Perceptions of Software Modeling:  

A Survey of Software Practitioners

Andrew Forward
Timothy C. Lethbridge

School of Information Technology and Engineering

University of Ottawa
800 King Edward Ave.
Ottawa, Ontario, Canada K1N 6N5
Telephone: + 1 613 562 5800 x 6685
Email: {aforward,tcl}@site.uottawa.ca

Technical Report: TR-2008-07

Permanent Location: http://www.site.uottawa.ca/eng/school/publications/techrep/2008

Abstract

We present a summary of the results of 113 software practitioners conducted between April and December 2007.  The aim of the survey was to uncover their attitudes and experiences regarding software modeling, and development approaches that avoid modeling. We were motivated by observations that modeling is not widely adopted; many developers continue to take a code-centric approach. We sought to understand the extent to which this is true and the reasons why. We also wanted to learn how tools can be improved. Key findings include: UML is confirmed as the dominant modeling notation; modeling tools are primarily used to create documentation and for up-front design with little code generation; modeling tools are also used to transcribe models from other media including whiteboards; participants believe that model-centric approaches to software engineering are easier but are currently not very popular as most participants currently work in code-centric environments. The type and quality of generated code is one of the biggest reported problems.

Additional analysis (presented in Microsoft Excel) is available in TR-2008-08.

The software taxonomy referenced in this document is available in TR-2008-06.

Table of Contents

1Perceptions of Software Modeling:


2Table of Contents


3Method


5Survey results for the entire population.


24Survey results for the software developers.


35Survey results for the software modellers.


46Survey results for the code generators.


57Survey results for the software veterans.


68Survey results within Canada / USA.


79Survey results for outside Canada / USA.


90Survey results for real time developers.


101Additional Sub Population Data





Method

The survey was conducted online. We sent targeted requests to personal contacts in a wide variety of organizations. We also asked for participation using a variety of Internet forums.

The survey consisted of 18 questions. Most of these involved several sub-questions answered using 5-point Likert scales. Responses were in ranges such as strongly disagree to strongly agree, or never to always.

The survey was divided into groups of questions as follows:

• Q1: What is or is not a model?  Various options were presented ranging from class diagrams, use cases, to source code. Our objective was to see if participants had a preconceived notion about what they considered a model to be.

• Q2-5: How and when do you model, and using which notations? The objective of these questions was to understand the state of the practice.

• Q6: How do you approach a new task or feature with respect to requirements, design, modeling, testing and documentation?

• Q7-10: What tools, methods and platforms do you use, and what type of software do you develop?

• Q11-14: To what extent do you use modeling, and how good is it for various tasks.

• Q15-16: What are the principal difficulties you perceive with the model-centric and code-centric approaches?

• Q17: An open-ended free form question for comments about the survey and / or modeling in general.

• Q18: Demographics question with sub-questions about country of origin, education level, and years of experience of the participant.

Some randomization of the order of question was applied to reduce bias towards either code-centric or model-centric questions. Questions 2 to 5 were presented in a random order. Questions 7 through 16 were then presented in a random order.

Threats to Validity

The main threats to validity of our work are summarized below.  We have also outlined the steps we have taken to help mitigate these threats.

Question interpretation.  The survey was conducted over the Internet and respondents may have misunderstood the intended meaning of our questions.  We took two steps to reduce the ambiguity of our questions by asking colleagues to first review the questions, and then having team members complete the survey during our trial run.  Both activities helped improved the overall survey prior to go-live.  We also separated the survey into two main parts: the first part to solicit the participants’ personal thoughts towards "what is a model", and the second to answer modeling based question based on our explicit definition.

Researcher bias.  The survey questions attempt to uncover problems with both model-centric and code-centric approaches to software development.  A potential bias could be introduced if our survey appeared to be overly negative towards either modeling or software coding.  To reduce the chance of bias we tried to be objective when referring to both code-centric and model-centric questions, as well as presenting the questions in a random order.

Non randomized sample.  To help ensure that our sample was based on a representative collection of software practitioners we approached both open and closed forums for participation.  In particular, we submitted link articles to Digg.com, and Dzone.com - two popular technology and news sites.  We submitted email requests to UML user groups, agile user groups, Java user groups, and RUP user groups.  We also submitted personal requests to current and former colleagues.  Our demographics results indicate that we do have representation from most regions of the world, most educational backgrounds, most software industries, and most types of developers. Prior to conducting the survey we also developed a software taxonomy (TR-2008-06) to categorize software applications and our results do include representation from each of the top-level application types.

Survey results for the entire sample.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

a) A class diagram can be a model, or part of a model of a software system

b) A textual use case description can be a model, or part of a model of a software system

c) A whiteboard drawing can be a model, or part of a model of a software system

d) A picture created in a drawing program can be a model, or part of a model of a software system

e) The source code for a system can be a model, or part of a model of a software system

f) A use case diagram can be a model, or part of a model of a software system

g) A UML deployment diagram can be a model, or part of a model of a software system

h) A source code comment can be a model, or part of a model of a software system

i) A picture created by hand can be a model, or part of a model of a software system

	Responses for Question 1: What is a Model? (Data from the entire sample)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	112
	4.3 
	0.8 
	0.9
	2.7
	88.4
	48.2

	UML Deployment Diagram
	111
	4.1 
	0.9 
	1.8
	5.4
	77.5
	36.0

	Use Case Diagram
	112
	4.0 
	1.0 
	1.8
	9.8
	82.1
	33.9

	Picture By Drawing Tool
	111
	4.0 
	0.8 
	1.8
	7.2
	85.6
	25.2

	Textual Use Case
	113
	4.0 
	1.0 
	2.7
	10.6
	78.8
	30.1

	Whiteboard Drawing
	113
	3.9 
	1.0 
	4.4
	8.8
	78.8
	29.2

	Picture By Hand
	112
	3.9 
	0.9 
	3.6
	9.8
	57.1
	22.3

	Source Code
	111
	3.2 
	1.4 
	13.5
	38.7
	46.8
	23.4

	Source Code Comment
	112
	2.9 
	1.2 
	11.6
	41.1
	33.9
	9.8

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a)  Word of mouth (such as discussions in meetings without records)

b) Informal handwritten materials (like Index Cards, Post-it notes, handwritten paper prototypes)

c) Drawing or writing on a whiteboard or blackboard

d) Drawing or painting software (like MS Paint, Photoshop, Gimp, Freehand)

e) Comments embedded in code

f) Word processing software or other purely textual approaches

g) Diagramming tools that have templates for diagrams of software (like Visio, ArgoUML)

h) Fully integrated modeling/CASE tools (like Rational XDE, Rational Software Modeler, Borland Together J, Rational Rose)

	Responses for Question 2: How do you model? (Data from the entire sample)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Whiteboard drawing
	111
	3.2
	1.1
	5.4
	33.3
	45.0
	9.9

	Diagramming tool (e.g. Visio)
	111
	2.9
	1.2
	15.3
	42.3
	36.9
	9.9

	Word processor / text
	112
	2.8
	1.1
	7.1
	45.5
	26.8
	8.9

	Word of mouth
	111
	2.8
	1.1
	12.6
	42.3
	27.0
	8.1

	Handwritten material
	111
	2.6
	1.1
	13.5
	51.4
	22.5
	4.5

	Comments in source code
	111
	2.5
	1.2
	27.0
	51.4
	21.6
	5.4

	Modeling tool/CASE
	112
	2.4
	1.4
	38.4
	58.9
	29.5
	10.7

	Drawing software
	111
	2.1
	1.0
	29.7
	72.1
	12.6
	2.7

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a)  Word of mouth (such as discussions in meetings without records)

b) Informal handwritten materials (like Index Cards, Post-it notes, handwritten paper prototypes) that have been saved.

c) Drawing or writing on a whiteboard or blackboard (including a photo made of material originally recorded on a board)

d) Material originally created using drawing or painting Software (like MS Paint, Photoshop, Gimp, Freehand)

e) Comments embedded in code

f) Material originally created using word processing software or other purely textual approaches

g) Material created using diagramming tools that have templates for diagrams of software (like Visio, ArgoUML)

h) Material in fully integrated modeling/CASE tools (like Rational XDE, Rational Software Modeler, Borland Together J, Rational Rose)

	Responses for Question 3: How do you learn about the design of software? (Data from the entire sample)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word of mouth
	112
	3.4
	1.1
	4.5
	22.3
	54.5
	17.0

	Word processor / text
	110
	3.3
	1.1
	2.7
	30.0
	48.2
	10.0

	Diagramming tool (e.g. Visio)
	111
	3.1
	1.1
	9.9
	32.4
	42.3
	9.0

	Whiteboard drawing
	110
	3.0
	1.1
	9.1
	34.5
	41.8
	5.5

	Comments in source code
	112
	2.9
	1.2
	11.6
	42.0
	30.4
	10.7

	Drawing software
	109
	2.6
	1.0
	14.7
	57.8
	13.8
	3.7

	Modeling tool/CASE
	111
	2.5
	1.4
	33.3
	55.9
	31.5
	8.1

	Handwritten material
	109
	2.4
	1.1
	23.9
	56.0
	20.2
	3.7

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) Before implementation (before writing code)

b) During implementation (while writing code)

c) After implementation (after writing code)

d) I only visually document a design on request

	Responses for Question 4: When do you visually document a design? (Data from the entire sample)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	112
	3.7
	1.2
	2.7
	19.6
	25.9
	33.9

	During coding
	111
	3.1
	1.1
	6.3
	30.6
	27.0
	9.0

	After coding
	111
	2.5
	1.1
	16.2
	47.7
	15.3
	4.5

	Only on request
	107
	1.9
	1.1
	43.9
	38.2
	6.5
	3.7

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) UML (regardless of the version)

b) UML 1.*

c) UML 2.* (i.e. as revised in 2004)

d) Real-Time extensions to UML or ROOM (Realtime Object-Oriented Modeling)

e) BPEL (Business Process Execution Language)

f) Data Flow Diagrams, Structure Charts, and other diagrams used in classic Structured Design

g) Methods

h) ERD (Entity-Relation Diagram)

i) SQL (i.e. table definitions and queries)

j) SDL (Specification and Description Language)

k) Formal languages based on logic and set theory (like Z, OCL)

l) Well-defined domain specific languages (e.g. a notation most developers in your company would understand that shows hooking up of telephones in a telecommunication system)

m) Other (specify)

	Responses for Question 5: What modeling notation do you use? (Data from the entire sample)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	110
	3.3
	1.4
	18.2
	30.9
	51.8
	22.7

	UML 2.*
	96
	2.6
	1.4
	30.2
	52.1
	34.4
	12.5

	SQL
	108
	2.5
	1.4
	30.6
	55.6
	29.6
	10.2

	Structured Design models
	102
	2.5
	1.2
	19.6
	58.8
	21.6
	9.8

	UML 1.*
	93
	2.4
	1.4
	38.7
	54.8
	28.0
	7.5

	ERD
	106
	2.3
	1.3
	33.0
	63.2
	20.8
	10.4

	Well-defined DSL
	104
	1.7
	1.0
	54.8
	78.8
	5.8
	1.0

	ROOM / RT for UML
	99
	1.5
	1.0
	69.7
	85.9
	7.1
	2.0

	SDL
	93
	1.3
	0.8
	80.6
	89.2
	3.2
	0.0

	Formal (e.g. Z, OCL)
	99
	1.3
	0.7
	78.8
	93.9
	2.0
	1.0

	BPEL
	97
	1.3
	0.7
	80.4
	92.8
	3.1
	0.0

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

a) Develop requirements

b) Develop the design

c) Implement the system (write code or generate it)

d) Perform modeling

e) Develop tests

f) Perform testing

g) Create documentation

h) Perform knowledge transfer (i.e. sharing information with others about the system)

i) Perform knowledge searching (i.e. search for an answer about some aspect of how the system works or what it does)

	Responses for Question 6: When do you perform the following tasks? (Data from the entire sample)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Searching
	93
	Constantly
	64.5
	6.5
	17.2
	5.4
	5.4

	Requirements
	110
	Start
	60.0
	1.8
	60.0
	0.0
	0.0

	Design
	93
	Start
	53.8
	1.1
	53.8
	11.8
	0.0

	Modeling
	99
	Start
	46.5
	6.1
	46.5
	5.1
	0.9

	Perform testing
	102
	Constantly
	44.1
	3.9
	1.0
	10.8
	18.2

	Coding
	96
	Constantly
	41.7
	4.2
	3.1
	32.3
	12.7

	Knowledge transfer
	108
	Constantly
	41.7
	3.7
	0.9
	2.8
	33.3

	Develop tests
	97
	Constantly
	40.2
	4.1
	10.3
	15.5
	15.2

	Documentation
	106
	End
	38.7
	3.8
	11.3
	2.8
	36.9


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) Computational-dominant software (e.g., Simulation, Scientific, Image Processing, Machine Learning)

b) Business software (e.g., Bank Transaction Processing, Financial Analysis, GIS, Software Tools)

c) Consumer software (e.g., Word Processors, Spreadsheets, Browsers, Games)

d) Information display and transaction entry (e.g., Search Engines, Maps, Weather, News)

e) Operating systems (e.g., Mac, Windows, Linux)

f) Middleware and system components (e.g., Database servers, Virtual Machines)

g) System Support utilities (e.g., Security, Anti-Virus, Spam Filter, Encryption)

h) Website content management

i) Servers (e.g., Email, IM, Proxies, Load Balancers)

j) Malware (e.g. Virus, Spyware, Spam)

k) Embedded real time software (e.g., Firmware, Routers)

l) Industrial control software (e.g., Air Traffic Control)

m) Design and engineering software (e.g., Testing tools, Development environments, Database / Reporting, Modeling Tools)

	Responses for Question 7: What types of software do you build? (Data from the entire sample)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	96
	2.9
	1.6
	32.3
	44.8
	45.8
	17.7

	Design and Engineering
	96
	2.4
	1.3
	29.2
	60.4
	25.0
	6.3

	Website Content Management
	95
	2.3
	1.3
	37.9
	62.1
	23.2
	4.2

	Information Display (Search / News)
	97
	2.2
	1.4
	50.5
	66.0
	26.8
	9.3

	Middleware
	97
	2.2
	1.3
	42.3
	67.0
	23.7
	3.1

	Consumer
	96
	2.1
	1.4
	52.1
	67.7
	21.9
	9.4

	Operating Systems
	96
	2.0
	1.5
	62.5
	74.0
	21.9
	11.5

	Computational
	94
	1.9
	1.1
	44.7
	76.6
	11.7
	3.2

	Servers
	97
	1.9
	1.2
	54.6
	75.3
	12.4
	4.1

	Embedded Real-Time
	95
	1.8
	1.2
	63.2
	76.8
	14.7
	5.3

	System Utilities
	95
	1.6
	1.0
	65.3
	84.2
	7.4
	1.1

	Industrial Control
	95
	1.5
	1.0
	71.6
	89.5
	9.5
	3.2

	Malware
	96
	1.2
	0.6
	87.5
	92.7
	2.1
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) Eclipse

b) Rational Rose

c) Rational XDE

d) Rational RSA, RSM or RSD

e) Together J

f) Visual Studio

g) Other (specify)

	Responses for Question 8: What development tools do you use? (Data from the entire sample)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	98
	3.0
	1.5
	22.4
	43.9
	40.8
	22.4

	Visual Studio
	97
	2.4
	1.4
	39.2
	56.7
	32.0
	5.2

	Rational Rose
	98
	1.8
	1.3
	65.3
	76.5
	17.3
	4.1

	Rational RSx
	98
	1.4
	1.0
	82.7
	85.7
	10.2
	2.0

	Rational XDE
	97
	1.4
	0.8
	81.4
	89.7
	5.2
	1.0

	Together J
	98
	1.2
	0.5
	86.7
	96.9
	1.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) Asp.net

b) J2SE

c) J2EE

d) PHP / Perl

e) Ruby, Python

f) Other (specify)

	Responses for Question 9: What technologies / platforms do you use? (Data from the entire sample)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2SE
	95
	2.4
	1.5
	46.3
	46.3
	31.6
	13.7

	J2EE
	97
	2.3
	1.5
	50.5
	59.8
	29.9
	12.4

	PHP / Perl
	93
	2.0
	1.3
	48.4
	74.2
	19.4
	5.4

	ASP.Net
	97
	1.8
	1.3
	64.9
	79.4
	14.4
	9.3

	Ruby / Python
	94
	1.6
	1.0
	66.0
	88.3
	8.5
	2.1

	C / C++*
	40
	2.4
	1.6
	52.5
	60.0
	30.0
	17.5

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) Lead or coordinate your software team

b) Run or attend meetings

c) Write new code

d) Maintain existing code

e) Fix bugs

f) Perform manual testing

g) Write or maintain automated tests scripts

h) Design software systems

i) Model software systems

j) Write or maintain software requirements

k) Perform general administration tasks related to software development

l) Explain a system's design to others

m) Search related to a software system

n) Think about your software system

	Responses for Question 10: What are your daily tasks?


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Think about s/w system
	96
	4.1
	1.0
	1.0
	9.4
	77.1
	41.7

	Run / attend meetings
	96
	3.6
	1.0
	2.1
	19.8
	60.4
	17.7

	Explain s/w design to others
	95
	3.5
	0.9
	0.0
	15.8
	51.6
	13.7

	Design a s/w system
	96
	3.5
	1.0
	4.2
	18.8
	57.3
	13.5

	Lead software project
	96
	3.3
	1.2
	9.4
	29.2
	53.1
	16.7

	Search about s/w system
	93
	3.2
	1.1
	5.4
	31.2
	46.2
	12.9

	Model a s/w system
	96
	3.2
	1.2
	8.3
	30.2
	45.8
	11.5

	Write new code
	96
	3.1
	1.3
	13.5
	37.5
	49.0
	13.5

	Maintain existing code
	96
	3.0
	1.3
	15.6
	37.5
	40.6
	10.4

	Fix bugs
	94
	3.0
	1.2
	13.8
	39.4
	39.4
	10.6

	Perform manual testing
	94
	2.9
	1.1
	11.7
	35.1
	34.0
	7.4

	Write / maintain requirements
	95
	2.9
	1.1
	10.5
	41.1
	40.0
	4.2

	General administration
	94
	2.8
	1.1
	12.8
	40.4
	29.8
	7.4

	Write / maintain test scripts
	96
	2.4
	1.1
	22.9
	58.3
	17.7
	5.2

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

a) To brainstorm about possible design ideas and alternatives

b) To transcribe a design into a digital format

c) To develop a design

d) To prototype a design (i.e. simulation, verification, validation)

e) To generate source code templates (which will be edited manually in order to complete their internal functionality)

f) To generate all necessary code (no manual modification of code is needed)

	Responses for Question 11: What do you use modeling tools for?  (Data from the entire sample)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	64
	3.3
	1.2
	6.3
	26.6
	48.4
	17.2

	Transcribing a design into digital format
	64
	3.1
	1.3
	14.1
	32.8
	39.1
	14.1

	Prototyping a design
	64
	2.7
	1.3
	20.3
	53.1
	32.8
	12.5

	Brainstorming possible designs
	64
	2.6
	1.2
	18.8
	54.7
	23.4
	10.9

	Generating code (code editable)
	63
	2.2
	1.2
	36.5
	65.1
	17.5
	6.3

	Generating all code 
	64
	1.8
	1.2
	65.6
	76.6
	14.1
	4.7

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

a) To brainstorm about possible design ideas and alternatives

b) To transcribe a design into a digital format

c) To develop a design

d) To prototype a design (i.e. simulation, verification, validation)

e) To generate source code templates (which will be edited manually in order to complete their internal functionality)

f) To generate all necessary code (no manual modification of code is needed)

	Responses for Question 12: How good are modeling tools at ...? (Data from the entire sample)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Developing a design
	71
	3.4
	1.0
	2.8
	16.9
	47.9
	12.7

	Transcribing a design into digital format
	69
	3.2
	1.0
	2.9
	24.6
	42.0
	7.2

	Generating code (code is editable)
	69
	2.9
	1.1
	10.1
	39.1
	29.0
	8.7

	Prototyping a design
	68
	2.9
	1.1
	10.3
	41.2
	29.4
	8.8

	Brainstorming possible designs
	71
	2.8
	1.2
	15.5
	45.1
	32.4
	4.2

	Generating all code (no manual coding)
	69
	1.9
	1.1
	42.0
	79.7
	8.7
	4.3

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

a) The information density of the model

b) The ability to communicate to others using the model

c) The ability to generate code from the model

d) Readability of the model

e) The ease and speed with which the model can be created

f) The ease with which several developers can collaborate to develop or modify the model

g) The ease with which one can analyse the model to better understand it, compute properties of the system, or detect potential problems

h) The ability to view different aspects of the model (e.g. different diagrams, views, perspectives, or parts of the system)

i) The ability to embed information extracted from the model in documentation

	Responses for Question 13: Attributes of a modeling tool? (Data from the entire sample)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	89
	1
	10.1
	16.9
	78.7
	68.5

	Readability
	89
	2
	10.1
	20.2
	68.5
	51.7

	Ease and speed to create
	89
	3
	7.9
	36.0
	55.1
	19.1

	Ability to analyze
	89
	4
	10.1
	33.7
	55.1
	21.3

	Collaborate amongst developers
	89
	5
	12.4
	38.2
	43.8
	15.7

	Ability to view different aspects of a model
	89
	6
	10.1
	42.7
	40.4
	13.5

	Generate code
	89
	7
	52.8
	70.8
	23.6
	11.2

	Information density
	88
	8
	51.1
	72.7
	17.0
	3.4

	Embed parts of model in documentation
	89
	9
	55.1
	82.0
	13.5
	4.5

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

a) Creating a new system overall

b) Making a system that most accurately meets the requirements or solves the problems of the customers and users

c) Making an efficient system in terms of software performance

d) Making a system that is as usable as possible for end users

e) Making a system that can be reused

f) Creating a system as quickly as possible

g) Comprehending a system's behaviour

h) Modifying an existing system when a requirement changes

i) Fixing a bug

j) Explaining the system to others

k) Creating a prototype

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data from the entire sample)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Fixing a bug
	90
	3.2
	1.5
	21.1
	28.9
	43.3
	25.6

	Creating efficient software
	92
	3.1
	1.4
	16.3
	35.9
	43.5
	21.7

	Creating a system as quickly as possible
	92
	3.0
	1.5
	23.9
	46.7
	42.4
	23.9

	Creating a prototype
	92
	2.9
	1.5
	26.7
	43.0
	32.6
	22.8

	Creating a usable system for end users
	92
	2.7
	1.3
	26.1
	42.4
	22.8
	10.9

	Modifying a system when requirements change
	91
	2.5
	1.4
	34.1
	54.9
	24.2
	13.2

	Creating a system that most accurately meets requirements
	91
	2.2
	1.3
	42.9
	67.0
	19.8
	8.8

	Creating a re-usable system
	92
	2.2
	1.3
	44.6
	63.0
	15.2
	9.8

	Creating a new system overall
	92
	2.2
	1.3
	43.5
	68.5
	20.7
	7.6

	Comprehending a system's behaviour
	89
	2.0
	1.3
	51.7
	71.9
	15.7
	5.6

	Explaining a system to others
	92
	1.7
	1.1
	61.1
	81.8
	7.6
	6.5

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

a) Modeling languages are hard to understand

b) My organizational culture does not like the concept of modeling

c) The semantics of modeling languages do not correspond well with the programming languages we use

d) You cannot describe in modeling languages the kinds of detail that need to be implemented in the source code in order to meet specific requirements

e) Modeling tools are too expensive

f) Modeling tools are too ‘heavyweight’ (e.g. taking a long time to install, learn and configure, with more features than I need and/or consuming too many computational resources)

g) Modeling tools change and tool licenses need renewal, so a model may become obsolete, whereas source code has a longer ‘shelf life’

h) With source code, all the system’s details are visible and searchable using a simple text editor, whereas with a modeling tool some details may not be visible.

i) Creating and editing a model is too slow

j) Modeling tools don’t allow me to analyse my design in ways I would want

k) Modeling tools lack features I need or want

l) We don’t trust that the companies creating modeling tools will continue to support them

m) Modeling languages are not expressive enough

n) The code generated from a modeling tool is not of the kind I would like

o) Models cannot be easily exchanged between tools

p) We have had bad experiences with modeling in the past

q) Even when we do modeling, developers tend to maintain the source code, resulting in the models becoming out of date and inconsistent with the code.

	Responses for Question 15: Problems with a model-centric approach. (Data from the entire sample)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	92
	3.8
	1.2
	7.6
	16.3
	68.5
	37.0

	Models cannot be easily exchanged between tools
	91
	3.3
	1.3
	15.4
	26.4
	51.6
	17.6

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	92
	3.1
	1.2
	10.9
	31.5
	39.1
	12.0

	Code generated from a modeling tool not of the kind I would like
	91
	3.0
	1.4
	18.7
	39.6
	38.5
	16.5

	Not enough detail to be implemented in code
	89
	2.8
	1.3
	23.6
	43.8
	36.0
	7.9

	Creating and editing a model is slow
	92
	2.7
	1.2
	17.4
	43.5
	22.8
	12.0

	Modeling tools change, models become obsolete
	92
	2.7
	1.2
	22.8
	44.6
	32.6
	5.4

	Modeling tools lack features I need or want
	89
	2.6
	1.1
	19.1
	44.9
	21.3
	5.6

	Modeling tools hide details (source code fully visible)
	92
	2.6
	1.1
	19.6
	44.6
	23.9
	1.1

	Modeling tools are too expensive
	90
	2.6
	1.3
	26.7
	46.7
	26.7
	6.7

	Modeling tools cannot be analyzed as intended
	90
	2.5
	1.3
	28.9
	51.1
	25.6
	6.7

	Organization culture does not like modeling
	92
	2.5
	1.2
	31.5
	48.9
	23.9
	4.3

	Semantics of models different from prog. language
	90
	2.4
	1.3
	31.1
	56.7
	23.3
	8.9

	Modeling languages are not expressive enough
	91
	2.4
	1.1
	28.6
	54.9
	17.6
	2.2

	Modeling language hard to understand
	91
	2.2
	1.0
	28.6
	62.6
	9.9
	3.3

	Have had bad experiences with modeling
	91
	2.2
	1.2
	39.6
	63.7
	16.5
	6.6

	Do not trust companies will continue to support their tools
	89
	2.0
	1.0
	44.9
	67.4
	10.1
	0.0

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

a) It is hard to see the overall design in the mass of code

b) Changing the code without introducing bugs is difficult

c) Changing the code takes too much time

d) Understanding the behaviour of the system is difficult

e) My organizational culture does not like the code-centric approach

f) Code becomes of poorer and poorer quality over time as many different people make changes.

g) It is too difficult to completely restructure the system when needed

h) The programming language(s) we use lead to excessively complex code

i) The programming language(s) we use are obsolete or are likely to become obsolete

j) Programming languages are not expressive enough

k) It requires more skill than we have available to develop high quality code (e.g. that is efficient, reliable, maintainable, and avoids security problems)

	Responses for Question 16: Problems with a code-centric approach. (Data from the entire sample)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	94
	3.8
	1.1
	4.3
	13.8
	66.0
	35.1

	Hard to understand behaviour of system
	94
	3.6
	1.1
	4.3
	19.1
	60.6
	21.3

	Code becomes of poorer quality over time
	92
	3.4
	1.3
	9.8
	28.3
	55.4
	25.0

	Too difficult to restructure system when needed
	93
	3.4
	1.2
	8.6
	22.6
	51.6
	17.2

	Difficult to change code without adding bugs
	93
	3.4
	1.2
	9.7
	22.6
	50.5
	18.3

	Changing code takes too much time
	94
	2.8
	1.2
	20.2
	39.4
	27.7
	8.5

	Our prog. language leads to complex code
	94
	2.5
	1.2
	26.6
	51.1
	20.2
	8.5

	More skill than available to develop high quality code
	91
	2.5
	1.2
	29.7
	53.8
	22.0
	6.6

	Prog. Languages not expressive enough
	91
	2.1
	1.2
	46.2
	64.8
	14.3
	5.5

	Organization culture does not like code-centric
	92
	1.9
	1.2
	58.7
	72.8
	14.1
	4.3

	Our prog. language likely to become obsolete
	93
	1.9
	1.1
	51.6
	75.3
	9.7
	3.2

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Closing Questions

Question 17: Open ended question: Please provide any other comments you may have about the pros and cons of modeling, or your experiences regarding the topic of this survey.

Question 18: Demographic questions to help us understand the different backgrounds of people answering this survey:

a) How many years of experience do you have developing software?

b) What is the highest level of education you have obtained?  The participant selected one of the following options for each sub-question listed:   High school, Community college, Some university, but never graduated, Bachelors degree, Masters degree, and PhD.

c) What country do you live in

	Participants’ Software Experience
	 
	 
	 

	 
	Software Experience (years)
	N
	%
	 % Valid
	Cumulative %

	Valid
	< 1
	0
	0.0
	0.0
	0.0

	
	1 to 5
	16
	14.2
	17.6
	17.6

	
	6 to 10
	23
	20.4
	25.3
	42.9

	
	11 to 15
	21
	18.6
	23.1
	65.9

	
	16 to 20
	11
	9.7
	12.1
	78.0

	
	> 20
	20
	17.7
	22.0
	100.0

	
	Total
	91
	80.5
	100.0
	

	Missing
	Unanswered
	22
	19.5
	
	

	Total
	
	113
	100.0
	
	


	Participants’ Level of Education
	 
	 
	 

	 
	Highest Level Obtained
	N
	%
	 % Valid
	Cumulative %

	Valid
	High School
	1
	0.9
	1.1
	1.1

	
	Community College
	2
	1.8
	2.2
	3.3

	
	Some University
	4
	3.5
	4.4
	7.7

	
	Bachelors Degree
	35
	31.0
	38.5
	46.2

	
	Masters Degree
	40
	35.4
	44.0
	90.1

	
	PhD
	9
	8.0
	9.9
	100.0

	
	Total
	91
	80.5
	100.0
	

	Missing
	Unanswered
	22
	19.5
	
	

	Total
	
	113
	100.0
	
	


	Participants’ Country of Residence
	 
	 

	 
	Country of Residence
	N
	%
	 % Valid

	Valid
	Canada
	39
	34.5
	43.3

	
	USA
	24
	21.2
	26.7

	
	UK
	6
	5.3
	6.7

	
	Other Europe
	7
	6.2
	7.8

	
	India, Pakistan
	8
	7.1
	8.9

	
	Other Asia
	3
	2.7
	3.3

	
	Other
	3
	2.7
	3.3

	
	Total
	90
	79.6
	100.0

	Missing
	Unanswered
	23
	20.4
	

	Total
	 
	113
	100.0
	 


Survey results for the software developers.

The following data is based on those individuals that at either write or maintain software very-often to always.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of software developers)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	52
	4.3 
	0.8 
	0.0
	1.9
	86.5
	46.2

	Picture By Drawing Tool
	52
	4.1 
	0.7 
	0.0
	3.8
	88.5
	28.8

	Whiteboard Drawing
	53
	4.1 
	0.9 
	3.8
	5.7
	84.9
	30.2

	Use Case Diagram
	53
	4.0 
	0.9 
	0.0
	9.4
	79.2
	30.2

	Textual Use Case
	53
	4.0 
	0.9 
	0.0
	7.5
	77.4
	28.3

	UML Deployment Diagram
	52
	4.0 
	1.0 
	1.9
	7.7
	75.0
	32.7

	Picture By Hand
	53
	4.0 
	0.8 
	1.9
	5.7
	58.5
	22.6

	Source Code
	53
	3.2 
	1.3 
	9.4
	41.5
	47.2
	20.8

	Source Code Comment
	53
	2.9 
	1.1 
	9.4
	39.6
	30.2
	5.7

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model? (Data for the sub-sample consisting only of software developers)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Whiteboard drawing
	53
	3.3
	1.1
	3.8
	28.3
	50.9
	11.3

	Word of mouth
	53
	3.0
	1.1
	9.4
	35.8
	34.0
	9.4

	Word processor / text
	53
	2.8
	1.0
	3.8
	43.4
	24.5
	7.5

	Handwritten material
	53
	2.8
	1.0
	9.4
	39.6
	28.3
	1.9

	Comments in source code
	52
	2.7
	1.3
	25.0
	44.2
	30.8
	9.6

	Diagramming tool (e.g. Visio)
	52
	2.7
	1.3
	19.2
	51.9
	32.7
	7.7

	Drawing software
	53
	2.2
	1.1
	30.2
	67.9
	15.1
	3.8

	Modeling tool/CASE
	53
	1.9
	1.2
	54.7
	77.4
	13.2
	5.7

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of software developers)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word of mouth
	53
	3.5
	1.1
	3.8
	20.8
	58.5
	18.9

	Comments in source code
	53
	3.2
	1.2
	5.7
	34.0
	37.7
	18.9

	Word processor / text
	52
	3.2
	1.1
	5.8
	32.7
	44.2
	9.6

	Whiteboard drawing
	52
	3.0
	1.2
	13.5
	32.7
	40.4
	7.7

	Diagramming tool (e.g. Visio)
	53
	2.9
	1.2
	15.1
	37.7
	35.8
	9.4

	Drawing software
	52
	2.6
	1.2
	19.2
	57.7
	17.3
	5.8

	Handwritten material
	52
	2.5
	1.2
	25.0
	53.8
	21.2
	3.8

	Modeling tool/CASE
	53
	2.1
	1.3
	47.2
	69.8
	18.9
	7.5

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of software developers)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	53
	3.4
	1.2
	3.8
	24.5
	28.3
	22.6

	During coding
	53
	3.2
	1.0
	3.8
	26.4
	32.1
	9.4

	After coding
	52
	2.6
	1.1
	13.5
	40.3
	15.4
	5.8

	Only on request
	51
	2.0
	1.1
	45.1
	31.3
	7.8
	3.9

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of software developers)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	53
	3.0
	1.4
	20.8
	37.7
	45.3
	15.1

	Structured Design models
	49
	2.6
	1.2
	20.4
	53.1
	20.4
	8.2

	SQL
	51
	2.4
	1.2
	29.4
	58.8
	25.5
	3.9

	UML 1.*
	46
	2.3
	1.3
	39.1
	56.5
	21.7
	4.3

	UML 2.*
	48
	2.3
	1.3
	39.6
	64.6
	22.9
	8.3

	ERD
	52
	2.3
	1.3
	38.5
	63.5
	21.2
	5.8

	Well-defined DSL
	50
	1.7
	1.1
	60.0
	78.0
	8.0
	2.0

	ROOM / RT for UML
	48
	1.5
	1.1
	75.0
	87.5
	10.4
	4.2

	BPEL
	46
	1.3
	0.8
	84.8
	91.3
	4.3
	0.0

	SDL
	45
	1.2
	0.7
	88.9
	91.1
	2.2
	0.0

	Formal (e.g. Z, OCL)
	47
	1.2
	0.6
	89.4
	97.9
	2.1
	2.1

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of software developers)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Searching
	45
	Constantly
	66.7
	4.4
	20.0
	6.7
	1.9

	Requirements
	53
	Start
	62.3
	1.9
	62.3
	0.0
	0.0

	Design
	46
	Start
	56.5
	0.0
	56.5
	2.2
	0.0

	Modeling
	48
	Start
	54.2
	8.3
	54.2
	4.2
	1.9

	Coding
	48
	Constantly
	50.0
	0.0
	4.2
	37.5
	5.8

	Perform testing
	49
	Constantly
	49.0
	4.1
	2.0
	6.1
	13.5

	Develop tests
	46
	Constantly
	47.8
	6.5
	6.5
	10.9
	11.3

	Documentation
	52
	End
	44.2
	7.7
	11.5
	1.9
	43.4

	Knowledge transfer
	51
	End
	43.1
	5.9
	2.0
	2.0
	41.5


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of software developers)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	50
	2.9
	1.5
	28.0
	44.0
	46.0
	14.0

	Website Content Management
	49
	2.5
	1.3
	32.7
	55.1
	30.6
	4.1

	Middleware
	50
	2.4
	1.3
	32.0
	60.0
	32.0
	4.0

	Design and Engineering
	49
	2.3
	1.3
	34.7
	65.3
	26.5
	4.1

	Information Display (Search / News)
	50
	2.2
	1.4
	46.0
	64.0
	24.0
	6.0

	Servers
	50
	2.1
	1.3
	44.0
	66.0
	16.0
	6.0

	Computational
	48
	2.0
	1.2
	45.8
	70.8
	14.6
	4.2

	Consumer
	50
	2.0
	1.2
	48.0
	74.0
	16.0
	6.0

	Operating Systems
	49
	2.0
	1.5
	61.2
	73.5
	22.4
	10.2

	Embedded Real-Time
	49
	1.8
	1.3
	65.3
	79.6
	14.3
	6.1

	Industrial Control
	49
	1.7
	1.2
	69.4
	85.7
	14.3
	6.1

	System Utilities
	49
	1.6
	0.8
	63.3
	85.7
	4.1
	0.0

	Malware
	50
	1.1
	0.4
	92.0
	96.0
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of software developers)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	50
	3.3
	1.6
	20.0
	36.0
	56.0
	32.0

	Visual Studio
	49
	2.4
	1.4
	40.8
	55.1
	32.7
	8.2

	Rational Rose
	49
	1.5
	1.2
	77.6
	85.7
	10.2
	6.1

	Rational RSx
	49
	1.3
	0.9
	91.8
	91.8
	6.1
	4.1

	Rational XDE
	49
	1.2
	0.8
	89.8
	91.8
	4.1
	2.0

	Together J
	50
	1.1
	0.3
	88.0
	100.0
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of software developers)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2SE
	50
	2.6
	1.6
	42.0
	42.0
	38.0
	16.0

	J2EE
	50
	2.4
	1.5
	48.0
	60.0
	30.0
	14.0

	PHP / Perl
	49
	2.2
	1.4
	42.9
	69.4
	26.5
	6.1

	Ruby / Python
	50
	1.9
	1.2
	50.0
	82.0
	16.0
	4.0

	ASP.Net
	50
	1.7
	1.3
	70.0
	78.0
	14.0
	8.0

	C / C++*
	24
	2.6
	1.7
	45.8
	50.0
	37.5
	20.8

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of software developers)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Think about s/w system
	51
	4.3
	0.9
	2.0
	5.9
	88.2
	47.1

	Write new code
	51
	4.1
	0.7
	2.0
	3.9
	92.2
	25.5

	Maintain existing code
	51
	3.9
	0.7
	0.0
	3.9
	76.5
	19.6

	Fix bugs
	50
	3.9
	0.8
	0.0
	6.0
	72.0
	20.0

	Design a s/w system
	51
	3.7
	0.8
	0.0
	7.8
	64.7
	11.8

	Explain s/w design to others
	50
	3.5
	0.8
	0.0
	12.0
	54.0
	10.0

	Perform manual testing
	50
	3.5
	1.0
	4.0
	18.0
	58.0
	12.0

	Run / attend meetings
	51
	3.4
	1.1
	3.9
	21.6
	52.9
	15.7

	Search about s/w system
	49
	3.3
	1.0
	0.0
	28.6
	49.0
	10.2

	Lead software project
	51
	3.2
	1.2
	11.8
	29.4
	47.1
	13.7

	Model a s/w system
	51
	3.1
	1.1
	7.8
	31.4
	45.1
	7.8

	Write / maintain test scripts
	51
	2.9
	1.2
	11.8
	37.3
	29.4
	9.8

	General administration
	50
	2.9
	1.0
	8.0
	36.0
	30.0
	4.0

	Write / maintain requirements
	50
	2.7
	1.0
	12.0
	48.0
	30.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for?  (Data for the sub-sample consisting only of software developers)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Transcribing a design into digital format
	30
	3.1
	1.3
	13.3
	36.7
	40.0
	16.7

	Developing a design
	30
	2.9
	1.2
	6.7
	46.7
	30.0
	16.7

	Prototyping a design
	30
	2.4
	1.3
	26.7
	63.3
	23.3
	10.0

	Brainstorming possible designs
	29
	2.4
	1.2
	20.7
	65.5
	20.7
	6.9

	Generating code (code editable)
	29
	1.9
	1.2
	51.7
	79.3
	13.8
	3.4

	Generating all code 
	30
	1.7
	1.3
	73.3
	80.0
	16.7
	6.7

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of software developers)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Transcribing a design into digital format
	35
	3.1
	1.0
	2.9
	28.6
	34.3
	5.7

	Developing a design
	35
	2.9
	1.0
	5.7
	31.4
	25.7
	5.7

	Generating code (code is editable)
	34
	2.6
	1.2
	20.6
	55.9
	29.4
	2.9

	Prototyping a design
	33
	2.5
	1.0
	18.2
	54.5
	15.2
	3.0

	Brainstorming possible designs
	35
	2.3
	1.0
	22.9
	65.7
	17.1
	0.0

	Generating all code (no manual coding)
	34
	1.7
	0.9
	50.0
	91.2
	5.9
	2.9

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of software developers)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	46
	1
	13.0
	17.4
	76.1
	65.2

	Readability
	46
	2
	8.7
	13.0
	76.1
	60.9

	Ease and speed to create
	46
	3
	6.5
	21.7
	69.6
	26.1

	Collaborate amongst developers
	46
	4
	10.9
	30.4
	43.5
	19.6

	Ability to analyze
	46
	5
	10.9
	43.5
	45.7
	13.0

	Ability to view different aspects of a model
	46
	6
	6.5
	52.2
	32.6
	8.7

	Information density
	46
	7
	47.8
	69.6
	21.7
	6.5

	Embed parts of model in documentation
	46
	8
	54.3
	82.6
	13.0
	4.3

	Generate code
	46
	9
	60.9
	84.8
	15.2
	6.5

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of software developers)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Fixing a bug
	48
	3.7
	1.3
	12.5
	12.5
	56.3
	37.5

	Creating efficient software
	48
	3.7
	1.3
	6.3
	22.9
	58.3
	37.5

	Creating a prototype
	48
	3.5
	1.4
	14.6
	20.8
	50.0
	35.4

	Creating a system as quickly as possible
	48
	3.4
	1.6
	16.7
	35.4
	56.3
	37.5

	Modifying a system when requirements change
	48
	2.9
	1.5
	22.9
	39.6
	33.3
	22.9

	Creating a usable system for end users
	48
	2.9
	1.3
	18.8
	33.3
	29.2
	14.6

	Creating a system that most accurately meets requirements
	48
	2.7
	1.4
	29.2
	47.9
	33.3
	14.6

	Creating a new system overall
	48
	2.6
	1.5
	35.4
	52.1
	33.3
	14.6

	Creating a re-usable system
	48
	2.6
	1.5
	37.5
	47.9
	25.0
	16.7

	Comprehending a system's behaviour
	47
	2.3
	1.3
	36.2
	61.7
	19.1
	8.5

	Explaining a system to others
	48
	2.0
	1.3
	47.9
	70.8
	10.4
	10.4

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach.  (Data for the sub-sample consisting only of software developers)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	48
	4.1
	1.0
	2.1
	8.3
	77.1
	47.9

	Models cannot be easily exchanged between tools
	47
	3.5
	1.3
	12.8
	19.1
	61.7
	23.4

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	48
	3.4
	1.1
	6.3
	20.8
	54.2
	16.7

	Code generated from a modeling tool not of the kind I would like
	47
	3.4
	1.4
	14.9
	23.4
	53.2
	25.5

	Creating and editing a model is slow
	48
	3.1
	1.3
	12.5
	33.3
	35.4
	20.8

	Not enough detail to be implemented in code
	47
	3.0
	1.3
	17.0
	38.3
	40.4
	10.6

	Modeling tools change, models become obsolete
	48
	2.9
	1.3
	16.7
	39.6
	39.6
	10.4

	Modeling tools hide details (source code fully visible)
	48
	2.9
	1.0
	10.4
	33.3
	31.3
	2.1

	Modeling tools cannot be analyzed as intended
	47
	2.9
	1.3
	21.3
	38.3
	38.3
	10.6

	Modeling tools lack features I need or want
	46
	2.8
	1.2
	19.6
	37.0
	28.3
	8.7

	Modeling languages are not expressive enough
	47
	2.6
	1.1
	21.3
	38.3
	23.4
	0.0

	Semantics of models different from prog. language
	47
	2.6
	1.4
	29.8
	48.9
	27.7
	12.8

	Modeling tools are too expensive
	46
	2.6
	1.3
	28.3
	45.7
	26.1
	6.5

	Organization culture does not like modeling
	48
	2.4
	1.3
	37.5
	52.1
	20.8
	4.2

	Have had bad experiences with modeling
	48
	2.4
	1.5
	43.8
	58.3
	27.1
	10.4

	Modeling language hard to understand
	48
	2.2
	1.0
	31.3
	64.6
	10.4
	2.1

	Do not trust companies will continue to support their tools
	45
	2.0
	1.1
	48.9
	66.7
	15.6
	0.0

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of software developers)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	49
	3.4
	1.2
	8.2
	18.4
	51.0
	20.4

	Hard to understand behaviour of system
	49
	3.3
	1.1
	6.1
	26.5
	46.9
	12.2

	Difficult to change code without adding bugs
	49
	3.0
	1.3
	18.4
	30.6
	42.9
	10.2

	Code becomes of poorer quality over time
	48
	3.0
	1.4
	18.8
	43.8
	41.7
	20.8

	Too difficult to restructure system when needed
	48
	2.9
	1.1
	14.6
	35.4
	29.2
	6.3

	Changing code takes too much time
	49
	2.3
	1.1
	32.7
	53.1
	14.3
	2.0

	More skill than available to develop high quality code
	46
	2.2
	1.1
	37.0
	63.0
	10.9
	4.3

	Our prog. language leads to complex code
	49
	2.1
	1.2
	38.8
	67.3
	10.2
	6.1

	Prog. Languages not expressive enough
	46
	1.8
	1.1
	58.7
	71.7
	8.7
	2.2

	Organization culture does not like code-centric
	49
	1.7
	1.1
	67.3
	79.6
	12.2
	2.0

	Our prog. language likely to become obsolete
	48
	1.6
	0.9
	62.5
	83.3
	6.3
	0.0

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Survey results for the software modellers.

The following data is based on those individuals that model a software system very-often to always.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of software modellers)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	45
	4.3 
	0.9 
	2.2
	6.7
	88.9
	53.3

	UML Deployment Diagram
	46
	4.1 
	1.0 
	4.3
	6.5
	78.3
	43.5

	Use Case Diagram
	46
	4.1 
	1.1 
	4.3
	10.9
	84.8
	41.3

	Textual Use Case
	46
	4.0 
	1.2 
	6.5
	13.0
	76.1
	43.5

	Picture By Drawing Tool
	46
	3.9 
	1.1 
	4.3
	15.2
	80.4
	30.4

	Whiteboard Drawing
	46
	3.9 
	1.2 
	8.7
	13.0
	76.1
	34.8

	Picture By Hand
	46
	3.8 
	1.2 
	6.5
	15.2
	41.3
	28.3

	Source Code
	46
	3.1 
	1.5 
	23.9
	37.0
	47.8
	21.7

	Source Code Comment
	46
	2.8 
	1.3 
	21.7
	41.3
	32.6
	13.0

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model? (Data for the sub-sample consisting only of software modellers)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Diagramming tool (e.g. Visio)
	45
	3.3
	1.3
	6.7
	37.8
	55.6
	17.8

	Whiteboard drawing
	45
	3.1
	1.2
	6.7
	37.8
	42.2
	15.6

	Modeling tool/CASE
	46
	3.1
	1.5
	21.7
	39.1
	47.8
	19.6

	Word processor / text
	46
	3.0
	1.2
	4.3
	41.3
	30.4
	17.4

	Word of mouth
	45
	2.8
	1.2
	15.6
	42.2
	22.2
	13.3

	Handwritten material
	46
	2.6
	1.2
	17.4
	54.3
	26.1
	8.7

	Drawing software
	46
	2.5
	1.2
	19.6
	58.7
	23.9
	6.5

	Comments in source code
	46
	2.3
	1.3
	37.0
	58.7
	17.4
	6.5

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of software modellers)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word processor / text
	46
	3.5
	1.1
	2.2
	21.7
	56.5
	17.4

	Diagramming tool (e.g. Visio)
	46
	3.4
	1.0
	2.2
	21.7
	50.0
	15.2

	Word of mouth
	46
	3.4
	1.1
	4.3
	26.1
	52.2
	17.4

	Whiteboard drawing
	46
	3.2
	1.2
	8.7
	30.4
	47.8
	10.9

	Modeling tool/CASE
	46
	3.2
	1.4
	15.2
	34.8
	52.2
	17.4

	Drawing software
	46
	3.0
	1.1
	6.5
	45.7
	23.9
	6.5

	Comments in source code
	46
	2.6
	1.2
	17.4
	56.5
	23.9
	10.9

	Handwritten material
	44
	2.5
	1.2
	22.7
	61.4
	25.0
	4.5

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of software modellers)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	46
	4.0
	1.2
	2.2
	19.6
	26.1
	47.8

	During coding
	46
	3.2
	1.2
	6.5
	28.3
	26.1
	15.2

	After coding
	46
	2.8
	1.2
	13.0
	39.1
	26.1
	8.7

	Only on request
	44
	2.1
	1.3
	43.2
	38.3
	6.8
	9.1

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of software modellers)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	46
	3.8
	1.3
	6.5
	21.7
	69.6
	34.8

	UML 1.*
	38
	3.1
	1.4
	18.4
	39.5
	47.4
	18.4

	UML 2.*
	39
	3.1
	1.4
	17.9
	41.0
	46.2
	20.5

	SQL
	44
	2.9
	1.4
	20.5
	45.5
	36.4
	15.9

	ERD
	45
	2.8
	1.3
	17.8
	51.1
	31.1
	13.3

	Structured Design models
	41
	2.7
	1.3
	14.6
	51.2
	24.4
	14.6

	Well-defined DSL
	42
	1.9
	1.1
	50.0
	71.4
	9.5
	2.4

	ROOM / RT for UML
	42
	1.8
	1.2
	61.9
	76.2
	14.3
	4.8

	SDL
	40
	1.6
	1.0
	75.0
	77.5
	7.5
	0.0

	BPEL
	40
	1.5
	0.9
	72.5
	90.0
	7.5
	0.0

	Formal (e.g. Z, OCL)
	41
	1.4
	0.8
	73.2
	95.1
	2.4
	2.4

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of software modellers)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Searching
	40
	Constantly
	72.5
	5.0
	12.5
	2.5
	2.2

	Knowledge transfer
	44
	Constantly
	59.1
	2.3
	2.3
	0.0
	23.9

	Requirements
	46
	Start
	52.2
	0.0
	52.2
	0.0
	0.0

	Design
	38
	Constantly
	44.7
	2.6
	42.1
	13.2
	0.0

	Develop tests
	40
	Constantly
	42.5
	5.0
	17.5
	10.0
	13.0

	Perform testing
	41
	Constantly
	41.5
	7.3
	0.0
	12.2
	15.2

	Coding
	39
	Constantly
	41.0
	7.7
	2.6
	28.2
	19.6

	Modeling
	42
	Start
	38.1
	2.4
	38.1
	4.8
	2.2

	Documentation
	45
	Constantly
	31.1
	4.4
	15.6
	4.4
	23.9


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of software modellers)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	42
	3.4
	1.5
	19.0
	31.0
	64.3
	23.8

	Design and Engineering
	43
	2.7
	1.3
	20.9
	51.2
	30.2
	9.3

	Website Content Management
	43
	2.5
	1.3
	30.2
	55.8
	30.2
	7.0

	Information Display (Search / News)
	43
	2.5
	1.4
	34.9
	60.5
	30.2
	11.6

	Middleware
	43
	2.3
	1.4
	44.2
	65.1
	30.2
	4.7

	Consumer
	43
	2.2
	1.4
	48.8
	65.1
	25.6
	9.3

	Computational
	42
	2.2
	1.2
	35.7
	73.8
	19.0
	7.1

	Servers
	43
	1.9
	1.2
	51.2
	76.7
	14.0
	7.0

	Operating Systems
	43
	1.9
	1.4
	65.1
	74.4
	20.9
	9.3

	Embedded Real-Time
	42
	1.8
	1.3
	66.7
	76.2
	16.7
	4.8

	System Utilities
	42
	1.7
	1.0
	54.8
	83.3
	7.1
	2.4

	Industrial Control
	43
	1.5
	1.1
	69.8
	90.7
	9.3
	4.7

	Malware
	42
	1.2
	0.5
	85.7
	95.2
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of software modellers)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	41
	2.7
	1.5
	29.3
	53.7
	31.7
	19.5

	Visual Studio
	40
	2.7
	1.4
	30.0
	50.0
	35.0
	10.0

	Rational Rose
	40
	2.2
	1.5
	55.0
	67.5
	30.0
	10.0

	Rational RSx
	40
	1.7
	1.2
	70.0
	77.5
	12.5
	5.0

	Rational XDE
	40
	1.6
	1.0
	70.0
	85.0
	7.5
	2.5

	Together J
	41
	1.2
	0.4
	82.9
	100.0
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of software modellers)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2EE
	42
	2.5
	1.6
	42.9
	54.8
	33.3
	16.7

	J2SE
	42
	2.4
	1.6
	47.6
	47.6
	33.3
	16.7

	PHP / Perl
	42
	2.0
	1.4
	54.8
	71.4
	21.4
	9.5

	ASP.Net
	44
	2.0
	1.5
	59.1
	70.5
	18.2
	15.9

	Ruby / Python
	42
	1.5
	0.9
	71.4
	90.5
	7.1
	0.0

	C / C++*
	19
	2.2
	1.6
	63.2
	63.2
	26.3
	15.8

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of software modellers)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Model a s/w system
	44
	4.3
	0.4
	0.0
	0.0
	100.0
	25.0

	Think about s/w system
	44
	4.2
	1.0
	2.3
	9.1
	84.1
	50.0

	Design a s/w system
	44
	4.1
	0.7
	0.0
	4.5
	88.6
	27.3

	Run / attend meetings
	44
	3.9
	1.0
	2.3
	13.6
	79.5
	25.0

	Explain s/w design to others
	44
	3.8
	0.8
	0.0
	6.8
	70.5
	15.9

	Search about s/w system
	43
	3.6
	1.0
	0.0
	20.9
	67.4
	16.3

	Lead software project
	44
	3.6
	1.1
	6.8
	20.5
	68.2
	15.9

	Write / maintain requirements
	44
	3.5
	1.0
	2.3
	22.7
	61.4
	9.1

	Write new code
	44
	3.1
	1.4
	20.5
	34.1
	50.0
	13.6

	General administration
	44
	3.1
	1.1
	2.3
	36.4
	34.1
	11.4

	Fix bugs
	42
	3.0
	1.2
	16.7
	35.7
	38.1
	9.5

	Maintain existing code
	44
	2.9
	1.4
	20.5
	38.6
	38.6
	13.6

	Perform manual testing
	43
	2.9
	1.3
	14.0
	41.9
	34.9
	11.6

	Write / maintain test scripts
	44
	2.4
	1.1
	22.7
	61.4
	18.2
	4.5

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for?  (Data for the sub-sample consisting only of software modellers)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	37
	3.8
	1.0
	2.7
	10.8
	64.9
	29.7

	Transcribing a design into digital format
	37
	3.4
	1.2
	8.1
	21.6
	48.6
	24.3

	Prototyping a design
	37
	3.1
	1.4
	16.2
	43.2
	43.2
	21.6

	Brainstorming possible designs
	37
	2.9
	1.4
	16.2
	45.9
	35.1
	18.9

	Generating code (code editable)
	36
	2.6
	1.3
	19.4
	55.6
	27.8
	11.1

	Generating all code 
	37
	2.0
	1.4
	56.8
	70.3
	21.6
	8.1

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of software modellers)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Developing a design
	40
	3.6
	1.0
	5.0
	10.0
	55.0
	17.5

	Transcribing a design into digital format
	40
	3.4
	1.0
	0.0
	22.5
	47.5
	12.5

	Generating code (code is editable)
	40
	3.2
	1.2
	5.0
	32.5
	40.0
	15.0

	Prototyping a design
	39
	3.0
	1.1
	7.7
	35.9
	35.9
	10.3

	Brainstorming possible designs
	40
	2.8
	1.2
	12.5
	45.0
	30.0
	7.5

	Generating all code (no manual coding)
	40
	2.0
	1.1
	37.5
	77.5
	12.5
	5.0

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of software modellers)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	40
	1
	15.0
	17.5
	75.0
	57.5

	Readability
	40
	2
	10.0
	25.0
	62.5
	42.5

	Ability to analyze
	40
	3
	12.5
	32.5
	57.5
	30.0

	Ability to view different aspects of a model
	40
	4
	7.5
	35.0
	47.5
	15.0

	Collaborate amongst developers
	40
	5
	12.5
	40.0
	45.0
	17.5

	Ease and speed to create
	40
	6
	12.5
	52.5
	40.0
	17.5

	Generate code
	40
	7
	60.0
	72.5
	22.5
	10.0

	Information density
	39
	8
	48.7
	74.4
	15.4
	5.1

	Embed parts of model in documentation
	40
	9
	52.5
	77.5
	15.0
	2.5

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of software modellers)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Creating a system as quickly as possible
	41
	2.9
	1.5
	24.4
	48.8
	39.0
	19.5

	Creating efficient software
	41
	2.8
	1.3
	22.0
	41.5
	31.7
	12.2

	Creating a prototype
	41
	2.8
	1.6
	33.3
	50.4
	36.6
	24.4

	Fixing a bug
	39
	2.8
	1.5
	30.8
	41.0
	33.3
	15.4

	Creating a usable system for end users
	41
	2.3
	1.2
	36.6
	53.7
	17.1
	4.9

	Modifying a system when requirements change
	40
	2.2
	1.3
	42.5
	60.0
	20.0
	5.0

	Creating a re-usable system
	41
	1.9
	1.3
	61.0
	73.2
	14.6
	7.3

	Creating a system that most accurately meets requirements
	41
	1.8
	1.1
	58.5
	80.5
	9.8
	4.9

	Comprehending a system's behaviour
	40
	1.7
	1.2
	65.0
	80.0
	10.0
	5.0

	Creating a new system overall
	41
	1.6
	1.0
	63.4
	85.4
	9.8
	2.4

	Explaining a system to others
	41
	1.4
	1.0
	82.1
	91.8
	4.9
	4.9

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach.  (Data for the sub-sample consisting only of software modellers)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	42
	3.8
	1.3
	9.5
	16.7
	66.7
	38.1

	Models cannot be easily exchanged between tools
	41
	3.2
	1.4
	17.1
	29.3
	46.3
	19.5

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	42
	3.0
	1.2
	11.9
	40.5
	40.5
	11.9

	Code generated from a modeling tool not of the kind I would like
	41
	2.9
	1.4
	22.0
	43.9
	36.6
	17.1

	Modeling tools are too expensive
	41
	2.8
	1.2
	24.4
	34.1
	31.7
	2.4

	Modeling tools lack features I need or want
	40
	2.7
	1.2
	15.0
	47.5
	27.5
	7.5

	Not enough detail to be implemented in code
	42
	2.5
	1.2
	28.6
	50.0
	23.8
	4.8

	Modeling tools change, models become obsolete
	42
	2.5
	1.3
	31.0
	57.1
	33.3
	4.8

	Modeling tools cannot be analyzed as intended
	41
	2.5
	1.4
	31.7
	56.1
	26.8
	9.8

	Creating and editing a model is slow
	42
	2.5
	1.3
	31.0
	50.0
	19.0
	9.5

	Organization culture does not like modeling
	42
	2.4
	1.3
	35.7
	50.0
	26.2
	2.4

	Modeling tools hide details (source code fully visible)
	42
	2.4
	1.1
	28.6
	54.8
	23.8
	0.0

	Have had bad experiences with modeling
	41
	2.3
	1.3
	39.0
	56.1
	19.5
	7.3

	Semantics of models different from prog. language
	42
	2.2
	1.2
	38.1
	61.9
	19.0
	4.8

	Modeling languages are not expressive enough
	41
	2.1
	1.0
	36.6
	58.5
	7.3
	0.0

	Do not trust companies will continue to support their tools
	40
	2.1
	1.1
	37.5
	67.5
	15.0
	0.0

	Modeling language hard to understand
	42
	2.0
	1.0
	38.1
	71.4
	7.1
	2.4

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of software modellers)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	42
	4.0
	1.2
	7.1
	9.5
	73.8
	40.5

	Hard to understand behaviour of system
	42
	3.8
	1.1
	7.1
	9.5
	73.8
	26.2

	Code becomes of poorer quality over time
	42
	3.8
	1.2
	7.1
	14.3
	71.4
	31.0

	Too difficult to restructure system when needed
	41
	3.6
	1.0
	4.9
	12.2
	58.5
	19.5

	Difficult to change code without adding bugs
	41
	3.6
	1.2
	9.8
	17.1
	61.0
	22.0

	Changing code takes too much time
	42
	2.8
	1.2
	16.7
	40.5
	26.2
	7.1

	Our prog. language leads to complex code
	42
	2.6
	1.3
	26.2
	40.5
	21.4
	9.5

	More skill than available to develop high quality code
	40
	2.6
	1.3
	25.0
	52.5
	25.0
	10.0

	Prog. Languages not expressive enough
	41
	2.2
	1.3
	46.3
	61.0
	19.5
	7.3

	Organization culture does not like code-centric
	42
	2.1
	1.3
	47.6
	64.3
	19.0
	4.8

	Our prog. language likely to become obsolete
	41
	2.0
	1.1
	43.9
	73.2
	9.8
	4.9

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Survey results for the participants who generate code from models.

The following data is based on those individuals that either generate source code templates (which will be edited manually to complete their internal functionality), or generate all necessary code (no manual modification of code necessary) very-often or always.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of participants who generate code from models)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	15
	4.5 
	0.8 
	0.0
	6.7
	93.3
	66.7

	UML Deployment Diagram
	15
	4.4 
	0.7 
	0.0
	0.0
	86.7
	53.3

	Use Case Diagram
	15
	4.0 
	1.3 
	6.7
	20.0
	80.0
	46.7

	Picture By Drawing Tool
	15
	3.7 
	1.2 
	6.7
	20.0
	80.0
	20.0

	Textual Use Case
	15
	3.6 
	1.5 
	13.3
	26.7
	66.7
	33.3

	Whiteboard Drawing
	15
	3.5 
	1.4 
	20.0
	20.0
	73.3
	20.0

	Source Code
	15
	3.5 
	1.6 
	13.3
	33.3
	60.0
	40.0

	Picture By Hand
	15
	3.4 
	1.4 
	13.3
	26.7
	40.0
	20.0

	Source Code Comment
	15
	2.7 
	1.4 
	26.7
	53.3
	33.3
	13.3

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model?


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Modeling tool/CASE
	15
	3.4
	1.5
	13.3
	33.3
	60.0
	26.7

	Diagramming tool (e.g. Visio)
	14
	3.1
	1.2
	7.1
	35.7
	42.9
	14.3

	Word processor / text
	15
	2.7
	1.1
	13.3
	46.7
	20.0
	6.7

	Whiteboard drawing
	15
	2.7
	1.2
	13.3
	46.7
	13.3
	13.3

	Handwritten material
	15
	2.4
	1.4
	33.3
	60.0
	20.0
	13.3

	Word of mouth
	15
	2.3
	1.5
	46.7
	60.0
	20.0
	13.3

	Drawing software
	15
	1.8
	1.1
	46.7
	86.7
	6.7
	6.7

	Comments in source code
	15
	1.7
	1.0
	60.0
	66.7
	0.0
	0.0

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of participants who generate code from models)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Modeling tool/CASE
	15
	3.5
	1.1
	0.0
	26.7
	60.0
	20.0

	Diagramming tool (e.g. Visio)
	15
	3.3
	0.9
	0.0
	20.0
	46.7
	6.7

	Word processor / text
	15
	3.2
	1.1
	6.7
	26.7
	46.7
	6.7

	Whiteboard drawing
	15
	2.9
	1.2
	13.3
	40.0
	40.0
	6.7

	Word of mouth
	15
	2.9
	1.2
	13.3
	46.7
	40.0
	6.7

	Drawing software
	14
	2.4
	1.2
	14.3
	57.1
	7.1
	7.1

	Comments in source code
	15
	2.4
	1.2
	26.7
	60.0
	20.0
	6.7

	Handwritten material
	14
	2.3
	0.9
	14.3
	71.4
	14.3
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of participants who generate code from models)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	15
	3.7
	1.3
	6.7
	26.7
	20.0
	40.0

	During coding
	15
	2.9
	1.2
	13.3
	40.0
	13.3
	13.3

	After coding
	15
	2.7
	1.4
	26.7
	40.0
	20.0
	13.3

	Only on request
	15
	2.2
	1.4
	40.0
	46.7
	6.7
	13.3

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of participants who generate code from models)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	15
	4.0
	1.3
	6.7
	13.3
	73.3
	46.7

	UML 1.*
	12
	3.5
	1.3
	8.3
	25.0
	58.3
	25.0

	UML 2.*
	13
	3.2
	1.6
	23.1
	38.5
	53.8
	23.1

	ERD
	14
	2.7
	1.4
	14.3
	64.3
	35.7
	14.3

	SQL
	15
	2.7
	1.4
	26.7
	53.3
	33.3
	13.3

	Structured Design models
	13
	2.4
	0.9
	0.0
	76.9
	7.7
	7.7

	Well-defined DSL
	15
	2.1
	1.0
	40.0
	60.0
	6.7
	0.0

	ROOM / RT for UML
	13
	2.0
	1.5
	61.5
	69.2
	23.1
	7.7

	Formal (e.g. Z, OCL)
	14
	1.6
	1.2
	64.3
	85.7
	7.1
	7.1

	SDL
	13
	1.6
	1.0
	69.2
	76.9
	7.7
	0.0

	BPEL
	14
	1.6
	0.9
	64.3
	85.7
	7.1
	0.0

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of participants who generate code from models)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Searching
	13
	Constantly
	61.5
	0.0
	30.8
	0.0
	0.0

	Design
	12
	Start
	58.3
	8.3
	58.3
	0.0
	0.0

	Requirements
	15
	Start
	53.3
	0.0
	53.3
	0.0
	0.0

	Perform testing
	13
	Constantly
	46.2
	7.7
	0.0
	15.4
	13.3

	Knowledge transfer
	15
	Constantly
	40.0
	0.0
	6.7
	0.0
	20.0

	Modeling
	13
	Constantly
	38.5
	0.0
	38.5
	7.7
	0.0

	Documentation
	14
	Constantly
	35.7
	7.1
	21.4
	0.0
	20.0

	Coding
	13
	Middle
	30.8
	7.7
	7.7
	30.8
	20.0

	Develop tests
	14
	Constantly
	28.6
	0.0
	21.4
	14.3
	13.3


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of participants who generate code from models)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	12
	3.5
	1.4
	16.7
	25.0
	66.7
	25.0

	Design and Engineering
	13
	3.4
	1.2
	7.7
	23.1
	53.8
	15.4

	Computational
	13
	2.5
	1.6
	38.5
	61.5
	38.5
	15.4

	Middleware
	13
	2.4
	1.4
	38.5
	61.5
	30.8
	7.7

	Website Content Management
	13
	2.3
	1.4
	38.5
	61.5
	23.1
	7.7

	Information Display (Search / News)
	13
	2.2
	1.5
	46.2
	69.2
	23.1
	15.4

	Operating Systems
	13
	2.1
	1.4
	53.8
	69.2
	23.1
	7.7

	Embedded Real-Time
	13
	2.0
	1.6
	69.2
	69.2
	23.1
	15.4

	Consumer
	13
	1.9
	1.3
	61.5
	69.2
	23.1
	0.0

	Industrial Control
	12
	1.8
	1.5
	66.7
	83.3
	16.7
	16.7

	System Utilities
	12
	1.6
	1.1
	75.0
	75.0
	8.3
	0.0

	Servers
	13
	1.5
	1.2
	76.9
	84.6
	7.7
	7.7

	Malware
	13
	1.2
	0.6
	84.6
	92.3
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of participants who generate code from models)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Visual Studio
	12
	2.9
	0.9
	8.3
	25.0
	25.0
	0.0

	Rational Rose
	11
	2.8
	1.6
	36.4
	45.5
	54.5
	9.1

	Eclipse
	12
	2.8
	1.5
	25.0
	50.0
	33.3
	16.7

	Rational RSx
	12
	2.1
	1.5
	58.3
	66.7
	25.0
	8.3

	Rational XDE
	12
	1.9
	1.3
	50.0
	83.3
	16.7
	8.3

	Together J
	12
	1.1
	0.3
	91.7
	100.0
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of participants who generate code from models)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2EE
	11
	2.5
	1.6
	36.4
	54.5
	27.3
	18.2

	ASP.Net
	12
	2.4
	1.9
	58.3
	66.7
	33.3
	33.3

	J2SE
	11
	2.2
	1.7
	54.5
	54.5
	27.3
	18.2

	PHP / Perl
	11
	1.9
	1.2
	54.5
	72.7
	18.2
	0.0

	Ruby / Python
	11
	1.5
	0.9
	72.7
	90.9
	9.1
	0.0

	C / C++*
	10
	1.6
	1.3
	80.0
	80.0
	10.0
	10.0

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of participants who generate code from models)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Model a s/w system
	12
	4.3
	0.7
	0.0
	0.0
	91.7
	41.7

	Think about s/w system
	12
	4.3
	0.9
	0.0
	8.3
	91.7
	50.0

	Run / attend meetings
	12
	4.3
	0.6
	0.0
	0.0
	91.7
	33.3

	Design a s/w system
	12
	4.1
	1.0
	0.0
	8.3
	75.0
	41.7

	Explain s/w design to others
	12
	4.0
	0.9
	0.0
	8.3
	83.3
	25.0

	Lead software project
	12
	4.0
	1.0
	0.0
	8.3
	75.0
	33.3

	General administration
	12
	3.8
	0.9
	0.0
	8.3
	66.7
	25.0

	Write / maintain requirements
	12
	3.6
	1.2
	8.3
	25.0
	75.0
	16.7

	Search about s/w system
	11
	3.5
	1.1
	0.0
	27.3
	63.6
	18.2

	Fix bugs
	12
	2.9
	1.3
	16.7
	41.7
	41.7
	8.3

	Write / maintain test scripts
	12
	2.6
	1.5
	33.3
	58.3
	41.7
	8.3

	Maintain existing code
	12
	2.6
	1.6
	33.3
	58.3
	33.3
	16.7

	Perform manual testing
	12
	2.5
	1.4
	33.3
	58.3
	33.3
	8.3

	Write new code
	12
	2.5
	1.6
	41.7
	58.3
	33.3
	16.7

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for? (Data for the sub-sample consisting only of participants who generate code from models)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	13
	4.4
	0.7
	0.0
	0.0
	92.3
	46.2

	Generating code (code editable)
	12
	4.3
	0.6
	0.0
	0.0
	91.7
	33.3

	Prototyping a design
	13
	4.1
	1.1
	0.0
	15.4
	76.9
	46.2

	Transcribing a design into digital format
	13
	3.8
	1.3
	7.7
	15.4
	69.2
	38.5

	Generating all code 
	13
	3.6
	1.3
	15.4
	15.4
	69.2
	23.1

	Brainstorming possible designs
	13
	3.3
	1.5
	15.4
	30.8
	46.2
	30.8

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of participants who generate code from models)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Generating code (code is editable)
	12
	3.9
	1.1
	0.0
	16.7
	75.0
	33.3

	Developing a design
	12
	3.8
	0.8
	0.0
	0.0
	58.3
	16.7

	Transcribing a design into digital format
	12
	3.6
	0.9
	0.0
	8.3
	50.0
	16.7

	Prototyping a design
	11
	3.5
	1.1
	0.0
	27.3
	54.5
	18.2

	Brainstorming possible designs
	12
	3.3
	1.2
	8.3
	25.0
	50.0
	16.7

	Generating all code (no manual coding)
	12
	3.0
	1.4
	8.3
	50.0
	33.3
	25.0

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of participants who generate code from models)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Ability to analyze
	12
	1
	8.3
	33.3
	66.7
	25.0

	Ability to view different aspects of a model
	12
	2
	8.3
	25.0
	50.0
	25.0

	Communicate to others
	12
	3
	33.3
	33.3
	58.3
	33.3

	Readability
	12
	4
	16.7
	50.0
	41.7
	25.0

	Generate code
	12
	5
	33.3
	50.0
	33.3
	33.3

	Collaborate amongst developers
	12
	6
	33.3
	58.3
	33.3
	8.3

	Ease and speed to create
	12
	7
	25.0
	75.0
	16.7
	0.0

	Information density
	11
	8
	36.4
	72.7
	18.2
	9.1

	Embed parts of model in documentation
	12
	9
	66.7
	75.0
	25.0
	8.3

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of participants who generate code from models)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Creating a system as quickly as possible
	12
	2.2
	1.3
	41.7
	66.7
	16.7
	8.3

	Creating efficient software
	12
	2.1
	1.2
	50.0
	58.3
	16.7
	0.0

	Creating a prototype
	12
	2.1
	1.6
	63.6
	72.0
	16.7
	16.7

	Fixing a bug
	11
	2.0
	1.4
	54.5
	72.7
	18.2
	9.1

	Creating a system that most accurately meets requirements
	12
	1.9
	1.6
	66.7
	75.0
	16.7
	16.7

	Creating a usable system for end users
	12
	1.8
	0.9
	50.0
	66.7
	0.0
	0.0

	Modifying a system when requirements change
	12
	1.4
	1.0
	83.3
	83.3
	8.3
	0.0

	Creating a re-usable system
	12
	1.3
	0.8
	83.3
	83.3
	0.0
	0.0

	Creating a new system overall
	12
	1.1
	0.3
	91.7
	100.0
	0.0
	0.0

	Comprehending a system's behaviour
	12
	1.1
	0.3
	91.7
	100.0
	0.0
	0.0

	Explaining a system to others
	12
	1.0
	0.0
	109.1
	109.1
	0.0
	0.0

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach. (Data for the sub-sample consisting only of participants who generate code from models)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Modeling tools are too expensive
	12
	3.3
	1.2
	16.7
	16.7
	50.0
	8.3

	Models become out of date and inconsistent with code
	12
	3.2
	1.4
	16.7
	33.3
	50.0
	16.7

	Models cannot be easily exchanged between tools
	12
	3.1
	1.4
	25.0
	25.0
	50.0
	8.3

	Modeling tools lack features I need or want
	10
	3.0
	1.3
	0.0
	60.0
	40.0
	20.0

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	12
	2.9
	1.2
	16.7
	33.3
	41.7
	0.0

	Have had bad experiences with modeling
	11
	2.8
	1.5
	27.3
	45.5
	36.4
	18.2

	Modeling tools change, models become obsolete
	12
	2.6
	1.4
	33.3
	50.0
	33.3
	8.3

	Do not trust companies will continue to support their tools
	11
	2.5
	0.9
	18.2
	36.4
	9.1
	0.0

	Semantics of models different from prog. language
	12
	2.5
	1.6
	41.7
	58.3
	33.3
	16.7

	Modeling tools cannot be analyzed as intended
	11
	2.5
	1.4
	27.3
	63.6
	18.2
	18.2

	Not enough detail to be implemented in code
	12
	2.3
	1.0
	25.0
	50.0
	8.3
	0.0

	Modeling language hard to understand
	12
	2.3
	1.4
	33.3
	66.7
	25.0
	8.3

	Organization culture does not like modeling
	12
	2.3
	1.4
	41.7
	50.0
	16.7
	8.3

	Modeling languages are not expressive enough
	11
	2.3
	1.0
	27.3
	54.5
	9.1
	0.0

	Code generated from a modeling tool not of the kind I would like
	11
	2.3
	1.0
	27.3
	54.5
	9.1
	0.0

	Creating and editing a model is slow
	12
	2.3
	1.0
	25.0
	58.3
	8.3
	0.0

	Modeling tools hide details (source code fully visible)
	12
	2.0
	1.0
	33.3
	75.0
	8.3
	0.0

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of participants who generate code from models)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	12
	4.2
	0.8
	0.0
	0.0
	75.0
	41.7

	Hard to understand behaviour of system
	12
	3.9
	0.5
	0.0
	0.0
	83.3
	8.3

	Too difficult to restructure system when needed
	12
	3.9
	0.9
	0.0
	8.3
	75.0
	25.0

	Code becomes of poorer quality over time
	12
	3.9
	1.2
	8.3
	8.3
	75.0
	33.3

	Difficult to change code without adding bugs
	12
	3.7
	1.2
	8.3
	8.3
	58.3
	25.0

	More skill than available to develop high quality code
	11
	3.1
	1.4
	18.2
	36.4
	45.5
	18.2

	Changing code takes too much time
	12
	3.1
	1.2
	8.3
	33.3
	41.7
	8.3

	Our prog. language leads to complex code
	12
	3.1
	1.2
	8.3
	33.3
	33.3
	16.7

	Prog. Languages not expressive enough
	12
	2.9
	1.6
	33.3
	33.3
	41.7
	16.7

	Our prog. language likely to become obsolete
	12
	2.6
	1.5
	33.3
	50.0
	25.0
	16.7

	Organization culture does not like code-centric
	11
	2.3
	1.7
	54.5
	63.6
	27.3
	18.2

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Survey results for the software veterans.

The following data is based on those individuals that have at least 12 years experience in the software industry.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of participants with at least 12 years experience)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	56
	4.3 
	0.9 
	1.8
	3.6
	83.9
	51.8

	Picture By Drawing Tool
	55
	4.1 
	0.8 
	1.8
	5.5
	89.1
	29.1

	Whiteboard Drawing
	56
	4.0 
	1.0 
	5.4
	7.1
	85.7
	26.8

	UML Deployment Diagram
	55
	4.0 
	1.0 
	3.6
	7.3
	74.5
	36.4

	Use Case Diagram
	56
	4.0 
	1.1 
	3.6
	12.5
	80.4
	35.7

	Picture By Hand
	56
	3.9 
	0.9 
	1.8
	8.9
	58.9
	23.2

	Textual Use Case
	56
	3.8 
	1.1 
	3.6
	14.3
	73.2
	26.8

	Source Code
	56
	3.4 
	1.5 
	14.3
	33.9
	57.1
	32.1

	Source Code Comment
	56
	2.8 
	1.2 
	14.3
	46.4
	35.7
	8.9

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Whiteboard drawing
	55
	3.1
	1.1
	5.5
	36.4
	41.8
	7.3

	Word processor / text
	56
	2.8
	1.1
	8.9
	48.2
	26.8
	7.1

	Word of mouth
	55
	2.7
	1.1
	14.5
	47.3
	25.5
	7.3

	Diagramming tool (e.g. Visio)
	56
	2.7
	1.2
	17.9
	53.6
	33.9
	3.6

	Handwritten material
	56
	2.6
	1.0
	8.9
	53.6
	19.6
	3.6

	Comments in source code
	55
	2.4
	1.2
	30.9
	54.5
	18.2
	3.6

	Modeling tool/CASE
	56
	2.3
	1.4
	42.9
	60.7
	28.6
	7.1

	Drawing software
	56
	1.9
	0.9
	35.7
	78.6
	8.9
	0.0

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word of mouth
	56
	3.4
	1.1
	5.4
	21.4
	57.1
	12.5

	Word processor / text
	55
	3.3
	1.0
	5.5
	21.8
	54.5
	7.3

	Whiteboard drawing
	55
	3.1
	1.1
	7.3
	32.7
	47.3
	5.5

	Diagramming tool (e.g. Visio)
	56
	3.0
	1.1
	12.5
	33.9
	37.5
	5.4

	Comments in source code
	56
	2.6
	1.1
	12.5
	51.8
	19.6
	8.9

	Drawing software
	54
	2.5
	1.0
	16.7
	61.1
	11.1
	1.9

	Handwritten material
	54
	2.3
	1.1
	27.8
	61.1
	20.4
	1.9

	Modeling tool/CASE
	56
	2.3
	1.3
	37.5
	60.7
	26.8
	1.8

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	56
	3.6
	1.2
	5.4
	17.9
	28.6
	30.4

	During coding
	56
	3.0
	1.1
	7.1
	28.6
	26.8
	7.1

	After coding
	56
	2.4
	1.0
	12.5
	51.8
	16.1
	1.8

	Only on request
	53
	1.8
	1.0
	49.1
	37.6
	1.9
	3.8

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	56
	3.1
	1.4
	17.9
	39.3
	50.0
	17.9

	UML 2.*
	49
	2.5
	1.3
	26.5
	57.1
	28.6
	8.2

	Structured Design models
	52
	2.4
	1.0
	19.2
	59.6
	13.5
	3.8

	UML 1.*
	49
	2.3
	1.3
	36.7
	59.2
	22.4
	6.1

	SQL
	55
	2.2
	1.2
	38.2
	63.6
	18.2
	5.5

	ERD
	55
	2.1
	1.2
	36.4
	70.9
	14.5
	7.3

	Well-defined DSL
	53
	1.6
	0.7
	56.6
	84.9
	0.0
	0.0

	ROOM / RT for UML
	50
	1.3
	0.7
	76.0
	94.0
	2.0
	0.0

	BPEL
	50
	1.3
	0.6
	80.0
	94.0
	2.0
	0.0

	Formal (e.g. Z, OCL)
	52
	1.3
	0.6
	78.8
	96.2
	1.9
	0.0

	SDL
	46
	1.2
	0.7
	89.1
	93.5
	4.3
	0.0

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Searching
	46
	Constantly
	73.9
	6.5
	19.6
	4.3
	0.0

	Perform testing
	52
	Constantly
	59.6
	1.9
	0.0
	1.9
	16.4

	Requirements
	56
	Start
	55.4
	0.0
	55.4
	0.0
	0.0

	Develop tests
	50
	Constantly
	54.0
	0.0
	8.0
	12.0
	14.3

	Knowledge transfer
	55
	Constantly
	49.1
	3.6
	0.0
	1.8
	32.1

	Coding
	49
	Constantly
	49.0
	4.1
	2.0
	28.6
	10.9

	Modeling
	50
	Start
	46.0
	6.0
	46.0
	4.0
	0.0

	Design
	49
	Start
	44.9
	2.0
	44.9
	8.2
	0.0

	Documentation
	55
	End
	40.0
	1.8
	10.9
	0.0
	39.3


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	52
	2.6
	1.5
	36.5
	53.8
	38.5
	13.5

	Design and Engineering
	52
	2.4
	1.2
	26.9
	61.5
	23.1
	3.8

	Website Content Management
	51
	2.2
	1.2
	41.2
	62.7
	21.6
	2.0

	Computational
	51
	2.1
	1.1
	33.3
	72.5
	15.7
	2.0

	Information Display (Search / News)
	53
	2.1
	1.4
	50.9
	71.7
	20.8
	7.5

	Middleware
	53
	2.0
	1.1
	45.3
	75.5
	17.0
	0.0

	Embedded Real-Time
	51
	2.0
	1.3
	58.8
	70.6
	19.6
	5.9

	Operating Systems
	52
	1.8
	1.4
	63.5
	78.8
	17.3
	9.6

	Consumer
	53
	1.8
	1.3
	58.5
	81.1
	15.1
	7.5

	Servers
	53
	1.8
	1.0
	50.9
	79.2
	11.3
	0.0

	System Utilities
	52
	1.6
	1.0
	67.3
	80.8
	7.7
	1.9

	Industrial Control
	51
	1.5
	0.9
	66.7
	92.2
	5.9
	2.0

	Malware
	53
	1.2
	0.5
	88.7
	96.2
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	53
	3.0
	1.4
	17.0
	39.6
	41.5
	18.9

	Visual Studio
	52
	2.3
	1.4
	44.2
	63.5
	30.8
	3.8

	Rational Rose
	53
	1.7
	1.1
	67.9
	79.2
	15.1
	0.0

	Rational RSx
	52
	1.4
	1.0
	82.7
	86.5
	9.6
	0.0

	Rational XDE
	52
	1.3
	0.8
	82.7
	90.4
	5.8
	0.0

	Together J
	53
	1.2
	0.6
	83.0
	96.2
	1.9
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2SE
	51
	2.4
	1.5
	49.0
	49.0
	29.4
	13.7

	J2EE
	52
	1.9
	1.3
	59.6
	71.2
	17.3
	3.8

	PHP / Perl
	50
	1.9
	1.2
	52.0
	78.0
	16.0
	4.0

	ASP.Net
	52
	1.7
	1.3
	71.2
	78.8
	13.5
	7.7

	Ruby / Python
	51
	1.6
	1.0
	62.7
	90.2
	7.8
	3.9

	C / C++*
	25
	2.4
	1.7
	52.0
	60.0
	32.0
	20.0

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Think about s/w system
	53
	4.2
	0.9
	0.0
	3.8
	81.1
	47.2

	Lead software project
	53
	3.5
	1.0
	1.9
	18.9
	58.5
	17.0

	Design a s/w system
	53
	3.5
	0.9
	1.9
	13.2
	58.5
	9.4

	Run / attend meetings
	53
	3.5
	1.0
	3.8
	17.0
	60.4
	13.2

	Explain s/w design to others
	53
	3.5
	0.8
	0.0
	7.5
	45.3
	11.3

	Search about s/w system
	51
	3.3
	1.0
	2.0
	25.5
	45.1
	7.8

	Model a s/w system
	53
	3.2
	1.0
	3.8
	30.2
	45.3
	7.5

	Write new code
	53
	3.2
	1.3
	11.3
	34.0
	49.1
	15.1

	Fix bugs
	52
	3.0
	1.1
	7.7
	36.5
	38.5
	9.6

	Maintain existing code
	53
	3.0
	1.2
	11.3
	37.7
	39.6
	7.5

	Write / maintain requirements
	52
	2.9
	1.1
	11.5
	42.3
	36.5
	3.8

	Perform manual testing
	51
	2.8
	1.1
	11.8
	37.3
	27.5
	3.9

	General administration
	52
	2.8
	1.1
	13.5
	42.3
	26.9
	5.8

	Write / maintain test scripts
	53
	2.5
	1.1
	18.9
	52.8
	18.9
	3.8

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for? (Data for the sub-sample consisting only of participants with at least 12 years experience)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	38
	3.4
	1.0
	2.6
	21.1
	47.4
	13.2

	Transcribing a design into digital format
	38
	2.8
	1.2
	15.8
	34.2
	26.3
	7.9

	Prototyping a design
	38
	2.6
	1.3
	23.7
	55.3
	31.6
	7.9

	Brainstorming possible designs
	38
	2.5
	1.2
	21.1
	57.9
	21.1
	7.9

	Generating code (code editable)
	37
	2.2
	1.2
	32.4
	67.6
	13.5
	5.4

	Generating all code 
	38
	1.7
	1.2
	68.4
	76.3
	13.2
	5.3

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Developing a design
	41
	3.4
	1.0
	2.4
	17.1
	46.3
	14.6

	Transcribing a design into digital format
	40
	3.1
	1.0
	2.5
	27.5
	32.5
	10.0

	Prototyping a design
	39
	2.8
	1.1
	10.3
	43.6
	28.2
	7.7

	Brainstorming possible designs
	41
	2.8
	1.2
	17.1
	43.9
	31.7
	4.9

	Generating code (code is editable)
	40
	2.7
	1.1
	10.0
	45.0
	20.0
	7.5

	Generating all code (no manual coding)
	40
	1.8
	1.0
	42.5
	85.0
	7.5
	2.5

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	51
	1
	5.9
	9.8
	84.3
	74.5

	Readability
	51
	2
	5.9
	15.7
	74.5
	56.9

	Ease and speed to create
	51
	3
	7.8
	33.3
	62.7
	19.6

	Ability to analyze
	51
	4
	9.8
	37.3
	49.0
	15.7

	Collaborate amongst developers
	51
	5
	13.7
	41.2
	43.1
	11.8

	Ability to view different aspects of a model
	51
	6
	7.8
	49.0
	31.4
	11.8

	Generate code
	51
	7
	54.9
	72.5
	23.5
	11.8

	Information density
	51
	8
	51.0
	70.6
	17.6
	0.0

	Embed parts of model in documentation
	51
	9
	54.9
	84.3
	9.8
	2.0

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Creating efficient software
	52
	3.5
	1.4
	13.5
	26.9
	59.6
	32.7

	Fixing a bug
	50
	3.2
	1.4
	18.0
	28.0
	40.0
	28.0

	Creating a system as quickly as possible
	52
	3.0
	1.5
	17.3
	50.0
	44.2
	26.9

	Creating a prototype
	52
	3.0
	1.4
	22.0
	39.3
	32.7
	23.1

	Creating a usable system for end users
	52
	2.8
	1.3
	21.2
	38.5
	26.9
	13.5

	Modifying a system when requirements change
	51
	2.7
	1.5
	27.5
	52.9
	29.4
	19.6

	Creating a system that most accurately meets requirements
	52
	2.5
	1.4
	34.6
	59.6
	26.9
	13.5

	Creating a re-usable system
	52
	2.3
	1.4
	38.5
	57.7
	17.3
	11.5

	Creating a new system overall
	52
	2.3
	1.4
	42.3
	65.4
	26.9
	11.5

	Comprehending a system's behaviour
	49
	2.1
	1.3
	46.9
	71.4
	16.3
	8.2

	Explaining a system to others
	52
	1.8
	1.3
	60.0
	79.2
	9.6
	9.6

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach. (Data for the sub-sample consisting only of participants with at least 12 years experience)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	52
	3.8
	1.2
	5.8
	15.4
	67.3
	30.8

	Models cannot be easily exchanged between tools
	51
	3.4
	1.2
	9.8
	21.6
	56.9
	15.7

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	52
	3.4
	1.0
	0.0
	19.2
	42.3
	13.5

	Code generated from a modeling tool not of the kind I would like
	52
	3.1
	1.4
	17.3
	32.7
	44.2
	19.2

	Not enough detail to be implemented in code
	50
	2.9
	1.3
	22.0
	38.0
	44.0
	10.0

	Modeling tools change, models become obsolete
	52
	2.9
	1.2
	15.4
	38.5
	36.5
	5.8

	Modeling tools are too expensive
	50
	2.8
	1.2
	18.0
	40.0
	28.0
	6.0

	Modeling tools hide details (source code fully visible)
	52
	2.7
	1.0
	13.5
	44.2
	23.1
	1.9

	Creating and editing a model is slow
	52
	2.7
	1.2
	15.4
	48.1
	19.2
	9.6

	Modeling tools lack features I need or want
	51
	2.6
	1.1
	15.7
	47.1
	21.6
	5.9

	Semantics of models different from prog. language
	51
	2.5
	1.2
	21.6
	56.9
	21.6
	9.8

	Organization culture does not like modeling
	52
	2.4
	1.1
	25.0
	48.1
	15.4
	1.9

	Modeling tools cannot be analyzed as intended
	52
	2.4
	1.2
	28.8
	55.8
	21.2
	5.8

	Modeling languages are not expressive enough
	52
	2.3
	1.1
	26.9
	57.7
	17.3
	0.0

	Modeling language hard to understand
	51
	2.3
	1.1
	25.5
	64.7
	11.8
	5.9

	Have had bad experiences with modeling
	52
	2.2
	1.3
	38.5
	67.3
	19.2
	5.8

	Do not trust companies will continue to support their tools
	51
	1.9
	1.0
	47.1
	70.6
	9.8
	0.0

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of participants with at least 12 years experience)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	53
	3.8
	1.1
	5.7
	11.3
	69.8
	32.1

	Hard to understand behaviour of system
	53
	3.6
	1.1
	3.8
	18.9
	62.3
	17.0

	Difficult to change code without adding bugs
	53
	3.3
	1.2
	9.4
	22.6
	52.8
	13.2

	Too difficult to restructure system when needed
	52
	3.3
	1.2
	5.8
	26.9
	48.1
	17.3

	Code becomes of poorer quality over time
	52
	3.2
	1.3
	11.5
	32.7
	46.2
	19.2

	Changing code takes too much time
	53
	2.7
	1.2
	22.6
	43.4
	26.4
	5.7

	Our prog. language leads to complex code
	53
	2.4
	1.2
	30.2
	54.7
	17.0
	5.7

	More skill than available to develop high quality code
	51
	2.3
	1.2
	33.3
	58.8
	17.6
	5.9

	Prog. Languages not expressive enough
	50
	2.0
	1.3
	54.0
	74.0
	18.0
	6.0

	Our prog. language likely to become obsolete
	52
	1.7
	1.1
	59.6
	82.7
	7.7
	3.8

	Organization culture does not like code-centric
	52
	1.6
	1.0
	69.2
	84.6
	9.6
	1.9

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Survey results within Canada / USA.

The following data is based on those individuals that live within Canada or the United States of America.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of participants from Canada and the USA)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	62
	4.3 
	0.9 
	1.6
	3.2
	82.3
	50.0

	UML Deployment Diagram
	62
	4.1 
	0.9 
	1.6
	4.8
	75.8
	41.9

	Picture By Drawing Tool
	62
	4.1 
	0.8 
	1.6
	6.5
	87.1
	30.6

	Use Case Diagram
	63
	4.0 
	1.1 
	3.2
	12.7
	81.0
	39.7

	Whiteboard Drawing
	63
	4.0 
	1.1 
	6.3
	9.5
	79.4
	33.3

	Picture By Hand
	63
	3.9 
	1.0 
	3.2
	11.1
	54.0
	25.4

	Textual Use Case
	63
	3.9 
	1.1 
	3.2
	14.3
	74.6
	30.2

	Source Code
	63
	3.3 
	1.4 
	15.9
	36.5
	52.4
	25.4

	Source Code Comment
	63
	2.7 
	1.2 
	15.9
	50.8
	31.7
	7.9

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Whiteboard drawing
	63
	3.4
	1.1
	4.8
	23.8
	55.6
	12.7

	Word processor / text
	63
	2.9
	1.2
	9.5
	41.3
	30.2
	11.1

	Word of mouth
	63
	2.8
	1.2
	12.7
	44.4
	28.6
	11.1

	Diagramming tool (e.g. Visio)
	62
	2.8
	1.3
	19.4
	48.4
	37.1
	9.7

	Handwritten material
	63
	2.6
	1.1
	14.3
	54.0
	22.2
	6.3

	Comments in source code
	62
	2.4
	1.3
	30.6
	53.2
	19.4
	8.1

	Drawing software
	63
	2.2
	1.1
	30.2
	69.8
	15.9
	3.2

	Modeling tool/CASE
	63
	2.1
	1.4
	47.6
	66.7
	19.0
	9.5

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word of mouth
	63
	3.6
	1.0
	0.0
	17.5
	55.6
	17.5

	Word processor / text
	62
	3.3
	1.1
	4.8
	25.8
	50.0
	12.9

	Diagramming tool (e.g. Visio)
	63
	3.2
	1.2
	11.1
	27.0
	47.6
	11.1

	Whiteboard drawing
	62
	3.2
	1.1
	8.1
	29.0
	45.2
	9.7

	Comments in source code
	63
	2.8
	1.2
	14.3
	46.0
	25.4
	12.7

	Drawing software
	62
	2.6
	1.0
	16.1
	56.5
	17.7
	4.8

	Handwritten material
	61
	2.3
	1.2
	31.1
	59.0
	18.0
	3.3

	Modeling tool/CASE
	63
	2.3
	1.3
	41.3
	61.9
	22.2
	7.9

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	63
	3.7
	1.2
	4.8
	19.0
	30.2
	33.3

	During coding
	63
	3.0
	1.1
	6.3
	33.3
	28.6
	9.5

	After coding
	62
	2.6
	1.1
	12.9
	45.1
	21.0
	4.8

	Only on request
	61
	1.9
	1.1
	44.3
	36.0
	4.9
	4.9

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	62
	3.2
	1.5
	21.0
	37.1
	51.6
	22.6

	Structured Design models
	58
	2.7
	1.3
	20.7
	50.0
	25.9
	13.8

	UML 2.*
	55
	2.6
	1.4
	30.9
	52.7
	30.9
	14.5

	SQL
	61
	2.4
	1.4
	37.7
	55.7
	26.2
	8.2

	UML 1.*
	53
	2.4
	1.4
	41.5
	54.7
	24.5
	9.4

	ERD
	60
	2.3
	1.3
	38.3
	66.7
	20.0
	10.0

	Well-defined DSL
	57
	1.6
	0.7
	57.9
	86.0
	0.0
	0.0

	ROOM / RT for UML
	58
	1.4
	0.9
	72.4
	89.7
	5.2
	1.7

	Formal (e.g. Z, OCL)
	55
	1.3
	0.8
	78.2
	92.7
	3.6
	1.8

	SDL
	53
	1.3
	0.7
	79.2
	90.6
	1.9
	0.0

	BPEL
	56
	1.3
	0.6
	83.9
	92.9
	1.8
	0.0

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Requirements
	62
	Start
	64.5
	0.0
	64.5
	0.0
	0.0

	Searching
	53
	Constantly
	60.4
	7.5
	20.8
	5.7
	3.2

	Design
	53
	Start
	56.6
	1.9
	56.6
	7.5
	0.0

	Develop tests
	56
	Constantly
	51.8
	1.8
	12.5
	8.9
	12.7

	Modeling
	58
	Start
	51.7
	6.9
	51.7
	5.2
	0.0

	Perform testing
	58
	Constantly
	48.3
	3.4
	1.7
	6.9
	16.1

	Coding
	55
	Constantly
	45.5
	5.5
	5.5
	34.5
	9.7

	Documentation
	60
	End
	41.7
	5.0
	11.7
	0.0
	39.7

	Knowledge transfer
	61
	Constantly
	41.0
	1.6
	1.6
	3.3
	38.1


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	61
	2.6
	1.6
	39.3
	52.5
	37.7
	16.4

	Design and Engineering
	61
	2.5
	1.3
	26.2
	60.7
	26.2
	8.2

	Information Display (Search / News)
	62
	2.3
	1.5
	45.2
	64.5
	27.4
	11.3

	Website Content Management
	60
	2.2
	1.3
	40.0
	61.7
	21.7
	3.3

	Computational
	60
	2.2
	1.2
	35.0
	68.3
	16.7
	5.0

	Middleware
	62
	2.1
	1.2
	41.9
	69.4
	21.0
	1.6

	Consumer
	61
	2.1
	1.4
	50.8
	72.1
	23.0
	9.8

	Embedded Real-Time
	61
	2.1
	1.3
	50.8
	67.2
	19.7
	6.6

	Operating Systems
	61
	2.0
	1.4
	60.7
	75.4
	21.3
	9.8

	Servers
	62
	1.7
	1.0
	58.1
	80.6
	8.1
	1.6

	System Utilities
	61
	1.6
	1.0
	63.9
	82.0
	6.6
	1.6

	Industrial Control
	61
	1.6
	1.1
	68.9
	88.5
	9.8
	4.9

	Malware
	62
	1.3
	0.7
	85.5
	91.9
	3.2
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	63
	3.1
	1.5
	23.8
	39.7
	46.0
	23.8

	Visual Studio
	63
	2.5
	1.4
	36.5
	55.6
	34.9
	4.8

	Rational Rose
	62
	1.8
	1.2
	62.9
	77.4
	16.1
	3.2

	Rational XDE
	62
	1.4
	0.9
	79.0
	88.7
	6.5
	1.6

	Rational RSx
	62
	1.4
	0.9
	85.5
	88.7
	8.1
	1.6

	Together J
	63
	1.2
	0.5
	85.7
	96.8
	1.6
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2SE
	62
	2.5
	1.6
	45.2
	45.2
	35.5
	14.5

	J2EE
	62
	2.2
	1.5
	58.1
	61.3
	29.0
	9.7

	PHP / Perl
	60
	1.9
	1.2
	51.7
	78.3
	16.7
	5.0

	ASP.Net
	62
	1.8
	1.3
	66.1
	77.4
	16.1
	8.1

	Ruby / Python
	61
	1.7
	1.1
	60.7
	85.2
	9.8
	3.3

	C / C++*
	26
	2.3
	1.6
	53.8
	61.5
	26.9
	19.2

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Think about s/w system
	63
	4.3
	0.9
	0.0
	6.3
	81.0
	50.8

	Run / attend meetings
	63
	3.6
	1.0
	1.6
	17.5
	58.7
	20.6

	Explain s/w design to others
	62
	3.6
	0.9
	0.0
	12.9
	56.5
	16.1

	Design a s/w system
	63
	3.5
	1.1
	6.3
	17.5
	60.3
	14.3

	Lead software project
	63
	3.3
	1.3
	11.1
	30.2
	52.4
	15.9

	Search about s/w system
	61
	3.2
	1.1
	4.9
	31.1
	42.6
	14.8

	Write new code
	63
	3.2
	1.3
	12.7
	34.9
	50.8
	15.9

	Model a s/w system
	63
	3.1
	1.2
	11.1
	33.3
	39.7
	11.1

	Fix bugs
	63
	3.0
	1.2
	12.7
	38.1
	38.1
	12.7

	Maintain existing code
	63
	3.0
	1.2
	15.9
	36.5
	39.7
	9.5

	Perform manual testing
	61
	3.0
	1.1
	11.5
	32.8
	34.4
	6.6

	General administration
	61
	2.9
	1.2
	14.8
	39.3
	32.8
	8.2

	Write / maintain requirements
	62
	2.9
	1.1
	14.5
	40.3
	37.1
	3.2

	Write / maintain test scripts
	63
	2.6
	1.2
	19.0
	54.0
	23.8
	7.9

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for? (Data for the sub-sample consisting only of participants from Canada and the USA)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	42
	3.2
	1.2
	7.1
	31.0
	42.9
	16.7

	Transcribing a design into digital format
	42
	3.0
	1.4
	19.0
	35.7
	40.5
	16.7

	Brainstorming possible designs
	42
	2.7
	1.3
	19.0
	50.0
	23.8
	14.3

	Prototyping a design
	42
	2.7
	1.4
	23.8
	57.1
	31.0
	16.7

	Generating code (code editable)
	41
	2.0
	1.2
	43.9
	73.2
	14.6
	7.3

	Generating all code 
	42
	1.6
	1.3
	78.6
	83.3
	14.3
	7.1

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Developing a design
	44
	3.3
	0.9
	2.3
	18.2
	40.9
	9.1

	Transcribing a design into digital format
	44
	3.1
	0.9
	2.3
	25.0
	36.4
	4.5

	Brainstorming possible designs
	44
	2.8
	1.0
	9.1
	43.2
	29.5
	2.3

	Prototyping a design
	42
	2.8
	1.2
	14.3
	42.9
	23.8
	9.5

	Generating code (code is editable)
	43
	2.7
	1.0
	14.0
	41.9
	20.9
	2.3

	Generating all code (no manual coding)
	43
	1.6
	0.7
	48.8
	90.7
	2.3
	0.0

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of participants from Canada and the USA)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	61
	1
	8.2
	13.1
	85.2
	75.4

	Readability
	61
	2
	6.6
	16.4
	70.5
	49.2

	Ease and speed to create
	61
	3
	4.9
	32.8
	57.4
	19.7

	Ability to analyze
	61
	4
	6.6
	32.8
	55.7
	19.7

	Collaborate amongst developers
	61
	5
	13.1
	39.3
	42.6
	18.0

	Ability to view different aspects of a model
	61
	6
	8.2
	42.6
	39.3
	9.8

	Generate code
	61
	7
	57.4
	73.8
	21.3
	13.1

	Embed parts of model in documentation
	61
	8
	49.2
	78.7
	16.4
	4.9

	Information density
	61
	9
	54.1
	75.4
	14.8
	1.6

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of participants from Canada and the USA)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Fixing a bug
	62
	3.4
	1.4
	16.1
	21.0
	48.4
	29.0

	Creating efficient software
	63
	3.3
	1.4
	11.1
	33.3
	49.2
	25.4

	Creating a system as quickly as possible
	63
	3.0
	1.5
	19.0
	44.4
	42.9
	25.4

	Creating a prototype
	63
	3.0
	1.5
	22.6
	38.5
	36.5
	25.4

	Creating a usable system for end users
	63
	2.8
	1.4
	25.4
	39.7
	28.6
	14.3

	Modifying a system when requirements change
	63
	2.6
	1.4
	25.4
	54.0
	25.4
	15.9

	Creating a re-usable system
	63
	2.4
	1.4
	38.1
	57.1
	19.0
	12.7

	Creating a new system overall
	63
	2.3
	1.4
	34.9
	65.1
	22.2
	11.1

	Creating a system that most accurately meets requirements
	62
	2.3
	1.4
	40.3
	62.9
	22.6
	9.7

	Comprehending a system's behaviour
	61
	2.1
	1.4
	49.2
	67.2
	19.7
	8.2

	Explaining a system to others
	63
	1.9
	1.2
	58.1
	75.5
	9.5
	7.9

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach. (Data for the sub-sample consisting only of participants from Canada and the USA)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	62
	3.9
	1.1
	3.2
	12.9
	69.4
	35.5

	Models cannot be easily exchanged between tools
	62
	3.2
	1.2
	12.9
	27.4
	48.4
	14.5

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	62
	3.0
	1.2
	11.3
	32.3
	37.1
	11.3

	Code generated from a modeling tool not of the kind I would like
	61
	3.0
	1.3
	16.4
	37.7
	39.3
	16.4

	Not enough detail to be implemented in code
	60
	2.9
	1.3
	21.7
	40.0
	40.0
	10.0

	Creating and editing a model is slow
	62
	2.8
	1.2
	14.5
	45.2
	24.2
	11.3

	Modeling tools change, models become obsolete
	62
	2.6
	1.3
	25.8
	45.2
	30.6
	4.8

	Modeling tools lack features I need or want
	61
	2.6
	1.1
	18.0
	45.9
	19.7
	4.9

	Semantics of models different from prog. language
	60
	2.6
	1.3
	25.0
	53.3
	26.7
	11.7

	Modeling tools hide details (source code fully visible)
	62
	2.5
	1.1
	19.4
	46.8
	19.4
	1.6

	Modeling tools are too expensive
	60
	2.5
	1.2
	28.3
	48.3
	23.3
	5.0

	Modeling tools cannot be analyzed as intended
	61
	2.5
	1.3
	31.1
	52.5
	27.9
	6.6

	Organization culture does not like modeling
	62
	2.5
	1.2
	29.0
	48.4
	22.6
	1.6

	Modeling languages are not expressive enough
	61
	2.4
	1.1
	24.6
	52.5
	18.0
	1.6

	Modeling language hard to understand
	61
	2.2
	1.0
	31.1
	62.3
	9.8
	0.0

	Have had bad experiences with modeling
	62
	2.1
	1.3
	41.9
	71.0
	17.7
	9.7

	Do not trust companies will continue to support their tools
	59
	1.9
	1.0
	49.2
	69.5
	8.5
	0.0

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of participants from Canada and the USA)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	62
	3.7
	1.1
	3.2
	14.5
	59.7
	30.6

	Hard to understand behaviour of system
	62
	3.4
	1.1
	4.8
	21.0
	53.2
	16.1

	Too difficult to restructure system when needed
	61
	3.2
	1.1
	8.2
	26.2
	45.9
	8.2

	Difficult to change code without adding bugs
	61
	3.2
	1.2
	11.5
	26.2
	47.5
	9.8

	Code becomes of poorer quality over time
	61
	3.2
	1.3
	9.8
	32.8
	44.3
	18.0

	Changing code takes too much time
	62
	2.5
	1.0
	21.0
	43.5
	16.1
	1.6

	Our prog. language leads to complex code
	62
	2.4
	1.2
	25.8
	54.8
	17.7
	6.5

	More skill than available to develop high quality code
	59
	2.1
	1.1
	33.9
	66.1
	11.9
	1.7

	Prog. Languages not expressive enough
	59
	1.9
	1.2
	50.8
	74.6
	13.6
	3.4

	Organization culture does not like code-centric
	62
	1.7
	1.1
	66.1
	80.6
	11.3
	1.6

	Our prog. language likely to become obsolete
	61
	1.6
	1.0
	60.7
	83.6
	6.6
	1.6

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Survey results for outside Canada / USA.

The following data is based on those individuals that live outside Canada and the United States of America.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	27
	4.4 
	0.7 
	0.0
	3.7
	92.6
	48.1

	Use Case Diagram
	27
	4.0 
	0.9 
	0.0
	7.4
	77.8
	25.9

	Textual Use Case
	27
	3.9 
	1.0 
	3.7
	7.4
	77.8
	25.9

	UML Deployment Diagram
	27
	3.8 
	1.0 
	3.7
	11.1
	70.4
	25.9

	Picture By Hand
	27
	3.8 
	1.0 
	3.7
	11.1
	55.6
	18.5

	Whiteboard Drawing
	27
	3.8 
	1.1 
	3.7
	14.8
	74.1
	22.2

	Picture By Drawing Tool
	27
	3.7 
	1.0 
	3.7
	14.8
	77.8
	14.8

	Source Code
	27
	3.2 
	1.4 
	7.4
	40.7
	40.7
	25.9

	Source Code Comment
	27
	3.1 
	1.2 
	7.4
	33.3
	40.7
	11.1

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Diagramming tool (e.g. Visio)
	27
	3.2
	1.1
	3.7
	29.6
	48.1
	7.4

	Modeling tool/CASE
	27
	3.1
	1.5
	22.2
	40.7
	55.6
	14.8

	Word processor / text
	27
	2.9
	1.0
	3.7
	40.7
	25.9
	7.4

	Whiteboard drawing
	26
	2.7
	1.0
	7.7
	50.0
	23.1
	3.8

	Word of mouth
	26
	2.7
	0.9
	11.5
	42.3
	19.2
	0.0

	Handwritten material
	26
	2.7
	1.0
	11.5
	50.0
	26.9
	0.0

	Comments in source code
	27
	2.4
	1.2
	25.9
	55.6
	22.2
	3.7

	Drawing software
	26
	2.2
	1.1
	34.6
	65.4
	11.5
	3.8

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word processor / text
	27
	3.4
	1.0
	0.0
	25.9
	59.3
	7.4

	Diagramming tool (e.g. Visio)
	27
	3.2
	0.9
	0.0
	25.9
	44.4
	3.7

	Word of mouth
	27
	3.2
	1.2
	7.4
	33.3
	48.1
	14.8

	Modeling tool/CASE
	27
	3.1
	1.4
	18.5
	33.3
	55.6
	11.1

	Comments in source code
	27
	3.0
	1.3
	11.1
	40.7
	33.3
	14.8

	Whiteboard drawing
	27
	2.9
	1.1
	14.8
	37.0
	40.7
	0.0

	Drawing software
	26
	2.8
	1.2
	15.4
	46.2
	11.5
	3.8

	Handwritten material
	27
	2.7
	1.1
	14.8
	48.1
	25.9
	3.7

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	27
	3.8
	1.0
	0.0
	11.1
	22.2
	33.3

	During coding
	26
	3.3
	1.0
	3.8
	19.1
	38.5
	7.7

	After coding
	27
	2.5
	1.0
	11.1
	51.9
	14.8
	3.7

	Only on request
	26
	2.0
	1.1
	42.3
	42.2
	11.5
	3.8

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	27
	3.7
	1.0
	3.7
	11.1
	59.3
	22.2

	SQL
	26
	2.9
	1.4
	19.2
	46.2
	42.3
	11.5

	UML 2.*
	22
	2.8
	1.4
	27.3
	45.5
	40.9
	9.1

	UML 1.*
	22
	2.7
	1.2
	22.7
	45.5
	31.8
	4.5

	ERD
	26
	2.5
	1.1
	19.2
	53.8
	19.2
	3.8

	Structured Design models
	24
	2.4
	1.1
	16.7
	66.7
	20.8
	4.2

	Well-defined DSL
	26
	2.0
	1.2
	50.0
	69.2
	15.4
	3.8

	ROOM / RT for UML
	21
	1.5
	0.8
	66.7
	90.5
	4.8
	0.0

	SDL
	21
	1.5
	1.0
	81.0
	81.0
	9.5
	0.0

	BPEL
	22
	1.4
	0.9
	77.3
	90.9
	9.1
	0.0

	Formal (e.g. Z, OCL)
	24
	1.2
	0.4
	83.3
	100.0
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Searching
	21
	Constantly
	85.7
	4.8
	14.3
	9.5
	3.7

	Requirements
	27
	Start
	66.7
	3.7
	66.7
	0.0
	0.0

	Modeling
	21
	Start
	57.1
	0.0
	57.1
	9.5
	3.8

	Design
	22
	Start
	54.5
	0.0
	54.5
	22.7
	0.0

	Perform testing
	24
	Constantly
	54.2
	4.2
	0.0
	16.7
	11.1

	Knowledge transfer
	26
	Constantly
	53.8
	3.8
	0.0
	3.8
	22.2

	Coding
	22
	Constantly
	40.9
	4.5
	0.0
	36.4
	18.5

	Develop tests
	22
	Constantly
	36.4
	9.1
	13.6
	22.7
	11.1

	Documentation
	26
	Constantly
	30.8
	3.8
	11.5
	11.5
	25.9


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Business
	27
	3.5
	1.3
	14.8
	22.2
	66.7
	18.5

	Website Content Management
	27
	2.6
	1.4
	29.6
	55.6
	33.3
	7.4

	Design and Engineering
	27
	2.3
	1.2
	37.0
	59.3
	18.5
	3.7

	Consumer
	27
	2.3
	1.4
	48.1
	55.6
	18.5
	11.1

	Middleware
	27
	2.2
	1.4
	44.4
	66.7
	25.9
	7.4

	Servers
	27
	2.2
	1.4
	44.4
	66.7
	22.2
	11.1

	Information Display (Search / News)
	27
	2.1
	1.5
	59.3
	66.7
	25.9
	7.4

	Operating Systems
	27
	1.9
	1.6
	70.4
	74.1
	22.2
	14.8

	Computational
	27
	1.6
	0.8
	55.6
	88.9
	3.7
	0.0

	System Utilities
	26
	1.5
	0.9
	69.2
	88.5
	7.7
	0.0

	Industrial Control
	26
	1.3
	0.7
	80.8
	96.2
	3.8
	0.0

	Embedded Real-Time
	26
	1.3
	0.8
	84.6
	96.2
	3.8
	3.8

	Malware
	27
	1.1
	0.4
	92.6
	96.3
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	26
	2.8
	1.4
	19.2
	50.0
	30.8
	19.2

	Visual Studio
	25
	2.4
	1.4
	40.0
	56.0
	28.0
	8.0

	Rational Rose
	26
	1.9
	1.5
	69.2
	73.1
	23.1
	7.7

	Rational RSx
	26
	1.5
	1.1
	80.8
	84.6
	7.7
	3.8

	Rational XDE
	26
	1.3
	0.8
	84.6
	88.5
	3.8
	0.0

	Together J
	26
	1.2
	0.5
	84.6
	96.2
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2EE
	26
	2.3
	1.5
	42.3
	61.5
	23.1
	15.4

	J2SE
	25
	2.3
	1.5
	48.0
	48.0
	24.0
	16.0

	PHP / Perl
	25
	2.2
	1.3
	44.0
	64.0
	24.0
	4.0

	ASP.Net
	27
	1.8
	1.3
	59.3
	81.5
	11.1
	11.1

	Ruby / Python
	25
	1.4
	0.9
	72.0
	92.0
	8.0
	0.0

	C / C++*
	17
	2.5
	1.7
	47.1
	52.9
	35.3
	17.6

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Think about s/w system
	27
	3.8
	1.0
	3.7
	11.1
	70.4
	25.9

	Model a s/w system
	27
	3.5
	0.9
	0.0
	18.5
	59.3
	11.1

	Design a s/w system
	27
	3.5
	0.9
	0.0
	14.8
	51.9
	11.1

	Lead software project
	27
	3.4
	1.2
	3.7
	29.6
	51.9
	18.5

	Search about s/w system
	26
	3.3
	1.1
	3.8
	26.9
	53.8
	11.5

	Explain s/w design to others
	27
	3.3
	0.9
	0.0
	18.5
	40.7
	11.1

	Run / attend meetings
	27
	3.3
	1.1
	3.7
	29.6
	59.3
	7.4

	Write / maintain requirements
	27
	3.2
	1.0
	0.0
	37.0
	48.1
	7.4

	Maintain existing code
	27
	3.1
	1.3
	14.8
	33.3
	44.4
	11.1

	Write new code
	27
	3.0
	1.3
	14.8
	37.0
	48.1
	7.4

	Perform manual testing
	27
	3.0
	1.1
	11.1
	33.3
	33.3
	7.4

	Fix bugs
	25
	3.0
	1.2
	16.0
	36.0
	44.0
	4.0

	General administration
	27
	2.9
	1.1
	7.4
	37.0
	25.9
	7.4

	Write / maintain test scripts
	27
	2.3
	0.9
	22.2
	59.3
	7.4
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	20
	3.5
	1.1
	5.0
	20.0
	55.0
	20.0

	Transcribing a design into digital format
	20
	3.1
	1.1
	5.0
	30.0
	30.0
	10.0

	Prototyping a design
	20
	2.8
	1.2
	15.0
	45.0
	35.0
	5.0

	Generating code (code editable)
	20
	2.5
	1.2
	25.0
	50.0
	20.0
	5.0

	Brainstorming possible designs
	20
	2.4
	1.1
	20.0
	65.0
	20.0
	5.0

	Generating all code 
	20
	2.1
	1.1
	40.0
	65.0
	15.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Developing a design
	20
	3.6
	1.0
	0.0
	15.0
	55.0
	20.0

	Transcribing a design into digital format
	20
	3.5
	1.1
	5.0
	20.0
	55.0
	15.0

	Generating code (code is editable)
	20
	3.3
	1.3
	5.0
	35.0
	40.0
	25.0

	Prototyping a design
	20
	3.0
	1.1
	0.0
	45.0
	30.0
	10.0

	Brainstorming possible designs
	20
	2.6
	1.4
	30.0
	55.0
	30.0
	10.0

	Generating all code (no manual coding)
	20
	2.5
	1.4
	30.0
	65.0
	25.0
	15.0

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	25
	1
	16.0
	28.0
	60.0
	48.0

	Readability
	25
	2
	20.0
	32.0
	60.0
	52.0

	Ease and speed to create
	25
	4
	16.0
	44.0
	48.0
	20.0

	Ability to analyze
	25
	4
	20.0
	40.0
	48.0
	24.0

	Ability to view different aspects of a model
	25
	6
	16.0
	48.0
	40.0
	20.0

	Collaborate amongst developers
	25
	6
	12.0
	32.0
	48.0
	8.0

	Generate code
	25
	7
	40.0
	64.0
	28.0
	8.0

	Information density
	24
	8
	50.0
	70.8
	20.8
	8.3

	Embed parts of model in documentation
	25
	9
	68.0
	92.0
	4.0
	0.0

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Creating efficient software
	26
	2.8
	1.4
	23.1
	38.5
	30.8
	15.4

	Creating a system as quickly as possible
	26
	2.8
	1.6
	30.8
	50.0
	42.3
	23.1

	Fixing a bug
	25
	2.8
	1.5
	28.0
	44.0
	32.0
	20.0

	Creating a prototype
	26
	2.6
	1.5
	36.0
	51.4
	26.9
	19.2

	Creating a usable system for end users
	26
	2.4
	1.1
	26.9
	50.0
	11.5
	3.8

	Modifying a system when requirements change
	25
	2.2
	1.5
	52.0
	56.0
	24.0
	8.0

	Creating a system that most accurately meets requirements
	26
	2.0
	1.3
	50.0
	73.1
	15.4
	7.7

	Creating a re-usable system
	26
	1.8
	1.1
	57.7
	76.9
	7.7
	3.8

	Comprehending a system's behaviour
	25
	1.8
	1.0
	52.0
	80.0
	8.0
	0.0

	Creating a new system overall
	26
	1.7
	1.2
	65.4
	76.9
	15.4
	0.0

	Explaining a system to others
	26
	1.5
	0.9
	72.0
	95.1
	3.8
	3.8

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach. (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	26
	3.7
	1.5
	15.4
	23.1
	69.2
	38.5

	Models cannot be easily exchanged between tools
	25
	3.4
	1.4
	20.0
	24.0
	60.0
	24.0

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	26
	3.2
	1.1
	7.7
	26.9
	46.2
	11.5

	Modeling tools change, models become obsolete
	26
	3.0
	1.2
	11.5
	38.5
	42.3
	7.7

	Code generated from a modeling tool not of the kind I would like
	26
	2.9
	1.5
	23.1
	42.3
	38.5
	19.2

	Modeling tools lack features I need or want
	24
	2.8
	1.2
	16.7
	41.7
	29.2
	8.3

	Modeling tools hide details (source code fully visible)
	26
	2.8
	1.1
	19.2
	38.5
	34.6
	0.0

	Modeling tools are too expensive
	26
	2.7
	1.3
	23.1
	46.2
	34.6
	7.7

	Creating and editing a model is slow
	26
	2.7
	1.3
	23.1
	42.3
	19.2
	11.5

	Not enough detail to be implemented in code
	25
	2.5
	1.3
	28.0
	52.0
	28.0
	4.0

	Modeling tools cannot be analyzed as intended
	26
	2.5
	1.2
	23.1
	50.0
	15.4
	7.7

	Organization culture does not like modeling
	26
	2.3
	1.4
	42.3
	53.8
	23.1
	7.7

	Modeling languages are not expressive enough
	26
	2.3
	1.2
	34.6
	57.7
	19.2
	3.8

	Have had bad experiences with modeling
	25
	2.3
	1.1
	36.0
	52.0
	16.0
	0.0

	Modeling language hard to understand
	26
	2.3
	1.2
	26.9
	69.2
	11.5
	11.5

	Do not trust companies will continue to support their tools
	26
	2.2
	1.1
	34.6
	61.5
	15.4
	0.0

	Semantics of models different from prog. language
	26
	2.0
	1.1
	46.2
	65.4
	11.5
	0.0

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of participants from countries other than Canada and the USA)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	26
	4.2
	1.0
	3.8
	7.7
	80.8
	46.2

	Code becomes of poorer quality over time
	26
	4.0
	1.2
	7.7
	15.4
	84.6
	42.3

	Hard to understand behaviour of system
	26
	3.9
	0.9
	0.0
	11.5
	76.9
	26.9

	Difficult to change code without adding bugs
	26
	3.8
	1.2
	7.7
	11.5
	61.5
	38.5

	Too difficult to restructure system when needed
	26
	3.7
	1.2
	7.7
	11.5
	61.5
	30.8

	Changing code takes too much time
	26
	3.3
	1.5
	19.2
	30.8
	53.8
	23.1

	More skill than available to develop high quality code
	26
	3.1
	1.4
	19.2
	30.8
	42.3
	19.2

	Our prog. language leads to complex code
	26
	2.6
	1.3
	26.9
	42.3
	19.2
	11.5

	Prog. Languages not expressive enough
	26
	2.4
	1.4
	38.5
	50.0
	15.4
	11.5

	Organization culture does not like code-centric
	25
	2.4
	1.4
	40.0
	52.0
	20.0
	8.0

	Our prog. language likely to become obsolete
	26
	2.3
	1.3
	34.6
	57.7
	15.4
	7.7

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Survey results for real time developers.

The following data is based on those individuals that work with embedded real time software (e.g. Firmware, Routers) or industrial control software (e.g. Air Traffic Control) very-often to always.

Questions with a user defined notion of a model

For questions 1-5, the participants were asked to use their own interpretation of what a software model is and what consists of software modeling.

Question 1: To what extent do you consider the following to be a model of a software system?  

The participant selected one of the following options for each sub-question listed: Strongly Disagree, Disagree, Neutral, Agree, and Strongly Agree.

	Responses for Question 1: What is a Model? (Data for the sub-sample consisting only of developers of real time software)

	Entity that might be a model
	N
	mean
	s.d.
	% Str. Disagree (1)
	% Disagree (1 + 2)
	% Agree (4 + 5)
	% Str. Agree (5)

	Class Diagram
	19
	4.2 
	0.7 
	0.0
	0.0
	84.2
	36.8

	UML Deployment Diagram
	18
	4.1 
	0.6 
	0.0
	0.0
	83.3
	22.2

	Picture By Drawing Tool
	18
	4.0 
	0.6 
	0.0
	5.6
	94.4
	11.1

	Use Case Diagram
	19
	3.9 
	0.8 
	5.3
	5.3
	89.5
	15.8

	Whiteboard Drawing
	19
	3.8 
	0.7 
	0.0
	5.3
	78.9
	10.5

	Textual Use Case
	19
	3.7 
	1.1 
	5.3
	15.8
	73.7
	15.8

	Picture By Hand
	19
	3.6 
	1.0 
	5.3
	15.8
	63.2
	10.5

	Source Code
	19
	3.5 
	1.2 
	0.0
	31.6
	57.9
	21.1

	Source Code Comment
	19
	3.4 
	1.0 
	0.0
	26.3
	52.6
	10.5

	Note.  Values range from Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), to Strongly Agree (5).




Question 2: To what extent do you create or modify software models or modeling information in the following ways?   

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 2: How do you model? (Data for the sub-sample consisting only of developers of real time software)


	Medium or method used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word of mouth
	19
	3.1
	1.1
	10.5
	26.3
	36.8
	10.5

	Diagramming tool (e.g. Visio)
	18
	2.9
	1.3
	16.7
	44.4
	38.9
	11.1

	Whiteboard drawing
	19
	2.7
	1.0
	5.3
	52.6
	26.3
	5.3

	Handwritten material
	19
	2.6
	1.0
	10.5
	52.6
	15.8
	5.3

	Comments in source code
	19
	2.6
	1.2
	26.3
	42.1
	21.1
	5.3

	Word processor / text
	19
	2.5
	1.1
	10.5
	63.2
	10.5
	10.5

	Modeling tool/CASE
	19
	2.3
	1.5
	52.6
	57.9
	31.6
	5.3

	
	
	
	
	
	
	
	

	Note.  Values range from Never (1), Sometimes (2), Moderately often (3), Very often(4), to Always (5).




Question 3: To what extent do you refer to the following sources of information when you want to learn about the design of a software system? 

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 3: How do you learn about the design of software? (Data for the sub-sample consisting only of developers of real time software)


	Refer to material created by/as
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Word of mouth
	19
	3.5
	1.2
	5.3
	21.1
	57.9
	21.1

	Word processor / text
	19
	3.4
	1.2
	0.0
	26.3
	42.1
	26.3

	Whiteboard drawing
	19
	3.2
	1.1
	5.3
	31.6
	47.4
	5.3

	Diagramming tool (e.g. Visio)
	19
	3.1
	1.4
	21.1
	31.6
	42.1
	15.8

	Comments in source code
	19
	3.0
	1.4
	15.8
	42.1
	36.8
	21.1

	Drawing software
	18
	2.7
	1.1
	11.1
	61.1
	5.6
	5.6

	Modeling tool/CASE
	19
	2.6
	1.5
	36.8
	52.6
	42.1
	5.3

	Handwritten material
	19
	2.3
	1.0
	26.3
	63.2
	15.8
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 4:  At what point(s) in time do you visually document a design?  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 4: When do you visually document a design? (Data for the sub-sample consisting only of developers of real time software)


	Timeline
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Before coding
	19
	3.5
	1.2
	5.3
	21.1
	26.3
	26.3

	During coding
	19
	2.8
	1.1
	10.5
	36.8
	21.1
	5.3

	After coding
	18
	2.7
	1.2
	16.7
	44.2
	27.8
	5.6

	Only on request
	19
	1.9
	1.0
	47.4
	31.6
	10.5
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 5:  To what extent do you use the following notations for the purpose of modeling or design (if you don't know what one of these is, then ignore that particular item) .

 The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 5: What modeling notation do you use? (Data for the sub-sample consisting only of developers of real time software)


	Language used to model
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	UML (any version)
	19
	2.8
	1.7
	42.1
	47.4
	47.4
	21.1

	Structured Design models
	19
	2.5
	1.2
	21.1
	57.9
	15.8
	10.5

	UML 2.*
	17
	2.4
	1.7
	52.9
	58.8
	35.3
	17.6

	UML 1.*
	17
	2.2
	1.6
	52.9
	64.7
	23.5
	17.6

	ROOM / RT for UML
	19
	2.1
	1.4
	52.6
	68.4
	21.1
	5.3

	SQL
	19
	2.0
	1.2
	42.1
	78.9
	15.8
	5.3

	ERD
	19
	1.9
	1.2
	47.4
	78.9
	15.8
	5.3

	Well-defined DSL
	18
	1.8
	1.0
	55.6
	72.2
	5.6
	0.0

	SDL
	18
	1.4
	0.9
	83.3
	83.3
	5.6
	0.0

	Formal (e.g. Z, OCL)
	17
	1.4
	1.0
	82.4
	94.1
	5.9
	5.9

	BPEL
	17
	1.2
	0.5
	88.2
	94.1
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Questions with a well-defined notion of a model

For the remainder of the survey, the participants were asked to assume that any reference to a software model refers to an artefact that represents an abstraction of the software you are building. A model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be recorded on a white board, paper, or using a software tool. A model could use formal syntax and semantics but this is not necessary. We will consider the final source code of the system, and requirements written in natural language to not be models, although models can be embedded in a requirements document.

Question 6: Consider the situation in which you, as a software developer, have just been assigned a new feature to develop. In general, when working on this feature, at what point(s) in time do you perform the following tasks. 

The participant selected one of the following options for each sub-question listed: Never, Primarily near the start of development, Primarily near the middle of development , Primarily near the end, In small increments at a few points in developments, and Constantly throughout a large part of the process.

	Responses for Question 6: When do you perform the following tasks? (Data for the sub-sample consisting only of developers of real time software)


	Available tasks
	N
	Mode
	% Mode
	% Never
	% Start
	% Middle
	% End

	Requirements
	19
	Start
	73.7
	0.0
	73.7
	0.0
	0.0

	Searching
	18
	Constantly
	50.0
	22.2
	22.2
	0.0
	0.0

	Design
	17
	Start
	47.1
	0.0
	47.1
	17.6
	0.0

	Knowledge transfer
	19
	End
	42.1
	5.3
	5.3
	5.3
	42.1

	Modeling
	19
	Start
	36.8
	15.8
	36.8
	10.5
	5.6

	Perform testing
	19
	Constantly
	36.8
	5.3
	0.0
	15.8
	15.8

	Coding
	17
	End
	35.3
	0.0
	5.9
	29.4
	31.6

	Documentation
	19
	End
	31.6
	10.5
	21.1
	0.0
	31.6

	Develop tests
	17
	Constantly
	29.4
	5.9
	23.5
	23.5
	10.5


Question 7: To what extent to you work on the following types of software? 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 7: What types of software do you build? (Data for the sub-sample consisting only of developers of real time software)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Embedded Real-Time
	18
	3.7
	1.3
	11.1
	22.2
	77.8
	27.8

	Industrial Control
	18
	3.0
	1.5
	22.2
	44.4
	50.0
	16.7

	Computational
	16
	2.7
	1.4
	25.0
	50.0
	37.5
	6.3

	Design and Engineering
	18
	2.6
	1.2
	22.2
	55.6
	27.8
	5.6

	Operating Systems
	17
	2.5
	1.5
	35.3
	58.8
	35.3
	11.8

	Middleware
	18
	2.3
	1.2
	27.8
	72.2
	27.8
	0.0

	Information Display (Search / News)
	18
	1.9
	1.3
	55.6
	77.8
	22.2
	5.6

	Consumer
	18
	1.9
	1.5
	61.1
	77.8
	22.2
	11.1

	Servers
	18
	1.8
	1.2
	55.6
	72.2
	5.6
	5.6

	Website Content Management
	18
	1.6
	1.2
	72.2
	83.3
	11.1
	5.6

	Business
	18
	1.6
	1.3
	72.2
	88.9
	11.1
	11.1

	System Utilities
	18
	1.6
	0.9
	61.1
	88.9
	5.6
	0.0

	Malware
	17
	1.2
	0.5
	88.2
	94.1
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 8: To what extent have you worked with the following tools during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 8: What development tools do you use? (Data for the sub-sample consisting only of developers of real time software)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Eclipse
	16
	3.2
	1.4
	12.5
	37.5
	50.0
	18.8

	Visual Studio
	16
	2.4
	1.3
	31.3
	56.3
	25.0
	6.3

	Rational Rose
	15
	2.1
	1.4
	53.3
	73.3
	26.7
	6.7

	Rational XDE
	16
	1.6
	1.3
	75.0
	81.3
	12.5
	6.3

	Rational RSx
	15
	1.6
	1.3
	80.0
	80.0
	13.3
	6.7

	Together J
	16
	1.3
	0.6
	81.3
	93.8
	0.0
	0.0

	Note.  Values range from Never (1) to Always (5).




Question 9: To what extent have you worked in the following technologies or platforms during the last 6 months. 

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 9: What technologies / platforms do you use? (Data for the sub-sample consisting only of developers of real time software)


	Available options
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	J2SE
	18
	2.1
	1.5
	61.1
	61.1
	27.8
	5.6

	PHP / Perl
	18
	2.0
	1.1
	44.4
	72.2
	16.7
	0.0

	Ruby / Python
	18
	1.7
	1.1
	55.6
	88.9
	11.1
	5.6

	J2EE
	18
	1.7
	1.3
	72.2
	77.8
	16.7
	5.6

	ASP.Net
	18
	1.0
	0.0
	100.0
	100.0
	0.0
	0.0

	C / C++*
	9
	2.3
	1.7
	55.6
	55.6
	22.2
	22.2

	Note.  Values range from Never (1) to Always (5).  *Where C/C++ was identified as an “other” technology.




Question 10:  To what extent do you perform the following tasks.  

The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 10: What are your daily tasks? (Data for the sub-sample consisting only of developers of real time software)


	Available tasks
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Think about s/w system
	17
	4.3
	0.6
	0.0
	0.0
	94.1
	35.3

	Design a s/w system
	17
	3.8
	0.7
	0.0
	5.9
	76.5
	5.9

	Lead software project
	17
	3.6
	0.8
	0.0
	11.8
	64.7
	5.9

	Explain s/w design to others
	17
	3.6
	0.8
	0.0
	5.9
	52.9
	11.8

	Search about s/w system
	16
	3.5
	1.2
	0.0
	25.0
	50.0
	25.0

	Run / attend meetings
	17
	3.4
	1.1
	5.9
	17.6
	52.9
	11.8

	Model a s/w system
	17
	3.4
	1.2
	11.8
	17.6
	47.1
	17.6

	Write new code
	17
	3.4
	1.4
	11.8
	29.4
	52.9
	23.5

	Fix bugs
	17
	3.2
	1.3
	11.8
	29.4
	52.9
	11.8

	Maintain existing code
	17
	3.2
	1.4
	17.6
	29.4
	47.1
	17.6

	Perform manual testing
	15
	3.1
	0.9
	0.0
	26.7
	33.3
	6.7

	Write / maintain requirements
	17
	3.1
	1.2
	11.8
	35.3
	47.1
	5.9

	Write / maintain test scripts
	17
	2.8
	1.0
	0.0
	52.9
	23.5
	5.9

	General administration
	17
	2.6
	1.1
	11.8
	58.8
	23.5
	5.9

	Note.  Values range from Never (1) to Always (5).




Question 11: To what extent do you use software tools in the modeling process for the following activities?  

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Never, Sometimes, Moderately often, Very often, and Always.

	Responses for Question 11: What do you use modeling tools for? (Data for the sub-sample consisting only of developers of real time software)

	Activity
	N
	mean
	s.d.
	% Never (1)
	% Sometimes (1 + 2)
	% Very often (4 + 5)
	% Always (5)

	Developing a design
	12
	3.7
	1.0
	0.0
	16.7
	66.7
	16.7

	Prototyping a design
	12
	3.6
	1.2
	8.3
	16.7
	58.3
	25.0

	Transcribing a design into digital format
	12
	2.6
	1.4
	33.3
	50.0
	33.3
	8.3

	Brainstorming possible designs
	12
	2.3
	1.3
	25.0
	75.0
	25.0
	8.3

	Generating code (code editable)
	12
	2.3
	1.6
	41.7
	66.7
	25.0
	16.7

	Generating all code 
	12
	2.3
	1.7
	58.3
	58.3
	25.0
	16.7

	Note.  Values range from Never (1) to Always (5).




Question 12: Based on past experience, how good (based on qualities like efficiency, accuracy and usability) are software design or modeling tools at accomplishing the following tasks

The question included an option to ignore this question if the participant does not use software design applications (which explains the lower number of participants answering this question). The participant selected one of the following options for each sub-question listed: Awful, Poor, OK, Good, Excellent.

	Responses for Question 12: How good are modeling tools at ...? (Data for the sub-sample consisting only of developers of real time software)


	Available activities
	N
	mean
	s.d.
	% Awful (1)
	% Poor (1 + 2)
	% Good (4 + 5)
	% Excellent (5)

	Developing a design
	11
	3.7
	0.6
	0.0
	0.0
	63.6
	9.1

	Generating code (code is editable)
	11
	3.1
	1.0
	9.1
	27.3
	45.5
	0.0

	Prototyping a design
	11
	2.9
	1.1
	9.1
	36.4
	27.3
	9.1

	Brainstorming possible designs
	11
	2.8
	1.0
	9.1
	36.4
	27.3
	0.0

	Transcribing a design into digital format
	11
	2.8
	1.1
	9.1
	45.5
	36.4
	0.0

	Generating all code (no manual coding)
	11
	2.2
	0.9
	18.2
	72.7
	9.1
	0.0

	Note.  Values range from Awful (1) to Excellent (5).




Question 13: Please rank the following attributes of a software model from most important (1) to least important (9).

	Responses for Question 13: Attributes of a modeling tool? (Data for the sub-sample consisting only of developers of real time software)


	Attribute / Ability to
	N
	Rank
	% Bottom 2
	% Bottom 4
	% Top 4
	% Top 2

	Communicate to others
	15
	1
	20.0
	20.0
	73.3
	46.7

	Ease and speed to create
	15
	3
	13.3
	33.3
	60.0
	33.3

	Ability to analyze
	15
	3
	6.7
	26.7
	60.0
	20.0

	Readability
	15
	4
	20.0
	40.0
	53.3
	40.0

	Collaborate amongst developers
	15
	5
	13.3
	40.0
	40.0
	20.0

	Generate code
	15
	6
	40.0
	60.0
	33.3
	20.0

	Ability to view different aspects of a model
	15
	7
	13.3
	73.3
	20.0
	6.7

	Information density
	15
	8
	33.3
	53.3
	26.7
	6.7

	Embed parts of model in documentation
	15
	9
	60.0
	86.7
	13.3
	6.7

	Note.  The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for % bottom four.  The same applies for % top2, and % bottom 2.

 

 


Question 14: For each of the following, how do code-centric development approaches compare to model-centric approaches.

This question asks about code-centric vs. model-centric approaches to software development. In a model-centric approach, the developers look to the model to see the design, and change the model as the first step in performing any design change. Extensive modeling is performed, and the coding is either automated, or at least straightforwardly determined from the model. In a code-centric approach, the code is seen as the main artefact; developers understand the design by understanding the code, and the process of design change is equated with changing the code.

The participant selected one of the following options for each sub-question listed: Much easier in a model-centric approach, Somewhat easier in a model-centric approach, About the same, Somewhat easier in a code centric approach, and Much easier in a code centric approach.

	Responses for Question 14: Tasks that are better in a model-centric or code centric approach. (Data for the sub-sample consisting only of developers of real time software)


	Available activities
	N
	mean
	s.d.
	% Much easier in Models (1)
	% Somewhat easier in Models (1 + 2)
	% Somewhat easier in Code (4 + 5)
	% Much easier in Code (5)

	Creating efficient software
	16
	3.9
	1.3
	6.3
	18.8
	68.8
	43.8

	Fixing a bug
	16
	3.8
	1.2
	6.3
	12.5
	62.5
	31.3

	Creating a prototype
	16
	3.3
	1.2
	6.3
	25.0
	37.5
	18.8

	Creating a system as quickly as possible
	16
	3.1
	1.5
	12.5
	43.8
	43.8
	25.0

	Creating a usable system for end users
	16
	2.8
	1.0
	12.5
	31.3
	25.0
	0.0

	Creating a system that most accurately meets requirements
	16
	2.8
	1.2
	18.8
	43.8
	31.3
	6.3

	Modifying a system when requirements change
	16
	2.5
	1.3
	25.0
	50.0
	12.5
	12.5

	Creating a re-usable system
	16
	2.4
	1.3
	37.5
	43.8
	18.8
	6.3

	Creating a new system overall
	16
	2.4
	1.4
	37.5
	62.5
	31.3
	6.3

	Comprehending a system's behaviour
	15
	2.1
	1.2
	40.0
	66.7
	20.0
	0.0

	Explaining a system to others
	16
	1.6
	0.8
	56.3
	81.3
	0.0
	0.0

	Note.  Values range from Much easier in a model-centric approach (1), to much easier in a code-centric approach (5).




Question 15: Which of the following are potential difficulties with modeling. These may be reasons why you don’t model much, or things you find hard about modeling.

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 15: Problems with a model-centric approach.  (Data for the sub-sample consisting only of developers of real time software)

	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Models become out of date and inconsistent with code
	16
	4.2
	1.1
	6.3
	6.3
	81.3
	50.0

	Models cannot be easily exchanged between tools
	16
	3.4
	1.5
	18.8
	25.0
	56.3
	25.0

	Modeling tools are 'heavyweight' (install, learn, configure, use)
	16
	3.3
	1.3
	12.5
	25.0
	50.0
	18.8

	Code generated from a modeling tool not of the kind I would like
	15
	3.2
	1.4
	20.0
	26.7
	46.7
	20.0

	Organization culture does not like modeling
	16
	3.1
	0.9
	6.3
	18.8
	31.3
	0.0

	Not enough detail to be implemented in code
	16
	3.0
	1.5
	25.0
	37.5
	43.8
	18.8

	Modeling tools are too expensive
	15
	2.8
	1.1
	13.3
	33.3
	20.0
	6.7

	Semantics of models different from prog. language
	16
	2.8
	1.4
	18.8
	56.3
	31.3
	18.8

	Modeling tools cannot be analyzed as intended
	15
	2.7
	1.3
	26.7
	40.0
	33.3
	6.7

	Creating and editing a model is slow
	16
	2.7
	1.1
	12.5
	43.8
	18.8
	6.3

	Modeling tools change, models become obsolete
	16
	2.7
	1.3
	25.0
	43.8
	31.3
	6.3

	Modeling languages are not expressive enough
	15
	2.7
	1.1
	20.0
	40.0
	26.7
	0.0

	Modeling tools lack features I need or want
	15
	2.6
	1.1
	20.0
	40.0
	20.0
	0.0

	Modeling tools hide details (source code fully visible)
	16
	2.5
	1.2
	18.8
	56.3
	18.8
	6.3

	Do not trust companies will continue to support their tools
	15
	2.4
	1.1
	26.7
	53.3
	20.0
	0.0

	Modeling language hard to understand
	16
	2.3
	0.9
	18.8
	68.8
	12.5
	0.0

	Have had bad experiences with modeling
	16
	2.2
	1.3
	37.5
	68.8
	12.5
	12.5

	Note.  Values range from Not a problem (1), to Terrible problem (5).




Question 16: Which of the following are potential difficulties with code-centric development (i.e. lacking modeling).

The participant selected one of the following options for each sub-question listed: Not a problem, a slight problem, a moderate problem, a bad problem, and a terrible problem.

	Responses for Question 16: Problems with a code-centric approach. (Data for the sub-sample consisting only of developers of real time software)


	Potential problems
	N
	mean
	s.d.
	% Not Problem (1)
	% Slight Problem (1 + 2)
	% Bad Problem (4 + 5)
	% Terrible Problem (5)

	Hard to see overall design
	17
	3.8
	1.1
	5.9
	11.8
	64.7
	29.4

	Hard to understand behaviour of system
	17
	3.5
	0.9
	0.0
	17.6
	52.9
	11.8

	Difficult to change code without adding bugs
	16
	3.3
	1.3
	12.5
	25.0
	50.0
	18.8

	Too difficult to restructure system when needed
	17
	3.3
	0.9
	0.0
	23.5
	47.1
	5.9

	Code becomes of poorer quality over time
	17
	3.1
	1.5
	17.6
	41.2
	47.1
	23.5

	Changing code takes too much time
	17
	2.4
	1.1
	29.4
	47.1
	5.9
	5.9

	More skill than available to develop high quality code
	16
	2.2
	1.1
	31.3
	68.8
	18.8
	0.0

	Our prog. language leads to complex code
	17
	2.1
	1.1
	35.3
	64.7
	11.8
	0.0

	Our prog. language likely to become obsolete
	17
	1.7
	1.1
	64.7
	76.5
	11.8
	0.0

	Organization culture does not like code-centric
	17
	1.7
	1.2
	64.7
	82.4
	11.8
	5.9

	Prog. Languages not expressive enough
	17
	1.6
	0.9
	64.7
	82.4
	5.9
	0.0

	Note.  Values range from Not a problem (1) to Terrible problem (5).




Additional Sub-sample Data

So far, we have seen the sample data divided into the following categories:

· Real Time Developers

· Practitioners within Canada / USA

· Practitioners outside Canada / USA

· Software Developers

· Software Modelers

· Practitioners that generate source code from models

· Practitioners with a lot of experience (> 11 years) in the field

In the accompanying document (TR-2008-08), the data has been further sub-divided into the following categories:

· Non Real Time Developers (identified as sometimes or never working with real-time systems)

· Non Software Developers (identified as sometimes or never writing or maintaining source code)

· Non Software Modelers (identified as sometimes or never modeling software systems)

· Practitioners that do not generate source code from models (identified as sometimes or never generate some or all code from models)

· Practitioners with little experience (< 5 years) in the field.

Additionally, in the accompanying document (TR-2008-08), we provide further analysis looking at the software developers (very often to always write or maintain code) broken down into the sub-samples above.  For example, we considered Software Developers that are also Real Time Developers; or, Software Developers that also generate source code from models.  The same analysis was performed for practitioners that are software modelers.

Participant Additional Comments

The intention of the survey was to gather the thoughts of software practitioners on software modeling. In particular, our objective was to determine what makes developers take a model-centric or code-centric approach and to uncover why modeling is not universally practiced. To ensure that the participants could provide a personalized perception of software modeling, the survey concluded with an open ended question that asked for comments about the “the pros and cons of modeling, or your experiences regarding the topic of this survey”.

The following is a sample of the comments provided by the participants in answer to an open ended question 

· I have taken courses on UML and RUP, but the "culture" here has not yet adopted the concepts. They try to use UML, but merely for analysis, not development. We do not yet have case tools or modeling tools.

· In "the real world" it's necessary to cull those models down to the bare basics. Adding too much detail to a model takes too much time, and can potentially confuse developers when it comes to implementation.

· Modeling using a tool is good for documenting a model, but otherwise a piece of paper/whiteboard works better and is more flexible.

· Modeling should be used to validate and share your design ideas. If your model works, you can build it too; and others can learn it more easily. Anything more is a waste of time, anything less will cost you more time in the long run.

· There is a time cost associated with producing the model upfront, but that time is more than gained back during development and, especially, maintenance.

· Now if the [modeling] tools were actually developed by modellers they'd be much better! The tools are often too code centric.

· Code wins over models every time when it comes to revenue. Working, tested code with business value can be sold. Models don't sell, well, unless you are in a huge defence contracting world.



1

