For questions 1-5, please use your own interpretation of what a software model is and what software modeling consists of:

1) To what extent do you consider the following to be a model of a software system?

A class diagram can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A textual use case description can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A whiteboard drawing can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A picture created in a drawing program can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

The source code for a system can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A use case diagram can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A UML deployment diagram can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A source code comment can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

A picture created by hand can be a model, or part of a model of a software system

 Strongly Disagree Disagree Neutral Agree Strongly Agree

2) To what extent do you create or modify software models or modeling information in the following ways?

Word of mouth (such as discussions in meetings without records)

 Never Sometimes Moderately often Very often Always

Informal handwritten materials (like Index Cards, Post-it notes, handwritten paper prototypes)

 Never Sometimes Moderately often Very often Always

Drawing or writing on a whiteboard or blackboard

 Never Sometimes Moderately often Very often Always

Drawing or painting software (like MS Paint, Photoshop, Gimp, Freehand)

 Never Sometimes Moderately often Very often Always

Comments embedded in code

 Never Sometimes Moderately often Very often Always

Word processing software or other purely textual approaches

 Never Sometimes Moderately often Very often Always

Diagramming tools that have templates for diagrams of software (like Visio, ArgoUML)

 Never Sometimes Moderately often Very often Always

Fully integrated modeling/CASE tools (like Rational XDE, Rational Software Modeler, Borland Together J, Rational Rose)

 Never Sometimes Moderately often Very often Always

3) To what extent do you refer to the following sources of information when you want to learn about the design of a software system?

Word of mouth (such as discussions in meetings, asking colleagues)

 Never Sometimes Moderately often Very often Always

Informal handwritten materials (like Index Cards, Post-it notes, handwritten paper prototypes) that have been saved.

 Never Sometimes Moderately often Very often Always

Drawing or writing on a whiteboard or blackboard (including a photo made of material originally recorded on a board)

 Never Sometimes Moderately often Very often Always

Material originally created using drawing or painting Software (like MS Paint, Photoshop, Gimp, Freehand)

 Never Sometimes Moderately often Very often Always

Comments embedded in code

 Never Sometimes Moderately often Very often Always

Material originally created using word processing software or other purely textual approaches

 Never Sometimes Moderately often Very often Always

Material created using diagramming tools that have templates for diagrams of software (like Visio, ArgoUML)

 Never Sometimes Moderately often Very often Always

Material in fully integrated modeling/CASE tools (like Rational XDE, Rational Software Modeler, Borland Together J, Rational Rose)

 Never Sometimes Moderately often Very often Always

4) At what point(s) in time do you visually document a design?

Before implementation (before writing code)

 Never Sometimes Moderately often Very often Always

During implementation (while writing code)

 Never Sometimes Moderately often Very often Always

After implementation (after writing code)

 Never Sometimes Moderately often Very often Always

I only visually document a design on request

 Strongly Disagree Disagree Neutral Agree Strongly Agree

5) To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item)

UML (regardless of the version)

 Never Sometimes Moderately often Very often Always

UML 1.*

 Never Sometimes Moderately often Very often Always

UML 2.* (i.e. as revised in 2004)

 Never Sometimes Moderately often Very often Always

Real-Time extensions to UML or ROOM (Realtime Object-Oriented Modeling)

 Never Sometimes Moderately often Very often Always

BPEL (Business Process Execution Language)

 Never Sometimes Moderately often Very often Always

Data Flow Diagrams, Structure Charts, and other diagrams used in classic Structured Design methods

 Never Sometimes Moderately often Very often Always

ERDs (Entity-Relation Diagrams)

 Never Sometimes Moderately often Very often Always

SQL (i.e. table definitions and queries)

 Never Sometimes Moderately often Very often Always

SDL (Specification and Description Language)

 Never Sometimes Moderately often Very often Always

Formal languages based on logic and set theory (like Z, OCL)

 Never Sometimes Moderately often Very often Always

Well-defined domain specific languages (e.g. a notation most developers in your company would understand that shows hooking up of telephones in a telecommunication system)

 Never Sometimes Moderately often Very often Always

Other (specify) _______________

 Never Sometimes Moderately often Very often Always

For the remainder of the survey, please assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

6) Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks.

Develop requirements

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Develop the design

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Implement the system (write code or generate it)

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Perform modeling

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Develop tests

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Perform testing

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Create documentation

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Perform knowledge transfer (i.e. sharing information with others about the system)

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

Perform knowledge searching (i.e. search for an answer about some aspect of how the system works or what it does)

 Never

 primarily near the start of development

 primarily near the middle of development

 primarily near the end

 in small increments at a few points in developments

 constantly throughout a large part of the process

7) To what extent to you work on the following types of software

the options to this question will be based on the taxonomy application

Never Sometimes Moderately often Very often Always

8) To what extent have you worked with the following tools during the last 6 months

Eclipse

 Never Sometimes Moderately often Very often Always

Rational Rose

 Never Sometimes Moderately often Very often Always

Rational XDE

 Never Sometimes Moderately often Very often Always

Rational RSA, RSM or RSD

 Never Sometimes Moderately often Very often Always

Together J

 Never Sometimes Moderately often Very often Always

Visual Studio

 Never Sometimes Moderately often Very often Always

Other (Specify) ____________

 Never Sometimes Moderately often Very often Always

9) To what extent have you worked in the following technologies or platforms during the last 6 months

Asp.net

 Never Sometimes Moderately often Very often Always

J2SE

 Never Sometimes Moderately often Very often Always

J2EE

 Never Sometimes Moderately often Very often Always

PHP / Perl

 Never Sometimes Moderately often Very often Always

Ruby, Python

 Never Sometimes Moderately often Very often Always

Other (Specify) ____________

 Never Sometimes Moderately often Very often Always

10) To what extent do you perform the following tasks

Lead or coordinate your software team

 Never Sometimes Moderately often Very often Always

Run or attend meetings

 Never Sometimes Moderately often Very often Always

Write new code

 Never Sometimes Moderately often Very often Always

Maintain existing code

 Never Sometimes Moderately often Very often Always

Fix bugs

 Never Sometimes Moderately often Very often Always

Perform manual testing

 Never Sometimes Moderately often Very often Always

Write or maintain automated tests scripts

 Never Sometimes Moderately often Very often Always

Design software systems

 Never Sometimes Moderately often Very often Always

Model software systems

 Never Sometimes Moderately often Very often Always

Write or maintain software requirements

 Never Sometimes Moderately often Very often Always

Perform general administration tasks related to software development

 Never Sometimes Moderately often Very often Always

Explain a system's design to others

 Never Sometimes Moderately often Very often Always

Search related to a software system

 Never Sometimes Moderately often Very often Always

Think about your software system

 Never Sometimes Moderately often Very often Always

11) To what extent do you use software tools in the modeling process for the

following activities?

Ignore question, I don't use software design applications

To brainstorm about possible design ideas and alternatives

 Never Sometimes Moderately often Very often Always

To transcribe a design into a digital format
 Never Sometimes Moderately often Very often Always

To develop a design

 Never Sometimes Moderately often Very often Always

To prototype a design (i.e. simulation, verification, validation)

 Never Sometimes Moderately often Very often Always

To generate source code templates (which will be edited manually in order to complete their internal functionality)

 Never Sometimes Moderately often Very often Always

To generate all necessary code (no manual modification of code is needed)

 Never Sometimes Moderately often Very often Always

12) Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

Ignore question, I don't use software design applications

To brainstorm about possible design ideas and alternatives

 Awful Poor OK Good Excellent

To transcribe a design into a digital format
 Awful Poor OK Good Excellent

To develop a design

 Awful Poor OK Good Excellent

To prototype a design (i.e. simulation, verification, validation)

 Awful Poor OK Good Excellent

To generate source code templates (which will be edited manually in order to complete their internal functionality)

 Awful Poor OK Good Excellent

To generate all necessary code (no manual modification of code is needed)

 Awful Poor OK Good Excellent

13) Please rank the following attributes of a software model from most important

(1) to least important (9)

__ The information density of the model

__ The ability to communicate to others using the model

__ The ability to generate code from the model

__ Readability of the model

__ The ease and speed with which the model can be created

__ The ease with which several developers can collaborate to develop or modify the model

__ The ease with which one can analyse the model to better understand it, compute properties of the system, or detect potential problems

__ The ability to view different aspects of the model (e.g. different diagrams, views, perspectives, or parts of the system)

__ The ability to embed information extracted from the model in documentation
14) For each of the following, how do code-centric development approaches compare to model-centric approaches. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

Creating a new system overall

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Making a system that most accurately meets the requirements or solves the problems of the customers and users

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Making an efficient system in terms of software performance

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Making a system that is as usable as possible for end users

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Making a system that can be reused

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Creating a system as quickly as possible

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Comprehending a system's behaviour

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Modifying an existing system when a requirement changes

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Fixing a bug

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Explaining the system to others

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

Creating a prototype

 Much easier in a model-centric approach

 Somewhat easier in a model-centric approach

 About the same

 Somewhat easier in a code centric approach

 Somewhat easier in a code centric approach

15) Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

Modeling languages are hard to understand

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

My organizational culture does not like the concept of modeling

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

The semantics of modeling languages do not correspond well with the programming languages we use

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

You cannot describe in modeling languages the kinds of detail that need to be implemented in the source code in order to meet specific requirements

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Modeling tools are too expensive

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Modeling tools are too ‘heavyweight’ (e.g. taking a long time to install, learn and configure, with more features than I need and/or consuming too many computational resources)

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Modeling tools change and tool licenses need renewal, so a model may become obsolete, whereas source code has a longer ‘shelf life’

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

With source code, all the system’s details are visible and searchable using a simple text editor, whereas with a modeling tool some details may not be visible.

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Creating and editing a model is too slow

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Modeling tools don’t allow me to analyse my design in ways I would want

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Modeling tools lack features I need or want

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

We don’t trust that the companies creating modeling tools will continue to support them

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Modeling languages are not expressive enough

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

The code generated from a modeling tool is not of the kind I would like

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Models cannot be easily exchanged between tools

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

We have had bad experiences with modeling in the past

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Even when we do modeling, developers tend to maintain the source code, resulting in the models becoming out of date and inconsistent with the code.

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

16) Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

It is hard to see the overall design in the mass of code

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Changing the code without introducing bugs is difficult

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Changing the code takes too much time

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Understanding the behaviour of the system is difficult

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

My organizational culture does not like the code-centric approach

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Code becomes of poorer and poorer quality over time as many different people make changes.

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

It is too difficult to completely restructure the system when needed

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

The programming language(s) we use lead to excessively complex code

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

The programming language(s) we use are obsolete or are likely to become obsolete

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

Programming languages are not expressive enough

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

It requires more skill than we have available to develop high quality code (e.g. that is efficient, reliable, maintainable, and avoids security problems)

 Not a problem a slight problem a moderate problem a bad problem a terrible problem

17) Open ended question: Please provide any other comments you may have about the pros and cons of modeling, or your experiences regarding the topic of this survey.

18) Demographic questions to help us understand the different backgrounds of people answering this survey:

 a) How many years of experience do you have developing software? ____

 b) What is the highest level of education you have obtained?
 - High school

 - Community college

 - Some university, but never graduated

 - Bachelors degree

 - Masters degree

 - PhD

 c) What country do you live in __________

