
1

Software Engineering Documentation
Priorities:

An Industrial Study

Andrew Forward
University of Ottawa
800 King Edward

Ottawa, Ontario, Canada K1N 6N5
+ 1 613 255 3492

aforward@site.uottawa.ca

Timothy C. Lethbridge
University of Ottawa
800 King Edward

Ottawa, Ontario, Canada K1N 6N5
+ 1 613 562 5800 x 6685

tcl@site.uottawa.ca

ABSTRACT
This paper highlights the results of a survey
of software professionals. The survey was
conducted in the spring of 2002. The
results are compiled from 50 individuals in
the software field ranging from junior
developers to managers and project leaders.
One of the goals of this survey was to
uncover how software documentation is
used in industry and the extent to which,
and under what circumstances, documenta-
tion can be effective. The data suggest
somewhat conflicting views of the impor-
tance of documentation maintenance. In
particular, participants responded that not-
so-up-to-date documents could still be an
effective resource. Conversely, the extent
to which a document is up-to-date was
selected as one of the most important
factors in determining its effectiveness.
The results suggest that the software
industry and academia may overemphasize
the importance of document maintenance
relative to a software professional’s toler-
ance of out-dated content.

Keywords
Software documentation, software engineer-
ing, software maintenance, program com-
prehension, documentation relevance.

1. INTRODUCTION
This paper presents the results of a survey
of professionals in the software industry.
The survey was conducted in April and
May of 2002. This survey was constructed
to uncover:

• The current industrial application of
software documentation

• How documentation attributes and
artifacts influence its usefulness and
relevance to the software team

By software documentation, we are referring
to any artifact whose purpose is to commu-
nicate information about the software
system to which it belongs.

Common examples of such documentation
include requirement, specification, architec-
tural, and detailed design documents.
These documents are geared to individuals
involved in the production of that software.
Such individuals include managers, project
leaders, developers and customers.

Documentation attributes describe informa-
tion about a document beyond the content
provided within. Example attributes include
the document’s writing style, grammar,
extent to which it is up to date, type,
format, visibility, etc. Documentation
artifacts consist of whole documents, or
elements within a document such as tables,
examples, diagrams, etc. An artifact is an

2

entity that communicates information about
the software system.

1.1 Motivation
During our interactions with software
professionals and managers, it was observed
that some large-scale software projects had
an abundance of documentation. Unfortu-
nately, little was known about the organiza-
tion, maintenance and relevance of these
documents.

A second observation was that several small
to medium-scale software projects had little
to no software documentation. Individuals
in these groups said they believed in the
importance of documentation, but timing
and other constraints left few resources to
document their work.

The primary questions arising from the
above interactions are:

• How is software documentation used
in a project?

• How does that set of documents
favorably contribute to the software
project (such as improving program
comprehension)?

One of the large-scale projects was seeking
answers about organizing and maintaining
document information. Meanwhile, the
smaller projects were looking for the
benefits of documentation from both a
value-added and a maintenance perspective.

In search of answers, a systematic survey
was performed to question the thoughts of
software practitioners and managers. Our
approach is to build theories based on
empirical data as opposed to mere intuition
and common sense.

1.2 History
This paper covers the second survey on this
topic. The first survey was conducted in
the winter of 2002 and served as a pilot
study. The winter survey participants were
sampled from a fourth year software engi-
neering course offered at the University of
Ottawa. Although most participants did
have some experience in the software
industry, this survey was used primarily as

a feedback mechanism for the questions
themselves.

The April survey featured fewer and more
concise questions with an improved sam-
pling approach. All participants had at
least one year of experience in the software
industry; several had over ten years experi-
ence.

A summary of the data used in this report
is available on-line [3]. Individual re-
sponses and identifying information have
been withheld to protect confidentiality.
The University of Ottawa’s Human Sub-
jects Research Ethics Committee approved
the conducting of the survey.

1.3 Importance
The survey results presented in this paper
are important for various reasons and to
several audiences:

• Software engineers, managers and
project leaders will learn about how
others perceive documentation. Com-
bined with personal experiences this
information can help improve docu-
mentation in general.

• Software decision makers can use the
data to justify modifications to estab-
lished processes [10] for maintaining
and approving documentation.

• Individuals interested in documenta-
tion technologies can use the data to
design tools that support the docu-
mentation process.

1.4 Outline
The remainder of this paper is organized as
follows:

• Section 2 describes the method under
which the survey was conducted and
the way in which we categorized par-
ticipants based on their responses.

• Section 3 highlights several interest-
ing (and potentially controversial)
findings from the gathered data.

3

• Section 4 summarizes the participants’
demographics based on professional
experience in the software industry.

2. SURVEY METHOD
2.1 Question Topics
The survey consisted of 50 questions of
various types including multiple-choice,
short answer, ratings, and free-form ques-
tions.

The question topics included …

• The role of software team members in
the process of writing, maintaining
and verifying different types of docu-
mentation.

• The participant’s personal use and
preference for different types of docu-
mentation, as well as opinions con-
cerning the effectiveness of these.

• The ability of a document’s attributes,
as opposed to its content, to promote
(or hinder) effective communication.

• The state of software documentation in
the participant’s organization.

• Comparison of past projects to current
ones.

• The effectiveness of documentation
tools and technologies.

• Demographics of the participants.

2.2 Participants
Participants were solicited in three main
ways. The members of the research team
approached:

• Management and human resource
individuals of several high-tech com-
panies. They were asked to approach
employees and colleagues to partici-
pate.

• Peers in the software industry.

• Members of software e-mail lists.
They were sent a generic invitation to
participate in the survey.

Most participants completed the survey
using the Internet [3]. A few replied
directly via email.

There were a total of 80 responses to the
survey. Of these, 50 surveys were complete
and contained valid data.

The participants were categorized in several
ways based on software process, employ-
ment duties and development process as
outlined below.

We divided the participants into two groups
based on the individual’s software process
as follows:

• Agile. Individuals that somewhat (4)
to strongly (5) agree that they practice
(or are trying to practice) agile software
development techniques, according to
question 29 of the survey.

• Conventional. Individuals that some-
what (2) to strongly (1) disagree that
they practice agile techniques, or indi-
cated that they did not know about the
techniques by marking ‘n/a’ for not
applicable.

In addition, we divided the participants
based on current employment duties as
follows:

• Manager. Individuals that selected
manager as one of their current job
functions, according to question 44 of
the survey.

• Developers. Individuals that are non-
managers and selected either senior or
junior developer as one of their current
job functions, according to question
44 of the survey.

Finally, we divided the participants based
on management’s recommended develop-
ment process as follows:

• Waterfall. Individuals in the waterfall
group selected waterfall as the recom-
mended development process, accord-
ing to question 46.

• Iterative. Individuals in the iterative
group are non-waterfall participants
that selected either iterative or incre-
mental as the recommended develop-
ment process, according to question
46.

4

3. SURVEY RESULTS
3.1 Documentation Duties
In this section, we discuss who has the
responsibility of maintaining as well as
validating documentation according to
questions 2 and 3 of the survey.

Question 2 asked,

In your experience, who has the prime
RESPONSIBILITY to CREATE and
MAINTAIN the following types of
software documentation?

The participant then selected one answer
from the following list

Customer(s) / Client(s), Manager /
Project Leader, Software Architects /
Sr. Developers, Jr. Developers, Tech-
nical Writers, or not applicable

Question 3 asked,

In your experience, who has the prime
RESPONSIBILITY to VERIFY and
VALIDATE the information in the fol-
lowing types of software documenta-
tion?

The participant selected one answer from
the same list as described in question 2.

The results from both questions are summa-
rized as follows:

• Requirements are mostly maintained
by managers (37%) or clients (33%).
Clients (52%) and managers (33%) are
most likely responsible to verify and
validate these documents.

• Senior developers (48%) and managers
(33%) are likely to maintain specifica-
tion documents. These documents are
mostly likely verified and validated by
managers (37%) or clients (33%).

• Design documents (architectural,
detailed and low-level) are mostly
maintained, verified and validated by
senior developers, although junior de-
velopers are equally likely to have the
same responsibility to maintain, verify
and validate low-level documentation.

• A considerable percentage of partici-
pants selected ‘not applicable’ when
asked to categorize who maintains
(23%) or validates (20%) testing and

quality documents. This result sug-
gests the documents are maintained,
verified and validated by various indi-
viduals, or perhaps by no one at all.

• Technical writers are rarely employed
to maintain any of these types of
documents. This finding questions
ideas in [9] that software engineers
should not be involved in documenta-
tion.

Table 1 and Table 2 illustrate the results of
question 2 and 3 based on the categories as
outlined in 2.2. Only the findings with at
least 50% support of one individual type
are listed below. The color scheme that
identifies the degree of support is as fol-
lows:

• Bold items had 75% or more sup-
port

• Italics items had 60% to 74% sup-
port

• Normal items had 50% to 59%
support

Table 1: Who should maintain docu-
ments?

Participant
Category Req’t Specs DD LLD Arch QA

 All -- --
Sr.
Dev --

Sr.
Dev --

Agile -- --
Sr.
Dev --

Sr.
Dev --

 Conventional--
Sr.
Dev

Sr.
Dev --

Sr.
Dev

Jr.
Dev

Manager Mngr Mngr
Sr.
Dev

Sr.
Dev

Sr.
Dev Mngr

 Developer --
Sr.
Dev

Sr.
Dev

Jr.
Dev

Sr.
Dev --

Waterfall -- --
Sr.
Dev --

Sr.
Dev --

 Iterative Mngr --
Sr.
Dev --

Sr.
Dev --

 Several interesting results include:

• Managers provided the most consis-
tent results. In general, these indi-
viduals identified themselves having
the most responsibility regarding the
documentation process.

5

• Managers thought they should validate
requirements whereas developers be-
lieved clients should do it.

• Requirements (req’t) and specification
(specs) documents are usually main-
tained by different people from those
who verify and validate them.

Table 2: Who should validate docu-
ments?

Participant
Category Req’t Specs DD LLD Arch QA

 All Clients -- -- --
Sr.
Dev --

Agile Clients -- -- --
Sr.
Dev --

 Conventional-- --
Sr.
Dev --

Sr.
Dev --

Manager Mngr Mngr -- -- -- Mngr

 Developer Clients Clients
Sr.
Dev

Sr.
Dev

Sr.
Dev --

Waterfall Clients --
Sr.
Dev

Jr.
Dev

Sr.
Dev --

 Iterative -- --
Sr.
Dev

Sr.
Dev

Sr.
Dev --

3.2 Relevant document attributes
This section discusses how certain attrib-
utes contribute to a document’s effective-
ness.

Question 9 asked the participants

How important is each of the follow-
ing items in helping to create effective
software documentation.

Table 3 lists all attributes from question 9
and highlights the following metrics.

• The attribute’s mean and standard
deviation

• The percentage of participants rating
the attribute 5 (the most important fac-
tors)

• The percentage of participants rating
the attribute 1 or 2 (the least important
factors)

Table 3: Document attributes and
effectiveness

Document Attrib-
ute

Mean
of Q9

Std.
dev.

% Rate
5

% Rate
1 or 2

Content 4.85 1.57 85 0

Up-to-date 4.35 0.89 46 0

Availability 4.19 0.79 41 4

Use of examples 4.19 0.85 37 4

Organization 3.85 0.64 30 4

Type 3.78 0.63 26 11

Use of diagrams 3.44 0.60 15 22

Navigation 3.26 0.44 19 33

Structure 3.26 0.60 11 22

Writing Style 3.26 0.67 7 19

Length 3.15 0.64 7 22

Spelling and
grammar 2.93 0.85 0 22

Author 2.63 0.41 7 48

Influence to use it2.62 0.48 12 50

Format 2.42 0.58 0 54

Interesting observations from this data
include:

• Content is the most important factor.
All document tasks (creation, mainte-
nance, verification, validation) should
always keep the target audience in
mind. Effective content is the key to
effective documentation.

• Extent to which a document is up-to-
date is the second most important fac-
tor. Although seemingly intuitive and
accepted [[1], [4], [6], [7], [11]], the
following sections will provide a dif-
ferent interpretation of this result.

• A document’s format (.pdf, .doc,
.html), its author, influence from
management to use it and the quality
of spelling and grammar have low cor-
relation with the document’s effective-
ness.

6

• The style of writing does not have
much impact on effectiveness. This
result supports the argument that read-
ability formulas are not an effective
metric to determine the usefulness of
document [8].

Relating to documentation engineering in
the large, documentation technologies
should strive to facilitate the above quali-
ties that promote a document’s usefulness.
In particular, technologies should:

• Focus on content. Allow the author
to easily create and maintain content
rich documents. This should be the
primary intent of most documentation
technologies.

• Focus on availability. Allow for
larger-scale publishing capabilities to
assure the most up-to-date documents
are readily available and easily located.

• Focus on examples. Allow for better
features to support examples and their
integration within a document.

3.3 Documentation Mainte-
nance?
This section illustrates the extent to which
documentation is maintained. This informa-
tion will later be compared to the documen-
tation that is most frequently used, and
under what circumstances.

Question 4 asked,

In your experience, when changes are
made to a software system, how long
does it take for the supporting docu-
mentation to be updated to reflect
such changes?

The participants answered this question for
the following types of documents

Requirements, Specifications, Detailed
Design, Low Level Design, Architec-
tural, Testing / Quality Documents

The participants selected from fixed values
ranging between ‘updates are never made’
(score of 1) and ‘updates are made within a
few days of the changes’ (score of 5).

Table 4 illustrates the preferred (mode)
score, the percentage of responses of that

score as well as the textual meaning of the
score.

Table 4: How often is documentation
updated?

 Document Type Mode % of Mode In Words

 Requirements 2 52 Rarely

Specifications 2 46 Rarely

Detailed Design 2 42 Rarely

Low Level
Design 2 50 Rarely

Architectural 2 40 Rarely

Testing / Quality
Documents 5 41 Within days

Based on the participant categorization (see
2.2), several statistically relevant differences
occur between agile and conventional
participants, as well as those grouped as
iterative and waterfall.

Table 5 summarizes the differences between
agile and conventional individuals with
respect to document maintenance, and Table
6 between iterative and waterfall individu-
als.

In general, most agile and iterative partici-
pants believe documentation is at best
updated within a few months of changes to
the system. Conversely, conventional and
waterfall participants believed documents
were maintained within a few months to
within a few weeks of system changes.

7

Table 5: Documentation Update Time
(Agile vs. Conventional)

 Document Type Agile Conventional

 MeanSt. Dev Mean St. Dev

 Requirements 2.76 1.30 2.75 1.16

Specifications 3.07 1.16 3.25 1.16

Detailed
Design* 2.60 1.06 3.88 1.25

Low Level
Design 2.93 1.33 3.57 1.13

Architectural* 2.81 1.05 3.75 1.16

Testing / Quality
Documents* 3.31 1.38 4.25 0.89

* Statistically significant differences between
the means with 95% confidence

Table 6: Documentation Update Time
(Iterative Vs. Waterfall)

 Document Type Iterative Waterfall

 MeanSt. Dev Mean St. Dev

 Requirements* 2.00 1.10 3.25 1.28

Specifications 3.00 1.15 3.63 1.19

Detailed
Design** 2.20 1.30 3.50 1.60

Low Level
Design** 2.25 1.26 3.83 1.47

Architectural* 2.17 0.75 3.38 1.30

Testing / Quality
Documents 3.50 1.29 3.86 1.21

* Statistically significant differences between
the means with 95% confidence (** 90%
confidence)

Question 20 asked to what degree to you
agree with

Documentation is always outdated
relative to the current state of a soft-
ware system.

The answers ranged from strongly disagree
(a score of 1) to strongly agree (a score of
5).

Many participants (43%) somewhat agreed
with that statement, but a considerable
number (25%) strongly agreed. In particu-
lar, the agile participants were statistically
more likely to agree with this statement
(mean of 3.83 with standard deviation of
1.20) compared to the conventional partici-
pants (mean of 3.08 with standard deviation
of 1.29). There is also suggestive, but not
statistically significant, evidence that
iterative participants are more likely to
agree with question 20 then waterfall
participants. These results affirm the
conclusion from question 6 that iterative
and agile participants are less likely to
update documentation. As well, the above
data support the data from question 6
stating that documentation is rarely up-
dated.

The evidence that agile and iterative indi-
viduals work in projects where documenta-
tion is less frequently updated and almost
always outdated does not imply that these
projects are of lower quality or that proper
software engineering practices are not in
place. In fact, very low correlation may
exist between documentation maintenance
and project quality. This proposition will
become clearer in the following sections.

3.4 Documentation Usage
This section highlights which types of
documents are most used and by whom.

 Question 6 asked,

In your experience, how often do you
consult the available software docu-
mentation when working on that soft-
ware system? Rate between one (1) as
NEVER and five (5) as ALWAYS.

In general and as expected, the results were
diverse varying from never to always.
Overall, the most popular document was

8

the specification document, whereas quality
and low-level documents were the least
consulted (mean of 2.96, st. dev 1.31).

Table 7 lists the most used documents
based on the categories outlined in Section
2.2.

Table 7: Most Used Documents

 Participant
Category

Mean St Dev Most Used
Document Type

 All 3.85 1.29 Specifications

 Waterfall 3.88 1.13 Testing / QA

 Iterative 4.50 1.00 Specifications

 Agile 3.47 1.30 Specifications

 Conventional 4.38 1.19 Specifications

Manager* 3.60 1.67 Requirements

 Developer* 4.33 1.12 Architectural

* Statistically significant difference between
means of a pair of participant categories with
95% confidence

Most categories referenced specification
documents most often, even though these
documents are rarely updated as shown in
Section 3.3.

Although one would not argue that up-to-
date documents are preferred, is it a re-
quirement for useful and relevant documen-
tation?

3.5 The Up-to-date Double Stan-
dard
This section discusses the importance of
keeping software documentation up to date.
Two similar questions were posed in the
survey with seemingly contradicting
results.

Question 21 of the survey asked partici-
pants to rate to what degree they agree that

Software documentation can be useful
even through it might not always be
the most up to date (relative the sys-
tem it documents).

Table 8 outlines the mean, standard devia-
tion and the percentage of participants who

gave this question a score of 5 (the partici-
pant strongly agrees with the statement).

Table 8: Can out-dated documentation
be useful?

Participant
Category

Mean of
Q21 SD % Rating 5

 All 4.0 0.98 28

Waterfall* 4.1 0.75 38

Iterative* 3.5 0.44 15

Agile 3.9 0.74 28

Conventional 4.1 0.87 29

Manager* 3.3 0.76 8

 Developer* 4.1 0.67 35

* Statistically significant differences between
the means of a pair of participant categories
with 95% confidence

There is overwhelming agreement that out-
dated documentation is still quite useful.
In all but two categories, the mean was at
or above 4.0 (the participant somewhat
agrees with the question statement). This
observation questions both common
intuition as well as past statements that
documentation is practically useless unless
accurate and kept up to date [[1], [4], [7]].

The conflict might be the assumed associa-
tion between being up to date and correct-
ness, and inversely not-so-up-to-date with
incorrect. Some sources argue that being
out-dated implies the information is incor-
rect and thus not reliable. This unreliabil-
ity then affects the document’s credibility
and hence its effectiveness [7].

The above reasoning is based on the notion
that documentation must present facts, but
some argue its purpose is to convey infor-
mation [2]. The source code presents the
facts and the supporting documents facili-
tate higher-level interpretation of those
facts. A document that instills knowledge
in its audience can then be deemed effec-
tive, somewhat regardless of its age and the
extent to which it is up-to-date [2].

The above data in support of useful out-
dated documentation might convince some
that the extent to which a document is up-
to-date is not that important of a factor to
create effective documentation. The survey

9

data illustrated a somewhat different per-
spective.

One the factors listed in question 9 (see
Section 3.2: Relevant document attributes)
was:

Extent to which it is up-to-date

Table 9 outlines the mean, standard devia-
tion and the percentage of participants who
rated this item 5 (the item is one of the
most important factors to determine a
documents importance).

Table 9: The importance of up-to-date
documents

Participant
Category

Mean of
Q21 SD % Rating 5

 All 4.3 0.89 46

Waterfall 4.4 1.25 50

Iterative 4.5 3.33 50

Agile 4.3 0.73 44

Conventional 4.3 1.45 43

Manager 4.0 2.23 20

 Developer 4.4 1.14 56

The data above illustrates the perceived
correlation between a document’s mainte-
nance and effectiveness. Alone this result
is intuitive, but in combination with the
previous results, we present a slightly
different interpretation.

Many participants responded that out-dated
documentation could be useful. At the same
time, many individuals rated the extent to
which a document is up to date crucial to
determine its usefulness.

This disagreement may influence individu-
als to over-estimate the importance of the
up-datedness of a document relative to
several other factors including content,
availability and use of examples. Although,
we can conclude that while it would be very
nice if our documents were up to date, we
should not necessarily disregard them or
throw them away if they are not up to date.
Nor should we attempt to consistently and
regularly assure that all documents are up-

dated in favor of several important activi-
ties; including software construction.

3.6 Documentation in action
This section describes how the participants
use and perceive documentation in practice.
The survey questions relate to personal
exposure to software documentation.

In questions 14 to 17, as well as 34 the
participants were asked to rate to what
extent they agreed or disagreed with various
statements. Ratings were scored as fol-
lows: strongly disagree (1), somewhat
disagree (2), indifferent (3), somewhat agree
(4), and strongly agree (5).

Question 14 states

Software documentation is important,
but in my organization it is unfortu-
nately not that useful.

Question 15 states

Software documentation that I refer-
ence is easy to understand, navigate
and cross-reference.

Question 16 states

The language / style of writing in
software documentation I reference is
brief and to the point.

Question 17 states

When I am working on a software sys-
tem and require assistance, it is easy
to locate the appropriate supporting
documentation.

Question 34 states

Software documentation (i.e. the col-
lection of documents describing a par-
ticular system) that I reference is
poorly organized and difficult to
navigate primarily due to the size and
number of the documents available.

In general and as expected, the results
provide no overall agreement or disagree-
ment with the above statements.

However, Table 10 compares the results of
the above questions between agile and
conventional participants.

10

Table 10: Perception of Documentation
(Agile Vs. Conventional)

 Question Agile Conventional

Mean St. Dev Mean St. Dev

 Q14 2.35 1.40 2.41 1.54

Q15** 3.56 1.19 3.06 1.39

Q16* 3.56 1.04 2.94 1.03

Q17 2.80 1.12 2.82 1.13

 Q34** 2.88 1.19 3.41 1.33

* Statistically significant differences between
the means with 95% confidence (** 90%
confidence)

The data above suggests that agile partici-
pants are statistically more likely to:

• Agree that the documentation they
reference is easier to understand, navi-
gate and cross-reference.

• Agree that documentation is brief and
to the point.

• Disagree that the collection of docu-
mentation is poorly organized and dif-
ficult to navigate due to the size and
number of available documents.

Despite the fact that documentation is rarely
updated (see Section 3.3), agile participants
felt that the documentation they reference
was brief and to the point, more so than
conventional participants. Also, a consid-
erable number of agile participants strongly
agree (39%) and somewhat agree (22%) that
the documentation in their projects is
useful. These results support the claim that
documentation need not necessarily be up
to date for it to be useful and relevant.

3.7 Software project quality
This section highlights the participants’
comparison of current software project
quality relative to past projects.

Question 39 asked,

Relative to past projects, please com-
pare the quality of the software of
your current project. Rate between one

(1) for much LOWER quality and five
(5) much HIGHER quality.

Participants made comparisons to software
quality based on the following criteria

• # Defects per line of code.

• Team members' pride in project

• Manager's satisfaction with progress

• Customer Satisfaction

• Project delivery on time

• Project delivery on budget

Table 11: Software Project Success
Metrics

 Quality Metrics Mean St.
Dev

% Rate
4 or 5

Decreased de-
fects 3.30 1.06 50

Increased pride 3.28 0.98 42

Increased man-
ager Satisfaction 3.16 0.90 29

Increased cus-
tomer satisfaction 3.59 0.85 57

Projects On time 3.39 1.12 46

Projects On
budget 3.26 1.10 46

Most participants cited improvements to
software quality based on decreased defects,
increased customer satisfaction as well as
improved project delivery (both with
respect to time and budget).

The belief that software project quality is
improving despite the fact that documents
are rarely maintained (see Section 3.3)
supports the claim of low correlation
between successful projects and the extent
to which documentation is maintained. If
one believes that useful documentation is
an important factor to achieve project
quality then we can again demonstrate the
low correlation between a document’s
usefulness and the extent to which it is up-
to-date.

11

3.8 Project Size Independence
This section provides evidence that the
conclusions drawn in previous sections are
independent from the project size (based in
thousands of lines of code, KLOCs).

Question 41 asked,

What is the size of your current (or
recently completed) project in KLOCS.

The participant then selected one answer
from the following list:

< 1 KLOC (KLOC = 1000 lines of
code),
between 1 and 5 KLOCS,
between 5 – 20 KLOCS,
between 20 – 50 KLOCS,
between 50 – 100 KLOCS,
over 100 KLOCS,

or N/A.

Table 12 illustrates the project size distribu-
tion for all categories outlined in Section
2.2.

Table 12: Project Size Distribution
in Thousands of Lines of Code

(KLOCs)

 Participant
Category

% of projects
between 1 and
20 KLOCS

% of
projects >=
50 KLOCS

Number of
Individuals
considered

 All 29 35 45

 Waterfall 36 44 13

 Iterative 31 39 13

 Agile 36 44 25

 Conventional 24 18 16

Manager 33 50 12

 Developer 35 35 17

As we see above, all categories were well
represented. It is interesting to point out
that a larger then expected portion of agile
participants are working on large projects
(agile development is typically associated
with small projects). In fact, 32% stated
they are currently working on projects over
100 KLOCs. Our phrasing of practicing

agile techniques helps explain this high
percentage. In the context of our research,
individuals were asked if they practice agile
techniques, which does not necessarily
imply the project itself is agile. As such, it
is not unfounded to have such a large
portion of agile techniques applied to large
projects.

The data from question 41 suggests low
correlation between the project size and the
participant categories as outlined in Section
2.2. As such, the results in other sections
should hold regardless of project size.

4. DEMOGRAPHICS
In this section, we will describe the partici-
pants’ demographics. The divisions
separate individuals based on software
experience, current project size and software
duties. The purpose of this section is to
show that the survey was broad-based, and
therefore more likely to be valid.

Table 13 illustrates the participant’s experi-
ence in the software field (based on number
of years in the industry).

Table 13: Participants’ Software Experi-
ence

Software Experience
(years)

Number of
Participants

Percent-
age

< 1 0 0

1 to 4 11 23

5 to 10 14 30

> 10 22 47

Table 14 highlights the participants current
project size. The size is estimated in
thousands of lines of source code
(KLOCS).

12

Table 14: Project Sizes in thousands of
lines of code (KLOC)

Project Size
(KLOCs)

Number of
Participants

Percent-
age

< 1 0 0

1 to 5 1 2

5 to 20 13 28

20 to 50 6 13

50 to 100 5 11

> 100 12 26

Not Applicable 9 20

Table 15 indicates the current job functions
held by the participants. Please note that
one individual can have several functions.

Table 15: Participants’ Employment in
the Software Field*

Job Functions Number of
Participants

Percentage

Sr. Software Developer 19 40

Software Architects. 17 36

Project Leader 14 30

Manager 12 26

Technical Writers 10 21

Quality Assurance 9 19

Jr. Software Developers 5 11

Other 4 9

Software Support 3 6

None of the above 3 6

Student 1 2

* Note that many participants performed one
or more function.

It appears from the above data that most
employment areas in the software field have
been well represented. The two somewhat
under-represented categories are Junior
Developers and Software Support. This
survey was not directed at students since
they probably would have lacked the
experience to provide useful results.

5. SUMMARY
The data from the April 2002 survey of
software professionals provides concrete
evidence that debunk some common
documentation misconceptions and lead to
the following conclusions.

• Document content can be relevant,
even if it is not up to date. (However,
keeping it up to date is still a good
objective).

• Documentation is an important tool
for communication as opposed to sim-
ply a fact sheet about the source code
that is only relevant if well main-
tained.

The conclusions cited above will help
decision makers choose more appropriate
documentation strategies and technologies
based on needs as oppose to generic expec-
tations.

Once we can admit that documentation is
out-dated and inconsistent, we can then
appreciate and utilize it as a tool of com-
munication. This tool can then be judged
based on its ability to communicate as
opposed to merely presenting facts.

Software projects should focus more on
conveying meaningful and useful knowl-
edge than on precise and accurate informa-
tion.

5.1 Future Work
Based on the findings as well as the addi-
tional questions raised from this survey, the
list provides some possible avenues for
continued research in this field.

• How do people use documentation?
More in-field research is required to
substantiate some of the observations
in the paper. What attributes of
documentation hinder / facilitate its
use?

• How can documentation maintenance
be improved? Although maintenance
may not be a critical contributor to
useful documentation, it would be use-
ful to understand techniques and tools
that improve this process.

• What effect does time and change have
on a document’s relevance? For ex-

13

ample, as a document ages, its rele-
vance most likely decreases. Why?
To what extent? How do external fac-
tors affect this decay in relevance?

• How else can we document a system?
How effective are these methods with
respect to creation, maintenance, use
and quality of the content? Research
in this area could widen our definition
of documentation beyond just docu-
ments.

ABOUT THE AUTHORS
Andrew J. Forward is a master’s student in
Computer Science at the University of
Ottawa. He received a Bachelor of Applied
Science in Software Engineering (also from
the University of Ottawa) in April 2001;
the first degree of its kind offered in Can-
ada.

Timothy C. Lethbridge is an associate
professor in software engineering at the
University of Ottawa. His research interests
include software reverse engineering and
visualization, software engineering educa-
tion, and knowledge engineering. He is the
lead author of the McGraw-Hill textbook
"Object-Oriented Software Engineering:
Practical Software Development Using
UML and Java". He is also pedagogy co-
chair for the ACM/IEEE Computer Society
"Computing Curriculum - Software Engi-
neering" project. His web site is
http://www.site.uottawa.ca/~tcl .

ACKNOWLEDGMENTS
Our thanks to all participants and participat-
ing companies (who must remain anony-
mous). Thank you to members of the
Knowledge Based Reverse Engineering
(KBRE) group at the University of Ottawa.
Your feedback and support have been
greatly appreciated.

We would also like to thank Ayana Nurse
and Jayne Forward for helping to edit this
paper.

REFERENCES
[1] Angerstien, Paula. Better quality

through better indexing, SIGDOC '85,

Cornell University, Ithaca, New York,
USA, ACM Press, p 57.

[2] Cockburn, A. Agile Software Devel-
opment, Addison-Wesley Pub Co,
2001.

[3] Forward, A. Survey data website
available at
www.site.uottawa.ca/~aforward/docsurv
ey/

[4] Glass, R. Software maintenance
documentation, SIGDOC '89, Pitts-
burg, Pennsylvania, USA, ACM Press,
p18 – 23.

[5] Klare, George R. Readable computer
documentation, ACM JCD, Volume
24, Issue 3 (August 2000), p148 –
167.

[6] Medina, Enrique Arce. Some aspects of
software documentation, SIGDOC '84,
Mexico City, Mexico, p57 – 59.

[7] Ouchi, Miheko L. Software Mainte-
nance Documentation, SIGDOC’85,
Ithaca, New York, USA, ACM Press,
p18 – 23.

[8] Redish, Janice. Readability formulas
have even more limitations than Klare
discusses, ACM JCD, Volume 24, Is-
sue 3 (August 2000), p132 – 137.

[9] Scheff, Benson H. and Tom Georgon.
Letting software engineers do software
engineering or freeing software engi-
neers from the shackles of documenta-
tion. SIGDOC '88, Ann Arbor,
Michigan, USA, ACM Press, p81 –
91.

[10] Stimely, Gwen L. A stepwise ap-
proach to developing software docu-
mentation, SIGDOC '90, Little Rock,
Arkansas, USA, ACM Press, p122 –
124.

[11] Thomas, Bill and Scott Tilley.
Documentation for software engineers:
what is needed to aid system under-
standing?, SIGODC '01, Sante Fe,
New Mexico, USA, p 235 – 236.

