Appendix F Detailed Free-Form Survey Results

	
	10
	11
	36
	37
	43
	47
	49
	50

	1
	Sequence diagrams are very effective on giving someone the gritty internals of how a system works. However, I typically use collaboration diagrams to describe higher level concepts in the system, and drill down through through the subsystems until I get to the class level, at which time I switch over to sequence. Collaboration diagrams give management types a better overview then most other types.
	Use case diagrams are useless unless they can be linked to the use case itself.
	JavaDoc, Word, Rational Rose
	Any sort of requirements management software.
	Mostly middle-tier server implmentations (J2EE) with servlet frontends
	Requirements is the hardest to follow. The stakeholders tend to sign-off on them and then change them anyhow. They don't realize that they still greatly effect the project even if we only have design and some developing code.
	Rational SODA. We try to use it with mixed results.
	Some of my clients have documentation requirements set down by the FDA. This usually leads to reams of documentation.

	2
	Plain text for requirements from customers. Most of the rest is useless.
	
	JavaDoc
	spredsheets
	Telecommunications
	
	
	There is no policy.

	3
	UML diagrams, standard way of information without to. Roundtrip engineering incooperated with the development tools. The main aspect of SD is that is accurate and uptodate. With a roundtrip tool supporting UML everything from Use cases to test plan can be sythesised and automated.
	Inaccurate documentation and Use cases when the use case is already implemented.
	JavaDoc and Toghether Control Center
	PDF
	Govermental services
	The development process is still in a development and intruduction phase. New projects successfully uses the developed process with lower cost and bether time plans.
	Partly. together control center uml documentation with roundtrip engineering so the uml is always uptodate. javadoc to keep track of the low level design strategy for the JR.Developer.
	The documentation should be usefull otherwise it is obsolete. This is not followed very closely since noone is responsible for removing obsolete documentation ...

	4
	Reengineering code into XMI to then use in modelling tools is the most important documentation available today, because it is completely up to date. Most useful of these UML diagrams would be class diagrams and sequence diagrams. Use cases are the next most important, as they describe how the system should operate.
	Requirements - the bullet list has little context and can only be used as a checklist to assure that features exist in the system.
	JavaDoc Rational Rose
	Word Acrobat
	A unique software integration toolkit in one of my lives, and a Bank in the other (as an architect).
	Don't even want to - our team is unusual in its small size and high competency. We are experimenting with agile and iterative processes. We are already using feature-based development for our product.
	JavaDoc for Java code documentation Together ControlCenter for reengineering models
	My company doesn't have a fixed documentation policy.

	5
	activity-diagramms: to describe how one method works under certain circumstances "layer-diagramms": to describe the "subsystems" with its responibilities and its possiblities to interact (can all layers interact with eachother, or only some of them)
	Requirements-Spec : know the aim(s) of the projects and to communicate with custommers UI-Prototype: Communication with Customer, Designers Verticas-Prototye: examine the technial feasability early in the project Meeting-Reports, Review-Reports, for documenting faults, decisions,
	TogetherSoft-IDE (included Junit, Javadoc, OO-diagramms) document-templates (including content-structure) image-processing-tools office-tools html-editors
	look above ^
	software for assurances assistence tools for software development add-ins for "commercial" ide's for interal use
	
	
	

	6
	sequence diagrams - greatly help in understanding architecture finite state machines - good for understanding complex logic
	Detailed designs. These are expensive to create and maintain because of their low level, and are not kept in synch. Source code with a powerful IDE that allows you to navigate between related objects is always better.
	uml editors (argouml) word processors javadoc
	
	client and server software for embedded devices
	we are maybe 50% compliant with agile process
	no, though we write javadoc comments we do not generate the api docs as we can see the javadoc alongside the source
	dunno.

	7
	diagrams, picturs, tables, examples ... that quickly give an overview
	
	browser, JavaDoc, word, MindManager
	spreadsheet, AcrobatReader
	software for insurance companies
	
	
	

	8
	
	Prose discriptions of low level design. I think that at that level visual documentation (UML or the like) is much more effective then trying to explain it.
	I use javadoc for API documentation and Rational Rose for UML documentation.
	Microsoft Word.
	Credit card services.
	Very little success. It just isn't part of the corporate culture yet. Technical management gives it lip service and business management hates it.
	Javadoc. Some programmers are good at writing documentation in their code but some aren't.
	We are supposed to give program documentation to a change management team so they can keep it in a central place. There are no guidelines of what needs to go into the documentation. In practice we give them a subset of our documentation (usually just a jarred up version of our javadoc). Often times we will hand them the same set of documentation that we did last install and they never seem to notice.

	9
	different use at different lifecycle points; no short answer. Personally, I like a combination of domain object models and high-level sequence diagrams, tied to use cases.
	Detail design specs - take as long to write and comprehend as simply to code/test, and then always fall out of use, become misleading. (Negative net value)
	test editors uml modellers javadoc/equivalents (polardoc, etc - depends on language) (why is this survey all in terms of java, anyway?)
	simulation engines hardware monitors operating systems ... I don't understand the question, obviously...
	middleware (app servers, service franmeworks)
	follow the "no defined process" option about 50% of the time; follow the "discuss, code and debug" process about 50% of the time
	javadoc
	

	10
	
	
	Rational Req Pro for requirements, specs, use cases. Rational Clearquest for issue and change management
	
	Software and hardware testing and quality assurance
	I am a test engineer / Test Manager. When I develop code for test purposes, ALL development processes are followed. Most of the time more rigorously than most developers. We have peer reviews, code reviews, we have source and version control, release notes, users guide, requirments, specs.
	No
	Document everything. Have it reviewed and signed off once completed.

	11
	
	
	create/generate: doxygen (like JavaDoc, but for C++) browse: netscape
	--
	medical navigation software (computer aided surgery systems)
	--
	doxygen / 100% of class-documentation
	sorry, no policy till now.

	12
	Object model, sequence diagrams
	
	word processor, database system
	word processor
	Point-of-Sale systems written in Java
	successful, there is no documented process to follow. Informally we follow closest to incremental model but with very little documentation.
	Some of the code has basic JavaDoc comments, but most doesn't have sufficient JavaDoc comments.
	Documentation is started but when developers get behind schedule it is discarded to write code. The core developers/tester know what's going on but any new/outsiders have problems understanding the system.

	13
	I currently use XP so: The Customer Cards are very important and other documentation is done ad hoc. When it is done, it is very usful. If is usually maintained because it is referred often. Examples are packageing and turn-over procedure when moving a product through life-cycle. Any document type is database scheme layouts which are used to converse with DBA's and Data Architects. In a previous life I did RUP, so: I found sequence diagrams, CRC and state machines to be very helpful and usually better maintained than other documentation. Use cases are pretty good and I have seen them maintained during the early lifecycle (development) of a product but over time this taper offs. I've also noticed that CRC's are done through the lifecycle of a product but sometimes not formally maintained and usually when less experience people are working on the project. CRC's are a great way of teaching Object-oriented concepts and topics to less experience people.
	Class diagrams and Object models. These are the most frequently created documents, but have the least amount of value. This is becuase they don't really show business logic, just which objects have relationships. Most of the time the relationships are best developed through coding and over time. Otherwise it just a guess and sometimes your right sometimes your wrong. The sad thing is less experience people take these documents as gospel and figure they need to put every relationship into the system, when sometimes this isn't the case.
	JavaDoc and any word processor. All our documents have a simple indent and number layout. For diagram I prefer Visio, because it can make a variety of diagram types.
	Excel and powerpoint. I've used them but it was difficult.
	Finicial Services. We are currently focused on the Settlement and Movement of money.
	We follow the whole XP process. We have made some modifications to make it easier for our particular environment. These changes aren't really drastic changes from the original process. In the original proces at Chrysler they had more support people that "took care of things" that we are required to do. An example would be getting hardward installed in a data center. At Chrysler, the Project Manager took care of the management and scheudling to get this done, with little impact on developer time. We don't have a experienced PM's on our projects, so experienced developers have filled in the gaps. As for development, we follow everything to the letter.
	We will sometimes generate JavaDoc, but this is simply done to help people understand the API. We don't have any comments in the code unless it is something that would be really difficult to understand. Most of the time we refactor complexity out of the system so comments are not needed. I think in our current system we have one or two method (s)commented.
	Our company follows XP for all software development. We are very successful at producing only the documentation that is needed. I would say most of the documentation we produce is for some outside entity (i.e. Data Architect from another sister company wanting to Audit our product/decisions) and they have been very statisfied with what we produced and the technical direction we have taken to solve our particular Domain problem set.

	14
	For developers, UML class and object diagrams in conjunction with class/method documentation written as text. These are very effective for us because we use modelling tools to keep these diagrams in sync with the code, so they reflect the true state of the software.
	Requirements/specification documents are important as a means of communicating with the client and understanding what they need from the software; but experience shows that it's difficult (and doesn't, for us, deliver much value) to keep these documents in sync with the system once it is under development.
	Our UML/code tool (Together - www.togethersoft.com) for source code and specifications. JavaDoc for source code. Word for simple requirements documents.
	Although we use Word for simple requirements documents, I find that such documents are badly managed.
	Media/Entertainment
	Varies from project to project - generally successful (although we adapt processes to suit ourselves, rather than following blindly)
	JavaDoc and Together - entirely document the system at a source/detailed design level.
	Our use of standardized tools lets us consistantly document our source code although we have no formal policy for documentation.

	15
	use cases, class diagrams, example i/o, "letters to future programmers" that quickly summarize what to look for
	pre/post condition docs (that aren't used with excellent moderation), very long unstructured pages of docs
	text editor on html. class description texts (python) are also a good place to put docs, and they can be read by some class browsers or just by reading the source
	
	OSS automation and control system
	
	used javadoc (or something similar) on a project once in conjunction with some plain html docs
	

	16
	When learning a system, I really like tables mapping the fonctions with screen shots I also like pseudo code with extensive explanation on how it relates to "business rules"
	Big diagrams with flowchart, nobody want to maintain them and it always need the presence of the author to understand them
	Word, framemaker, excel, visio, textpad, homesite, robohelp
	javadoc nobody seems to know how to use it !!!
	Everything but mostly transactionnal websites, financial/banking apps
	My company works on small project teams, development process are mainly team choice. The application we're working on follows a very structured way analysis with client IT people validation first then coding and testing. The last one was just a pile of dog s...
	no
	There is no software documentation policy. I'm trying to implement one

	17
	Not sure whether you mean artefacts used in creating documentation or artefacts presented as part of documentation. Use cases themselves (not maps) are an effective source of information in developing documentation, as they tend to capture a more "contextual" treatment of the whole system (software + user + context). In using documentation, I prefer to see diagrams of control, data flow, etc.
	Everything is useful in some way, I suppose.
	Word processors & publishing tools such as FrameMaker, web browsers/help viewers, Acrobat
	Spreadsheets, text editors
	Telecommunication software and hardware
	Several processes are used in the company as a whole; we're relatively free to establish the approach we feel is appropriate to the project. Once we choose a way to go, we're quite successful in following our process.
	None
	No specific overall policy; depends on the requirements of the project.

	18
	Not sure what you mean by "effective for software documentation". Do you mean effective for creating it, or makes the documentation more effective? --- Tutorials (or detailed task-based) very helpful for beginning users and user interface documentation. Use cases helpful for creating these tutorials. Functional specs helpful in most cases for early cycles of documentation development.
	Same problem as before. In general, Marketing materials and/or requirement specs are not very helpful for developing documentation. They are not very helpful to end users, either.
	Obviously, editors are needed; otherwise, what are we creating content with? Usually, the software product being documented is helpful--especially if writers are given a development environment to work in.
	Inflexible compilers (such as MS HTML Workshop) are my bane. Tools that are non-cross-platform and proprietary.
	Graphics, document editing, database management, office suite software, desktop publishing.
	Get as familiar as possible as soon as possible with the new product/features/components. And meet the deadline any way I can.
	No, these tools seldom provide intelligent documentation.
	Part of the development cycle. Tech writers are encouraged to get their hands dirty with the technology as well as the end-user's perspectives.

	19
	Any kind of process flow type of diagram (of which use cases, etc are just specialised types) can be useful they are clear and precise. Unfortunately there is a tendancy to either leave out crucial information or to try to cram too much into one diagram.
	ones that are poorly implemented
	
	
	
	There aren't any so that's pretty easy to follow.
	
	There are some comments in the code (some developers better than others) and a bug/new features database.

	20
	Just PowerPoint diagrams, for explaining things such as how modules hook together. Pictures are only clear when the number of things shown is very small. That limits effectiveness to big picture or specific details. Coding is very textual, and picture translations generally a nuisance. Flowcharts and their decendents are mostly worthless. To get down to business a programmer must think in terms of files and code, not abstract pictures. Diagrams can be invaluable, but are easily overused. A manifest of the included source files specifying name and purpose can be invaluable when joining a project. A big picture diagram showing modules or threads can be a big help.
	Voluminous diagrams generated by machine. As easy to read as Egyptian hieroglyphics.
	Text editor or Web browser. PowerPoint. Adobe Acrobat or Word sometimes.
	Automated tools. They don't collect the right information.
	motion picture software R&D
	We're pretty successful with our process, which is to prototype quickly and cleanly, then extend to version 1. But, our projects have become much more challenging in complexity and performance. That makes it feel like we're doing worse, but it may be we're actually doing better relatively. We can't rev versions as fast as we would like. Throwing away prototypes to start over happens more now, and that was rare before. It isn't due to sloppiness (the usual bane of prototypes) but because of design flaws due to excessive complexity. Reaching elegant design simplicity seems harder now.
	No. We used to write our own tools for this purpose, but ran out of time to maintain them.
	An overview document is required. That's like a readme, but with more architectual depth. A few modules that are especially troublesome get their own design document. However, in general the code serves as the detail documentation. Code comments are very sparse, usually just a brief header per file with almost no comments in the body of the code. Our philosophy is that inline comments are clutter if the code is clear, and the time would be better spent cleaning up the code if that is a mess. A revisions document is maintained. A to-do/bug list is maintained. We used to create simple manuals, but gave up because users would never read them. We're making our software more intuitive, avoiding manuals entirely.

	21
	The requirements - the basis for the many transformations of information which result in the broad range of other documents.
	Project Plans - point in time documentation that typically causes more grief than comfort to those in development.
	MS Word, text editors, JavaDoc, DoxyGen
	no comment
	CC&B, collection, mediation, accounting
	Successful at following, but unsucessful at agreeing with them and feeling good about them, with the exception of more agile processes.
	JavaDocs, DoxyGen
	If it's a defined artifact within the process, there are checks to see if they were created. However, enforcement is not a high priority unless it impeeds the project. Thus, sucess in following the policy depends on the project and its success, i.e. if the project was a success, the lack of documentation may be overlooked.

	22
	
	
	
	
	NPU, lookup and classification engines
	
	
	

	23
	We include use cases, which help us define the client's system requirements. We also use sequence diagrams to depict data flows. For XML, we show the code dependencies in a graphic format.
	
	Word processors
	Spreadsheets
	Customer care and billing mainframe services plus ancilliary software products so that our clients can support their customers. Our clients are telecommunications and utility service providers.
	Very succesful
	
	We do have documentation standards that are stricly enforced on the mainframe side. The Web developers - not so much.

	24
	
	
	Proprietary Reviewing Tools
	
	C/C++ Compilers & Class Libraries
	
	
	

	25
	1. Bachaus-Naur form is useful when describing how the input to a software system is organized (for example compiler input) 2. Sample usage code - with some functions, classes and methods, it is useful to see actual examples of how they are used 3. User scenarios - how is the function going to used by end users
	Flowcharts and railroad-tracks. Reason: anything even slightly complicated becomes unreadable and unmodifiable.
	text editors
	n/a
	compilers
	Fairly successful. The development process was developed by developers, but time constraints sometimes mean we skip review steps that should not be skipped.
	no
	Answering not for my company, but my small part of the company. The policy is that the original software and all changes to the software are documented, some of the documentation within the code itself, and some external to the code. Internal documentation is well maintained, and incremental enhancement documentation is well produced. Specification documentation is not so well maintained.

	26
	UML
	none
	JavaDoc, word processors
	
	Development tools
	Not totally follow
	No
	Usually follows

	27
	Case maps, sequence diagrams and finite state machines are all good as they show what to be expected next. In most cases, they can be verified quite easily.
	data flow as it is very hard to show all of them interacting with each others.
	Nothing special, just any editor.
	No comment as have not try other doc tools
	Mainframe / Servers hardware and softwares.
	Iterative - refine the code quality for each iteration, which help to keep the product with better quality. Agile - chances to try out new idea's and get quite results to prove wether the direction is right or not.
	Different tools depends on what is available - Notes D/B, freelance and javaDoc.
	Documentataion is part of the development processes and it is part of development cycle through out the porject.

	28
	
	
	Notes JavaDoc FreeLance
	vi
	Database applications
	Fairly
	
	

	29
	
	
	
	
	
	
	
	

	30
	Depends on the client and the position I am fulfilling. Currently a BA - using use cases, very useful in capturing requirements with some business process as a story that both developers and clients can understand (Cockburn's book used) Data conversion - existing data dictionary and previous versions of the data dictionary are all useful! Need to understand what the structures were initially thought to be used for and what we think the structures are used for now (not always the same) GUI whiteboard printouts - useful to get users thinking of the possibilities on the GUI side without worrying how much work the analyst/designer has put into it. Documented code - nothing beats good comments in code (ref code complete commenting chapter or Scott Amblers java coding stds) best way to find out what is really going on, however it is difficult to determine what is current. This question is pretty vague so fire away more questions if they are helpful
	It all depends on the purpose and how it is used. For eg I normally find the data dictionary really useful to data conversion projects but sometimes they sumply regugiate the labels back without any further value - so specific docs aren't normally the prob - tis how they have been used
	text editors and word processes
	javadoc
	information technology contractor - ba/team lead (business and technical) thru to cosing
	mmmmm
	no
	

	31
	High Level Class or Component diagrams to give you the overall feel of the system and how the pieces all inter-relate. Gives you a good starting point to begin breaking down a system into workable sections
	When someone has to have a long document that explains things in such utter detail as to make your head spin. I have seen a section of a scope document that was seven pages on the difference between price and pricing and how that pertains to the project in question. Extremely useless to me and a waste of my time.
	Word Processors, JavaDoc, diagramming tools like Visio
	Word Processors, Visio They can be good or bad depending on the user and what they are writing
	Web Solutions, e-Commerce
	In the position I am in now I have more freedom to choose my own so my group follows more defined and agile processes
	JavaDocs, Visio
	

	32
	Depends on the situation. Use the right artifact for the job. Seems to me that your entire survey, to this point, assumes that the project team will create and maintain several major documents. This isn't always the case.
	Ones that were created at the direction of management instead of from the need of the actual audience for the artefact. q12 is spectacularly biased BTW. q13 -- I wouldn't trust the rating.
	MS Word Whiteboard & digital camera
	Rational Rose
	Software consulting
	We find the Enterprise Unified Process (EUP), and extension to RUP, to be very useful for large organizations. We also find a combination of XP and Agile Modeling effective too.
	We use JavaDoc but for the most part this is foolishness. Keeps the paper pushers happy I suppose, but frankly it's a waste of time. If you want good documentation you're going to have to write it, trying to extract it just looks good but has little actual value.
	

	33
	At each level of abstraction, from conceptual to physical representations, there must be at least three modes of representation for the models: morphological, structural and operational(e.g. Feature model, class diagram, DFD, respectively). Particular attention should be paid to modeling business rules and how the business rules relate to goals, roles, beliefs in the organization. How a system operates can always be extracted from the code, so the documentation must provide added value in explaining the purpose and context of the sytem in the organization.
	pseudocode, development test cases, low-level design documents. All this inforamtion is contianed in the code itself.
	Some form of round-trip SE tool that can generate code form higher level specs, and vice versa.
	Word processing, simple drawing tools such as Visio.
	Business application development and maintenance.
	Not at all successful.
	No.
	

	34
	requirements as written text
	
	We only use Microsoft Word
	We only use Microsoft Word
	Aircraft
	
	
	

	35
	Use Cases - it is a platform of discussion (a bridge) between Business and Technical People. They help alleviate the disconnect between these two groups. Architectural Description - gives enough of an overview of the architecture hotspots that are the foundation of a person's understanding of the system. In this description, I would expect to find architecturally significant use cases realized via high level sequence diagrams, and how the components of the system typically interact to fulfill use cases.
	Highly detailed project plans - They assume there is little change in the life of the project. I prefer a multi-release plan that shows what features are expected in certain releases (typically with deadlines), but I don't care for a document that is going to attempt to describe how the system will be deliverd (a recipe, if you will). Embrance Change! Low level design diagrams - these artifacts are usefull as a discussion bridge of how something will work. After the functionality has been implemented, I don't see a lot of value in maintaining such low level artifacts, because changes will invalidate them. Even when they are kept in sync, I don't know that they are the most effective communication tool for new developers joining the project. I think that when such new developers are to the point of needing to know low level details, they can get what they need from source code (and its source code level documentation).
	When the need arrises, I choose (hopefully) the best tool for that need, rather than have my favorite tool and apply it to all needs... Some of my most commonly used tools: JavaDoc, word processors, spreadsheets, visual modeling tool
	Ones which proclaim to be THE approach for all tasks, and ones which try to be more than their actual usefullness. The purpose of documentation is communication. Some tools are overapplied and the communication factor is lost. For example, a low level design tool should be easy to use in a brainstorming type of scenario when developers are hashing out the way to do something (currently, whiteboards are very effective for such interactions). If a low level design tool thinks its artifacts are an essential part of the software documentation to be maintained rigorously beyond that collaboration session, then that tool has an unwelcome fault.
	Software Development Consulting
	We have been very successful at following our approach, but we continually look for ways to be better.
	Yes, TogetherJ, javadoc
	

	36
	Finite state machines are very effective since they describe the overall functionality of a system or subsystem succinctly. Sequence diagrams are good for establishing flow, but are not good for explaining parallel processing events and timing relationships.
	Top level use case diagrams are usually too vague.
	Word processors, design/ modelling tools, requirements traceability tools.
	Auto generators.
	Real-time embedded systems for defence / aerospace.
	We typically follow a modified waterfall model: ie. we define requirements (contractual), go through design, and then do code/unit test and integration in iterative builds to gradually build up functionality.
	We have had limited success with this. We use Artisan RTS as our design and modelling tool, but the document generation is only partially successful. Auto generation tends to create an unreadable document.
	

	37
	use case diagrams class diagrams sequence and activity diagrams SAD
	collaboration diagrams; if I need high level information I look at the sequence diagrams, if i want to know which one is the exact interaction I look at the code
	
	
	
	I am a university professor and the projects which we develop are generally government funded with a high student participation. We have just completed our first XP project and specially the students were very motivated and produced more in less time .
	
	

	38
	If I could only have 3, they would be: 1. Data model (logical data model reflecting system requirements; physical data model reflecting actual database design) with data dictionary for all entities and attributes. Documents what data is maintained/produced by the system, as well as physical structure of the database. Important for learning the system or trying to understand an obscure part of it for troubleshooting or maintenance. Detailed class diagram might be as useful. 2. Architecture diagram. Required for basic understanding of the system when first learning the system. 3. Design diagram of some sort that shows application functions or screens and relationships between them. Useful for first learning the application and for impact analysis for maintenance changes.
	Detailed program specifications or program designs, because these are usually not kept up to date, and if not up to date can be misleading (worse than useless). Comments in the code, if adequate, are more often kept up to date. Any decent programmer should be able to read code and determine some of the logic and design from it.
	We are currently using the System Architect CASE tool from Popkin, a word processor and standard folder-based storage. These methods do not work well. If (!) toolsets were stable, I would prefer documentation tools tied closely to my software development tools.
	Though funded for it, I chose not to introduce automated testing. I believe the time to learn the testing tool would outweigh the benefits of being able to run the tests automatically. Partly because I was able to hire a very capable student assistant to run the tests. 95% or more of the work is in writing the test scripts. They have to be modified each time as the application is changed. This takes people-power even with an automated tool.
	Internal applications supporting the department.
	We would like (or say we would like) to follow an iterative process. Our current process is fairly ad hoc, with well defined team roles, but not a well defined process. We are having difficulty, but making progress, at making somewhat formal analysis, development, and testing work well together.
	Reverse engineer the database design into the System Architect CASE tool.
	Documentation is important but getting quality software to the end user by the deadline takes higher priority. After doing little to no documentation for two or three years, for the last three years we have been building up and attempting to maintain our documentation base--this effort is fairly successful.

	39
	-
	-
	-
	-
	-
	-
	-
	-

	40
	
	
	We have standard templates in various word processing formats. I use MS Word.
	
	Database and related applications (products, support, consulting)
	
	No.
	Functional, Design, and Test specs are due for every feature for every release by a certain time. Features with late specs may be dropped from the release. We have templates for each of the required specs. This policy is usually followed, although the quality of and detail in the spec is variable. And we don't always eliminate features with no specs or late specs.

	41
	Sequence diagrams are the most effective since they are used in Rose which is a complete tool for the design phase.
	NA
	
	
	Network Management Systems
	
	Yes, Rational Rose
	I like our Software Documentation. It's well maintained.

	42
	use case maps
	finite state machines
	word processors
	text editors
	software
	-
	for testing user Jtest4.5
	Its pretty good but documents are not always up-to-date.

	43
	
	
	Word Visio Rational Rose
	
	XML-based email plug-in Email marketing services
	Fairly successful. Doesn't make the end product either good or on time, however.
	
	

	44
	FSM
	use cases
	XML editor and custom tools Doc++
	Text/html editors/WP
	small company, provides solutions using our core product
	
	custom tools
	no official policy.

	45
	Don't know.
	
	Documentation tools (such as FrameMaker and Author-IT). These are in a class distinct from word processors such as Word and WordPerfect.
	Documentation extraction tools, such as Javadoc.
	Financial
	Reasonably successful in following; it is not an ideal model, however, so it is not ideally successful.
	No
	The informal policy is that user documentation takes priority; other documentation is produced on an as-available or as-required basis. Because it is an ad hoc policy it is followed to the letter.

	46
	
	
	
	
	
	
	
	

	47
	
	
	-depends on the repository where it is kept. - most Text editors.
	
	WAN network management.
	
	-javadocs
	

	48
	
	
	
	
	ATM Edge and Core switches
	
	
	

