

The Relevance of CS and SE Education: A Survey

Timothy C. Lethbridge

Conference on Software Engineering Education and Training

Atlanta, Feb. 23 1998

Methodology

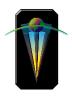
168 Participants

Supported by several companies

Some surveys solicited using newsgroups

4 Questions asked about over 50 topics from typical curricula

Demographics - 1


75% Canadian, **22% US**

60% Bachelors, 33% Postgraduate

50% CS/SE, 30% Computer Engineering

28% <4yrs work experience 36% >12 years

77% Real-time software developers 34% MIS/In-house software developers

Demographics - 2

80% Developer 57% Developer, not manager

8% Manager only 34% Manager + other activities 22% Manager & developer

Questions asked:

Question i. How much did you learn about this at University or College?

- **0**=<u>Learned nothing</u> at all.
- 1=Became <u>vaguely familiar</u>
- 2=Leaned the basics
- **3**=Became <u>functional</u> (moderate working knowledge)
- 4=Learned a lot
- **5**=Learned <u>in depth</u>; became <u>expert(Learned almost everything)</u>.

Question ii. What is your current knowledge about this, considering what you have learned on the job as well as forgotten?

- **0**=Know nothing
- 1=Am <u>vaguely familiar</u>
- 2=Know the basics
- **3**=Am <u>functional</u>; (moderate working knowledge)
- 4=Know a lot
- 5=Know <u>in depth</u>/ am <u>expert</u> (Know almost everything)

Questions asked ... continued

Question iii. How useful has this specific material been to you in your career?

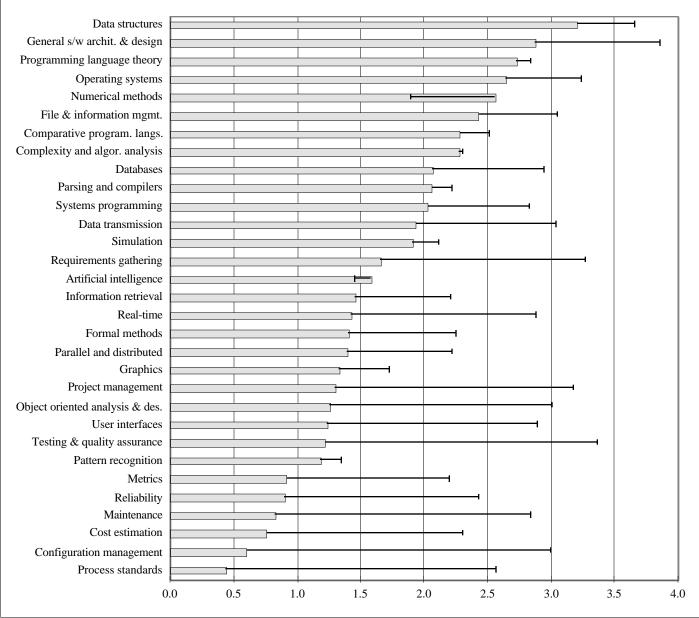
- **0**=Completely <u>Useless</u>
- 1=Almost never useful
- **2**=<u>Occasionally</u> useful
- 3=Moderately useful, but perhaps only in certain activities.
- 4=Very useful
- **5**=Essential

Question iv. How useful would it be (or have been) to learn more about this (e.g. additional courses)?

- **0**=<u>Pointless</u> learning more
- 1=Very <u>unlikely</u> to be useful
- 2=Possibly helpful
- 3=Moderately helpful.
- 4=Important to learn more
- 5=Critical to learn more

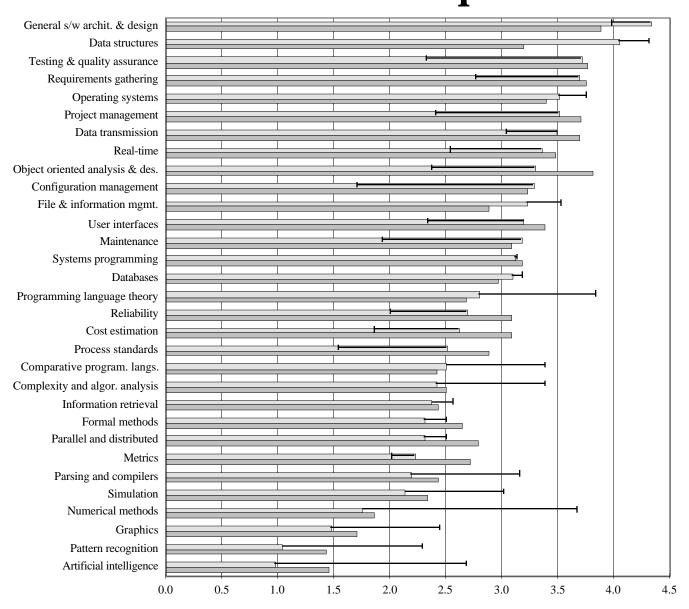
Correlations

Questions 2, 3, 4 correlated (0.9)

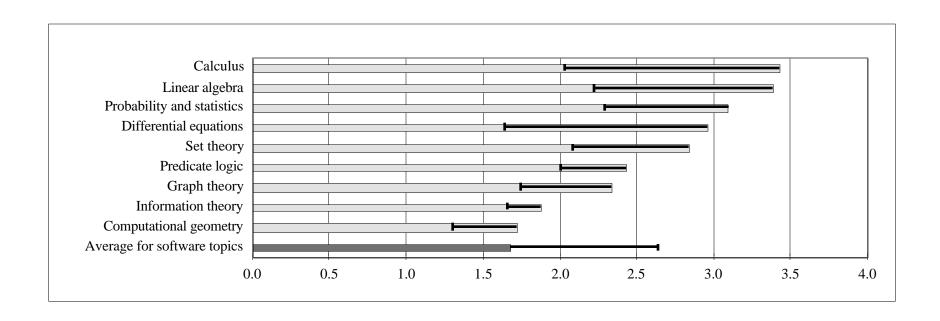

Known now, importance, desire to know

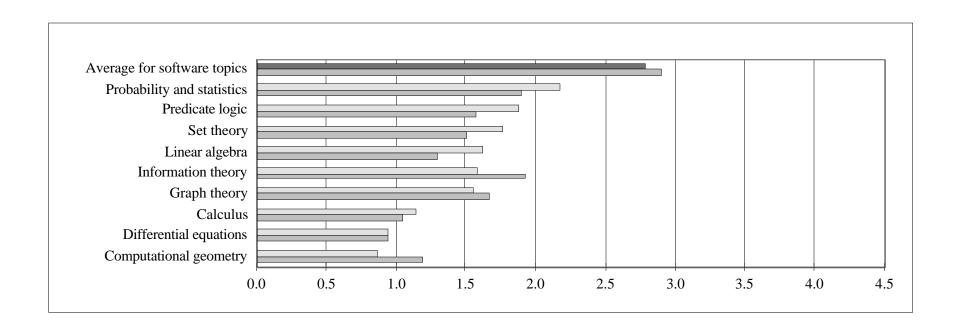
Question 1 uncorrelated with others (0.25)

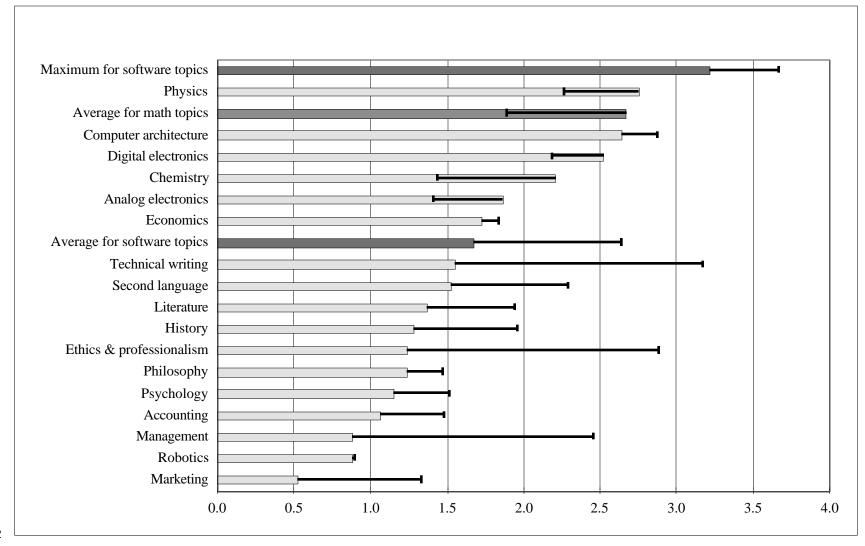
How much learned in university

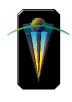


Software – What Was Learned?

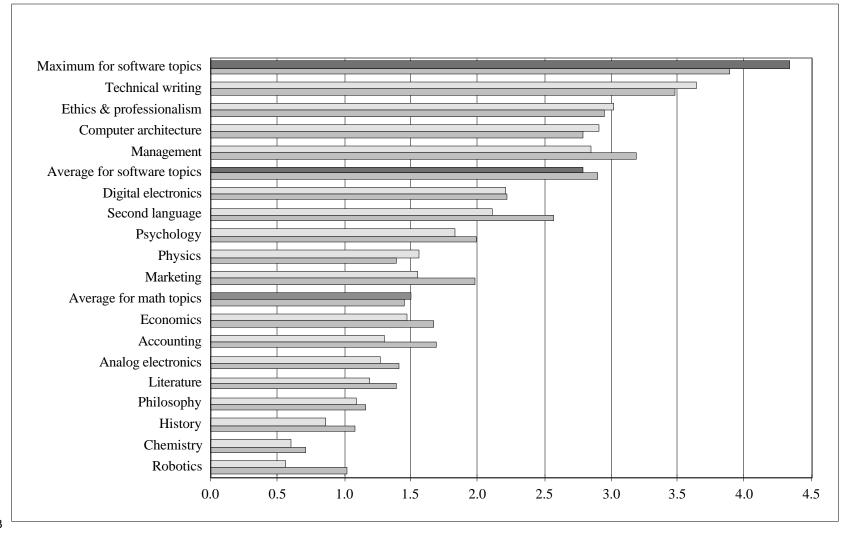


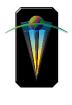

Software – How Important?


Math – What Was Learned?



Math – How Important?




Other - What was Learned

Other – How Important?

Comparisons within subgroups

Real time developers find more important:

- Real-time systems
- Systems programming
- Software reliability
- Algorithm analysis
- Process standards

Managers find more important:

- Project management
- Business management
- Process standards
- Marketing
- Accounting

How relevant is your education?

Mean response 3.5 / 5

Percent scoring over 4 / 5:

• Overall: 51%

• USA: <u>65%</u> Canada: 49%

• CS / SE: 70% Computer/Electrical Engg: 30%

• Junior: 43% Expert: <u>56%</u>

Learning details vs. how to think

Mean response 3.7 / 5 (learning how to think = 5)

Percent scoring over 4 / 5:

• Overall: 56%

Outside North America: 44%

• With postgraduate education: 67%

• Non computer education: 74%

Non-real-time developers: 78%

Junior: 49% Experts: 56%

Suggested corporate training

Topic	Importance minus current knowledge
General software architecture and design	0.47
Real-time software development	0.47
Data transmission	0.46
Requirements gathering	0.41
Data structures	0.38
Testing & quality assurance	0.35
Maintenance and reengineering	0.34
Project management	0.33
Cost estimation	0.32
User interfaces / human computer interaction	0.30

Topics to emphasize more?

Reason for recommended increase in emphasis	Testing	Object orientation	User interfaces / HCI	Technical writing	Ethics & professionalism	Management	Project management	Requirements gathering	Real time systems	Data transmision	Reengineering	Cost Estimation	Psychology	Marketing	Economics	Accounting
Learning required in																
work force	X	X	X	X	X	X										
Practitionners do not																
know basics	X		X				X									
Ranked very high in																
importance	X			X			X	X								
Knowledge low relative																
to importance, and																
topic hard to learn on																
the job			X						X	X	X	X				
Should consider as																
complementary studies					X	X							X	X	X	Χ .

Topics to emphasize less?

Reason for recommended decrease in emphasis	Numerical methods	Programming language theory	Algorithm analysis	Calculus	Linear algebra	Differential equations
Net loss of knowledge following graduation	X			X	X	X
Low importance with respect to emphasis	X	X	X	X	X	X .

Application: New SE Program at the University of Ottawa

Focus on software design and architecture

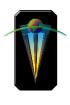
- The following 3rd and 4th year material builds on second-year foundation:
 - -Advanced object oriented analysis/design
 - -User interface design
 - -Real-time systems
 - -Telecommunications software
 - -Computer security

Focus on developing and managing large highquality systems

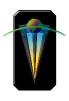
- Four courses in:
 - -Development of large systems
 - -Evolution and reengineering
 - -Quality and requirements including formal techniques, testing etc.
 - -Project management

Telecommunications sequence

- 3 required courses in 3rd and 4th year
 - plus 1 elective
- Builds on expertise in department


Business/entrepreneurship sequence

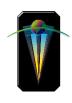
- Courses in economics, management, and starting a small business
- Other business electives to provide background for students who will design business systems


Designed so it can be approved by the Canadian Engineering Accreditation Board (CEAB)

- If approval is received, graduates will be eligible for the P.Eng. designation following work experience
- Common first-year with the rest of engineering

FIRST YEAR (Threshold courses)

			Hours per week			
SUBJECTS			Fa	ıll	Wint	er
			Lectures	Lab	Lectures	Lab
CHM	1310	Principles of Chemistry	3	2	_	_
CSI	1102	Fundamentals of Software Dev.	-	-	3	2
ELG	1100	Intro. to Elec. & Comp. Eng.	-	-	3	3
ENG	2112	Technical Report Writing	3	0	-	-
GNG	1100	Engineering Mechanics	3	3	-	-
	1101	Funds. of Computing for Eng.	3	3	-	_
MAT	1320	Calculus I	3	0	-	-
	1322	Calculus II	-	-	3	0
	1341	Linear Algebra I	-	-	3	0
PHY	1104	Fund Physics	_	_	3	-
	1304	Physics Lab	-	-	-	3
TOTAL		15	8	15	8	


SECOND YEAR

	Hours per week					
SUBJECTS			Fa	all	Wint	er
			Lectures	Lab	Lectures	Lab
ADM	2300	Intr. to Business Management	3	0	-	-
CSI	2114	Data Structures	2	2	-	-
	2131	File Management	_	-	2	2
ECO	1192	Economics for Engineers	3	0	-	_
ELG	2181	Digital Computer Organization	_	-	3	3
MAT	1361	Logic & Discrete Mathematics	3	0	-	-
	2343	Discrete Mathematics	_	-	3	0
	2377	Probability and Statistics	_	-	3	0
SEG	2100	Software Design 2	3	3	-	-
	2101	Software Design 3	-	-	3	3
Two o	ptions (s	see later)	3	0	3	0
TOTAL			17	5	17	8

THIRD YEAR

			Hours per week			
		SUBJECTS	F	all	Wint	er
			Lectures	s Lab	Lectures	Lab
ADM	3313	Small business management	-	-	3	0
CSI	3317	Database Management Systems	3	0	-	-
	3310	Operating System Principles	-	-	3	1
	3105	Alg. Analysis and Design	-	-	3	0
CEG	3391	Microprocessor-Based Systems	3	3	-	-
ELG	3300	Intro. Telecom. Systems and Service	es 3	3	-	-
SEG	2910	Professional SW Engineering Practic	e 1	0	-	-
	3100	Software Dev. of Large Systems	3	3	-	-
	3110	Adv. Object Oriented Anal & Design	_	-	3	3
	3120	User Interface Analysis & Design	-	-	3	3
	3150	Telecom. Software Engineering	-	-	3	3
One option (see later)		3	0	-	-	
TOTA	L		16	9	18	10

FOURTH YEAR

			Hours per week					
		SUBJECTS	F	all	Winte	er		
			Lectures	s Lab	Lectures	Lab		
CEG	4161	Real Time Systems	3	3	-	-		
CSI	4138	Computer Security	-	-	3	3		
ELG	4181	Computer Communications	3	3	-	-		
SEG	4100	Project Mgmt.	3	3	-	-		
	4111	Software Quality Engineering	3	3	-	-		
	4115	Software Evolution & reengineering	_	-	3 3	3		
	4900	Software Engineering Project	-	-	3	3		
Three	credits ir	n complementary studies	_	_	3	-		
HIS	2129 or	Technology, Society & Environ.						
PHI	2394	Scientific Thought and Social Values	S					
Four o	ptions (s	see later)	6	3	6	6		
TOTA	L		18	15	18	15		