

Qualities of Relevant Software Documentation:

An Industrial Study

Andrew J. Forward and Timothy C. Lethbridge
University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada, K1N 6N5

aforward@site.uottawa.ca and tcl@site.uottawa.ca

Abstract

This paper highlights the results of a survey of
software professional conducted in March and April,
2002. The results are compiled from 48 software
professionals ranging from junior developers to
managers and project leaders. One of the goals of this
survey was to uncover the perceived relevance (or lack
thereof) of software documentation, and the tools and
technologies used to maintain, verify and validate such
documents. Another goal was to uncover how software
documentation is used in industry and the extent to which,
and under what circumstances, documentation can be
effective. The data suggest somewhat conflicting views of
the importance of documentation maintenance. In
particular, participants responded that not-so-up-to-date
documents could still be an effective resource.
Conversely, the extent to which a document is up-to-date
was selected as one of the most important factors in
determining its effectiveness. The results suggest that the
software industry and academia may overemphasize the
importance of document maintenance relative to a
software professional’s tolerance of out-dated content.

1. Introduction

This paper presents the results of a survey of
professionals in the software industry conducted in April
and May of 2002. This survey was constructed to
uncover:

The current industrial application of software
documentation.

How documentation attributes and artefacts
influence both usefulness and relevance to the
software team.

The software documentation we will discuss in this
paper includes any artefact whose purpose is to
communicate information about the software system to
which it belongs. These artefacts include requirement,
specification, architectural, and detailed design

documents. These documents are geared to individuals
involved in the production of that software, such as
managers, project leaders, developers and customers. We
will not be considering end-user documentation

We will refer to the term documentation attributes;
these describe information about a document beyond the
content provided within. Example attributes include the
document’s writing style, grammar, extent to which it is
up to date, type, format, visibility, etc. We will also
discuss documentation artefacts; these consist of whole
documents, or elements within a document such as tables,
examples, diagrams, etc. An artefact is an entity that
communicates information about the software system.

1.1. Motivation

Since most of a Software Engineer’s time will be spent
doing maintenance [15], it seems appropriate that
software documentation should be an important aspect of
the software process.

But what constitutes good documentation? Most
individuals believe the two main requirements for good
documentation are that it is complete and up-to-date. We
hypothesise that other factors may have a larger impact
on documentation relevance than has been previously
thought.

We must also consider the issue of the applicability
and usefulness of a document. Can complete and up-to-
date documents that are rarely referenced or used be
considered of high quality? What about incomplete,
highly referenced documents that appropriately
communicate to their intended audience?

To gauge the quality of documentation, factors beyond
its completeness and being up to date should at least be
considered when discussing documentation relevance.

Our work is driven to uncover factors, preferably
measurable ones that contribute to (or hinder)
documentation relevance. We hope to exploit the effects
of these factors to better predict the effectiveness of a
document based on the current environment where that
document exists.

In search of answers, we performed a systematic
survey to question the thoughts of software practitioners
and managers. Our approach is to build theories based on
empirical data; possibly uncovering evidence that
questions our intuition and common sense about
documentation and its role in software engineering.

1.2. Related Work

Curtis et al [3] interviewed personnel from 17 large
software projects. Their analysis was focused on the
problems of designing large software systems, but many
results report directly about the use (and misuse) of
documentation in a software project.

Our work provides statistical data that affirm some of
the documentation issues Curtis identified.

Abdulaziz Jazzar [8] conducted an empirical
investigation using a comparative case study research
method. The basis for the work was concerned with the
requirements for information system documentation.

Jazzar's work resulted in eight hypotheses that attempt
to model the requirements for achieving effective, high
quality documentation products and processes.

Our work complements Jazzar's as we focused on the
attributes of quality documents, whereas Jazzar focused
on the process of quality documentation.

In addition, our work contributes knowledge about
several other facets of documentation including the
current use and perception of software documentation
tools and technologies.

1.3. History

Before conducting the main survey described in this
paper, we conducted a pilot study to help develop and
refine the questions.

The pilot-study participants were sampled from a
fourth year software engineering course offered at the
University of Ottawa in the winter 2002. Most
participants had some experience in the software industry.

The official survey, conducted in April 2002, featured
fewer and more concise questions with an improved
sampling approach. All participants had at least one year
of experience in the software industry; several had over
ten years experience.

A summary of the data used in this report is available
on-line [4]. Individual responses and identifying
information have been withheld to protect confidentiality.
The University of Ottawa’s Human Subjects Research
Ethics Committee approved the conducting of the survey.

1.4. Importance

The survey results presented in this paper are
important for various reasons and to several audiences:

Individuals interested in documentation
technologies can use the data to better understand
how it is used in practice and what attributes of a
document are perceived as contributing most (as
well as those that contribute least) to its
effectiveness.

Software decision makers can use the data to justify
modifications to established documentation
processes (such as those found in [14]) to improve
the creation, maintenance and approval of
documentation.

Using the results of our work, better documentation
tools and technologies might emerge; as designers
will have a better grasp of the role of
documentation and under what circumstances it is,
or can be, used.

1.5. Outline

The remainder of this paper is organized as follows:

Section 2 describes the method under which the survey
was conducted and the way in which we categorized
participants based on their responses.

Section 3 highlights several interesting (and
potentially controversial) findings from the gathered data.

Section 4 summarizes the participant demographics
based on professional experience in the software industry.

2. Survey Method

2.1. Question Topics

The survey consisted of 50 questions of various types
including multiple-choice, short answer, ratings, and free-
form questions.

The question topics included:

The role of software team members in the process
of writing, maintaining and verifying different
types of documents.

The participant’s personal preference for different
types of documentation, and their effectiveness.

The ability of a document’s attributes, as opposed
to its content, to promote (or hinder) effective
communication.

The state of software documentation in the
participant’s organization.

Comparison of past projects to current ones.

The effectiveness of documentation tools and
technologies.

Demographics of the participants.

2.2. Participants

Participants were solicited in three main ways. The
members of the research team approached:

Management and human resource individuals of
several high-tech companies. They were asked to
approach employees and colleagues to participate.

Peers in the software industry.

Members of software e-mail lists. They were sent a
generic invitation to participate in the survey.

Most participants completed the survey using the
Internet. A few replied directly via email. There were a
total of 48 participants that provided responses that were
complete and contained valid data. The participants were
categorized in several ways based on software process,
employment duties and development process as outlined
below.

We divided the participants into two groups based on
the individual’s software process as follows:

Agile. Twenty-five individuals that somewhat (4)
to strongly (5) agree that they practice (or are
trying to practice) agile software development
techniques, according to Question 29 of the survey.

Conventional. Seventeen individuals that somewhat
(2) to strongly (1) disagree that they practice agile
techniques, or indicated that they did not know
about the techniques by marking ‘n/a’ for not
applicable, according to Question 29 of the survey.

Our rationale for the above division is that the
proponents of agile techniques promote somewhat
different documentation practices from those
recommended in conventional software engineering
methodologies.

In addition, we divided the participants based on
current employment duties as follows:

Manager. Twelve individuals that selected manager
as one of their current job functions, according to
Question 44.

Developers. Seventeen individuals that are non-
managers and selected either senior or junior
developer as one of their current job functions,
according to Question 44.

Finally, we divided the participants based on
management’s recommended development process as
follows:

Waterfall. Thirteen individuals that selected
waterfall as the recommended development
process, according to Question 46 of the survey.

Iterative. Fourteen individuals that are non-
waterfall participants and who selected either
iterative or incremental as the recommended
development process, according to Question 46 of
the survey.

3. Survey Results

3.1. Is Documentation Maintained?

This section illustrates the extent to which
documentation is maintained. The data presented below
substantiates the claim that software documentation is
rarely, if ever, updated. This information will serve as the
basis for several other sections in this paper.

Question 4 asked the participants from personal
experience how long it takes for supporting
documentation to be updated when changes in the system
occur. The documents in question include: requirements,
specifications, detailed design, low level design,
architectural, and testing / quality documents

The participants selected from fixed values ranging
between ‘updates are never made’ (score of 1) and
‘updates are made within a few days of the changes’
(score of 5).

Table 1 illustrates the preferred (mode) score, the
percentage of responses of that score as well as the
textual meaning of the score.

Table 1: How often is documentation updated when
changes occur in a software system?

Document Type Mode % of Mode In Words

Requirements 2 52 % Rarely

Specifications 2 46 % Rarely

Detailed Design 2 42 % Rarely

Low Level Design 2 50 % Rarely

Architectural 2 40 % Rarely

Testing / Quality
Documents 5 41 % Within days

Similarly, question 20 asked if the participants agreed
that documentation is always outdated.

Many participants somewhat agreed (43%) with that
statement, and a considerable number strongly agreed
(25%).

The fact that documentation is infrequently updated
does not imply that our sample participants work on
projects of lower quality or that proper software
engineering practices are not in place. In fact, another
part of our survey indicates that software quality seems to
be improving despite little to no improvement in the
quality of software documentation [5].

The evidence that documentation is rarely updated is
important from a technology perspective. Since our
results imply that the usage of tools that support
documentation maintenance will be sporadic at best, such
tools must enable users unfamiliar with a document to
quickly comprehend its structure and content so they can
make consistent and correct changes. The tools must also
be efficient from a task perspective, helping users to
quickly accomplish what they intended to achieve.

Based on the participant categorization (refer to
Section 2.2), several statistically relevant differences
occur between agile and conventional participants, as
well as those grouped as iterative and waterfall.

Table 2 summarizes the differences between agile and
conventional individuals with respect to document
maintenance, and Table 3 between iterative and waterfall
individuals.

In general, most agile and iterative participants believe
documentation is at best updated within a few months of
changes to the system. Conversely, conventional and
waterfall participants believed documents were
maintained within a few months to within a few weeks of
system changes.

Table 2: Documentation Update Time (Agile vs.
Conventional); a higher the score means a document is
more quickly updated following changes to the system

Document Type Agile Conventional

Mean

St. Dev Mean St. Dev

Requirements 2.76 1.30 2.75 1.16

Specifications 3.07 1.16 3.25 1.16

Detailed Design* 2.60 1.06 3.88 1.25

Low Level Design 2.93 1.33 3.57 1.13

Architectural* 2.81 1.05 3.75 1.16

Testing / Quality
Documents* 3.31 1.38 4.25 0.89

* Statistically significant differences between the means with
95% confidence

Table 3: Documentation Update Time (Iterative vs.
Waterfall), a higher the score means a document is

more quickly updated following changes to the system

Document Type Iterative Waterfall

Mean

St. Dev Mean St. Dev

Requirements* 2.00 1.10 3.25 1.28

Specifications 3.00 1.15 3.63 1.19

Detailed Design** 2.20 1.30 3.50 1.60

Low Level Design** 2.25 1.26 3.83 1.47

Architectural* 2.17 0.75 3.38 1.30

Testing / Quality
Documents 3.50 1.29 3.86 1.21

* Statistically significant differences between the means with
95% confidence (** 90% confidence)

Question 20 asked to what degree the participants
agreed that documentation is always out of date. The
following observations compare the results of agile and
conventional participants.

As expected, the results ranged from strongly disagree
to strongly agree. Many participants (43%) somewhat
agreed with that statement, but a considerable number
(25%) also strongly agreed. In particular, the agile
participants were statistically more likely to agree with
this statement (mean of 3.83, st. dev 1.20) compared to
the conventional participants (mean of 3.08, st. dev 1.29).
There is also suggestive, but not statistically significant
evidence that iterative participants are also more likely to
agree that documentation is always out of date compared
to the waterfall participants. These results help affirm
the results shown in Table 2 and Table 3 that iterative and
agile participants are less likely to update documentation.
As well, the data support the consensus that
documentation is rarely updated.

The evidence that agile and iterative individuals work
in projects where documentation is less frequently
updated and almost always outdated does not imply that
these projects are of lower quality or that proper software
engineering practices are not in place. Software project
quality may be high despite a lack of documentation
maintenance and, as many have suggested, despite [[1],
[6], [10], [11], [15]] a lack in documentation quality. One
might argue that since software engineering’s primary
role is to deliver software (with its secondary role to
facilitate future software development) then it may be that
the role of documentation, based on current practices, in
software engineering is of little importance with respect
to software quality. Unfortunately our data suggests
otherwise, as most individuals in our survey believe in the
importance of documentation as well as the fact that the
documentation available to them is importance (see
Section 3.4). As well, most participants agreed that both
software project quality and documentation quality are
improving [5].

It seems reasonable to believe there should be a high
correlation between a software project’s success and the
quality of the documentation available. However, we
believe that many individuals may have an inappropriate
parsing pattern, (defined in [2], p. 3, as the techniques
that an individual uses to processes his or her
surrounding’) to identify documentation quality. Instead
of investigating the correlation of software quality to
documentation quality, we will investigate the
relationship between documentation quality and the
extent to which a document is up-to-date. Our reason for
taking this approach will become clearer in the following
section.

3.2. Up-to-date Double Standard?

This section discusses the importance of keeping
software documentation up to date. Two similar
questions were posed in the survey with seemingly
contradicting results.

Question 21 of the survey asked participants if they
believe that documentation can be useful even though it is
not always up-to-date. The results are summarized in
Table 4.

There is overwhelming agreement that out-dated
documentation is still quite useful. In all but two
categories the mean was at or above 4.0 (the average
participant somewhat agrees with the question statement).
This observation questions both common intuition as well
as past statements that documentation is practically
useless unless accurate and kept up to date.

Table 4: Can out-dated documentation be useful? A
higher score indicates a high level of agreement.

Participant
Category Mean St. Dev.

Percentage that Strongly
Agree

All 4.0 0.98 28 %

Waterfall* 4.1 0.75 38 %

Iterative* 3.5 0.44 15 %

Agile 3.9 0.74 28 %

Conventional 4.1 0.87 29 %

Manager* 3.3 0.76 8 %

Developer* 4.1 0.67 35

* Statistically significant differences between the means of a
pair of participant categories with 95% confidence

The conflict might be the assumed association between
being up to date and correctness, and inversely not-so-up-
to-date with incorrect. Some sources argue that being out-
dated implies the information is incorrect and thus not
reliable. This unreliability then affects the document’s
credibility and hence its effectiveness [11].

The above reasoning is based on the notion that
documentation must present facts, and facts are only
useful when they are accurate and up to date. Conversely,
some argue that the purpose of documentation is to
convey knowledge or information [2]. The system’s
source code is the artefact that presents the facts, whereas
the supporting documents facilitate higher-level views of
those facts. A document that instils knowledge in its
audience can then be deemed effective, somewhat
regardless of its age and the extent to which it is up-to-
date [2].

The above data in support of useful out-dated
documentation might convince some that the extent to
which a document is up-to-date is not that important of a
factor to create effective documentation. The survey data
illustrated a somewhat different perspective.

Extent to which a document is up-to-date was one of
the document attributes listed in Question 9. Question 9
asked to what degree certain attributes contribute to
effective software documentation.

Table 5 outlines the mean, standard deviation and the
percentage of participants who rated this item a 5 (the
item is one of the most important factors to determine a
documents importance).

Table 5: The importance of up-to-date documents, the
higher the rating the more important the attribute

Participant
Category

Mean St. Dev. Percentage of participants
rating ‘up-to-date’ as one of
the most important attributes

All 4.3 0.89 46 %

Waterfall 4.4 1.25 50 %

Iterative 4.5 3.33 50 %

Agile 4.3 0.73 44 %

Conventional 4.3 1.45 43 %

Manager 4.0 2.23 20 %

Developer 4.4 1.14 56 %

The data above illustrate the perceived correlation
between a document’s maintenance and effectiveness.
Alone this result is intuitive, but in combination with the
previous results, we present a slightly different
interpretation.

Many participants responded that out-dated
documentation could be useful. At the same time, many
individuals rated the extent to which a document is up to
date crucial to determine its usefulness.

This disagreement that out-dated documentation can
be useful but that being up-to-date is a crucial element of
useful documentation may influence individuals to over-
estimate the importance of the up-datedness of a
document relative to several other factors including
content, availability and use of examples. Although, we
can conclude that it would be very nice if our documents
were up to date, we should not necessarily consider them
useless solely because they are out-dated. More
importantly, it seems wasteful to attempt to consistently
and regularly assure that all documents are up-dated for
the mere sake of keeping the documents current.
Software documentation should evolve with the project
team based on the needs and available resources of those
team members. Maintenance for its own sake detracts
software professionals for other potentially more
important activities including software construction.

It is important to understand that our findings, based
on the data from the survey as well as from the existing
literature, do not promote improving the documentation
process by merely ignoring it. Rather, our goal is to help
software project team members to analyse their own
needs for documentation and to integrate documentation
into the software development process. The act of
documentation should be scrutinized in the same manner
that new features are added to a system: with care.

Our primary argument is that documentation should
not be updated merely because it is updated. Instead,
documentation should be updated when a real, not
perceived, benefit will be achieved by maintaining the

document. The survey data showed that individuals
believe that out-dated documentation can still be useful,
and therefore is not always a valid argument for
documentation maintenance. A better rationale for
documentation maintenance is the combination of the
situation where artefacts that not effectively convey
information with a need for the information to be
conveyed. Information needs change in software projects
and the fact that an artefact may no longer convey
information is usually not enough to warrant
maintenance. Individuals must also need and use the
artefact’s information.

3.3. Rating Documentation Attributes

This section discusses how certain attributes contribute
to a document’s effectiveness.

Question 9 asked the participants how important
particular document attributes contribute to its overall
effectiveness. Participants gave rating between 1 (least
important) and 5 (most important).

Table 6 lists the attributes considered in Question 9 in
descending order based on the attributes perceived
contribution to a document’s effectiveness.

Table 6: Document attributes and effectiveness

Document Attribute Mean of
Q9

Std.
dev.

% Rate
5

% Rate

1 or 2

Content – the document’s
information

4.85 1.57 85 % 0 %

Up-to-date 4.35 0.89 46 % 0 %

Availability 4.19 0.79 41 % 4 %

Use of examples 4.19 0.85 37 % 4 %

Organization – sections /
subsections

3.85 0.64 30 % 4 %

Type – req, spec, design,
etc.

3.78 0.63 26 % 11 %

Use of diagrams 3.44 0.60 15 % 22 %

Navigation – quality of
internal / external links

3.26 0.44 19 % 33 %

Structure – arrangement of
text, diagrams, figures

3.26 0.60 11 % 22 %

Writing Style – sentence /
paragraph structure,
grammar

3.26 0.67 7 % 19 %

Length – not too long or
short

3.15 0.64 7 % 22 %

Spelling and grammar 2.93 0.85 0 % 22 %

Author 2.63 0.41 7 % 48 %

Influence to use it 2.62 0.48 12 % 50 %

Format – pdf,, doc, txt,
xml, etc.

2.42 0.58 0 % 54 %

Interesting observations from this data include:

Content is the most important factor. All document
tasks (creation, maintenance, verification,
validation) should always keep the target audience
in mind. Effective content is the key to effective
documentation.

Extent to which a document is up-to-date is the
second most important factor. Although seemingly
intuitive and accepted [[1], [6], [10], [11], [15]], the
previous sections provided a different interpretation
of this result.

A document’s format (.pdf, .doc, .html), its author,
influence from management to use it and the
quality of spelling and grammar have low
correlation with the document’s effectiveness.

The style of writing does not have much impact on
effectiveness. This result supports the argument
that readability formulas are not an effective metric
to determine the usefulness of a document [12].

Relating to documentation engineering in the large,
documentation technologies should strive to facilitate
the above qualities that promote a document’s
usefulness. In particular, our data suggest that
technologies should:

Focus on content. Allow the author to easily create
and maintain content-rich documents. This should
be the primary intent of most documentation
technologies.

Focus on availability. Allow for larger-scale
publishing capabilities to assure the most up-to-
date documents are readily available and easily
located.

Focus on examples. Allow for better features to
support examples and their integration within a
document.

3.4. Agile Vs. Conventional Thinking

This section describes in more detail how the agile and
conventional participants use and perceive documentation
in practice. Table 7 compares the results of the questions
listed below.

Question 14 asked if the participants felt that
documentation is important, but not that useful in their
current organization.

Questions 15 and 16 asked if the software
documentation available to participants is easy to
understand, easy to cross-reference, brief and to the point.

Question 17 asked the participant if the appropriate
documentation was easy to locate when required.
Conversely, Question 34 asked if the appropriate
documentation was difficult to find and navigate due to
the large number of documents available.

The data in Table 7 below suggest that agile
participants are statistically more likely to:

Agree that the documentation they reference is
easier to understand, navigate and cross-reference.

Agree that documentation is brief and to the point.

Disagree that the collection of documentation is
poorly organized and difficult to navigate due to
the size and number of available documents.

Table 7: Perception of Documentation (Agile Vs.
Conventional), A higher score means a higher

agreement of the statement

Question Agile Conventional

Mean St. Dev Mean St. Dev

14 - not useful in our
organization 2.35 1.40 2.41 1.54

15** - easy to understand
and navigate 3.56 1.19 3.06 1.39

16* - brief and to the point 3.56 1.04 2.94 1.03

17 - easy to locate 2.80 1.12 2.82 1.13

34* - too many documents
available 2.88 1.19 3.41 1.33

* Statistically significant differences between the means with
95% confidence (** 90% confidence)

Despite the observation that documentation is rarely
updated (refer to Section 3.1), agile participants feel that
the documentation they reference is brief, to the point and
easy to navigate; more so than conventional participants.
Also, a considerable number of agile participants strongly
agree (39%) and somewhat agree (22%) that the
documentation in their projects is useful. Finally, agile
participants indicated that they were less likely to
maintain documentation relative to conventional
participants (again, refer to Section 3.1). Combined,
these results support our hypothesis stated earlier that
present mental parsing patterns for software
documentation may not be the most appropriate; that is,
being up-to-date may not be the most appropriate metric
when analyzing the relevance of software documentation.

3.5. Project Size Independence

This section provides evidence that the conclusions
drawn in previous sections appear to be independent from
the project size (based in thousands of lines of code,
KLOCs).

Question 41 asked what for the size of the participants
current project in thousands of lines of code (KLOCs).
The available sizes were less than 1, 1-5, 5-20, 20-50, 50-
100, over 100 KLOCS or N/A.

Table 8 illustrates the project size distribution for all
categories outlined in Section 2.2.

Table 8: Participants Project Size in KLOCs

Participant
Category

Percent of
projects between
1 and 20 KLOCS

Percent of
projects >=
50 KLOCS

Number of
Individuals
considered

All 29 % 35 % 45

Waterfall 36 % 44 % 13

Iterative 31 % 39 % 13

Agile 36 % 44 % 25

Conventional 24 % 18 % 16

Manager 33 % 50 % 12

Developer 35 % 35 % 17

It is interesting to point out that a larger then expected
portion of agile participants are working on large projects
(agile development is typically associated with small
projects). Our phrasing of practicing agile techniques
helps explain this high percentage. In the context of our
research, individuals were asked if they practice agile
techniques. Agreement with this statement does not
necessarily imply that the project itself is agile. As such,
it is not unfounded to have such a large portion of agile
techniques applied to large projects.

Using Spearman's Rank Correlation [7], the correlation
between project size and the individual’s software
techniques (ranging from highly conventional to highly
agile) was very low (-0.09). Similarly, the correlation of
project size to the individual’s role (ranging from highly
managerial to highly developmental) was quite low
(0.19).

The low correlation above, and the fair representation
of the software categories outlined in Section 2.2 suggest
that the results cited in previous sections should hold
regardless of project size.

4. Demographics

In this section, we will describe the participant
demographics. The divisions separate individuals based
on software experience, current project size and software
duties. The purpose of this section is to show that the

survey was broadly-based, and therefore more likely to be
valid in a wide variety of contexts.

Table 9 illustrates the participant experience in the
software field (based on number of years in the industry).

Table 9: Participant Software Experience

Software Experience (years) Number of
Participants

Percentage

< 1 0 0 %

1 to 4 11 23 %

5 to 10 14 30 %

> 10 22 47 %

Table 10 indicates the current job functions held by
the participants. Please note that one individual can have
several functions.

It appears from the data in Table 10 that most
employment areas in the software field have been well
represented. The two somewhat under-represented
categories are Junior Developers and Software Support.
This survey was not directed at students since they
probably would have lacked the experience to provide
useful results.

Table 10: Participant Employment in the Software
Field*

Job Functions Number of
Participants

Percentage

Sr. Software Developer 19 40 %

Software Architects. 17 36 %

Project Leader 14 30 %

Manager 12 26 %

Technical Writers 10 21 %

Quality Assurance 9 19 %

Jr. Software Developers 5 11 %

Other 4 9 %

Software Support 3 6 %

None of the above 3 6 %

Student 1 2 %

* Note that many participants performed one or more function.

5. Summary

The data from the April 2002 survey of software
professionals provides concrete evidence that debunk
some common documentation misconceptions and lead to
the following conclusions.

Document content can be relevant, even if it is not
up to date. (However, keeping it up to date is still a
good objective).

Documentation is an important tool for
communication as opposed to simply a fact sheet
about the source code that is only relevant if well
maintained.

The conclusions cited above will help decision makers
choose more appropriate documentation strategies and
technologies based on needs as oppose to generic
expectations.

Once we can admit that documentation is often out-
dated and inconsistent, we can then appreciate and utilize
it appropriately as a tool of communication. This tool can
then be judged based on its ability to communicate as
opposed to merely presenting facts.

Software documentation should focus more on
conveying meaningful and useful knowledge than on
precise and accurate information.

5.1. Future Work

Based on these findings as well as the additional
questions raised from this survey, the following lists some
possible avenues for continued research in this field.

How do people use documentation? More in-field
research is required to substantiate some of the
observations in the paper. What attributes of
documentation hinder / facilitate its use?

How can documentation maintenance be improved?
Although maintenance may not be a critical
contributor to useful documentation, it would be
useful to understand techniques and tools that
improve this process.

What effect does time and change have on a
document’s relevance? For example, as a
document ages, its relevance most likely decreases.
Why? To what extent? How do external factors
affect this decay in relevance?

How else can we document a system? How
effective are these methods with respect to creation,
maintenance, use and quality of the content?

Acknowledgments

Our thanks to all participants and participating companies
(who must remain anonymous). Thank you to members
of the Knowledge Based Reverse Engineering (KBRE)
group at the University of Ottawa. Your feedback and
support have been greatly appreciated.

We would also like to thank Ayana Nurse and Jayne
Forward for helping edit this paper.

References
[1] Angerstien, Paula. Better quality through better

indexing, SIGDOC '85, Cornell University, Ithaca,
New York, USA, ACM Press, p 57.

[2] Cockburn, A. Agile Software Development,
Addison-Wesley Pub Co, 2001.

[3] Curtis, Bill, Herb Krasner, and Neil Iscoe. A field
study of the software design process for large
systems.

[4] Forward, A. Survey data website available at
www.site.uottawa.ca/~aforward/docsurvey/

[5] Forward, A. Software Engineering Documentation
Priorities: An Industrial Study, submitted to
CASCON 2002, available from [4].

[6] Glass, R. Software maintenance documentation,
SIGDOC '89, Pittsburg, Pennsylvania, USA, ACM
Press, p18 – 23.

[7] Institute of Phonetic Sciences (IFA).
http://fonsg3.let.uva.nl/Service/Statistics/RankCorrel
ation_coefficient.html

[8] Jazzar, Abdulaziz and Walt Scacchi. Understanding
the requirements for information system
documentation: an empirical investigation, COOCS
`95, Sheraton Silicon Valley, California, USA, ACM
Press, p268 – 279.

[9] Klare, George R. Readable computer
documentation, ACM JCD, Volume 24, Issue 3
(August 2000), p148 – 167.

[10] Medina, Enrique Arce. Some aspects of software
documentation, SIGDOC '84, Mexico City, Mexico,
p57 – 59.

[11] Ouchi, Miheko L. Software Maintenance
Documentation, SIGDOC’85, Ithaca, New York,
USA, ACM Press, p18 – 23.

[12] Redish, Janice. Readability formulas have even more
limitations than Klare discusses, ACM JCD, Volume
24, Issue 3 (August 2000), p132 – 137.

[13] Scheff, Benson H. and Tom Georgon. Letting
software engineers do software engineering or
freeing software engineers from the shackles of
documentation. SIGDOC '88, Ann Arbor, Michigan,
USA, ACM Press, p81 – 91.

[14] Stimely, Gwen L. A stepwise approach to
developing software documentation, SIGDOC '90,

http://www.site.uottawa.ca/~aforward/docsurvey/
http://fonsg3.let.uva.nl/Service/Statistics/RankCorrel

Little Rock, Arkansas, USA, ACM Press, p122 –
124.

[15] Thomas, Bill and Scott Tilley. Documentation for
software engineers: what is needed to aid system
understanding?, SIGODC '01, Sante Fe, New
Mexico, USA, p 235 – 236.

[16] Tilley, Scott R. Documenting-in-the-large vs.
Documenting-in-the-small

