W
-
T
9

W
-
T
1
0

W
-
T
1
1

W
-
T
1
2

W
-
T
1
3

Nm

Scu

Figure 3.7. Relationship between the number of methods and the number of

comprehension units for Weka – Correlation coefficient = 0.87

 68

The average number of patterns that exist in Checkstyle traces is 416, which represents 36%

of the number of comprehension units. Toad traces contain in average of 297 (36% of the

number of comprehension units), and Weka traces contain on average 79 patterns (32% of

the number of comprehension units).

We can see that the number of patterns can be quite high. In addition to this, it is important to

note that the understanding of one pattern might also require prior understanding of other

patterns.

3.5 Applying the Metrics in Tools

As discussed earlier, the goal of the metrics presented in this chapter has been to help

software engineers understand traces. The metrics will, however, only be useful if actively

supported by tool developers.

We suggested that tool developers could, in a rather straightforward way, simply use icons,

coloring, or other graphic techniques to show the values of certain of the metrics in order to

highlight information about parts of traces. However, there are a number of ways that tool

developers could make deeper use of the metrics to do more sophisticated transformations of

the traces.

A key objective would be to display the ‘essence’ of a trace – just enough to show the

software engineer what happened during execution. If, in a visible portion of a trace, Scu

(number of comprehension units) is much greater then Nm (number of methods), this

suggests that a lot of redundant information is being displayed: Perhaps there are many

somewhat similar comprehension units. In this case, we can apply techniques that change the

similarity function discussed earlier so that similar comprehension units come to be treated

the same, and may then also turn into patterns. Rather than seeing a lot of diversity, the

software engineer might then see simply a small set of patterns. The metrics can also be used

by tools to help prune the leaves and successively higher branches of traces to make what

remains displayed somewhat simpler. However that will often not be enough. A tool could

look at the values of ratios such as Rcr and Rgtsim, for each subhierarchy, and based on the

values of the ratios, contract the subtree to a certain level.

 69

3.6 Converting a Tree Structure into a DAG

In this section, we present an algorithm for converting a tree structure into an ordered

directed acyclic graph. One application of this algorithm is to help compute the family of

metrics based on the concept of comprehension units (Scu, Nptt, etc).

Although the algorithm is presented in this chapter, it will also be used to generate traces in

the form of CTF, the exchange format for representing traces discussed in Chapter 6.

Much of the material in this section is adapted and expanded from a paper published in the

First ICSE International Workshop on Dynamic Analysis (WODA), 2003 [Hamou-Lhadj

03b].

3.6.1 Overview

The concept of transforming a rooted tree into an ordered directed acyclic graph was first

introduced by Downey et al. [Downey 80]. The authors argued that the graph is a better

representation since it saves storage space, and therefore allows tools that operate on trees to

function efficiently. They named the problem of turning a tree into a DAG ‘the common

subexpression problem’ and proposed a rather complex solution for solving it.

A more practical solution was proposed by Flajolet et al. [Flajolet 90], where the authors

presented a top-down recursive procedure that solves the problem in an expected linear time

assuming that the degree of the tree is bounded by a constant. An iterative version of Flajolet

et al’s algorithm was proposed by Valiente in [Valiente 00] and was applied to solve the tree

matching problem – Finding all occurrences of a subtree t in a tree T.

In this thesis, we improve Valiente’s algorithm to consider two important points:

• The transformation of the tree (i.e. trace) is done while the events are generated (i.e.

on the fly) in such a way that traces will never need to be saved as tree structures. The

results of the Rgt metric presented in the previous sections clearly show that traces

should be saved as DAGs.

 70

• The second improvement takes into account the various matching criteria discussed in

the definition of the Scu metric (i.e. the number of comprehension units). Valient’s

algorithm considers identical matches only.

The remainder of this section is organised as follows: the next subsection describes

Valiente’s solution to the common subexpression problem. In Section 3.6.3, we present our

extension of Valient’s algorithm. The matching criteria are discussed in Section 3.6.4.

3.6.2 Valiente’s Algorithm

The algorithm presented by Valiente proceeds by traversing the tree in a bottom-up fashion

(from the leaves to the root). Each node is assigned a certificate (a positive integer between 1

and n, where n represents the size of the tree). The certificates are assigned in such a way that

two nodes n1 and n2 have the same certificate if and only if the subtrees rooted at n1 and n2

are isomorphic.

To compute the certificates, the algorithm uses a signature scheme that identifies each node.

The signature of a node n consists of the concatenation of its label and the certificates of its

direct children, if there are any. For example according to Figure 3.8, the signature of A

should be “A 1 2”. The signature of a leaf is simply its label (e.g. the signature of C is “C”).

A global hash table is used to store the certificates and signatures and ensure that similar

subtrees will always hash to the same element.

Figure 3.8. A tree (left) and its transformed DAG (right). The integers

correspond to the certificates of the nodes

The global table that results from applying Valiente’s algorithm to the tree of Figure 3.8 is

shown in Table 3.11. From this table, we can easily construct the ordered directed acyclic

 71

graph that corresponds to the tree of Figure 3.8. The root of the graph corresponds to the

table entry with the highest-numbered certificate.

Table 3.11. Result of applying Valiente’s algorithm to the tree of Figure 3.8

Signature Certificate

B 1

C 2

A 1 2 3

D 2 4

M 3 4 5

The complexity of the algorithm consists of the time it takes to traverse the tree, the time it

takes to compare two subtrees, and the time it takes to compute the signatures.

3.6.3 Extension of Valiente’s Algorithm to Trace Compaction

The idea behind the algorithm is to be able to detect when subtrees are constructed during the

generation of the trace. Once this is done, we can compute their signatures, check if they

exist in the global table, and update the global table. The final table will represent the DAG

version of the trace.

To develop the algorithm, let us consider the following:

• The trace is generated as a sequence of events that have the following form: (Label,

Nesting level). The label can be composed of the thread name, subsystem name, class

name, object identifier, and the method name. The nesting level indicates the nesting

level of the routine calls. The root of the dynamic call tree has a nesting level equal to

zero. Other information can be added, such as timestamps, execution time of a routine,

the number of statements, etc. For simplicity reasons, we do not include these in the

algorithm.

• We will need to create a tree structure that will temporarily hold nodes corresponding

to the trace events. These nodes will be destroyed once their signatures are computed.

 72

• A node of the tree will contain the following attributes:

label This is the label of the node.

parent This represents the parent of the node.

nl This represents the nesting level of the node (to avoid computing the

nesting level every time we need to refer to it)

certificate This represents the certificate that will be assigned to the node after

checking the global table. Initially certificate = 0.

The steps of the algorithm are:

1. Read the first event e = (label, nl)

2. Create a node called root that represents the root of the temporary tree: root.label = e.label;

root.parent = null; root.nl = 0; root.certificate = 0

3. prevNode = root // Keeps track of the previous node

4. certificate = 1

5. globalTable = A Hash Table: The keys represent signatures and the values represent certificates.

We will use the put and get functions to insert and retrieve elements from

globalTable

6. For every event e1 = (label1, nl1) Do

 6.1 While (e1.nl1 <= previousNode.nl) Do

/* If the current nesting level (e1.nl1) is less than or equal to the nesting level of

the previous node which is here represented by parent.nl then the node

prevNode must be a subtree. In fact, all the parents of the node prevNode that

have a nesting level that is greater than or equal to nl1 must also form

subtrees. This explains why we need to use a loop to check for formed

subtrees. */

6.1.1 signature = Signature of prevNode

6.1.2 If globalTable contains the key signature Then

a. prevNode.certificate = globalTable.get (signature)

Else

b. globalTable.put (signature, certificate)

c. prevNode.certificate = certificate

d. certificate++ // update the certificate

 73

End If

6.1.3 prevNode = prevNode.parent

End While

 6.2 If there are nodes for which certificates have been assigned then delete these nodes except

 the one that has the same nesting level as nl1.

 6.3 Create a new node called node that represents e1: node.label = e1.label; node.parent =

 prevNode; node.nl = e1.nl1; node.certificate = 0

 6.4 prevNode = node

End For

7. Compute the signatures and check the table for all nodes from the last event to the root. Once

this is done, delete all remaining nodes.

We illustrate the steps of the algorithm using the tree below:

Figure 3.9. A sample tree that will be used to illustrate the algorithm

Steps of the algorithm Illustration Global Table

Step 1 consists of reading the first event of

the trace (i.e. e = (A, 0)).

Step 2 creates a root node that

corresponds to e = (A, 0).

Step 3 to 5 initialise variables to keep track

of:

- The previous node (prevNode)

- The certificate value (certificate)

- The global table (globalTable)

Signature Certificate

In Step 6, the algorithm reads the

subsequent events one by one.

Step 6.1 checks if by encountering B, we

 74

have discovered that A was the root of a

complete subtree. We do this by comparing

B’s nesting level to that of A. Since B has a

higher nesting level, the algorithm goes to

Step 6.2: checks if there are nodes for

which certificates have been assigned in

order to clean up memory. This is not the

case, 6.3 creates a node for B and links A

to B. 6.4 updates prevNode.

Signature Certificate

The algorithm continues in Step 6 to deal

with the event (C, 2). It again checks

whether a subtree has been formed at

Step 6.1. Since this is not the case, the

algorithm goes to 6.2, checks if there are

nodes for which certificates have been

assigned in order to clean up memory. This

is not the case, so at step 6.3 it creates a

node for C and links B to C. 6.4 updates

prevNode.

Signature Certificate

Same thing with the event (D, 3).

Signature Certificate

The algorithm encounters the event (E, 1).

In 6.1, the comparison reveals that the

nesting level of E is less than the nesting

level of D, which means than D is the root

of a fully formed subtree. Therefore, the

algorithm computes the signature of D

Signature Certificat
e

D 1

C 1 2
B 2 3

 75

(which is equal to “D” in this case, since D

is a leaf), checks if the signature exists in

the table, if not, assigns to D the current

certificate (i.e. certificate = 1), inserts the

pair (signature of D, 1) into the global

table, assigns the certificate to the node

that holds D, and updates the value of

certificate (steps b, c, and d).

Step 6.1 causes the algorithm to repeat the

process with the node C. C’s signature is ‘C

1’ and its certificate is 2. It repeats the

process again with B. B’s signature is ‘B 2’

and its certificate is 3.

Step 6.2 deletes the nodes corresponding

to the nodes D and C. However, it does not

delete the node B since we will need it to

compute the certificate of A.

In 6.3, the algorithm creates a node for E,

links A to E and updates prevNode.

The event (F, 1) occurs causing the

algorithm to compute the signature of the

node E, to find that it doesn’t exist in the

table, to assign it a certificate, and to

update the table (Steps b, c, d).

Signature Certificate
D 1

C 1 2

B 2 3

E 4

No more events are read. The algorithm

(Step 7) therefore computes the signatures

of the last node all the way to the root (i.e.

nodes F and A), checks whether the

signatures already exist, if not assigns new

certificates to these nodes, and update the

table.

All remaining nodes are then deleted.

Signature Certificate
D 1
C 1 2
B 2 3
E 4
F 5
A 3 4 5 6

 76

The resulting table represent the ordered directed acyclic graph. The root of the graph is the

entry that has the highest-numbered certificate, which is in this case the node labelled ‘A’.

The links from one node to another are indicated in the signatures.

3.6.4 Matching Criteria

In this subsection, we discuss how some matching criteria can be added to the above

algorithm.

A. Matching subtrees using the node labels:

One way of generalizing the algorithm is to group similar sequences of calls according to

whether they invoke objects of the same class, same package, etc as proposed by Richner et

al. [Richner 02] and De Pauw et al. [De Pauw 93]. To adapt the algorithm to such situations,

we need to be able to select part of the node labels that will be used during the comparison

process.

For example, let us consider a simple case of two leaf nodes called P1.C1.obj1.m1() and

P1.C1.obj2.m1() respectively. These two nodes can be deemed similar if we decide to ignore

the name of the objects (i.e. obj1 and obj2) during the computation of the signature of these

nodes (i.e. Step 6.1.1 of the algorithm). The most restrictive case will be the one where all

constituents of the label are compared.

B. Ignoring the number of repetitions:

Ignoring the number of repetitions of contiguous sequences of calls when looking for similar

subtrees can be applied to avoid having two subtrees that differ only because some elements

are repeated more than others as shown in Figure 3.10. This corresponds to the ‘cr’ subscript

used to compute Scu (see Section 3.3.3).

Let us consider that the certificates of B and C are 1 and 2 respectively. In this case, the

computation of the signature of A should ignore the number of times B and C are repeated in

the subtree on the left side of Figure 3.10. This means that the signature of A should be equal

 77

to “A 1 2” in both cases. This implies changes in the way the signature is computed (i.e. Step

6.1.1 of the algorithm)

Figure 3.10. If contiguous repetitions are ignored then the

above subtrees will be considered similar

C. Ignoring the order of calls:

If applied to the subtree of Figure 3.11, the ‘ignoring order of calls’ matching criterion will

consider these subtrees as equivalent. The usage of this criterion corresponds to the ‘set’

subscript used to compute Scu (see Section 3.3.3).

To generalize the algorithm to unordered trees, we need to sort the certificates that appear in

the signatures and then proceed with comparing the signatures. For example, if B’s certificate

is 1 and that C’s certificate is 2 then A’s signature should be in both cases “A 1 2” (i.e. the

certificates are sorted). Similar to the previous matching criterion, this involves changing the

way the signature is computed (i.e. Step 6.1.1 of the algorithm)

Figure 3.11. If order of calls is ignored then the above

subtrees will be considered similar

D. Edit distance:

Another way of comparing two subtrees is to compute their edit distance [Tai 79]. Perhaps

the easiest way to improve the algorithm to consider this metric is to modify the way it looks

up for a given subtree in the global table (i.e. Step 6.1.2). This would imply that signatures

can no longer be used and that subtrees need to be saved in the global table using references

to these subtrees.

 78

The application of the edit distance to two subtrees T1 and T2 of Figure 3.12 shows that

these two subtrees require one edit operation (i.e. either adding the node F to T2 or removing

F from T1) in order to be considered as similar. A user should have the flexibility to adjust

the threshold according to his or her needs.

Figure 3.12. The subtrees T1 and T2 can be considered
similar if an edit distance function is used

3.7 Summary

In this chapter, we developed metrics for the analysis of large execution traces of method

calls. These metrics can be used by tool builders and software engineers who want to better

understand traces. Tool builders can use these metrics to tune their techniques to better orient

the analyst in his or her quest to understand the trace content. One possible help would be to

distinguish parts of the trace that perform complex behaviour from parts that are relatively

easy to grasp. Software maintainers can use these metrics to decide which traces to analyze

and if there is a need to change the way the traces are collected (e.g. change the system’s

input) to generate less complex traces. Researchers can use these metrics to investigate

further techniques for reducing the complexity of traces.

Using these metrics, we analyzed traces of three different Java systems to get a better

understanding of their complexity. One of our metrics Rcr shows that when we remove

contiguous repetitions, the size of the trace is reduced to between 5% and 46% of the original

size. However, the resulting traces continue to have thousands of calls, which makes this

basic type of collapsing necessary but not sufficient.

 79

We found that traces might cross-cut up to 30% of the system’s packages, 22% of the

system’s classes and 14% of the system’s methods. We showed that in all systems there exist

one or two packages that are the most responsible of the lengthy size of traces. Knowing this

information will allow tools to adjust the amount of information displayed by either hiding

the invocations made to these packages or using other visualization techniques.

In addition, we argued that the fact that the number of comprehension units (Scu) is higher

than the number of distinct methods (Nm) leads us to the following observation: Tools which

rely primarily on pattern detection will not allow the user to achieve an adequate level of

abstraction. The problem is that there might be many subtrees in the trace that contain almost

the same methods but structured in different ways. The hard part consists of selecting the

appropriate matching criteria that will identify these subtrees as similar. Most tools leave this

up to the users, but due to the size and complexity of traces, automated assistance is clearly

needed. Tools need to suggest matching criteria that will collapse the trace to a manageable

size by pre-computing the effect of each criterion. This computation can be based on the

metrics described in this chapter.

Another finding regarding patterns is that traces might contain a very large number of them:

over 400 in the case of the Checkstyle system. These patterns, in turn might have hundreds of

occurrences, which can make the understanding of the whole trace using pattern detection a

challenging task.

In the end of the chapter, we presented an algorithm for converting a trace into an ordered

directed acyclic graph that can be used to compute the family of metrics related to the

concept of comprehension units (Scu, Rgt, etc). Our algorithm is an extension to Valiente’s

algorithm by considering the on the fly generation of traces as well as various matching

criteria.

 80

Chapter 4. Trace Summarization

4.1 Introduction

Most existing trace analysis tools such as the ones presented in Section 2.3 rely on a set of

fine-grained operations that software engineers can use to go from a raw sequence of events

to a more understandable trace content. But due to the size and complexity of typical traces,

this bottom-up approach can be difficult to perform and requires a considerable intervention

of the users. In fact, when asked to describe their experience with using traces, many

software engineers of the company that supports this research argued that they almost always

want to be able to perform top-down analysis of a trace by having the ability to look at the

main content first and then dig into the details. As previously discussed (see Section 2.2.2),

many research studies in program comprehension have shown that an adequate

understanding of the system artefacts necessitates both strategies (i.e. bottom-up and top-

down).

In this chapter, we present the concept of trace summarization and define it as a semi-

automatic process of summarizing the main content of a large trace. This is similar to text

summarization where abstracts can be extracted from large documents. Abstracts are used to

learn about the main facts of a document without reading entirely its content.

The primary objective of trace summarization is to extract a view of a trace that software

engineers can readily work with when trying to understand the main information conveyed.

We achieve this by removing from the trace the components that represent mere

implementation details. However, depending on the expertise software engineers have of the

system as well as the maintenance task performed, we anticipate that software engineers will

need to have the flexibility to adjust the content of the summary if they find it too abstract or

 81

too detailed. When we present the trace summarization algorithm (Section 4.4.3), we will

include a step where manual manipulation of the extracted summary is performed.

Trace summarization is also a powerful technique for extracting the behavioural models of a

poorly documented system. Unlike the existing techniques such as the ones presented by

Amyot et al. [Amyot 02] and Systä [Systä 01], our approach does not heavily rely on the

intervention of users.

Indeed, Amyot et al. suggest tagging the source code at particular places in order to generate

a trace that can later be represented using a use case map. This approach has the obvious

drawback that it requires from the software engineers to know, in advance, where to insert

the tags. It also necessitates the usage of static analysis tools. However, the authors

recognised that visualizing the main flow of execution of the feature under study can help

understand the system dynamics. We discussed Systä’s approach in Section 2.3.1 and which

involves using a static analysis tool called Rigi [Müller 88] to allow software engineers of

her dynamic analysis tool to select the components of the system that need to be traced.

Again, this approach requires a considerable amount of time and precludes prior knowledge

of the system’s static aspects.

The rest of this chapter is organized as follows: In the next section, we present the concept of

trace summarization and our approach for achieving it that is based on filtering traces by

removing implementation details such as utilities. In Section 4.3, we discuss in more detail

the concept of utility components and how they differ from the other components of the

system. The detection of utility components is the subject of Section 4.4. We defer the

evaluation of our approach to Chapter 5, where we apply it to extract a summary from a trace

generated from the execution of the Weka system [Weka, Witten 99].

An initial work on trace summarization has been published in the 9th IEEE European

Conference on Software Maintenance and Reengineering (CSMR), 2005 [Hamou-Lhadj

05c].

 82

4.2 What is a Trace Summary?

In general, a summary refers to an abstract representing the main points of a document while

removing the details.

Jones defines a summary of a text as “a derivative of a source text condensed by selection

and/or generalization on important content” [Jones 98]. Similarly, we define a summary of a

trace as an abstract representation of the trace that results from removing unnecessary details

by both selection and generalization.

This definition points towards several interesting questions that deserve further investigation.

These are: what would be a suitable size for the summary? And how should the selection and

generalization of important content be done?

4.2.1 Adequate Size of a Summary

While it is obvious that the size of a summary should be considerably smaller than the size of

the source document, it seems unreasonable to declare that a summary should be of some

particular fixed size. In fact, a suitable size will depend in part upon the knowledge the

software engineer has of the functionality under study, the nature of the function being traced

and the type of problem the trace is being used to solve (debugging, understanding, etc.).

This suggests that tools should allow the summary to be dynamically expanded or contracted

until it is right for the purpose at hand. We suggest that no matter how large the original

trace, there will be situations when a summary of less than a page will be ideal, and there will

be situations where a summary of several thousand lines may be better.

4.2.2 Content Selection

In text summarization, the selection of important content from a document is usually

performed by ranking the document phrases according to their importance. Importance is

measured using various techniques such as the ones based on word distribution [Edmunsdon

69, Lunh 58], cue phrases [Edmunsdon 69], and the location of phrases in the document

[Baxendale 58].

 83

When applied to execution traces, the key question is: what constitute the main content of an

execution trace?

To help answer this question, we decided to investigate how execution traces are used in an

industrial setting. We organized a two-hour brainstorming session with more that twenty

software engineers of QNX Software Systems and asked them to discuss their experience

with using execution traces (see Section 4.3 for more details). One of the results of this

session is that most engineers agreed that when trying to understand the behaviour of the

system, they will most likely want to hide low-level implementation details. They repeatedly

referred to these low-level details as utilities4. The outcome of this study is presented in more

detail in Section 4.3.

Our approach for summarizing the main content of traces is therefore based on the removal

of low-level implementation details such as utilities.

Additionally, Zayour conducted a study in a company called Mitel Networks that consists of

experimenting with traces of routine calls generated from one of the company’s largest

system. The author concluded that not all routines invoked in a trace have the same degree of

importance [Zayour 02]. Some routines can be simple implementation details (e.g. sorting an

array) so removing them would not affect the comprehension process very much. The author

used the term ‘utility routines’ to refer to the least important routines. However, he only

briefly discussed the concept of utilities and a way to detect them. He also did not validate

whether removing utilities can indeed lead to a more comprehensible trace. One important

aspect of this thesis is to validate5 this concept. In other words, we need to validate the

following hypothesis:

4 In this thesis, however, we draw a distinction by considering utilities to be a subset of the implementation details.

5 The validation of this hypothesis is deferred to Chapter 5 when we present the case study.

 84

• H1: Removing implementation details from a trace will in the opinion of software

engineers reveal its main content

The null hypothesis would be:

• H01: Removing implementation details from a trace will, in the opinion of software

engineers, not necessarily reveal its main content

4.2.3 Content Generalization

Content generalization consists of generalization of specific content; i.e. replacing it with

more general abstract information [Jones 98]. When applied to execution traces,

generalization can be performed in two ways, as follows

The first approach to generalization involves assigning a high-level description to selected

sequences of events. For example, many trace analysis tools provide the users with the ability

to manually select a sequence of calls and replace it with a description expressed in a natural

language. However, this approach relies on user input so would not be practical to automate.

A second approach to generalization relies on treating similar sequences of events as if they

were the same. This approach can be automated by varying a similarity function used to

compare sequences of calls. In the previous chapter, we presented, for example, the ‘cr’

similarity function for treating varying numbers of contiguous nodes as the same, or the ‘set’

similarity function in which all sequences with the same elements, ignoring order, could be

treated the same. Other possibilities include treating all subtrees that differ by only a certain

edit distance as the same as shown in Section 3.6.4.

In the remainder of this thesis, we will focus on content selection, leaving content

generalization for consideration as another line of research.

4.2.4 Our Approach to Trace Summarization

Figure 4.1 illustrates our approach for extracting summaries from large traces. The first three

boxes in the figure show generation of a trace and the extraction of a summary by removal of

implementation details. The remainder of the figure shows the iterative process of tuning the

 85

required level of detail by having software engineers assess the extracted high-level models

generated from the summary.

The main steps are:

1. Generate the execution trace that corresponds to the software feature under study.

2. Filter the trace by removing low-level implementation details such as utilities. In

Section 4.3, we discuss the concept of utilities in more detail. In Section 4.4, we show

how fan-in analysis can be used to detect utilities.

3. Generate a summary as a result of the filtering process.

4. Convert the summary into a behavioural design model such as a UML sequence

diagram to represent the extracted summary visually.

5. Validate the result with the original developers of the system.

Figure 4.1. Our approach to trace summarization

2. Remove
Details

This step is repeated until the

desired level of abstraction is

reached

3. Generate

Summary

4. Generate UML
Sequence Diagram

5. Validate Results

1. Generate Trace

 86

The validation step might lead to further filtering of the trace if the software engineers deem

that the trace still contains too much detail.

It is important to note that Step 4, which involves the generation of UML sequence diagrams,

is added here for visualization purposes only. Trace summarization is mainly concerned with

the extraction of summaries and does not preclude any particular notation. We chose UML

sequence diagrams due to the fact that a) they are widely accepted as a notation for

representing the behavioural characteristics of a system, and b) the mapping of the

components of traces of routine calls to UML sequence diagrams constructs is

straightforward.

4.3 The Concept of Utilities

Despite the fact that the term “utility” is used frequently in practice, there has been little

work in the literature that investigates this concept in more detail. Perhaps, the most

interesting definition of a utility is the one cited in the UML 2.0 specification, which defines

a utility as “a stereotype that groups global variables and procedures in the form of a class

declaration. The utility attributes and operations become global variables and global

procedures, respectively. A utility is not a fundamental modeling construct, but a

programming convenience.” [UML 2.0].

This definition is obviously too specific to be able to derive a complete understanding of

what a utility is, since there are other kinds of utilities, such as utility methods or packages.

However, it points towards several interesting aspects of utilities that deserve investigation:

global grouping, packaging, and role. When we studied the comments made by QNX

software engineers, we found that their definition of the concept of utilities also involves

these aspects.

The remainder of this section starts by discussing the above aspects. A definition of the

concept of utilities is presented in Section 4.3.4. However, it is important to note that we

consider utilities to be a subset of a broader concept, which is the concept of implementation

details. A definition of what we mean by an implementation detail as well as examples of

implementation details are discussed in Section 4.3.5.

 87

4.3.1 Global Grouping of a Utility

The global grouping of utilities as indicated in the above cited UML definition suggests that

utilities are used by many other components of the system.

Along the same lines, Müller et al. [Müller 93] refer to components used by several other

components of the system as omnipresent nodes and suggest that these components ought to

be ignored in order to obtain a good understanding of the system architecture. According to

the authors, omnipresent nodes tend to obscure the relationships among the system

components. For this purpose, the authors compute fan-in and allow the users of their

software engineering tools to filter out the components that exceed a certain ‘omnipresent

threshold’.

In the QNX brainstorming session, the participants also said that a key aspect of utilities is

that their usage tends to be distributed around the system.

However, it is essential to realize that utilities do not always have a global scope. In a well-

structured software system, the modularization constructs should form natural utility scopes.

For example, in a language like Java, a package may often act as the scope for certain

utilities; this means that there might be utilities in the package which are designed

exclusively for use within this package. Individual classes might also act as utility scopes for

methods intended only to be used in the class; these would normally be private utility

methods. In a language like C, where there are no explicit packages, an individual file will

often serve as a utility scope for utilities inside it; also the set of files including a certain

header might be the utility scope for a utility declared in that header.

However, considering narrower scopes would mean that:

1. Either the system architecture is valid (or partly valid) or

2. Techniques for the recovery of the architecture are used.

The first point would put a strong assumption on the type of systems targeted by this

research, which is unlikely to be valid in practice. The second point would necessitate

 88

combining the concepts presented in this chapter with architecture recovery techniques such

as the ones discussed by Wiggert et al. [Wiggert 97]. Architecture recovery is out of the

scope of this thesis. Our current mechanism for the detection of utilities does not consider the

scope of utilities. We therefore leave this point for future research.

4.3.2 Packaging of Utilities

The QNX software engineers confirmed the intuitive idea that utilities tend to be grouped or

packaged together in a class, a namespace, a library or some other construct.

Packaging of utilities is also raised in a number of other contexts: A UML utility class for

example, is a module that groups together utilities that would otherwise have no “home”.

Tzerpos and Holt [Tzerpos 00] observed that software engineers tend to group components

with large fan-in into one cluster that they call the support library cluster.

It is important to differentiate these utility packages from the individual utilities they contain.

In fact, not all utilities exist in groupings that contain only other utilities; for example,

accessing methods in most classes can be considered utilities although the classes that

contain them are not necessarily utilities.

In our brainstorming session, another issue that was raised is that the utilities of a system are

often designed or maintained by specific groups of people. This knowledge can help detect

utilities in cases where there is little or no explicit packaging.

4.3.3 Role of a Utility

In the previous two points, we have discussed the scope characteristic in which utilities are

defined and accessed, as well as how they are packaged. However, scoping and packaging

are applied to many things, not just utilities. We must dig deeper in order to consider the role

of utilities as distinct from other entities.

Perhaps the clearest suggestion of a utility’s role can be seen in the term “programming

convenience” used in the UML definition discussed earlier. QNX software engineers also

said that a utility usually represents a detail that is needed to implement a general design

 89

element; it is at a lower level of abstraction than the design element it implements. Indeed, in

many cases, utilities can be seen as logical extensions of programming languages, which all

provide built-in facilities for manipulating data and interacting with operating systems. In

fact, one can extend some programming languages to explicitly incorporate user-defined

utilities; this is common practice in Smalltalk. For example, in that language you can readily

add new control constructs to the system as a whole, new basic algorithms to many system

classes, and even new syntactic elements to the language.

From our brainstorming session, it became clear that utilities are things that a programmer

should not have to worry about when trying to see the ‘big picture’. A programmer should

understand the details of a programming language before attempting to program in it.

Similarly, a skilled programmer will naturally understand ‘at a glance’ what a user-defined

utility is doing without having to look at its details.

4.3.4 Our Working Definition of the Concept of Utilities

Given the above discussion, we define a utility as: Any element of a program designed for the

convenience of the designer and implementer and intended to be accessed from multiple

places within a certain scope of the program.

Many utilities will be designed to be reused in multiple programs; this definition does not

preclude that, but does not require it. Also the definition allows a utility to be a method,

class, package or some other element, and to be accessed from a scope that could be as

narrow as a class or as wide as the entire system. A key to the definition is that a utility will

be accessed from an unknown number of places, not just one. The definition does not require

utilities to be grouped in any way, although it does not preclude that.

4.3.5 Definition of the Concept of Implementation Details

We want to note that according to the above definition of utilities, not all implementation

details will be considered utilities. Many routines that implement details in algorithms might

be designed to be called from one specific place. Later on, when we examine the compacting

of traces by the removal of utilities, it may be necessary to consider the removal of other

 90

implementation details as well. We define an implementation detail as: Any element of a

program whose presence could be suppressed without reducing the overall comprehensibility

of the design of a particular feature, component or algorithm. This definition is, of course,

dependent on the design component or algorithm being considered. Utilities are clearly one

kind of implementation detail.

In the following, we discuss a set of criteria that can be used to evaluate the extent to which a

routine can be deemed to be an implementation detail. These criteria will be validated in

Chapter 5 when we present the case study.

Constructors and destructors:

Constructors and destructors are used simply to create and delete objects, rather than to

implement the core system operations. Therefore, it may be best to ignore them while trying

to understand the content of a trace.

Accessing methods:

Accessing methods are methods that return or modify directly the values of member

variables. Therefore, they should be considered as implementation details.

Nested classes:

Most object-oriented languages such as Java and C++ provide the ability to create nested

classes. Although the role of nested classes is not always clear, they can be used as utility

classes that support the implementation of the classes that define them. Therefore, we can

ignore the methods they invoke in order to reduce the complexity of a trace.

Methods of or derived from programming languages libraries:

Programming languages provide libraries that can be reused by software engineers. The

methods that redefine these libraries should be considered as implementation details.

Examples of such methods are the methods that implement or derive from the java.util

package.

 91

User specified implementation details:

We allow the trace summarization process to be flexible enough to allow users to specify

manually components of the system that should be considered as utilities.

4.4 Fan-in Analysis

As the system undergoes several maintenance cycles, it becomes hard to distinguish the

utility components from non-utilities. There is normally no programming language syntax to

designate a utility, and they may or may not be given names that make it clear they are

intended to be utilities. An effective tool should therefore support the automatic (or semi-

automatic) detection of utilities. In this section, we discuss how fan-in analysis can be used

for this purpose.

Fan-in analysis is performed on the call graph generated by static analysis of the system. We

will use it to uncover the routines that have a large number of incoming edges (i.e., many

dependents) and small number of outgoing edges (i.e. dependencies). These will be the

candidate utilities. Our rationale is as follows: the more calls a method has from different

places (the more incoming edges in the graph), then the more purposes it likely has, and

hence the more likely it is to be a utility. Conversely, we would expect a utility routine to be

relatively self-contained (i.e. have low coupling and high cohesion); if a routine has many

calls (outgoing edges in the graph), this is evidence that it is less likely to be considered a

utility. Also, routines that make many calls may be more needed in a trace summary to

understand the system.

The rationale for using a static call graph is this: The static graph will normally give us a

more complete graph. If we were to use the dynamic call graph, generated from the trace

itself (or a set of traces), we may find many cases where a routine by chance has only one

call to it (or just a few) and hence would not be considered a utility merely because the

scenario that generated the graph did not result in calls from any other places. In this thesis,

the graph is not weighted (i.e. all edges have the same weight). One possible consideration

would be to use the number of calls that a routine makes to another routine at run time. This

information can be extracted from the dynamic call graph. However, using this information

 92

as a weighting function is questionable for several reasons. First, there is no evidence that

something that is called ten times due to a loop would be more or less important than a

routine that is called once or twice just because it did not happen to be in an iterative

construct. Second, the number of dynamic calls to a routine will differ depending on the

input data provided to the system, yet the concept of a utility is related to the static perception

of the software engineer, and will not vary from run to run.

4.4.1 Building a Call Graph

A static routine call graph consists of nodes and directed edges as shown in Figure 4.2, where

the nodes consist of the system’s routines and the edges depict a calling relationship from

one routine to another. A node is created for each routine that can be reached starting from

the entry points of the program. For example, in Java, entry points include the main method

or if the program has threads then the call graph must also include all methods that can be

reached starting at any start or run method.

Figure 4.2. Example of a routine call graph

To build a (static) method call graph from an object-oriented system, we must first resolve

polymorphic calls. There exist several techniques that accomplish this task including Class

Hierarchy Analysis (CHA) [Bacon 96, Dean 95], Rapid Type Analysis (RTA) [Bacon 96],

 93

and Reaching-Type Analysis [Sundaresan 00], which differ mainly in the way they estimate

the run-time types of the receiver objects.

CHA tends to be more conservative in the sense that the resulting call graph contains all

possible call sites. For example, when applied to the Java example of Figure 4.3, CHA will

create three edges because it will perceive all the subclasses of the ‘Account’ class as

potential receivers. RTA is an improvement to the CHA technique by eliminating the

invocations that will never occur at run-time. RTA uses information about object

instantiation to remove unnecessary invocation edges from the graph produced by CHA. The

analysis of the same Java example shows that the only possible invocation is the one between

the ‘Driver’ class and the ‘ChequingAccount’ class. This eliminates the two unnecessary

edges built by CHA.

In fact, most studies have shown that RTA is a significant improvement over CHA, often

resolving more than 80% of the polymorphic invocations [Bacon 96]. Furthermore, RTA is

implemented in the Jax [Jax] and Toad [Toad] tools from IBM Research, both available on

the alphaWorks website.

Lately, Sundaresan et al. have developed a new technique for resolving polymorphic calls

called reaching-type analysis [Sundaresan 00], which results in a better approximation of the

call graph than RTA by considering chains of assignments between instantiations. The

authors showed that their technique can result in 5% to 10% fewer edges than RTA.

However, the authors also recognised that reaching-type analysis might be more expensive to

compute. In this thesis, we use RTA for its simplicity, efficiency, and tool support.

class Driver {
 static void main (String[] args) {
 meth(new ChequingAccount());
 }
 static void meth(Account a) {
 a.computInterest();
 }
}

class Account {
 abstract void computeInterest();
}

class ChequingAccount extends Account {

 94

 void computeInterest() {
 System.out.println(“Cheq account”);
 }
}

class SavingAccount extends Account {
 void computeInterest() {
 System.out.println(“Sav account”);
 }
}

class CreditCardAccount extends Account {
 void computeInterest() {
 System.out.println(“CC account”);
 }
}

Figure 4.3. A Java program used to illustrate the resolution of polymorphic calls

4.4.2 The Utilityhood Metric

To measure the extent to which a particular routine can be considered a utility, we suggest

the following utilityhood metric:

Given a routine r and the following:

 N = The number of routines in the routine call graph

 Fanin(r) = The number of routines in the graph, other than r, that call r.

 Fanout(r) = The number of routines in the graph, other than r, that r calls.

We define the utilityhood metric of the routine r, U(r)6, as:

)(

)
1)(

(
)(

)(
NLog

rFanout

N
Log

N

rFanin
rU

+
=

6 Note that this equation can be simplified to)
)(

)1)((
1(
)(

)(
NLog

rFanoutLog

N

rFanin
rU

+
!= . It is kept as indicated

above to be able to better explain it.

 95

U(r) has 0 (not a utility) as its minimum and approaches 1 (most likely to be a utility) as its

maximum.

Explanation:

First, we want to note that Fanin(r) and Fanout(r) both vary from 0 to |N|-1 (i.e. self

dependencies are ignored)

This formula can be split into two parts. The first part
N

rFanin)(simply reflects the fact that

the routines with large fan-in are the ones that are most likely to be utilities. For example, if

the routine is called from all other routines of the system then its
N

rFanin)(will be close to 1

(it will never reach 1 since self dependencies are ignored, i.e., Fanin(r) < N).

However, as discussed earlier, it is also important to consider the number of routines that are

called by a particular routine. Therefore, we multiply the first part (i.e.
N

rFanin)() by a

coefficient that takes into account fan-out, although with lower emphasis. We achieve this

using)
1)(

(
+rFanout

N
Log . We use 1)(+rFanout for convenience to avoid situations where

Fanout = 0.

If a routine r does not call any other routine of the system then Fanout (r) = 0, hence

)
1)(

(
+rFanout

N
Log = Log(N), which would be dependant on the size of the system under

study. We divide this result by Log(N) to ensure that both this expression and the entire

formula vary from 0 to 1. In the case of r, its utilityhood metric will be equal to
N

rFanin)(.

On the other hand, a routine that has very large fan-out will result in)
1)(

(
+rFanout

N
Log

that tends to zero cancelling the effect of fan-in. This is a routine that should not be

considered as a utility.

 96

The result of applying the utilityhood metric to the call graph of Figure 4.2 is shown in Table

4.1 that we refer to as the Ranking Table (in this table, the base of the logarithm is 2). This

table is sorted according to the descending order of U. In this example, we can see that the

routine r2 is a candidate utility routine since it is called by all other routines and does not call

any routine (its U value is the highest).

Table 4.1. Ranking table computed from the call graph of Figure 4.2

Routines Fanin Fanout U

r2 6 0 0.86

r5 3 1 0.27

r6 2 2 0.12

r3 1 2 0.06

r7 1 2 0.06

r4 1 4 0.02

r1 0 3 0.00

A tool using the utilityhood metric would need to pick a threshold, above which to consider

routines as utilities, and therefore to suppress them from the trace. The exact threshold will

vary depending on the context; for example, if there is a strong need to compact the trace

further, then a higher threshold can be picked. Alternatively, if the trace has already been

compacted too far, and the software engineer finds that he or she would like to see more

detail in order to understand it, then the threshold can be reduced.

4.4.3 Trace Summarization Algorithm

The trace summarization algorithm takes a source trace as input, processes it by iteratively

removing implementation details including utilities, and returns a summary of the trace as

output. This process is done in a semi-automatic manner as shown below. The algorithm is

deliberately underspecified, since further research is needed to determine the best settings of

certain parameters (Step 1) and how to categorize and detect various other kinds of

implementation details in addition to utilities (Step 2). The following are the steps of the

algorithm:

 97

 Step 1: Set the parameters for the summarization process. A key parameter is the Exit

Condition (EC) that will be used to determine when to stop summarizing. More details

about setting parameters are presented below.

 Step 2: Remove all known implementation details (i.e. the ones that do not necessarily

have high fan-in but yet can be considered to be low-level details such as the ones

presented in Section 4.3.5)

 Step 3: Compute U for the routines in the trace remaining after Step 2:

o While EC is False, remove the routines invoked in the trace that have the

highest remaining value of U.

 Step 4: Output the result of Step 3

Following Step 4, the maintainer can evaluate the result, adjust the parameters and run the

algorithm again, or manually manipulate the output.

A. Some details of Step 1: Setting the parameters

Step 1 of the algorithm sets certain parameters that will guide the summarization process.

The first of these is to determine an exit condition (EC) that will be used to stop the filtering

process. There are several criteria that could be considered for this purpose. Perhaps the

simplest one might be to compute the ratio of the size of the summary to the size of the initial

trace. For example, we can stop the algorithm if the size of the summary reaches 10% of the

initial size of the trace. However, due to the various types of repetitions that exist in a trace,

using a simple size ratio will often not be useful. For example, simple elimination of the large

number of repeated calls in one loop may cut the trace to 10% of its size, without improving

our ability to comprehend it very much.

In Chapter 3, we introduced many metrics for measuring various properties of traces. One of

these metrics is the number of comprehension units (Scu), which we defined as the number

of distinct subtrees of the trace. We have therefore found it useful to base the exit condition,

EC, on comprehension units. In particular we can define a ratio R that compares the number

 98

of comprehension units contained in the summary to the number of comprehension units of

the initial trace.

More formally, let:

 Scu(T) = Number of comprehension units of a trace T

 Scu(S) = Number of comprehension units of the summary S extracted from the trace T

Then we define this ratio as R = Scu(S)/Scu(T)

Using this ratio, a suitable exit condition might be R = 10%. That is, we stop applying fan-in

analysis when the ratio of the number of comprehension units of the summary to the number

of comprehension units of the initial trace is equal to or less than 10%.

Another parameter to set in Step 1 of the algorithm is the matching criteria used to compute

Scu; choosing appropriate criteria allows one to vary the degree of generalization of the trace

content. In other words, two sequences of calls that are not necessarily identical can be

grouped together as instances of the same comprehension unit if they exhibit certain

similarities. In this thesis, the grouping we use is of the simplest kind: we ignore the number

of contiguous repetitions when computing the number of comprehension units.

B. Explanation of the remaining steps

Step 2 of the algorithm proceeds by removing any known implementation details from the

source trace. Examples of implementation details were presented in Section 4.3.5 and include

accessing methods, methods that override the methods contained in the language library (e.g.

Java.util), constructors, etc. The maintainers should also be able to manually specify a list of

components that can be considered as implementation details.

Step 3 takes the traces resulting from Step 2 and applies to it fan-in analysis in order to

further reduce its content. It proceeds by iteratively removing the routines with the highest

remaining value of U (utilityhood) until the exit condition is satisfied.

 99

Step 4 of the algorithm is a presentation step where the final summary is turned into a visual

representation such as a UML sequence diagram and given to the users as output.

The application of the above steps is automatic. However, there is a need to account for the

following situations:

 Situation 1: The resulting summary still contains too much information for the users.

 Situation 2: The resulting summary is too abstract for the users to develop a sufficient

understanding of the system behaviour. For example, the removal of a certain widely-

used utility might cause the number of comprehension units to drop considerably

below the designated threshold.

If either of these situations occurs, the maintainer will find the summary to be uninformative,

and will have to adjust the exit condition and re-run the algorithm. The maintainer might

alternatively further process the result using a trace analysis tool.

4.5 Summary

In this chapter, we introduced the concept of trace summarization and how it used to

summarize the content of large traces. One direct application of this concept is to recover the

behavioural design models of the system as well as enable top-down analysis of traces.

Our approach for achieving trace summarization is based on the hypothesis that traces can be

made easier to understand if we remove the components that are mere implementation details

such as utilities. The motivation behind this hypothesis comes from the way QNX software

engineers use traces as well as the study conducted by Zayour at Mitel Networks.

One of the main contributions of this chapter is the in-depth study of the concept of

implementation details including utilities and a metric that can be used to measure the extent

to which a routine can be considered a utility.

In addition, we presented a technique based on fan-in analysis that can be used to detect

utilities. This technique is used as the main mechanism of the trace summarization algorithm.

 100

The algorithm proceeds by reducing the size of the trace, using the number of comprehension

units metric, to below some threshold.

Our approach also assumes that the users will adjust the algorithm’s parameters and re-run

the algorithm if they wish to try to improve the summary. Users are also expected to be able

to use tools that would allow further manipulation of the results.

 101

Chapter 5. Case Study

5.1 Introduction

In this chapter, we present a case study in order to evaluate the effectiveness of the trace

summarization approach presented in the previous chapter by applying it to a trace generated

from the execution of the Weka (ver. 3.0) system [Weka, Witten 99].

We do not only apply the algorithm, but also the manual steps involved in its use, such as

manipulating the results (see Section 4.2.4). We then evaluate the overall approach by asking

the developers of the system to provide feedback on the final results. During the evaluation

process, we also validate the hypothesis, H1, presented in the previous chapter.

This chapter is organized as follows: the next section presents the usage scenario chosen to

generate the trace to summarize. In Section 5.3, we explain the evaluation process. We

present the quantitative as well the qualitative results of this case study in Section 5.4 and

Section 5.5 respectively. A summary of our findings is presented in Section 5.6. The content

of this chapter is adapted and expanded from a paper submitted to the Journal of IEEE

Transaction on Software Engineering (special issue on interaction and state-based

modelling), 2005 [Hamou-Lhadj 05d].

5.2 Usage Scenario

The software feature we selected to analyze is the Weka implementation of the C4.5

classification algorithm, which is used for inducing classification models, also called

decision trees, from datasets [Witten 99]. The algorithm proceeds by building a decision tree

from a set of training data that will be used to classify future samples. It uses the concept of

information gain to determine the best possible way of building the tree. The information

gain can be described as the effective decrease in entropy resulting from making a choice as

 102

to which attribute to use and at what level of the tree. Another important step of the algorithm

is pruning the decision tree. This is done by replacing a whole subtree by a leaf node to

reduce the classification error rate. Weka supports various techniques that can be used to

evaluate one decision tree algorithm over another algorithm using the same dataset. In this

usage scenario, we chose to apply the cross-validation technique which is a procedure that

involves splitting the training data into equally sized mutually exclusive subsets (called

folds). Each one of the subsets is then used in turn as a testing set after all the other sets

combined have been the training set on which a tree has been built.

5.3 Process Description

The process of using trace summarization consists of the following activities:

1. Instrumenting the Weka source code: We used our own instrumentation tool based on

the BIT framework [Lee 97] to insert probes at the entry and exit points of each

system’s non-private methods. Constructors are treated in the same way as regular

methods.

2. Generating a trace of method calls by exercising the target system according to the

functionality under study (i.e. C4.5 algorithm): The trace was generated as the system

was running, and was saved in a text file containing raw lines of events, where each

line represents the full class name, method name, and an integer indicating the nesting

level. For simplicity reasons, in the rest of this chapter, we refer to the generated trace

as The C45 Trace.

3. Building the static method call graph using RTA: To apply the trace summarization

algorithm, we first needed to build the method call graph by parsing the Weka system.

For this purpose, we used the Toad tool [Toad], which supports the RTA technique for

resolving polymorphic calls at compile time.

4. Computing the ranking table: We computed the ranking table by computing the

utilityhood metric for the methods that appear in the trace.

 103

5. Applying the trace summarization algorithm: Finally, we applied the trace

summarization algorithm to the C45 trace. The results are discussed in the next

sections.

5.4 Quantitative Results

In this section, we present the gain in terms of size achieved by filtering the C45 trace using

the trace summarization algorithm. For a better representation of the results, we introduce the

following notations:

 We identify every filtering operation using a distinct mnemonic. For example, the

removal of accessing methods can be identified using the ‘ACC’ mnemonic.

 In addition, we define a transformation rule TA = Transf(T, A) to represent a trace TA

that results from applying the filtering operation A to a source trace T.

The results of applying the trace summarization algorithms are as follows:

Step 1: Setting the parameters

The most important parameter to set is the exit condition, EC. From experience, we chose a

threshold R = 10%. That is, we stop the algorithm when the ratio of the number of

comprehension units of the resulting trace to the number of comprehension units of the initial

trace drops just below 10%. As discussed previously, we also used simple elimination of

repeated calls as our only approach to generalization. Other parameters we set included

which implementation details to remove in the next step.

Step 2: Removing the implementation details

Step 2 of the algorithm deals with removing implementation details. In what follows, we

present the various types of implementation details considered in this case study (a

mnemonic is used to identify every single filtering operation).

 Removing methods of inner classes [INNER]: Methods of inner classes are removed

from the trace. In Java, these are easy to detect using the Java reflection model.

 104

 Removing accessing methods [ACC]: We noticed that all methods that start with ‘set’

and ‘get’ are accessing methods, which made removing such methods an easy task.

However, we also found some methods that are named after specific instance variables

(e.g. name(), dataset(), etc.) are also used as accessing methods. We did remove these

methods. Perhaps, in the future, we will need to apply static analysis techniques such

as data flow analysis to detect accessing methods although this might result in high

computational overhead.

 Removing constructors and Java finalizers [CSTR]: Java constructors and static

constructors are represented in the Java Virtual Machine (JVM) using the <init> and

<clinit> mnemonics respectively. This is also the way they appear at run-time, which

facilitate their removal. Finalizers are Java version of destructors.

 Removing methods found in the Java library [JLIB]: The methods of the Java library

that were considered in this case study are the ones that belong to the java.lang.Object

class (usually overridden by user-defined classes) and the classes of the java.util

package (e.g. methods of the Enumeration interface, etc)

 Removing user-defined utility methods [UDEFUT]: We explored the Weka

documentation to search for possible user-defined utility methods, classes or packages.

We noticed that there is a class called weka.core.Utils that contains general purpose

methods such as grOrEq, etc. We decided to remove its methods from the trace since

they are an obvious case of utilities.

Table 5.1 summarizes the cumulative result of removing the above categories of methods. By

cumulative, we mean that the table should be read using the following transformation rules:

 TINNER = Transf(T, INNER)

 TACC = Transf(TINNER, ACC)

 TCSTR = Transf(TACC, CSTR)

 TJLIB = Transf(TCSTR, JLIB)

 TUDEFUT = Transf(TJLIB, UDEFUT)

 105

Table 5.1. Results after removing implementation details from the C45 trace

 T TINNER TACC TCSTR TJLIB TUDEFUT

S 97413 87417 90% 48653 50% 40665 42% 33619 35% 31102 32%

Scu 275 271 99% 206 75% 164 60% 138 50% 120 44%

Nm 181 177 98% 160 88% 125 69% 104 57% 95 52%

Table 5.1 shows that the removal of methods of inner classes and accessing methods results

in a reduction of (50%) of the size of the initial trace (S). However, the number of

comprehension units (Scu) and the number of distinct methods (Nm) are still quite high (75%

and 88% respectively).

Additional filtering is then necessary to reach the 10% threshold. The table shows that

removing constructors/finalizers, java library methods, and user-defined utilities (i.e.

methods the weka.core.Utils class) brings down the number of comprehension units to Scu =

120, which represents 44% of the number of comprehension units of the initial trace. The

size of the resulting trace S is 31102 calls (i.e. 32% of the size of the initial trace), which is

still rather high for humans to manage.

This first filtering phase confirms our intuition that the removal of implementation details is a

crucial step for building summaries but is far from sufficient.

Step 3: Applying Fan-in Analysis

Step 3 aims to improve the results obtained in the previous step by applying fan-in analysis.

For this purpose, the ranking table built from the Weka call graph was used. We proceeded

by removing the routines that have high utilityhood value (the ones that are ranked first in the

ranking table). After each iteration, we checked whether the exit condition, R = 10%, holds

or not. This process continued until the algorithm hit a method called

weka.j48.J48.buildClassifier. The removal of this method resulted in a trace that contains 156

calls (0.2% of the size of the initial trace), 20 comprehension units (7% of the number of

comprehension units of the initial trace), and 20 routines (11% of the number of routines of

the initial trace). Note that this trace contains considerably fewer comprehension units than

 106

the threshold (7% compared to 10%). Based on that, we decided to reverse the removal of

this method and stop the fan-in analysis at a higher EC threshold.

The resulting trace is called Tfaninut and it contains S = 3219 calls (3%), Scu = 67

comprehension units (24%), and 51 methods (28%).

Step 4: Outputting the summary

At this stage of the analysis, we output the trace as a tree structure and proceeded to

exploring its content.

Evaluation and processing of the content of the Tfaninut:

Our initial objective was to have a summary that contains just below 10% of the total

comprehension units of the initial trace. However, the algorithm in Step 3 overshot this, so as

mentioned we backed up and stopped at 24% (i.e. we are in Situation 1 as described in

Section 0). Therefore, we decided to further explore the content of the final trace, Tfaninut, in

order to make some further adjustments. This process was done using a trace exploration tool

called SEAT (Software Exploration and Analysis Tool) [Hamou-Lhadj 05a, Hamou-Lhadj

04c] that we have developed to support most of the concepts presented in this thesis. SEAT

implements various capabilities for the exploration of traces. Using SEAT, a software

maintainer can explore the trace by searching for specific components, map the trace content

to the other system artefacts using the facilities of the Eclipse environment, filter the trace

content using several techniques such as pattern matching, sampling, and so on, detect

patterns of execution using various matching criteria, allow the user to add specific trace

components to a list of utilities that can be used during the processing of other traces

generated from the same system, etc. SEAT uses CTF (see Chapter 6) to model the traces,

which allows it to scale up to processing large traces. Finally, SEAT implements most of the

metrics presented in Chapter 3.

Exploration using the tool showed that the method called buildTree generates three additional

levels of the tree representation of the trace and most of the methods that appear in these

levels have small fan-in (1 or 2) and small fan-out (1 or 2). The role of the buildTree method

is to build the decision tree that is used by the C4.5 algorithm. At this point, we thought that

 107

the details of how the tree is built might be something that can be hidden and that it is

sufficient for a summary to have an indication that a tree is being built. Therefore, we

decided to remove the methods generated from the buildTree method from the summary. The

whole process took no more than fifteen minutes and involved expanding and collapsing the

tree along with displaying statistics about the content of the trace – these operations are

efficiently supported by SEAT. Whether the content of the buildTree method should be kept

in the summary or not is something that we will discuss in the next section in the context of

evaluating the content of the summary.

The resulting trace is called Tadjust and contains 453 lines (0.5% of the initial size), 26

comprehension units (10% of the initial number of comprehension units), and 26 methods

(14% of the initial total of methods).

Finally, the trace was converted manually into a UML sequence diagram (Figure 5.1a and

Figure 5.1b) where the contiguous repetitions have been collapsed (some additional notations

have been used to show repeated sequences such as the Loop and (*) constructs). The

sequence diagram and the tree representation of the final trace were presented to the Weka

software developers for evaluation.

5.5 Questionnaire Based Evaluation

One of the most difficult questions when evaluating a summary is to agree about what

constitutes a good summary. In other words, what distinguishes good summaries from bad

summaries (assuming that there can be a definitive answer to this that people will agree on

reasonably well)?

In text summarization, there are two techniques for evaluating summaries: extrinsic and

intrinsic evaluation. The extrinsic evaluation is based on evaluating the quality of the

summary based on how it affects the completion of some other task [King 98]. The intrinsic

evaluation consists of assessing the quality of the summary by analyzing its content [Paice

93]. Using the intrinsic approach, a summary is judged according to whether it conveys the

main ideas of the text or not, how close it is to an ideal summary that would have been

written by the author of the document, etc.

 108

In this thesis, we adopt an intrinsic approach leaving the extrinsic evaluation for future

research. The objective is to assess the trace summarization technique with respect to

whether or not it extracts summaries that would convey the main content of a trace. We will

also evaluate the summary with respect to its similarity to a behavioural model that a

software engineer would design.

To perform intrinsic evaluation, we designed a questionnaire with thirteen questions that aim

to evaluate various aspects of the extracted summary. The questionnaire was given to nine

software engineers who have experience with using the Weka system: Either they were part

of the Weka development team or they added new features to the system. The questionnaire

consists of the following categories that we present here and discuss in more detail later:

 Background of the participants

 Order of calls of the trace summary

 Quality of the summary

 Usefulness of a summary in software maintenance tasks

5.5.1 Background of the Participants

We designed four questions to enable us classify our participants according to their expertise

in the domain represented by Weka (i.e. machine learning algorithms) as well as their

knowledge of the system structure.

For each question, the participants selected from fixed values ranging between ‘Very poor’

(score of 1) and ‘Excellent’ (score of 5). The questions are:

Q1. My knowledge of the Weka system (i.e. classes, methods, packages, etc.) is:

Q2. My knowledge of the domain represented by Weka is:

Q3. I read Chapter 8 of the book written by Witten and Frank that describes the Weka

system and my understanding of it is (skip this question if your did not read this

chapter):

Q4. My experience in software development is:

 109

Figure 5.1a. The first part of the summary extracted from the C45 trace. This

part deals with building classifiers and classifying the input the dataset

 110

Figure 5.1b. The second part of the summary extracted from the C45
trace. This part deals with the cross validation process

 111

The third question (Q3) refers to the book written by Witten and Frank [Witten 99] that

devotes an entire chapter (Chapter 8) to the architecture of the Weka system, which can be

used by software developers to add new features to Weka.

Table 5.2. The participants’ background

Table 5.2 shows the answers of the participants (P1 to P9), which can be divided into three

groups according to the knowledge they have of the Weka structure (Q1) as well as the

knowledge they have of the domain (Q2). The first group consists of participants P1 and P2

and can be qualified as intermediate users since they have an average knowledge of the Weka

internal structure (score of 3) although they have good knowledge of the domain (score of 4).

The second group consists of participants P3, P4, and P5 and we refer to them as experienced

users (they all scored 4 out of 5 in both questions Q1 and Q2). Finally, the last group includes

participants P6, P7, P8, and P9 and we call them experts since their knowledge of the internal

structure of Weka as well as the domain is excellent (score of 5 for Q1 and Q2). These are

also the users who contributed to the original development of Weka. Table 5.3 classifies the

participants according to the category of users they belong to.

Table 5.3. The participants’ background by categories

Questions P1 P2 P3 P4 P5 P6 P7 P8 P9 Average

Q1 (Structure) 3 3 4 4 4 5 5 5 5 4.2

Q2 (Domain) 4 4 4 4 4 5 5 5 5 4.4

Q3 (Chapter 8) 3 4 4 4 4 4 4 5 5 4.1

Q4 (SW Dev) - - 4 - 5 5 5 5 5 4.8

Group Participants

Intermediate P1 P2

Experienced P3 P4 P5

Experts P6 P7 P8 P9

 112

In addition, all participants except P1 have good to excellent experience is software

development. Presuming that they were also involved in maintaining software, their feedback

will certainly help us evaluate the overall effectiveness of a trace summary in performing

software maintenance tasks.

Among the participants who read Chapter 8 of the Weka book, P5 (an experienced user) and

all four experts have an excellent understanding of its content. On the other hand P3 (an

intermediate user) has a good understanding of the content of this chapter. It is important to

mention that reading the chapter does not necessarily give the reader a deep insight into the

Weka implementation: The book only describes the overall architecture of the tool.

5.5.2 Order of Calls of the Trace Summary

The goal of this category of questions is to cross-check the knowledge and attention of the

participants. We achieve this by asking the participants to assess the extent to which the

extracted summary maintains the order of calls of the initial trace. Since the trace

summarization process merely cut methods, the order of calls will of course be kept. A

participant who says the order is not correct would either lack knowledge of the system, or

else would be holding an incorrect mental model.

However, it is important to note that if generalization techniques are used to extract

summaries then checking the correct order of calls would be important. This is because

generalization might involve treating sequence of calls as sets which can significantly alter

the flow of execution of the initial trace.

In this category, we asked one question, which is:

Q5. In your opinion, to what extent does this summary preserve the correct order of calls?

That is, there is no call that is made that contradicts the way the system is implemented.

The participants selected from fixed values ranging between ‘The order of calls is completely

inaccurate’ (score of 1) and ‘The order of calls is well preserved’ (score of 5).

 113

The first row of Table 5.4 summarises the participants’ answers to Q5; it shows that the

opinions of the participants vary from believing the order of calls is at least somewhat

preserved (score of 4) to believing the order is well preserved (score of 5), which confirmed

the knowledge of the system they claimed to have as well as the fact they had almost a

correct mental model of the implementation of the traced feature.

When asked to elaborate on their answers, the participants pointed out the fact that the

evaluteModel1 method that is invoked in the beginning of the sequence diagram (Figure

5.1a) is called before the buildClassifier method. According to them, this is inconsistent with

the way the C4.5 algorithm works and eventually represented in Weka. Indeed, conceptually

the algorithm certainly builds the classifier and then starts the evaluation. However, after

checking the source code, we realized that all Weka classifiers are executed through the

evaluateModel1 method although this method does not perform any evaluation. It only takes

the name of the classification algorithm as a string, it builds the classifier (by creating an

object of the corresponding classifier, e.g., C4.5) and then it calls a second method called

evaluateModel2 to perform the actual evaluation. The summary shows that evaluateModel2

is invoked after building the classifier. Therefore, the trace as well as its summary did reflect

the correct order of calls. It is just that the use of the same method name in Weka created

confusion.

In addition, the discussion regarding the order of calls led to three interesting observations.

Firstly, most of the participants said that they relied on their knowledge of the C4.5 algorithm

and the method names to assess how the order of calls should be. This is interesting because

without a good naming convention, one might never understand a summary effectively. By

analogy, imagine having a summary of an English text where the words that are included are

not proper English. Secondly, after discussing the content of the summary with the

participants, it became obvious to us that the knowledge of the domain (or at least the traced

feature) is a key for comprehending the content of a summary. In fact, without this

knowledge, it will be hard to get any useful information out of a summary. This is like

reading a summary of a document without having any idea about the topic of the document.

Finally, the confusion raised by the evaluteModel method confirmed the idea that a tool that

manipulates summaries must allow the user to map their content to the other system artefacts

 114

such as the complete source code. In fact, summaries themselves might include more than

simple method names. For example, it might be better to add the list of parameters, source

code comments, etc.

Table 5.4. Answers to questions about the content of the summary (Q5, Q6, Q7 and
Q8)

 Intermediate Experienced Experts

Questions P1 P2 P3 P4 P5 P6 P7 P8 P9 Average

Q5 (Order) 4 5 4 5 5 4 4 5 4 4.3

Q6 (Constructors) 1 1 2 2 1 1 1 1 1 1.1

Q7 (Accessing) 1 1 2 1 2 1 1 1 1 1.1

Q8 (Inner) - - 1 1 2 1 1 1 5 1.7

5.5.3 Quality of the Summary

The objective of this category of questions is to assess whether the extracted summary

captures the main interactions that implement the traced scenario. Several questions were

asked due to the importance of this category. We divide these questions in to three

subcategories: removing components; thorough analysis of the summary; and ranking the

quality of the summary.

Removing components:

Questions Q6 to Q8 aim to evaluate the effect of removing constructors, accessing methods,

and methods of inner classes on the quality of the summary. The effect of removing other

types of implementation details such as the routines that implement (or derive from) Java

library components and the ones that belong to the weka.core.Utils class has been discussed

informally with the participants. As expected, all participants agreed that they constitute

implementation details and indeed they should be removed. We did not feel the necessity to

capture this feedback in the questionnaire so as to keep the users’ focus on more important

concepts.

 115

The questions are:

Q6. We deliberately removed the constructors from the summary. To what extent does this

affect the quality of the summary?

 Q7. We deliberately removed the accessing methods from the summary. To what extent

does this affect the quality of the summary?

Q8. We deliberately removed methods of inner classes from the summary. To what extent

does this affect the quality of the summary?

The participants selected from fixed values ranging between ‘Not at all’ (score of 1) and

‘Very much’ (score of 5).

The results are also shown in Table 5.4. All intermediate and expert users said that the

removal of constructors (Q6) does not affect the quality of the summary at all. However, two

participants (P3 and P4) out of the three experienced participants said that this might affect it

a just little. One comment made by P3 is that sometimes it is useful to retain the constructors

if a class contains many constructors and that it might be important to know which one is

called in order to have an idea of which path of the system is being executed. P4 explained

that some constructors might be useful but certainly not all of them. When we asked which

ones can be useful, the participant replied that these might be the constructors of the most

important classes of the implementation of the C4.5 algorithm such as constructors of the J48

class (this is the Weka class that implement the core of the C4.5 algorithm).

In addition, we asked our participants to tell us why they think that constructors are not

useful at a high level. Among the various answers, P5 (experienced user) commented that

this is because they do not add any new information and that most of the time people already

know what they do. This corresponds exactly to the comments made by the QNX software

engineers when asked about what elements of the system should be considered as utilities.

Our users also said that if they know what a piece of code does, that they will most likely

want to hide its specifics and just skip it and look at something else.

 116

All participants, except two experienced participants (P3 and P5), agree that the removal of

accessing methods (Q7) does not negatively affect the content of the summary. The only

comment made is that some accessing methods might return important information that will

help understanding the rest of the trace. However, even the dissenters agreed that most

accessing methods should indeed not appear in the summary.

Question Q8 asked the participants about the effect of removing methods of inner classes on

the quality of the summary. Intermediate participants (P1 and P2) said that they are not

familiar with the Weka inner classes. Therefore, they did not provide an answer. Participant

P8 (an expert) said that they might affect the quality of the summary just a little assuming

they work correctly (i.e. they are free of defects). According to him, one might need to

explore their content to uncover a buggy behaviour. However, the participant added that if

the purpose of the summary is other than fixing bugs then we might as well ignore inner

classes due to the low-level granularity they represent.

One of the most surprising answers was provided by P9, one of the experts. According to this

participant, methods of inner classes are important for the understanding of the internal

structure of some characteristics of the C4.5 algorithm such as how splitting, collapsing and

pruning decision trees work. After analyzing the source code and reading the Weka

documentation, we found that, in this particular case, inner classes are used to hold data

structures such as HashKey, NeighbourList, etc. When we asked the participant how these

classes can be useful at a high level, he replied that although he likes to have the big picture,

he prefers to go into the details when it comes to understanding the exact behaviour. We

found this answer compatible with what we are trying to achieve. As we previously stated, a

summary can only reflect the overall behaviour that can be used to build a global

understanding of the trace. It is clear that depending on the maintenance task at hand, a

software engineer will most likely need to dig deeper to understand the details.

The next two questions (Q9 and Q10) are concerned with a thorough analysis of the trace

summarization process through the content of the C45 summary. We want to know whether

the summary still contains methods that need to be further removed or whether, in contrast, it

lacks important methods that were removed by the trace summarization algorithm.

 117

Thorough analysis of the summary:

Question Q9 asks the participants to go through a list of the distinct methods that appear in

the summary and put an X mark next to any method that should not appear in the summary.

This would typically be a method that is a utility or implementation detail but was not

detected by the trace summarization process.

The participants’ answers were different, as one could expect. There are three types of

answers that we distinguished. Participants P1, P4, P6 and P7 did not mark any method.

According to them, the methods presented in the list should all be part of the summary. One

of the comments made by P4 (experienced user) was that the summary is representative as it

is, and even if there are one or two undesired methods, this will not affect its overall content.

The second pattern we noticed consists of the answers provided by the participants P2, P3,

P5 and P9. The three of them argued that the methods related to displaying the results of the

evaluation might not be needed at such a high-level representation of the trace. P9 suggested

to further get rid of the methods toSummaryString, toMatrixString, and the calls they

generate. According to him, the fact that the evaluation process took place (this is done using

the evaluateModel2 method) should be enough for someone who wants to understand the

overall content of the trace and that the display of the results should be implicit. P3 added

that toSummaryString only prints some results to the console which might not be needed in

the summary. Both, participants P5 (experienced) and P2 (intermediate) made the same

comment except that they still want to see the methods toSummaryString and toMatrixString

but hide the methods they call such as incorrect, pctIncorrect, etc. According to them, this

provides a level of detail that is not compatible with the level of detail provided for the other

parts of the trace. For example, participant P2 said that the summary should be consistent in

the level of abstraction it represents. When asked to elaborate on this particular comment, the

participant replied that at some parts of the trace such as the part where the decision tree is

built (see buildTree in Figure 5.1a and b), the summary does not say anything about how this

is done. However, in other places such as the portions where the results of the evaluation are

displayed, the summary provides considerably more detail.

 118

The last pattern of answers we noticed was provided by participant P8 (expert), who said that

there is no need to show the method evaluateModelOnce and the methods it generates.

According to him, it is enough to know that the method evaluateModel2 is executed and that

it might be better to hide its internal structure. The role of the evaluateModelOnce method is

to evaluate every instance of the dataset. The participant also added that the cleanup method

seemed to be for implementation purposes. After analyzing the source code, we discovered

that the role of the cleanup method is to free memory space. Therefore, it should not appear

in the summary since it is typically an implementation detail.

The various answers of the participants lead to two observations: The first is that all

participants confirmed that most methods that appear in the summary deserve to be in the

summary. The second remark is that, as expected, it seems that no matter which methods are

selected to be in the summary, there will always be some methods that are important to some

users while less important to others. This supports the idea that a summary of a trace is not

effective unless it allows enough flexibility to adjust the quantity and type of information it

contains.

Question 10 asked the participants to go through a list of distinct methods that were removed

from the trace and indicate with an X mark next to the ones that should appear in the

summary. These are the methods that the process removed inappropriately.

Again, the answers vary from one participant to another. P7 and P9 (two experts) did not

indicate any method. According to them, the methods that were removed are details that

might be hidden at higher levels. They added that it all depends on the level of details that is

wanted. For example, knowing that a decision tree is being built might be enough for people

who have an extensive expertise of the system structure: They do not want to see what it is

involved in building the tree.

However, most participants disagreed with that. In fact, they all pointed out to the fact that

the summary does not tell much about how the decision tree is built. It only shows that the

buildTree method is called. Most of them expected to see more about how the internals of the

buildTree method. One expert (P6) mentioned that although the summary refers to the classes

that implement the C4.5 algorithm such as the classes J48 and C45PruneableClassifierTree, it

 119

might be hard for someone who does not know the difference among the various

classification algorithms supported by Weka to understand what distinguishes C4.5 from

other algorithms. From the list of the removed methods, he marked the ones that deal with

computing the information gain ratio (e.g. infoGain, gainRatio, split, splitCritValue, etc). The

other participants marked similar methods, but with some noticeable differences. For

example, some participants suggested having the methods that return the size of the decision

tree after it is built (e.g. numLeaves, numNodes), others prefer focusing on the information

gain ratio, and that the size of the decision tree might not be important.

Overall, the methods that most participants wished to see consist of the ones that we removed

during the evaluation and processing of the content of the summary (after Step 4 of the trace

summarization algorithm). It seems that the 10% threshold was lower than we expected. In

fact, if R were set to 24 %, this would have resulted in including in the summary the methods

generated by the buildTree method. On the other hand, this will also let many other

undesirable methods that were removed find their way into the summary.

In addition, the total count of methods that the participants asked to include in the summary

represent only 19% of the total number of methods that were listed as removed using fan-in

analysis and using a trace analysis tool. This means that all participants agreed that the other

81% are indeed implementation details.

Ranking the quality and importance of the summary:

The next three questions aim to assess the overall quality of the summary. Question Q11

asked:

Q11. How would you rank the quality of the summary with respect to whether it captures

the main interactions of the traced scenario?

The participants were asked to select from fixed values ranging between ‘Very poor’ (score

of 1) and ‘Excellent’ (score of 5).

 120

Table 5.5. Answers to questions about to the quality of the summary (Q11, Q12, Q13)

 Intermediate Experienced Experts

Questions P1 P2 P3 P4 P5 P6 P7 P8 P9 Average

Q11 (Quality) 4 4 4 4 4 4 5 5 3 4.1

Q12 (Diagram) 4 5 3 4 4 4 4 5 3 4

Q13 (Effectiveness) 4 4 5 5 5 4 4 5 4 4.4

Table 5.5 shows that intermediate and experienced participants all agree that the summary

captures the most important interactions of the trace. Two experts added that it is actually an

excellent representation of the main interactions. Participant P9 (an expert) commented that

the summary lacks relevant information about how the decision tree is built and therefore

ranked it as an average (score of 3) representation of the main events.

Question 12 asked:

Q12. If you designed or had to design a sequence diagram (or any other behavioural

model) for the traced feature while you were designing the Weka system, how similar

do you think that your sequence diagram would be to the extracted summary?

The participants were asked to select from fixed values ranging between ‘Completely

different’ (score of 1) and ‘Very similar’ (score of 5)

Most participants including three experts answered that the sequence diagram they would

have designed would most likely be similar (sometimes even very similar) to the summary

extracted semi-automatically from the trace. However, participants P3 (experienced) and P9

(expert) commented that their design would have been slightly more concise than the

summary. They mostly refereed to the fact that the summary lacks details about building the

decision tree.

 121

Question 13 asked:

Q13. In your opinion, how effective can a summary of a trace be in software

maintenance?

The participants were asked to select from fixed values ranging between ‘Very ineffective’

(score of 1) and ‘Very effective’ (score of 5).

All participants agreed that a trace summary can be effective in software maintenance. Many

of them added that this is a very good way to understand what the system is doing when the

documentation is out of date or simply inexistent. We asked the participants to explain in

which way summaries can help perform maintenance tasks. The answers were similar. The

most common answer was that a summary can help understand the system behaviour, which

will lead to performing maintenance tasks faster. Recovering the system behavioural models

was the next most common comment made by most participants. Indeed, recovering the

documentation has always been a challenging task, and when it is done it usually focuses on

the system architecture. The techniques for recovering dynamic models are also needed just

like in forward engineering where engineers focus on developing both static and dynamic

views of the system.

5.6 Summary

We applied the trace summarization process to a trace generated from the Weka system.

Initially, the trace contained 97413 method calls. The extracted summary, which contained

453 calls, was transformed into a UML sequence diagram and given to nine software

developers of the Weka system for feedback.

Most participants agreed that removing constructors, accessing, methods, and methods of

inner classes does not affect the quality of the summary in terms of the information it

conveys.

Fan-in analysis has resulted in reducing the size of the trace significantly but did not allow

the trace summarization to meet the exit condition. Additional filtering was done semi-

automatically using a trace analysis tool.

 122

Several aspects of the summary were evaluated. Most participants agreed that the extracted

summary represents a useful abstraction of the traced scenario (Question 12). They also

agreed that the summary did capture the main interactions invoked in the trace (Question

Q11). When asked about the usefulness of trace summarization to perform maintenance tasks

(Question Q13), the participants said that the concept can be helpful for maintaining systems

with poor documentation.

In conclusion, the feedback received from the participants is in support of the hypothesis, H1,

stated in Chapter 4. We therefore confirm the fact that understanding the main content of a

trace can be made easier if low-level implementation details are filtered out.

 123

Chapter 6. The Compact Trace Format

6.1 Introduction

Existing trace analysis tools such as the ones presented in Chapter 2 use different formats for

representing traces, which limits sharing and reuse of data. Although they have common

features, each of them has its own advantages and specialized functions. Currently, the only

way to take full advantage of these functions is to convert data from one format to another.

Writing converters to and from all available formats would be impractical. To address this

issue, we have developed an exchange format called CTF (Compact Trace Format) for

representing traces of routine (method) calls.

CTF is built with the idea of scalability in mind. It takes advantage of the fact that dynamic

call trees can be transformed into ordered directed acyclic graphs (DAG) by representing

similar subtrees only once as shown in Chapter 3. The original trace can be reconstructed in

the normal case where exact matching is used when comparing subtrees. In this default case,

CTF is therefore a lossless representation of the trace.

Some of the advantages for having a standard exchange format can be summarised in what

follows:

 It reduces the effort required when representing traces.

 It allows researchers to use different tools on the same input, which can help compare

the techniques supported by each tool.

 It allows maintainers to combine the techniques from different tools to realize the given

maintenance task.

 124

An exchange format consists of two main components [Bowman 99]: A schema (i.e.

metamodel) that represents the entities to exchange and their interconnections, and the

syntactic form of the file that will contain the information to exchange (i.e. the instance data).

In this chapter, we present the CTF schema and discuss how it is used to represent the

information needed in order to exchange traces of routine calls. We also discuss how CTF

instance data can be ‘carried’ using existing syntactic formats such as GXL (Graph eXchange

Language) [Holt 00] or TA (Tuple Attribute Language) [Holt 98].

The remainder of this chapter is organized as follows: In Section 6.2, we present an overview

of existing metamodels used to describe dynamic information. In Section 6.3, we discuss the

design of CTF with respect to well-studied requirements for the development of an exchange

format. We present the CTF abstract syntax, semantics, and syntactic form in Section 6.4.

Finally, CTF tool support and adoption is the subject of Section 6.5.

The content of this chapter is adapted and expanded from a paper appearing in the ICSM first

International Workshop on Meta-models and Schemas for Reverse Engineering (ATEM),

2003 [Hamou-Lhadj 04d] and a paper submitted to the Journal of Software and Systems

Modeling, 2005 [Hamou-Lhadj 05e].

6.2 Related Work

Several authors have discussed the benefits of representing a dynamic call tree in the form of

a directed acyclic graph [Jerding 97b, Larus 99, Reiss 01] but none of them attempted to

build a metamodel upon this concept.

Reiss and Renieris proposed a technique called string compaction that can be used to

represent a dynamic call tree as a lengthy string [Reiss 01]. For example if function ‘A’ calls

function ‘B’ which in turn calls function ‘C’, then the sequence could be represented as

‘ABC’. Markers are added to indicate call returns. For example, a sequence ‘A’ calls ‘B’ and

then calls ‘C’ will be represented as ‘ABvC’ (the marker ‘v’ will indicate a call return).

However, we posit that this basic representation has a number of limitations: It does not have

 125

the flexibility to attach various attributes to routines, and cannot be easily adapted to support

statement-level traces.

In her master’s thesis [Leduc 04], Leduc presented a metamodel for representing traces of

method calls, which supports also statement-level traces. Leduc used UML class diagrams to

describe the components of the metamodel and the relationships among these components.

However, one of the major drawbacks of her approach is the fact that the metamodel is an

exact representation of the dynamic call tree. That means that if a trace, for example, contains

one million calls then using Leduc’s metamodel a trace analysis tool will need to create one

million objects. Leduc’s metamodel does not take into account any sort of compaction

scheme.

There are other trace formats that exist in the literature. However, most of them do not

necessarily deal with traces of routine calls. In [Brown 02], the authors presented STEP, a

system designated for the efficient encoding of program trace data. One of the main

components of the STEP system is STEP-DL, a definition language for representing STEP

traces, which contain various types of events generated from the Java Virtual Machine

including object allocation, variable declaration, etc. STEP is useful for applications that

explore Java bytecode files. STEP-DL is a specialized metalanguage that describes the

structure of the events supported by STEP. The authors argued that a specialized language is

a better choice than using a language based on an existing mark-up approach such as XML.

Their first argument is that, as noted by Chilimbi et al. in [Chilimbi 00], the wordiness of

XML is incompatible with the key compactness requirement for traces. Second, the syntax

for document type definitions (DTDs) in such languages tends to be complex for the task at

hand.

Hyades is the Eclipse Test and Performance Project with the aim to “build a generic,

extensible, standards-based tool platform for testing, tracing, profiling, tuning, logging,

monitoring, and analysis” [Hyades]. Hyades integrates very sophisticated trace collection

techniques using dedicated software agents. The Hyades trace model is based on sequential

logs of events; it focuses more on trace-to-test conversion and automatic testing instead of

program understanding. The CTF model is specifically designed to enable program

 126

understanding tools to exchange traces of routine calls, which form a natural hierarchy. The

DAG-based CTF model is not directly supported by the trace model used in Hyades.

However, a trace using the CTF model can be built upon information extracted from a trace

using the Hyades model. Extra information found in the Hyades model, such as temporal

information, correlation between threads, etc. can also supplement the CTF model. The direct

benefit is that we will no longer be concerned about trace capture and format conversion and

raw trace data persistence, which are provided by the Hyades platform. So these two models

are complementary.

Other trace formats such as PDATS [Johnson 01], HATF [Chilimbi 00] and MaStA I/O

[Scheuerl 95] have also been proposed. These formats focus on completely different type of

traces. PDATS is a family of trace encoding techniques used to encode address and

instruction traces, which are commonly used in the performance analysis of computer

systems (e.g. simulation of cache memory, pipelined ALUs, load-store units, and other

functional units). HATF is a trace format used to represent heap allocation traces (i.e. the

events targeted are malloc, free, etc). MaStA I/O focuses on read/write traces that can be

used to determine the cost of these statements when applied to databases. All these formats

rely on encoding techniques such as the ones found in data compression.

6.3 Requirements for the Design of CTF

Requirements for a standard exchange format have been the subject of many studies

[Bowman 99, Lethbridge 97, St-Denis 00, Woods 99]. The following subsections describe

the requirements, which synthesise and extend the previous work that we used to guide the

design of CTF.

6.3.1 Expressiveness

One important aspect of an exchange format is to support the various types of data that need

to be shared. The study we conducted in Section 2.3 shows that most trace analysis tools

would expect to manipulate traces of method calls at three levels of granularity at least:

object, class, and subsystem level.

 127

However, in order to allow non-OO systems to use CTF, we need to permit enough

flexibility to represent the necessary constructs that are involved. For example, if the system

is written in C then one possible scenario is to include the system files containing the invoked

routines.

In addition to this, due to the multi-threaded nature of most existing software systems, the

design of CTF needs to consider the threads of execution that are generated from the

execution of a given system scenario.

Although this thesis is tuned towards program comprehension, we do feel the need to build in

the flexibility to represent timestamps, and other statistical information such as the execution

time of the routines. We believe that this will enable other types of applications such as

profilers to use CTF.

Finally, the maintenance of a software system will typically involve the static as well as the

dynamic aspects of the system. Having said this, we need to consider the fact that CTF can

be used with existing metamodels that capture the static components of the system. In this

chapter, we show how CTF can be used with the Dagstuhl Middle Metamodel (DMM)

[Lethbridge 03] to satisfy this requirement.

6.3.2 Scalability

The adoption of any exchange format for representing execution traces will greatly depend

on the capability to support large-sized information. In Chapter 3, we showed that an

efficient way for representing traces is to turn them into ordered directed acyclic graphs. We

also showed that such transformation could reach a graph-to-tree ratio of 3% (i.e. gain of

97%).

In addition to this, encoding techniques can be used to further reduce the physical storage

space allocated to traces. For example, one can encode the routine names using special

identifiers to avoid dealing with lengthy strings. In [Reiss 01], Reiss et al. describe several

encoding techniques that aim to compress execution traces such as string compaction,

interval compaction, etc.

 128

6.3.3 Simplicity

The simplicity requirement refers to the simplicity of the CTF specification. What is needed

is to have a design that is well documented and not too complex for tool builders to integrate

into their tool suites. The detailed semantics of the CTF metamodel are presented in Section

6.4.2.

6.3.4 Transparency

This requirement ensures that the information is represented without any alteration. We need

to have well-defined mechanisms for generating traces in the form of CTF. In Section 3.6, we

presented an algorithm for the on the fly transformation of a tree structure into an ordered

acyclic directed graph. This algorithm can easily be adapted to generate CTF traces by

considering the syntactic form used to convey CTF instance data. A discussion on CTF

syntactic form is presented in Section 6.4.3.

6.3.5 Neutrality

This requirement refers to an exchange format that is independent of any specific

programming language, platform or technology. This requirement is satisfied due to the fact

that the data conveyed in traces of routine calls contain almost always the same information

independently of the software system from which they were generated. We support traces

that contain the following information:

• Thread name
• Package or subsystem name

• Class or file name
• Object identifier

• Routine (method) name
• Timestamp information

• Method execution time

 129

6.3.6 Extensibility

The design for extensibility is an important requirement for the design of an exchange

format. We address this issue by extensive use of abstraction in the design of the CTF

schema. We also show how CTF can be extended to consider the representation of the static

components of the system (see Section 6.4.1.6).

6.3.7 Completeness

This requirement consists of having an exchange format that includes all the necessary

information needed during the exchange: the data to exchange as well the schema in which

the data needs to be interpreted. The rationale behind this is to enable tools to perform checks

on the instance data to verify its validity with respect to the schema. We address this

requirement by recommending a syntactic form that supports the exchange of the schema as

well as the instance data (e.g. GXL and TA).

6.3.8 Solution Reuse

This requirement consists of reusing some existing technologies in the creation of the new

exchange format. This will decrease the amount of time needed for testing the new format. In

this thesis, we reuse existing syntactic forms such as GXL and TA to represent CTF instance

data.

6.3.9 Popularity

The popularity requirement is concerned with the adoption of an exchange format by several

users (e.g. tool builders). For this purpose, we have created an API for CTF as well as an

eclipse plug-in that will allow different tools to directly generate traces in the CTF format.

We have also presented CTF in various conferences. CTF is also supported by SEAT (the

trace analysis tool introduced in Section 5.5) [Hamou-Lhadj 05a, Hamou-Lhadj 04c].

 130

6.4 CTF Components

6.4.1 CTF Abstract Syntax

Figure 6.1 shows a UML class diagram that describes the CTF metamodel. The components

of this metamodel are discussed in the subsequent sections.

6.4.1.1 Usage Scenario

The class Scenario is used to describe the usage scenario from which the execution trace is

derived. We allow a scenario to be represented by many traces to support natural situations

where many traces of the same scenario are gathered to detect anomalies caused by non-

determinism.

6.4.1.2 Trace Types

The class Trace is an abstract class that describes common information that different types of

traces are most likely to share such as timing information and any additional comments

related to the generation of the trace. To create specialized types of traces, one can simply

extend this class. We added the RoutineCallTrace class to represent traces of routine calls

generated from procedural systems. As discussed at the beginning of the thesis, by routine

we mean any function, whether or not it is a method of a class. Since programming languages

such as C++ allow non-method routines (simple C functions) as well as methods, we decided

to represent traces of pure method calls as a subclass of RoutineCallTrace. Using this

hierarchy, an analyst can create traces of simple functions calls only, traces of method calls

only, or traces that combine both, such as C++ execution traces. This design decision is

intended to help keep the design simple and understandable.

6.4.1.3 Nodes and Edges

We use the term comprehension unit initiator to refer to the root of a comprehension unit.

Comprehension unit initiators are represented in the class diagram using the

ComprehensionUnitInitiator class. These are also the nodes in the graph; each can have many

child nodes and many parent nodes as illustrated on the diagram using the parent and child

 131

Figure 6.1. The CTF metamodel

startTime : Time
endTime : Time
comments : String

repet: int

label : String
timestamps : Time []
executionTime : int []

Trace

RoutineCallTrace

MethodCallTrace

TracePattern

description : String

ComprehensionUnitInitiator

 1 1..*

1 *

 1

 1

0..1

 1 1

 1

 *

 *

1

0..1

 2..*

 1

MethodCallNode

 repeatedUnit

 parent

 child initiator

Scenario

description : String

root

RoutineCallNode ControlNode

 outgoing

 incoming

 DAG

PatternOccurrence

RecursionOccurrence SequenceNode

Thread

name: String

 1..* *

TraceEdge

Object

objectID: String

 0..1

 1..*

 {ordered}

 {ordered}

 132

roles. Each initiator maintains the timestamps of the routines calls it represents as well as

their execution time.

Edges (i.e. calls) are represented using the TraceEdge class. An edge is labelled with the

number of repetitions due to the existence of loops or recursion if there are any.

A node (ComprehensionUnitInitiator) can either be a routine call node (RoutineNodeCall), a

method node (MethodCallNode) or a control node (ControlNode). Control nodes represent

extra information that might be used by tools to customize parts of the traces. For example, a

software engineer exploring traces might need to select a particular subtree and assign to it a

description. This can easily be represented by adding a new node to the DAG that holds the

description.

6.4.1.4 Dealing with Repetitions

One particular control node integrated into CTF is called SequenceNode and it is used to

represent contiguous repetition of multiple comprehension units. Figure 6.2 shows how such

control node can be used to represent the repetition of the sequence: BC and E.

Figure 6.2. The control node SEQ is used to represent the contiguous

repetitions of the comprehension units rooted at B and E

 133

A recursive comprehension unit is represented using another control node called

RecursionOccurrence, which in turn refers to the recursively repeated unit. Figure 6.3 shows

a recursion occurrence node called REC that is used to collapse the recursive repetitions of

the node B.

Figure 6.3. The control node REC is used to represent the recursive
repetitions of the comprehension unit B

6.4.1.5 Threads

Although in other parts of this thesis we do not consider multi-threaded traces, we decided to

consider them in CTF to allow the model to be more complete. Therefore, to represent thread

information, we added a class called Thread. Each comprehension unit initiator has an object

thread that is associated to it. Threads are identified using unique thread names since this is a

common practice in languages such as Java and C++. Leduc made the same design decision

[Leduc 04]. We do not distinguish between thread start/end routines from the other routines

for simplicity reasons.

6.4.1.6 Static Components

Although the schema presented above focuses on describing run-time information, some of

its components (e.g. RoutineCallNode) might need to refer to static components of the

system.

The CTF metamodel as illustrated in Figure 6.1 relies on a string label to identify the trace

events (i.e. the routines invoked). A possible extension to CTF is to consider references to

actual objects representing each class, method, package, etc as shown in Figure 6.4.

 134

Figure 6.4. Extension of CTF to support static components

The diagram in Figure 6.4 is similar to the one described in the Dagstuhl Middle Metamodel

(DMM) [Lethbridge 03], which is a model for representing the static relationships among the

various components of a software system. DMM supports systems developed in most widely

used procedural and object-oriented programming languages such as C, C++, and Java. The

compatibility between CTF and DMM should enable these two metamodels to work together

in the future. Currently, CTF neither requires nor precludes the usage of DMM.

6.4.1.7 Behavioural Patterns

Trace patterns (i.e. sequence of events repeated non-contiguously in the trace) are

represented using the TracePattern class. This class contains an attribute that can be used to

assign a high-level description to the pattern. The same trace pattern can occur in more than

one trace. Indeed, a pattern that occurs in several traces might be more relevant than another

pattern that appears in one or two traces only. Relevance, here, is defined with respect to how

close the pattern is to a design concept. To capture this information, we use the

PatternOccurrence class.

 135

6.4.1.8 Illustration of CTF

To illustrate the use of CTF, let us consider an example: Suppose that the result of exercising

a feature of a particular system generates the trace shown in Figure 6.5a. The trace involves

three classes namely A, B and C and three objects, which are obj1, obj2 and obj3. There are

four methods that have been invoked: m0, m1, m2, and m3. We notice that the call generated

to obj2:B.m1 is repeated five times in the trace, probably due the existence of a loop in the

source code. We also notice that this trace contains a pattern which consists of the call

obj3:C.m2 as depicted clearly on the directed ordered acyclic graph of Figure 6.5b.

Figure 6.5. a) An example of a trace as a tree. b) The ordered

directed acyclic graph corresponding to this trace

An instance diagram of the above trace using the CTF schema is shown in Figure 6.6 This

diagram omits instances of the static model classes (e.g. Class, Method, etc) to avoid clutter.

We imagine that the overall scenario is called “Draw Circle” (as in a drawing program); this

scenario is represented with the object of class Scenario and the trace is depicted by the

object of class MethodCallTrace. The nodes are represented with the objects obj1Am0,

obj2Bm1, obj3Cm2, and obj2Bm3. Edges are represented using instances of the class

TraceEdge. There are 4 edges. The node obj3Cm2 has two incoming edges. The software

engineer using the tool can therefore mark this as a pattern, shown here as an instance of

 obj1:A.m0
 obj2:B.m1

 obj2:B.m1

 obj2:B.m1

 obj2:B.m1

 obj2:B.m1

 obj3:C.m2

 obj3:C.m2

 obj2:B.m3

obj2:
B.m1

obj3:
C.m2

obj2:
B.m3

obj1:
A.m0

4

 136

PatternOccurrence. The user has indicated using the ‘description’ attribute that this pattern is

concerned with the “Drag Mouse” operation. The instance of PatternOccurrence shows in

which particular trace the pattern occurs as well as the node that initiates the pattern.

Figure 6.6. CTF instance data

scen:Scenario

description = ‘Draw Circle’

trace:MethodCallTrace ptt:TracePattern

description = ‘Drag Mouse’

obj1:Object

objectID = ‘obj1’

obj2Bm1:MethodCallNode

obj3Cm2:MethodCallNode

e1:TraceEdge

repet = 4

e2:TraceEdge

repet = 0

e4:TraceEdge

repet = 0

obj2:Object

objectID = ‘obj2’

obj3:Object

objectID = ‘obj3’

obj2Bm3:MethodCallNode

e3:TraceEdge

repet = 0

 initiator

root

obj1Am0:MethodCallNode

startTime = ‘11:00’
endTime = ‘18:00’
comments = ‘Full trace’

pttOcc:PatternOccurrence

 137

6.4.2 CTF Class Description

In this section we present the semantics of the CTF metamodel. For this purpose, we use the

description of the UML 2.0 metamodel as a template [UML 2.0]. The constraints on the

model elements are described in OCL (Object Constraint Language) as well as in a natural

language.

6.4.2.1 Scenario

Semantics

Objects of the Scenario class represent the system scenario executed in order to generate the

traces that need to be analysed.

Attributes

description: String Specifies a description of the usage scenario (e.g. the name of

the scenario, input data, etc).

Associations

Trace [1..*] References the execution traces that are generated after the execution of

the usage scenario. Note that one scenario can have more than one trace

object that correspond to it.

Constraints

No additional constraints

6.4.2.2 Trace

Semantics

An abstract class representing common information about traces generated from the

execution of the system.

 138

Attributes

startTime: Time Specifies the starting time of the generation of the trace.

endTime: Time Specifies the ending time of the generation of the trace.

comments: String Specifies comments that software engineers might need in order

to describe the circumstances under which the trace is generated.

Associations

Scenario [1] References the usage scenario that is exercised so as to generate the

trace.

Constraints

[1] startTime and endTime should be different

self.endTime >= self.startTime

6.4.2.3 RoutineCallTrace (Subclass of Trace)

Semantics

An object of the RoutineCallTrace represents a trace of routine calls. A routine is defined as

any function whether it is in a class or not.

Attributes

No additional attributes

Associations

PatternOccurrence [*] References the occurrences of the execution patterns that are

invoked in the trace.

root: ComprehenionUnitInitiator [1] Specifies the root of the call tree.

 139

Constraints

[1] The root of a trace must not have parent node

 self.root.incoming ->isEmpty();

[2] The root node cannot be an object of ControlNode subclasses

not self.root.oclIsTypeOf(SequenceNode) and

not self.root.oclIsTypeOf(RecursionOccurrence)

[3] The graph needs to be an ordered directed acyclic graph.

6.4.2.4 MethodCallTrace (Subclass of RoutineCallTrace)

Semantics

An object of the MethodCallTrace represents a trace of method calls only. This class is added

in case there will be a need in the future to distinguish between traces of routine (not

methods) calls and traces of method calls.

Attributes

No additional attributes

Associations

No additional attributes

Constraints

No additional constraints

6.4.2.5 TracePattern

Semantics

An object of the class TracePattern represents a sequence of calls that is repeated in a non-

contiguous manner in the trace.

 140

Attributes

description: String Specifies a textual description that a software engineer assigns

to the execution pattern.

Associations

PatternOccurrence [2..*] References the instances of the pattern in the trace.

Constraints

[1] The PatternOccurrence objects belong to the same trace (i.e. RoutineCallTrace object that

contains the pattern occurrences).

6.4.2.6 PatternOccurrence

Semantics

This class represents the instances of an execution pattern.

Attributes

No additional constraints

Associations

TracePattern [1] References the TracePattern object for which this object

represents an occurrence of the pattern.

RoutineCallTrace [1] References the Trace object where the pattern pointed to by the

PatternOccurrence object appears.

initiator : ComprehensionUnitInitiator [1] References the comprehension unit initiator

(i.e. the node in the acyclic graph) that is the

root of the pattern pointed to by the

PatternOccurrence object.

 141

Constraints

[1] The initiator of the PatternOccurrence object is reachable from the root of the

RoutineCallTrace that contains the pattern occurrence.

6.4.2.7 ComprehensionUnitIntiator

Semantics

ComprehensionUnitInitiator is an abstract class that represent the nodes of the acyclic graph

(compact form of the call tree), which are objects of the derived classes of

ComprehensionUnitInitiator.

Attributes

label: String If a static component is not specified, perhaps because it is not known,

then the label can be used to indicate the node label. For example, a node

label can simply represent the name of the routine represented by this

comprehension unit.

In Section 6.4.1.6, we discussed how CTF can be used to refer to objects

that would represent classes, methods, source files, etc.

timestamps: Time [] Specifies the timestamps of the routines represented by this

comprehension unit initiator.

executionTime: int [] Specifies the execution time of the routines represented by this

comprehension unit initiator.

Associations

DAG: RoutineCallTrace [1] References the Trace for which this comprehension unit is

the root.

PatternOccurrence [0..1] References the pattern occurrence for which this

comprehension unit is the initiator.

 142

RecursionOccurrence [0..1] Specifies a comprehension unit that is repeated

recursively.

incoming: TraceEdge [*] Specifies the TraceEdge objects that represent the

incoming edges of this comprehension unit initiator.

outgoing: TraceEdge [*] Specifies the TraceEdge objects that represent the

outgoing edges of this comprehension unit initiator.

Thread [*] References the Thread objects that represent the thread in

which this comprehension unit is executed.

Constraints

[1] The timestamps of the routine calls represented by this comprehension unit initiator must

be sorted in an ascending manner. This guarantees that the graph maintains the sequential

execution of the routines.

self.timestamps is a sorted collection

[2] The parent nodes of this comprehension unit cannot be the same as its child nodes and

vice-versa since the graph is acyclic.

 self.incoming->excludesAll(self.outgoing) and

 self.outgoing ->excludesAll(self.incoming)

6.4.2.8 TraceEdge

Semantics

Objects of the TraceEdge class represent the edges of the acyclic graph.

Attributes

repet: int Specifies an edge label that will be used to represent the number of

repetitions due to loops and recursion.

 143

Associations

child: ComprehensionUnitInitiator [1] References the comprehension unit initiator

that represents the child node that is pointed to

by the trace edge.

parent: ComprehensionUnitInitiator [1] References the comprehension unit initiator

that represents the parent node from which this

edge is an outgoing edge.

Constraints

[1] The child and the parent must be different nodes. Recursion is represented using the

RecursionOccurrence class (Section 6.4.1.4)

sefl.child <> self.parent

[2] The value of ‘repet’ must be greater than or equal to zero

self.repet >= 0

6.4.2.9 Thread

Semantics

Objects of the Thread class represent the thread of execution included in the trace.

Attributes

name: String Specifies the name of the thread.

Associations

ComprehensionUnitInitiator [1..*] References the ComprehensionUnitIntiator that are

executed in this thread of execution.

Constraints

No additional constraints

 144

6.4.2.10 RoutineCallNode (Subclass of ComprehensionUnitInitiator)

Semantics

Objects of the RoutinceCallNode represent the routine calls invoked in the trace.

Attributes

No additional attributes

Associations

BehaviouralElement [0..1] References the static element that corresponds to this

routine call (see Figure 6.4) if a model of the static

components of the system is built. This association is an

extension to CTF metamodel and can be ignored.

Constraints

No additional constraints

6.4.2.11 MethodCallNode (Subclass of ComprehensionUnitInitiator)

Semantics

Objects of the MethodCallNode represent the method calls invoked in the trace.

Attributes

No additional attributes

Associations

Object [0..1] References the object on which the method is invoked.

Constraints

No additional constraints

 145

6.4.2.12 Object

Semantics

This class represents the objects invoked in the trace. In some traces, information about

objects may be present; in others such information (and hence instances of this class) may be

absent.

Attributes

objectID: String Specifies the object identifier.

Associations

Class [0..1] Specifies the class that defines the object (see Figure 6.4). This association

is an extension to CTF and should be used if the static components are also

used.

MethodCallNode [1..*] Specifies the methods invoked on this object.

Constraints

No additional constraints

6.4.2.13 ControlNode (Subclass of ComprehensionUnitInitiator)

Semantics

The ControlNode class is an abstract class that is used to specify additional information that

can help better structure the trace.

Attributes

No additional attributes

Associations

No additional associations

 146

Constraints

[1] A control node cannot be the root of the entire trace

 self.incoming ->notEmpty()

[2] A control node must have children

 self.outgoing -> notEmpty()

6.4.2.14 RecursionOccurrence (Subclass of ControlNode)

Semantics

An object of the RecursionOccurrence is added to represent comprehension units that are

repeated recursively. In Section 6.4.1.4, we showed how adding a new node called REC

enables the removal of repetitions due to recursion.

Attributes

No additional attributes

Associations

repeatedUnit: ComprehensionUnitInitiator [1] References the comprehension unit

initiator that is repeated recursively.

Constraints:

No additional constraints

6.4.2.15 SequenceNode (Subclass of Control Node)

Semantics

An object of the SequenceNode class is added to represent multiple comprehension units that

are repeated in a contiguous way (see Section 6.4.1.4).

Attributes

No additional attributes

 147

Associations

No additional associations

Constraints:

No additional constraints

6.4.3 CTF Syntactic Form

CTF instance data can be conveyed using a syntactic form that supports the representation of

graph structures. In this thesis, we do not attempt to discuss the advantages and

disadvantages of all existing syntactic forms. We present how GXL and TA can be used with

CTF. The choice of these languages is due to the fact that they are widely used in the reverse

engineering research community. In addition, both languages support the exchange of the

instance data as well as the metamodel; this is compliant with the completeness requirement

discussed in Section 6.3.7.

GXL [Holt 00] is one candidate for the syntactic carrier for CTF. A GXL file consists of

XML elements for describing nodes, edges, attributes, etc. It was designed to supersede a

number of pre-existing graph formats such as GraX [Ebert 99], TA [Holt 98], and RSF

[Müller 88]. GXL has been widely adopted as a standard exchange format for various types

of graphs by both industry and academia.

However, a GXL representation of CTF would tend to be much larger than necessary due to

the use of XML tags and the explicit need to express the data as GXL nodes and edges. The

compactness benefits of CTF would therefore be partially cancelled out by representing it

using GXL, as noted by Brown et al. [Brown 02] and Chilimbi et al. [Chilimbi 00]. Whereas

the wordiness of GXL would not be a problem when expressing moderately sized graphs in

other domains, the sheer hugeness of traces suggests an alternative might be appropriate.

Figure 6.7 shows an excerpt of a GXL file that represents the CTF example of Figure 6.6

(note that GXL and TA do not have a built-in data type for representing timing information,

we used a string instead for simplicity reasons). The complete GXL file can be found in

Appendix A.

 148

<gxl>

 <graph>

 <node id = “scen”>

 <attr name = “description”>

 <string> Draw circle </string>

 </attr>

 </node>

 <node id = “trace”>

 <attr name = “startTime”>

 <string> 11:30 </string> </attr>

 <attr name = “endTime”>

 <string> 18:30 </string> </attr>

 <attr name = “comments”>

 <string> Full trace </string>

 </attr>

 </node>

 <node id = “obj1Am0”> </node>

 <node id = “obj1”>

 <attr name = “objectID”>

 <string> obj1 </string> </attr>

</node>

<node id = “e1”>

 <attr name = “repet”>

 <int> 4 </int>

 </attr>

 <node>

 REMIANING NODES.

 <edge from = “scen” to = “trace”>

 </edge>

 <edge id = “root”

 from = “trace” to = “obj1Am0”>

 </edge>

 <edge from = “obj1Am0” to = “obj1”>

 </edge>

 REMAINING EDGES

 </graph>

<gxl>

Figure 6.7. GXL representation of the CTF instance data of

One reasonable alternative to GXL is TA [Holt 98], which would substantially reduce the

space required by a CTF trace. The TA language was originally developed to help visualize

information about software systems. It has been used as a model interchange format in

several contexts [Holt 97]. Based on RSF [Müller 88], TA retains the basic 3-tuple of space-

separated text strings to record information about the static aspect of the system, called facts.

However, it extends RSF by supporting the capability to add attributes to nodes and arcs. It

also supports the exchange of the metamodel. TA files consist of two parts: A part that is

used to specify the metamodel and it is called the scheme section, and a section that is used to

specify the data to exchange referred to as the fact section. Figure 6.8 shows an excerpt of the

Fact section that would correspond to the CTF example of Figure 6.6. The complete TA file

representing can be found in Appendix A.

 149

In order to illustrate the size requirement for a trace represented in GXL as opposed to TA,

we computed the size of the GXL and TA files presented in Appendix A. The GXL file

contains 1810 characters (excluding blanks) whereas the TA file contains 881 characters

only, which represent almost half the size of the GXL file. This result shows that GXL is

indeed a verbose language and that TA could be an appropriate alternative.

FACT TUPLE:

 $INSTANCE scen Scenario

$INSTANCE trace MethodCallTrace
$INSTANCE obj1Am0 MethodCallNode
$INSTANCE obj1 Object
$INSTANCE e1 TraceEdge

Remaining nodes

link scen trace
link trace obj1Am0
link obj1Am0 obj1

Remaining edges

FACT ATTRIBUTE:

scen (description = “Draw Circle”)

trace (startTime = “11:00” endTime = “18:00” comments =”Full trace”)

The remaining attributes for nodes and edges should be entered here

Figure 6.8. TA representation of the CTF instance data of Figure 6.6

6.5 Adoption of CTF

CTF is the exchange format used by SEAT (Software Exploration and Analysis Tool), the

trace analysis tool built in the University of Ottawa [Hamou-Lhadj 04c, Hamou-Lhadj 05a].

The tool manipulates traces in CTF and displays them using a tree widget. To help the user

extract useful information from a trace, SEAT implements several trace filtering techniques

such as the detection of utilities, application of matching criteria, detection of patterns, etc.

Using SEAT, an analyst can reduce the size of a trace to the level where he or she can

understand important aspects of its structure.

 150

Moreover, a CTF API has been created and delivered to software engineers of QNX

Software Systems. The API contains the main functions to create and manipulate CTF

components

In order to motivate the use of CTF in academia, we have presented it in various conferences

including ATEM 2003, ECOOP 2004, IWPC 2004, and IWPC 2005. So far, there has been

an interest in using CTF from the following university research groups:

• Members of LORE (Lab On Reengineering) of the University of Antwerp, Belgium

• Members of the Software Composition Group of the University of Bern, Switzerland

• Members of the Knowledge-Based Reverse Engineering Research Group, University

of Ottawa.

6.6 Summary

A common exchange format is important for allowing different tools to share data. In this

chapter, we presented CTF (Compact Trace Format) a schema for representing traces of

routine calls.

To deal with the vast size of typical traces, we designed CTF based on the idea that dynamic

call trees can be turned into ordered directed acyclic graphs, where repeated subtrees are

factored out.

CTF supports traces defined at different levels of abstraction including object, class and

package level. It also supports the specification of threads of execution. Additional

information such as timestamps and routine execution time are added to enable profilers to

use CTF.

CTF, as described in this thesis, is a schema. Trace data conforming to CTF can be

expressed using GXL, TA, or any other data ‘carrier’ language. However, we suggest using

a compact representation since doing otherwise would somewhat defeat the compactness

objective of CTF.

 151

An algorithm for the on the fly generation of CTF-based traces is based on the algorithm

presented in Section 3.6 and that aims to convert a tree into a DAG in an efficient way. This

algorithm also supports various matching criteria that can be used to consider similar but not

necessarily identical subtrees.

CTF is lossless, i.e. the original trace can be reconstructed, only when the simplest matching

criterion is used: Two sequences of any length of calls to the same routine are considered

identical.

 152

Chapter 7. Conclusions

To be successful, software maintenance requires efficient program comprehension

techniques. Similar to using static analysis for understanding the static aspects of the system,

dynamic analysis focuses on helping software engineers understand the dynamics of a

program.

Run-time information is often represented in the form of execution traces such as the ones

based on routine calls. However, coping with the large size of typical traces is a challenging

task, which has led to the creation of several trace analysis tools and techniques.

Our contributions consist of a set of simple yet efficient techniques that, if implemented in

tools, should make the analysis of traces considerably easier.

The following section explains these contributions in more detail.

7.1 Research Contributions

Survey of trace analysis tools and techniques: We studied the techniques supported by

eight trace tools in order to extract the most useful solutions to the problem of efficiently

manipulating traces. The results of this study can help tool users to select the right tools that

would fit their needs, and the tool builders to understand existing features in order to prevent

reinventing them. A detailed qualitative discussion of the advantages and limitations of

existing techniques is also provided.

Trace Metrics: We presented several metrics that aim to measure properties of traces. These

metrics, once implemented in tools, are intended to help software engineers explore traces

more easily; they can, for example be used to guide the user towards parts of traces that have

greater complexity. Most existing tools do not offer any such guidance, making tool features

 153

such as filtering less useful. We experimented with the metrics by applying them to several

execution traces of three different software systems. We believe that this can help researchers

gain a good understanding of what makes trace complex and therefore build better trace

analysis techniques.

Algorithm to convert the tree structure of a trace to a graph: We presented an algorithm

for the on the fly generation of traces. Using this algorithm, the traces will not need to be

saved as tree structures. We also showed how various matching criteria can be supported by

this algorithm.

Trace Summarization: We presented a new concept for exploring traces based on

summarizing their content. The objective is to enable top-down analysis of the trace as well

as recovery of behavioural design models of systems. We discussed how trace summarization

is related to text summarization. Our approach for trace summarization is based on filtering

the content of traces by removing implementation details. For this purpose, we presented a

definition of the concept of implementation details including utilities. We also presented a

metric that aims to rank the system components according to their utilityhood. To detect

utility components, we used fan-in analysis. A case study was presented where we generated

a summary from a large trace generated from the Weka system. The summary was given for

evaluation to the developers of the Weka system. Most of these developers agreed that the

summary is a good high-level representation of the traced scenario. They also supported the

idea of generating summaries to help understand the dynamics of a poorly documented

system.

The Compact Trace Format: A lack of an exchange format for sharing traces hinders

interoperability among tools. We addressed this issue by developing a common exchange

format called CTF (Compact Trace Format). CTF is designed with the idea of scalability in

mind and makes use of the fact that tree structures can be turned into directed acyclic graphs.

The design of CTF is compliant with well-known requirements for a standard exchange

format. The CTF metamodel was presented along with the semantics of its components. We

argued that developing a metamodel should be independent from the syntactic form that

needs to carry the instance data. However, we discussed how GXL or TA can be used with

 154

CTF. CTF has been presented in various conferences and is now the official exchange format

of a trace analysis tool called SEAT (Software Exploration and Analysis Too) developed at

the University of Ottawa.

7.2 Opportunities for Further Research

In this section, we discuss areas in need of additional research effort:

7.2.1 Further Formalizing of the Concepts Presented in this Thesis

One direction of future work is to increase the level of formalization of certain concepts

presented in this thesis. A formal language could be developed to better express the

techniques used in various tools for analyzing trace content. Such a language could enable

better evaluation of existing trace analysis tools, the subject of Chapter 2. The long-term

objective is to develop a better theoretical ground for trace analysis.

7.2.2 Trace Metrics

One way to refine the metrics presented in Chapter 3 is to study the different matching

criteria for the Scusim metric. The goal is to have tools that suggest combining different

matching criteria automatically in order to further reduce the complexity of the trace, or part

of the trace, under study.

Additional metrics can be developed as well. For example, we can combine trace metrics

with static complexity metrics to better estimate the complexity of the content of a trace.

Metrics involving multiple traces are also an area of future research that can be very useful

for understanding the dynamics of the system. For example, it might be interesting to

measure to what extent multiple traces use the same set of routines, or have the same or

similar comprehension units.

Additionally, the concept of entropy from information theory can be used to suggest areas of

a trace that are more complex. Therefore, a useful avenue of investigation would be to

develop trace metrics based on entropy.

 155

Finally, it would be useful to investigate how trace metrics can be supported by tools. The

objective is to allow software engineers exploring traces to easily spot parts of a trace that

implement a complex behaviour. Color coding techniques are one possible visualization

technique that can be used for this purpose. Tools should also be able to automatically

suggest filtering techniques that can be used to reduce the complexity of traces by measuring

ahead of time various properties of the trace.

7.2.3 The Concept of Implementation Details

Our definition of the concept of utilities relies mainly on the brainstorming session conducted

at QNX Software System. There is definitely a need to further explore this concept and

investigate how it is used in various contexts in order to have a more precise definition.

During the writing of the last chapters of this thesis, Zaidam et al [Zaidam 05] presented a

technique that uses webmining principles for uncovering important classes in a system’s

architecture. Their approach is similar to the way search engines rank web pages according to

their importance (i.e. using the concept of authorities and hubs). We think that this can also

apply to traces in order to identify important components. There is definitely a need to further

explore this concept and compare it to the techniques presented in this thesis (i.e. utilityhood

metrics, etc).

We also need to identify categories of implementation details beyond those presented in

Chapter 4 (e.g. accessing methods, constructor). Examples of such categories include

components that implement data structures; mathematical functions, components that

implement input/output operations, and so on.

The fan-in analysis technique for detecting utilities can be fine-tuned by considering the

scope attribute of the system components when computing the utilityhood metric.

Finally, design conventions including naming conventions, comments, etc can also be used to

detect utilities. For example, in many systems that we have studied, we found that they

contain namespaces named using the word “Utils”.

 156

7.2.4 The Trace Summarization Process

One direction for future work would be to have the system automatically or semi-

automatically suggest appropriate settings for the trace summarization algorithm based on the

nature of the trace, as well as the current goals and experience of the maintainer. A key

setting to investigate is the exit condition (i.e. when to stop the summarization process).

Machine learning could be employed to help tune the settings by learning over time from the

adjustments maintainers make.

There is also a need to investigate how better various artefacts of the system can be used to

classify components as utilities or as important components. Our trace summarization

algorithm uses the routine names only. It might be useful in the future to investigate other

sources of information such as the method parameters, the source code comments, etc.

Another important aspect is related to the fact that fan-in analysis as presented in the thesis

uses the static call graph whose edges have the same weight. One direction of future work

would be to investigate appropriate weighting functions.

There is also a need to understand the matching criteria that can help with generalization, and

therefore lead to more compact summaries.

Techniques for evaluating summaries are also needed. In Chapter 4, we presented a

questionnaire based evaluation that addresses some aspects of the extracted summaries. It

would be useful to investigate other aspects such as what would be an appropriate size of a

summary for different maintenance tasks (e.g. fixing defects, adding features, etc), and

different types of software engineers.

Finally, we need to investigate if and how text summarization techniques can be applied to

trace summarization.

7.2.5 Extending The Compact Trace Format

While CTF covers a significant gap in terms of exchanging traces of routine calls, dynamic

analysis is a highly versatile process that has a large number of needs including needs for

 157

dynamic information that is not necessarily supported by CTF. In Chapter 6, we mentioned

how CTF can be used to support the dynamic presentation of multithreaded traces. However,

CTF captures only the threads being executed and does not show how these threads

communicate among each other. In addition to this, CTF is not designed to support

statement-level traces although we expect that this is something that could be easily added in

the future.

In Chapter 6, we showed how GXL and TA can be used to carry the data represented in CTF.

Future work needs to investigate which one of the various syntactic form languages is the

most efficient to use with CTF.

Finally, we need to work more towards the adoption of CTF by tool builders in industry as

well as academia.

7.2.6 Exploring Trace Patterns

Trace patterns can play an important role in understanding a trace at higher levels of

abstraction. They can also be useful to enable generalization during the trace summarization

process. The idea is that one can try to understand an instance of a pattern as a whole

functional behaviour instead of trying to understand every single routine invoked. Software

engineers can also replace trace patterns with textual descriptions resulting in a more

understandable call tree. Such a view will be of significant help to speed up the trace

comprehension process. Future research needs to investigate the concept of trace patterns in

more detail, to propose heuristics for classifying patterns that represent high-level concepts

from the ones that are mere implementation details.

7.2.7 Program Comprehension Models

Program comprehension models such as top-down and bottom-up (see Section 2.2.2) have

been built using a static representation of the system only. We need to investigate how

software engineers would comprehend programs if they were given static and dynamic views

of the system. The results of this study might suggest new program comprehension models,

or enhance existing ones. However, we believe that using dynamic analysis views can only

 158

be practical if they are simplified, which reiterates the importance of trace summarization

presented in this thesis.

7.2.8 A Tool Suite

The techniques presented in this thesis need to be integrated with trace analysis tools. We

need to investigate how existing visualization schemes can be used to support these

techniques.

7.3 Closing Remarks

Despite the many benefits that program comprehension can gain from applying dynamic

analysis techniques, researchers have the tendency to turn into static analysis techniques

paying little to no attention to the study of the behavioural aspects of a software system. This

is mainly attributed to the fact that the large size of execution traces constitutes a serious

obstacle to using traces in practice. In addition to this, understanding a software feature might

require the analysis of several relates traces which makes techniques for simplifying traces

very useful. We hope that the ones presented in this thesis will reduce the impact of this

problem and enable dynamic analysis techniques to play an important role in software

maintenance and program comprehension in particular.

 159

Appendix A: GXL and TA Representations of

CTF Traces

The following file represents the GXL representation of the CTF trace presented in Section
6.4.1.8.

<gxl>
 <graph>
 <node id = “scen” type = "Scenario">
 <attr name = “description”>
 <string> Draw circle </string>
 </attr>
 </node>
 <node id = “trace” type = "MethodCallTrace">
 <attr name = “startTime”>
 <string> 11:30 </string> </attr>
 <attr name = “endTime”>
 <string> 18:00 </string> </attr>
 <attr name = “comments”>
 <string> Full trace </string>
 </attr>
 </node>
 <node id = “ptt” type = "TracePattern">
 <attr name = “description”>
 <string> Drag Mouse </string>
 </attr>
 </node>
 <node id = “pttOcc” type = "PatternOccurrence"></node>
 <node id = “obj1Am0” type = "MethodCallNode"> </node>
 <node id = “obj2Bm1” type = "MethodCallNode"> </node>
 <node id = “obj2Bm4” type = "MethodCallNode"> </node>
 <node id = “obj3Cm2” type = "MethodCallNode"> </node>
 <node id = “obj1” type = "Object">
 <attr name = “objectID”>
 <string> obj1 </string> </attr>
 </node>
 <node id = “obj2” type = "Object">
 <attr name = “objectID”>
 <string> obj2 </string> </attr>
 </node>
 <node id = “obj3” type = "Object">
 <attr name = “objectID”>
 <string> obj3 </string> </attr>
 </node>
 <node id = “e1” type = "TraceEdge">
 <attr name = “repet”>
 <int> 4 </int>
 </attr>
 </node>

 <node id = “e2” type = "TraceEdge">
 <attr name = “repet”>
 <int> 0 </int>
 </attr>
 </node>
 <node id = “e3” type = "TraceEdge">
 <attr name = “repet”>
 <int> 0 </int>
 </attr>
 </node>
 <node id = “e4” type = "TraceEdge">
 <attr name = “repet”>
 <int> 0 </int>
 </attr>
 </node>
 <edge from = “scen” to = “trace”> </edge>
 <edge id = “root” from = “trace” to = “obj1Am0”>
 </edge>
 <edge from = “obj1Am0” to = “obj1”> </edge>
 <edge from = “obj2Bm1” to = “obj2”> </edge>
 <edge from = “obj2Bm4” to = “obj2”> </edge>
 <edge from = “obj3Cm2” to = “obj3”> </edge>
 <edge from = “obj1Am0” to = “e1”> </edge>
<edge from = “obj1Am0” to = “e2”> </edge>
 <edge from = “obj1Am0” to = “e3”> </edge>
 <edge from = “obj1Am0” to = “e4”> </edge>
 <edge from = “trace” to = “pttOcc”> </edge>
 <edge from = “ptt” to = “pttOcc”> </edge>
 <edge id = "initiator" from = “pttOcc” to =
 “obj3Cm2”> </edge>
 <edge from = “e1” to = “obj2Bm1”> </edge>
 <edge from = “e2” to = “obj3Cm2”> </edge>
 <edge from = “e3” to = “obj2Bm3”> </edge>
<edge from = “e4” to = “obj3Cm2”> </edge>

 </graph>
<gxl>

 160

The following file represents the TA representation of the CTF trace presented in Section

6.4.1.8.

FACT TUPLE:

$INSTANCE scen Scenario
$INSTANCE trace MethodCallTrace
$INSTANCE ptt TracePattern
$INSTANCE pttOcc PatternOccurrence
$INSTANCE obj1Am0 MethodCallNode
$INSTANCE obj2Bm1 MethodCallNode
$INSTANCE obj2Bm4 MethodCallNode
$INSTANCE obj3Cm2 MethodCallNode
$INSTANCE obj1 Object
$INSTANCE obj2 Object
$INSTANCE obj3 Object
$INSTANCE e1 TraceEdge
$INSTANCE e2 TraceEdge
$INSTANCE e3 TraceEdge
$INSTANCE e4 TraceEdge

link scen trace
link trace obj1Am0
link trace pttOcc
link obj1Am0 obj1
link obj3Cm2 obj3
link obj2Bm1 obj2
link obj2Bm4 obj2
link obj1Am0 e1
link obj1Am0 e2
link obj1Am0 e3
link obj1Am0 e4
link ptt pttOCc
link pttOcc obj3Cm2
link e1 obj2Bm1
link e2 obj3Cm2
link e3 obj2Bm3
link e4 obj3Cm2

FACT ATTRIBUTE:

scen (description = “Draw Circle”)
trace (startTime = “11:00” endTime = “18:00”
comments =”Full trace”)
e1 (repet = 4)
e2 (repet = 0)
e3 (repet = 0)
e4 (repet = 0)

obj1 (objectId = "obj1")
obj2 (objectId = "obj2")
obj3 (objectId = "obj3")

(trace obj1Am0) (name = "root")
(pttOcc obj3Cm2) (name = "initiator")

 161

Bibliography

Amyot 02
Amyot, D., Mussbacher, G., and Mansurov, N., “Understanding
Existing Software with Use Case Map Scenarios”, In Proceedings of
the 3rd SDL and MSC Workshop, LNCS 2599, pages 124-140, 2002

Anquetil 03 Anquetil N. and Lethbridge T. C., “Comparative study of clustering
algorithms and abstract representations for software
remodularization”, IEE Proceedings - Software, Volume 150, Number
3, pages 185-201, 2003

Anquetil 98 Anquetil N. and Lethbridge T. C., "Assessing the Relevance of
Identifier Names in a Legacy Software System", In Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative
Research, IBM Press, pages 213-222, 1998

ANSI/IEEE Std ANSI/IEEE Standard 729-1983

ANTLR Another Tool for Language Recognition (www.antlr.org)

Bacon 96 Bacon D. F. and Sweeney P. F., “Fast static analysis of C++ Virtual
function calls”, In Proceedings of the 10th Conference on Object-
Oriented Programming Systems, Languages, and Applications, ACM
Press, pages 324-341, 1996

Ball 99 Ball T., “The Concept of Dynamic Analysis”, In Proceedings of the
7th European Software Engineering Conference, Springer-Verlag,
pages 216-234, 1999

Basili 94 Basili V. R., Caldiera G., and Rombach H. D., "Goal Question Metric
Paradigm", In Encyclopaedia of Software Engineering, John Wiley &
Sons, pages 528-532, 1994

Baxendale 58 Baxendale P., “Machine-made index for technical literature – an
experiment”, IBM Journal of Research and Development, Volume:2,
pages 354-361, 1958

 162

Biggerstaff 89

Biggerstaff T. J., “Design Recovery for Maintenance and Reuse”,
IEEE Computer, Volume 22, Issue 7, IEEE Computer Society, pages
36-49, 1989

Bowman 99 Bowman I. T., Godfrey M. W., and Holt R. C., “Connecting
Architecture Reconstruction Frameworks”, Journal of Information
and Software Technology, Volume 42, Number 2, Elsevier Science,
pages 91-102, 2000

Boyer 97 Boyer R. S., and Moore J. S., “A Fast Searching Algorithm”,
Communications of the ACM, Volume 20, Issue 10, pages 761-772,
1997

Brooks 83 Brooks R., “Towards a Theory of the Comprehension of Computer
Programs”, International Journal of Man-Machine Studies, Volume
18, Number 6, 1983

Brown 02 Brown R., Driesen K., Eng D., Hendren L., Jorgensen J., Verbrugge
C., and Wang Q., “STEP: a framework for the efficient encoding of
general trace data”, In Workshop on Program Analysis for Software
Tools and Engineering, ACM Press, pages 27 – 34, 2002

Chan 03 Chan A., Holmes R., Murphy G. C., and Ying A. T. T., “Scaling an
Object-Oriented System Execution Visualizer through Sampling”, In
Proceedings of the 11th International Workshop on Program
Comprehension, IEEE Computer Society, pages 237-244, 2003

Chapin 88 Chapin N., “Software Maintenance Life Cycle”, In Proceedings of the
Conference on Software Maintenance, IEEE Computer Society, pages
6-13, 1988

Checkstyle Checkstyle System. http://checkstyle.sourceforge.net/

Chikofsky 90 Chikofsky E. J., Cross J. H., "Reverse Engineering and Design
Recovery: A Taxonomy", IEEE Software, Volume 7, Issue 1, IEEE
Computer Society, pages 13-17, 1990

Chilimbi 00 T. Chilimbi, R. Jones, and B. Zorn, “Designing a trace format for heap
allocation events”, In Proceedings of the International Symposium on
Memory Management, ACM Press, pages 35-49, 2000

 163

De Pauw 02 De Pauw W., Jensen E., Mitchell N., Sevitsky G., and Vlissides J.,
Yang J., “Visualizing the Execution of Java programs”, In
Proceedings of the International Seminar on Software Visualization,
LNCS 2269, Springer-Verlag, pages 151-162, 2002

De Pauw 93 De Pauw W., Helm R., Kimelman D., and Vlissides J., “Visualizing
the Behaviour of Object-Oriented Systems”, In Proceedings of the 8th
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM Press, pages 326-337, 1993

De Pauw 94 De Pauw W., Kimelman D., and Vlissides J., “Modelling Object-
Oriented Program Execution”, In Proceedings of the 8th European
Conference on Object-Oriented Programming (ECOOP), LNCS 821,
Springer-Verlag, pages 163-182, 1994

De Pauw 98 De Pauw W., Lorenz D., Vlissides J., and Wegman M., “Execution
Patterns in Object-Oriented Visualization”, In Proceedings of the 4th
USENIX Conference on Object-Oriented Technologies and Systems,
pages 219-234, 1998

Dean 95 J. Dean, D. Grove, and Chambers, “Optimization of Object-Oriented
Programs using Static Class Hierarchy Analysis”, In Proceedings of
the 9th European Conference on Object-Oriented Programming,
LNCS 952, Springer-Verlag, pages 77-101, 1995

Downey 80 Downey J.P., Sethi R., and Tarjan R.E., “Variations on the Common
Subexpression Problem”, Journal of the ACM, Volume 27, Issue 4,
pages 758-771, 1980

Ebert 99 Ebert J., Kullbach B., and Winter A., “GraX – An Interchange Format
for Reengineering Tools”, In Proceedings of the 6th Working
Conference on Reverse Engineering, IEEE computer Society, pages
89–98, 1999

Edmunsdon 69 Edmundson H., “New methods in automatic extracting”, Journal of
the ACM, Volume 6 Issue 2, pages 264-285, 1969

Eisenbarth 01 Eisenbarth T., Koschke R., and Simon D., “Feature-Driven Program
Understanding using Concept Analysis of Execution Traces”, In
Proceedings of the 9th International Workshop on Program
Comprehension, IEEE Computer Society, pages 300-309, 2001

Erdos 98 Erdos K. and Sneed .M., “Partial Comprehension of Complex
Programs (enough to perform maintenance)”, In Proceedings of the
6th International Workshop on Program Comprehension, IEEE

 164

computer Society, pages 98-105, 1998

Flajolet 90 Flajolet P., Sipala P., and Steyaert J.–M., “Analytic Variations on the
Common Subexpression Problem”, In Proceedings of the 7th
International Colloquium on Automata, Languages and
Programming, Springer-Verlag, pages 220-234, 1990

Hamou-Lhadj 02
Hamou-Lhadj A. and Lethbridge T., “Compression Techniques to
Simplify the Analysis of Large Execution Traces”, In Proceedings of
the 10th International Workshop on Program Comprehension, IEEE
Computer Society, pages 159-168, 2002

Hamou-Lhadj 03a
Hamou-Lhadj A. and Lethbridge T., “Techniques for Reducing the
Complexity of Object-Oriented Execution Traces”, In Proceedings of
the 2nd ICSM International Workshop on Visualizing Software for
Understanding and Analysis, pages 35-40, 2003

Hamou-Lhadj 03b
Hamou-Lhadj A. and Lethbridge T., “An Efficient Algorithm for
Detecting Patterns in Traces of Procedure Calls”, In Proceedings of
the 1st ICSE International Workshop on Dynamic Analysis, pages 33-
36, 2003

Hamou-Lhadj 04a
Hamou-Lhadj A. and Lethbridge T., “A Survey of Trace Exploration
Tools and Techniques”, In Proceedings of the 14th IBM Conference of
the Centre for Advanced Studies on Collaborative Research, IBM
Press, pages 42-55, 2004

Hamou-Lhadj 04b
Hamou-Lhadj A. and Lethbridge T., “Reasoning about the Concept of
Utilities”, In Proceedings of the 1st ECOOP International Workshop
on Practical Problems of Programming in the Large, LNCS 3344,
Springer-Verlag, pages 10-22, 2005

Hamou-Lhadj 04c
Hamou-Lhadj A., Lethbridge T., and Fu L., “Challenges and
Requirements for an Effective Trace Exploration Tool”, In
Proceedings of the 12th International Workshop on Program
Comprehension, IEEE Computer Society, pages 70-58, 2004

Hamou-Lhadj 04d
Hamou-Lhadj A. and Lethbridge T., “A Metamodel for Dynamic
Information Generated from Object-Oriented Systems”, In
Proceedings of the First International Workshop on Meta-models and
Schemas for Reverse Engineering, Electronic Notes in Theoretical
Computer Science Volume 94, pages 59-69, 2004

Hamou-Lhadj 05a
Hamou-Lhadj A., Lethbridge T., and Fu L., "SEAT: A Usable Trace
Analysis Tool", In Proceedings of the 13th International Workshop on
Program Comprehension, IEEE Computer Society, pages 157-160,
2005

 165

Hamou-Lhadj 05b
Hamou-Lhadj A. and Lethbridge T., “Measuring Various Properties of
Execution Traces to Help Build Better Trace Analysis Tools”, In
Proceedings of the 10th International Conference on Engineering of
Complex Computer Systems, IEEE Computer Society, pages 559–568,
2005

Hamou-Lhadj 05c
Hamou-Lhadj A., Braun E., Amyot D., and Lethbridge T.,
“Recovering Behavioral Design Models from Execution Traces”, In
Proceedings of the 9th European Conference on Software
Maintenance and Reengineering, IEEE Computer Society, pages 112-
121, 2005

Hamou-Lhadj 05d
Hamou-Lhadj A. and Lethbridge T., “Trace Summarization: A Novel
Technique for Recovering Design Models”, Submitted to IEEE
Transactions on Software Engineering, Special Issue: Interaction and
State-Based Modelling, 2005

Hamou-Lhadj 05e
Hamou-Lhadj A. and Lethbridge T., “A Metamodel for the Compact
but Lossless Exchange of Execution Traces”, Submitted to the Journal
of Software and Systems Modeling, 2005

Holt 00 Holt R. C., Winter A., and Schürr A., “GXL: Toward a Standard
Exchange Format”, In Proceedings of the 7th Working Conference on
Reverse Engineering, IEEE Computer Society, pages 162-171, 2000

Holt 97

Holt R. C., “Software Bookshelf: Overview and construction”,
http://www-turing.cs.toronto.edu/pbs/papers/bsbuild.html, 1997

Holt 98 Holt R. C., “An Introduction to TA: The Tuple Attribute Language”,
http://swag.uwaterloo.ca/pbs/papers/ta.html

Hyades Hyades Project: http://www.eclipse.org/tptp/

Jax Jax: http://www.alphaworks.ibm.com/formula/Jax

Jerding 97a Jerding D. and Rugaber S., "Using Visualisation for Architecture
Localization and Extraction", In Proceedings of the 4th Working
Conference on Reverse Engineering, IEEE Computer Society, pages
56-65, 1997

Jerding 97b Jerding D., Stasko J. and Ball T., “Visualizing Interactions in Program
Executions”, In Proceedings of the International Conference on
Software Engineering, ACM Press, pages 360-370, 1997

 166

Jin 02 Jin D., Cordy J. R., Dean T. R., “Where is the Schema? A Taxonomy
of Patterns for Software Exchange”, In Proceedings of the 10th
International Workshop on Program Comprehension, IEEE Computer
Society, pages 65-74, 2002

Jing 98 Jing H. R., McKeown K., and Elhadad M., “Summarization evaluation
methods: Experiments and analysis”, In Working Notes of the AAAI
Spring Symposium on Intelligent Text Summarization, pages 60-68,
1998

Johnson 01 Johnson E. E., Ha J., and Baqar Zaidi M., “Lossless Trace
Compression”, IEEE Transactions on Computers, Volume 50, Issue 2,
pages 158-173, 2001

Jones 98 Jones K. S., “Automatic summarising: factors and directions”, In
Advances in Automatic Text Summarization, MIT Press, pages 1-14,
1998

Jorgensen 95 Jorgensen M., “An Empirical Study of Software Maintenance Tasks”,
Journal of Software Maintenance, Volume 7, Issue 1, pages 27-48,
1995

King 98 Jing H. R., McKeown K., and Elhadad M., “Summarization evaluation
methods: Experiments and analysis”, In Working Notes of the AAAI
Spring Symposium on Intelligent Text Summarization, pages 60-68,
1998

Korel 97 Korel B., Rilling J., "Dynamic Program Slicing in Understanding of
Program Execution", In Proceedings of the 5th International
Workshop on Program Comprehension, IEEE Computer Society,
pages 80-89, 1997

Koskimies 96a Koskimies K. and Mössenböck H., “Scene: Using Scenario Diagrams
and Active Text for Illustrating Object-Oriented Programs”, In
Proceedings of the 18th International Conference on Software
Engineering, ACM Press, pages 366-375, 1996

Koskimies 96b Koskimies K., Männistö T., Systä T., and Tuomi J., “SCED: A Tool
for Dynamic Modeling of Object Systems”, University of Tampere,
Dept. of Computer Science, Report A-1996-4, 1996

Lange 97 Lange D. B. and Nakamura Y., “Object-Oriented Program Tracing
and Visualization”, IEEE Computer, Volume 30, Issue 5, pages 63-70,

 167

1997

Larus 99 Larus J. R., “Whole program paths”, In Proceedings of the Conference
on Programming Language Design and Implementation, ACM Press,
pages 259-269, 1999

Leduc 04 J. Leduc, “Towards Reverse Engineering of UML Sequence Diagrams
of Real-Time, Distributed Systems through Dynamic Analysis”,
Master’s Thesis of Applied Science, Carleton University, 2004

Lee 97 Lee H. B., Zorn B. G., “BIT: A tool for Instrumenting Java
Bytecodes”, In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, pages 73-82, 1997

Lethbridge 01 Lethbridge C. T. and Laganière R., Object-Oriented Software
Engineering: Practical Software Development using UML and Java,
McGraw Hill, 2001

Lethbridge 03 Lethbridge C. T., Tichelaar S., and Ploedereder E. “The Dagstuhl
Middle Metamodel: A Schema For Reverse Engineering”, In
Proceedings of the First International Workshop on Meta-models and
Schemas for Reverse Engineering, Electronic Notes in Theoretical
Computer Science Volume 94, pages 7-8, 2004

Lethbridge 97 Lethbridge T. C. and Anquetil N., “Architecture of a Source Code
Exploration Tool: A Software Engineering Case Study”, Computer
Science Technical Report TR-97-07, University of Ottawa, 1997

Lunh 58 Lunh H., “The Automatic Creation of Literature Abstracts”, IBM
Journal of Research and Development, Volume 2, Issue 2, pages 159-
165, 1958

MOSAIC

National Center for Supercomputing Applications. “NCSA
Mosaic Home Page.” http://www.ncsa.uiuc.edu/SDG/Software/
Mosaic/NCSAMosaicHome.html.

Müller 88 Müller H. A., Klashinsky K., “Rigi – A System for Programming in-
the-large”, In Proceedings of the 10th International Conference on
Software Engineering, ACM Press, pages80-86, 1988

Müller 93 Müller H. A., Orgun M. A., Tilley S. R., and Uhl J. S., “A Reverse
Engineering Approach to Subsystem Structure Identification”, Journal
of Software Maintenance: Research and Practice, Volume 5, Issue 4,

 168

pages 181-204, 1993

Murphy 97 Murphy G. C., and Notkin D., “Reengineering with reflexion models:
A case study”, IEEE Computer, Volume 30, Issue 8, pages 29-36,
1997

Pacione 03 Pacione M. J., Roper M., and Wood M., “A Comparative Evaluation
of Dynamic Visualization Tools”, In Proceedings of the 10th Working
Conference on Reverse Engineering, IEEE Computer Society, pages
80-89, 2003

Paice 93 Paice C., and Jones P., “The identification of Important Concepts in
Highly Structured Technical Papers”, In Proceedings of the 16th
Annual International Conference on Research and Development in
Information Retrieval, ACM Press, pages 69-78, 1993

Pennington 87 Pennington N., “Comprehension Strategies in Programming” In
Second Workshop on Empirical Studies of Programmers, Ablex
Publishing Corporation, pages 100-113, 1987

Pfleeger 98 Pfleeger S. L., Software Engineering: Theory and Practice, Prentice
Hall, 1998

Reiss 01 Reiss S. P. and Renieris M., “Encoding program executions”, In
Proceedings of the 23rd International Conference on Software
Engineering, ACM Press, pages 221-230, 2001

Richner 02 Richner T. and Ducasse S., “Using Dynamic Information for the
Iterative Recovery of Collaborations and Roles”, In Proceedings of
the 18th International Conference on Software Maintenance, IEEE
Computer Society, pages 34-43, 2002

Rockel 98

Rockel I. And Heimes F.: FUJABA - Homepage,
http://www.unipaderborn.
de/fachbereich/AG/schaefer/ag_dt/PG/Fujaba/fujaba.html, 1999.

Rugaber 95 Rugaber S., “Program Comprehension”, TR-95 Georgia Institute of
Technology, 1995

Scheuerl 95 Scheuerl S., Connor R., Morrison R., Moss J., and Munro D., “The
MaStA I/O trace format”, Technical Report CS/95/4, School of
Mathematical and Computational Sciences, University of St Andrews,
1995

 169

Sneed 96 Sneed H. M., “Object-oriented Cobol Re-cycling”, In Proceedings of
the 3rd Working Conference on Reverse Engineering, IEEE Computer
Society, pages 169-178, 1996

St-Denis 00 St-Denis G., Schauer R., and Keller R. K., “Selecting a Model
Interchange Format: The SPOOL Case Study”. In Proceedings of the
33rd Annual Hawaii International Conference on System Sciences,
IEEE Computer Society, 2000

Storey 97 Storey. M. A., Wong K., and Muller H. A., “How do Program
Understanding Tools Affect how Programmers Understand
Programs?”, In Proceedings of the 4th Working Conference on
Reverse Engineering, IEEE Computer Society, pages 183-207, 1997

Strzalkowski 99 Strzalkowski T., Stein G., Wang J., Wise B., “Robust Practical Text
Summarization”, In Proceedings of the AAAI Intelligent Text
Summarization Workshop, pages 26-30, 1998

Sundaresan 00 Sundaresan V., Hendren L., Razafimahefa C., Vallée-Rai R. Lam P.,
Gagnon E., and Godin C., “Practical virtual method call resolution for
Java”, In Proceedings of the 15th Conference on Object-oriented
Programming, Systems, Languages, and Applications, ACM Press,
pages 264-280, 2000

Systä 00a Systä T., “Understanding the Behaviour of Java Programs”, In
Proceedings of the 7th Working Conference on Reverse Engineering,
IEEE Computer Society, pages 214-223, 2000

Systä 00b Systä T, “Incremental Construction of Dynamic Models for Object-
Oriented Software Systems”, Journal of Object-Oriented
Programming, Volume 13, Issue 5, pages 18-27, 2000

Systä 01 Systä T., Koskimies K., Müller H., “Shimba – An Environment for
Reverse Engineering Java Software Systems”, Software – Practice
and Experience, Volume 31, Issue 4, pages 371-394, 2001

Systä 99 Systä T., "Dynamic reverse engineering of Java software", In
Proceedings of the ECOOP Workshop on Experiences in Object-
Oriented Re-Engineering, A short version in LNCS 1743, Springer-
Verlag, 1999

Tai 79 Tai K. C., “The tree-to-tree correction problem”, Journal of the ACM,
Volume 26, Issue 3, pages 422-433, 1979

Tilley 96 Tilley S. R., Paul S. and Smith D. B., “Towards a Framework for

 170

Program Comprehension”, In Proceedings of the 4th Workshop on
Program Comprehension, IEEE Computer Society, pages 19- 29,
1996

Toad http://alphaworks.ibm.com/tech/toad

Tzerpos 00 Tzerpos V. and Holt R. C., “ACDC: An Algorithm for
Comprehension-Driven Clustering”, In Proceedings of the Working
Conference on Reverse Engineering, IEEE Computer Society, pages
258-267, 2000

Tzerpos 98 Tzerpos V. and Holt R. C., “Software Botryology, Automatic
Clustering of Software Systems”, In Proceedings of the International
Workshop on Large-Scale Software Composition, IEEE Computer
Society, pages 811-818, 1998

UML 2.0 UML 2.0 Specification: www.omg.org/uml

Valiente 00 Valiente G., “Simple and Efficient Tree Pattern Matching”, Research
Report E-08034, Technical University of Catalonia, 2000

Von Mayrhauser 94 Von Mayrhauser A. and Vans A. M., “Comprehension Processes
During Large Scale Maintenance”, In Proceedings of the 16th
International Conference on Software Engineering, IEEE Computer
Society, pages 39-48, 1994

Von Mayrhauser 95 Von Mayrhauser A. and Vans A. M., “Program Comprehension
During Software Maintenance and Evolution”, IEEE Computer,
Volume 28, Number 8, 1995

Von Mayrhauser 96 Von Mayrhauser A. and Vans A. M., “On the Role of Program
Understanding in Re-engineering Tasks” In Proceedings of the IEEE
Aerospace Applications Conference, pages 253-267, 1996

Von Mayrhauser 97 Von Mayrhauser A. and Vans A. M., “Hypothesis-Driven
Understanding Processes During Corrective Maintenance of Large
Scale Software”, In Proceedings of the 12th International Conference
on Software Maintenance, IEEE Computer Society, pages 12-20, 1997

Von Mayrhauser 98 Von Mayrhauser A., Vans A. M., “Program Understanding Behaviour
During Adaptation of Large Scale Software”, In Proceedings of the
6th International Workshop on Program Comprehension, IEEE
Computer Society, pages 164-173, 1998

 171

Walker 98 Walker R. J., Murphy G. C., Freeman-Benson B., Swanson D., and
Isaak J., “Visualizing Dynamic Software System Information through
High-level Models”, In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM
Press, pages 271-283, 1998

Weka Weka: http://www.cs.waikato.ac.nz/ml/weka/

Wiggert 97 Wiggerts T. A., “Using Clustering Algorithms in Legacy Systems
Remodularization”, In Proceedings of the 4th Working Conference on
Reverse Engineering, IEEE Computer Society, pages 33-43, 1997

Wilde 92 Wilde N., and Huit R., “Maintenance support for object-oriented
Programs”, IEEE Transactions on Software Engineering, Volume 18,
Number 12, pages1038–1044, 1992

Wilde 95 Wilde N. and Scully M., "Software Reconnaissance: Mapping
Program Features to Code," Journal of Software Maintenance:
Research and Practice, Volume 7, Number 1, 1995

Witten 99 Witten I. H., E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations, Morgan
Kaufmann, 1999

Woods 99 Woods S., Carrière S. J., and Kazman R., “A semantic foundation for
architectural reengineering and interchange”, In Proceedings of
International Conference on Software Maintenance, IEEE Computer
Society, pages 391–398, 1999,

Zaidam 05 Zaidam A., Calders T., Demeyer S., and Paredaens J., “Applying
Webmining Techniques to Execution Traces to Support the Program
Comprehension Process”, In Proceedings of the 9th European
Conference on Software Maintenance and Reengineering, IEEE
Computer Society, pages 134-142, 2005

Zayour 02 Zayour I. Reverse Engineering: A Cognitive Approach, a Case Study
and a Tool. Ph.D. dissertation, University of Ottawa,
http://www.site.uottawa.ca/~tcl/gradtheses/, 2002

