

The Vertex-Switching Reconstruction Problem

Patrick Niesink

Thesis Submitted to the Faculty of Graduate and Postdoctoral Studies

In partial fulfilment of the requirements for the degree of Master of Science in

Mathematics 1

Department of Mathematics and Statistics

Faculty of Science

University of Ottawa

c© Patrick Niesink, Ottawa, Canada, 2010

1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics

Abstract

Switching on a vertex of a graph involves swapping the sets of neighbours and non-

neighbours of the vertex. The resultant graph is called a switch card of the origi-

nal graph. The switch deck of a graph is the collection of all of its switch cards.

The vertex-switch reconstruction problem then asks which graphs (termed non-VSR

graphs) cannot be uniquely determined from their switch decks. A review of the

published knowledge about this problem is followed by an improved bound on the

number of edges in a non-VSR graph, and a bound on the size of the automorphism

group of a non-VSR graph. Finally, the results of a computer search are presented,

showing that no non-VSR graphs of order 8 or 12 exist.

ii

Acknowledgements

For many years, I worked on this problem as a hobby. Finally turning this hobby

into something useful is the (partial) realization of a long-standing dream. It would

not have been possible without the formal mathematical training provided by my

professors, who are too numerous to mention here. I thank every one of them for the

amazing amount of effort they put into sometimes seemingly thankless job of teaching

each course. They have each made a difference.

Many thanks to my supervisors, Mateja Šajna and Lucia Moura, for their ex-

tremely helpful guidance, advice, collaboration, and financial support. Thanks also to

Jérôme Lefebvre, Robert Bailey, Mike Newman, Jason Gao, Brendan McKay, Andrea

Burgess, Shonda Gosselin, Elizabeth Maltais, Maria Lewanski, and Johanna Coutts

for their comments, suggestions, inspiration, and moral support.

I also deeply thank Bill Kocay for changing my life by introducing me to graph

theory as well as to the vertex-switching reconstruction problem.

Finally, I thank my parents for many things, but particularly for inculcating me

with the worth of education and academic pursuits.

iii

Dedication

For Jim Ferguson, who always set a good example.

iv

Contents

Abstract ii

Acknowledgements iii

Dedication iv

List of Figures vii

List of Tables viii

1 The Vertex-Switching Reconstruction Problem 1

1.1 Definitions . 1

1.2 Introduction to the Thesis . 8

1.3 Some Simple Results . 10

1.4 Some Properties of Vertex Switching 14

2 Graphs of Order Not Divisible by 4 21

2.1 The Discrete Fourier Transform 22

2.2 Unlabelling . 25

2.3 The Switch-Deck Transformation 30

2.4 Another View of the Switch-Deck Transformation 34

2.5 The Main Result . 39

2.6 Related Results . 41

v

vi CONTENTS

3 Switch Partners 43

3.1 Existence of Switch Partners . 43

3.2 Neighbourhoods of Switch Pairs 45

3.3 Neighbour Degrees . 48

3.4 Some VSR Graphs . 53

4 Vertex-Switch Balance Equations 55

4.1 The Balance Equations . 55

4.2 Bounds on the Size of a Non-VSR Graph 61

4.3 Degree Bounds . 64

4.4 A Bound on the Number of Automorphisms 70

5 Counting Subgraphs from a Switch Deck 73

5.1 The Subgraph Switch Matrix . 73

5.2 Reconstructing Subgraph Counts 75

5.3 Triangle-Free Graphs . 80

5.4 Efficient Subgraph Counting . 85

5.5 Related Results . 90

6 Searching For Non-VSR Graphs 91

6.1 The geng Pruning Routine . 92

6.2 The IsVSR Program . 98

6.3 Search Results . 99

7 Conclusion 103

A gengvsr2 Program Source Code 105

B IsVSR Program Source Code 123

List of Figures

1.1 Effect of switching on a vertex . 3

1.2 Two VSE graphs . 8

1.3 VSE graphs on 4 vertices . 13

1.4 Vertex-switch pseudosimilar vertices 20

vii

List of Tables

6.1 Results of gengvsr2 for order-8 graphs. 100

6.2 Results of gengvsr2 for order-12 graphs. 101

6.3 Results of IsVSR for order-12 graphs. 102

viii

Chapter 1

The Vertex-Switching

Reconstruction Problem

Before we can describe the vertex-switching reconstruction problem, we need a few

definitions of graph theory terms, and a few definitions of concepts specific to this

problem.

1.1 Definitions

Definition 1.1.1 A graph G is a pair (V (G), E(G)), where V (G) is a nonempty set

of vertices and E(G) is a (possibly empty) set of edges, and E(G) ⊆ {{v, w} : v 6=

w and v, w ∈ V (G)}. Note that in the literature this is typically termed a “simple

graph”. The order of a graph G, denoted νG, is |V (G)|. The size of a graph G,

denoted εG, is |E(G)|. Two vertices v and w comprising an edge e of a graph G are

joined by e, and are called the endpoints of e. Two vertices of a graph G are adjacent

if they are joined by some edge of G. An edge e is incident with a vertex v if v is an

endpoint of e. The neighbours of a vertex v of G are the vertices adjacent to v in G.

The set of neighbours of v in G is denoted NG(v). The non-neighbours of a vertex v

1

2 1. The Vertex-Switching Reconstruction Problem

of G are the elements of NG(v) = V (G) \ (NG(v) ∪ {v}). The degree of a vertex v of

G (written dG(v)) is the number of neighbours of v in G, i.e. dG(v) = |NG(v)|.

Definition 1.1.2 The edge function of a graph G is a map from V (G) × V (G) to

{0, 1}, and is denoted eG. The edge function maps a pair of vertices (v, w) to 1 if v

and w are adjacent in G, and to 0 otherwise.

Where the graph in question is understood, ε may be written for εG, and ν may

be written for νG. For brevity, we may refer to the edge {v, w} as vw.

We now define some terms related to the action of mapping graphs onto other

graphs.

Definition 1.1.3 If G and H are graphs, an isomorphism from G to H is a bijective

mapping ψ : V (G) → V (H) such that for all u, v ∈ V (G), we have that eG(u, v) =

eH(ψ(u), ψ(v)). If an isomorphism exists between graphs G and H, then G and H

are isomorphic, denoted G ∼= H.

It should be noted that isomorphic graphs are not necessarily equal. If two

graphs are equal, they have the same vertex set and the same edge set. If they are

isomorphic, however, this means only that it is possible to relabel the vertices of one

graph (and to relabel its edges correspondingly) so that the result is equal to the

other graph. In other words, all graphs dealt with in this thesis are labelled graphs.

Definition 1.1.4 The isomorphism class of a graph G (denoted Ξ(G)) is the set of

all graphs with vertex set V (G) that are isomorphic to G.

Note that since graph isomorphism is an equivalence relation, the isomorphism

classes of the set of all graphs of a given order partition this set.

Definition 1.1.5 An automorphism of a graph G is an isomorphism that maps G

onto itself. The set of all automorphisms of a graph G forms a group under compo-

sition, called the automorphism group of G and denoted Aut(G).

1.1. Definitions 3

a b

c d

a b

c d

G G ax÷

Figure 1.1: A graph and its switch card with respect to one vertex

Note that any graph G admits the identity mapping ϕ : V (G)→ V (G), defined

by ϕ(v) = v for all v ∈ V (G), as an automorphism.

Finally, we define some terms related to vertex switching, and then introduce the

vertex-switching reconstruction problem.

Definition 1.1.6 A graphH is the switch card of a graphG with respect to the vertex

v of G if V (G) = V (H) and E(H) = (E(G)\{uv : u ∈ NG(v) }) ∪ {uv : u ∈ NG(v) }.

The switch card of G with respect to v is denoted G> v. The operation of creating

G> v is called switching on v in G.

In other words, switching on a vertex of a graph has the effect of removing all

edges incident with the vertex and joining the vertex to all vertices to which it was

formerly non-adjacent. For example, Figure 1.1 shows the effect of switching on vertex

a in the given graph.

We now prove the intuitive result that switching on the same vertex twice has

no effect.

Lemma 1.1.7 Let G be a graph and let v be a vertex of G. Then (G> v) > v = G.

Proof: Consider any pair of distinct vertices x, y of G. If x = v or y = v then

eG>v(x, y) = 1− eG(x, y), since switching on v removes edge xy if it exists in G, and

adds it otherwise. Then, similarly, e(G>v)>v(x, y) = 1 − eG>v(x, y) = eG(x, y). Now

4 1. The Vertex-Switching Reconstruction Problem

suppose x 6= v and y 6= v. Then eG>v(x, y) = eG(x, y) since adjacency of two vertices

neither of which is v is unaffected by switching on v. Similarly, e(G>v)>v(x, y) =

eG>v(x, y) = eG(x, y). Therefore in all cases, e(G>v)>v(x, y) = eG(x, y), and so

G = (G> v) > v.

Definition 1.1.8 Two vertices v and w of a graph G are vertex-switch similar (or

VS-similar for short) if G> v ∼= G> w.

In other words, the switch cards of G with respect to two of its VS-similar vertices

are isomorphic.

Next, we see that the result of switching on a set of vertices is independent of

the order in which the vertices are switched on.

Lemma 1.1.9 Let G be a graph and let u, v ∈ V (G). Then (G>u)>v = (G>v)>u.

Proof: First, suppose that u = v. Then by Lemma 1.1.7, (G>u)>v = (G>v)>u.

Now suppose u 6= v, and let x and y be any two distinct vertices of G. Suppose

that exactly one of x and y is in {u, v}. Without loss of generality, we may assume

that x = u and y 6= v. Then

e(G>u)>v(x, y) = eG>u(x, y) = 1− eG(x, y),

and

e(G>v)>u(x, y) = 1− eG>v(x, y) = 1− eG(x, y).

If x = u and y = v, then

e(G>u)>v(x, y) = 1− eG>u(x, y) = 1− (1− eG(x, y)) = eG(x, y),

and

e(G>v)>u(x, y) = 1− eG>v(x, y) = 1− (1− eG(x, y)) = eG(x, y).

1.1. Definitions 5

Otherwise (when x 6∈ {u, v} and y 6∈ {u, v}),

e(G>u)>v(x, y) = eG>u(x, y) = eG(x, y),

and

e(G>v)>u(x, y) = eG>v(x, y) = eG(x, y).

Therefore in all cases e(G>u)>v(x, y) = e(G>v)>u(x, y), and so (G>u)>v = (G>v)>u.

Definition 1.1.10 A multiset M is a set SM together with a mapping µM : SM →

N\{0}. The elements x of the underlying set SM are called the elements of M . If the

elements of a multiset M are listed as a1, a2, . . . , an (where the number of occurrences

of each element of M in the list is equal to its multiplicity in M , given by µM(·)),

then we may denote M as 〈a1, a2, . . . , an〉. The cardinality of a multiset M , denoted

|M |, is the sum of the multiplicities of the elements of M . Two multisets A and B

are equal if SA = SB and µA(x) = µB(x) for all x ∈ SA. The union of two multisets

A and B (denoted A]B) is defined by SA]B = SA ∪ SB, and

µA]B(x) =


µA(x) + µB(x) if x ∈ SA ∪ SB

µA(x) if x ∈ SA \ SB

µB(x) if x ∈ SB \ SA.

The difference of two multisets A and B (denoted A \ B) is defined by SA\B =

(SA \ SB) ∪ {x ∈ SA ∩ SB : µA(x) > µB(x) } and for all x ∈ SA\B, by

µA\B(x) =

µA(x)− µB(x) if x ∈ SB

µA(x) otherwise.

Lemma 1.1.11 Let G be a graph and let M be a multiset whose elements are vertices

of G. Then switching on all of the vertices of M in G produces the same graph

regardless of the order in which the vertices are switched on in G.

6 1. The Vertex-Switching Reconstruction Problem

Proof: Let k be the cardinality of M , and let A = (a1, a2, . . . , ak) be some

ordering of the elements of M (with multiplicities). Note that the elements of A can

be rearranged into any desired order by a succession of swaps of consecutive elements

of A (i.e., by interchanging the positions of ai and ai+1 for some i ∈ {1, 2, . . . , k−1}).

We therefore need only show that the effect of switching on A in G is not affected by

a single such swap.

Let i be an integer with 1 ≤ i < k. Lemma 1.1.9 shows that (((G> a1) > a2) >

. . .>ai)>ai+1 = (((G>a1)>a2)> . . .>ai+1)>ai. It follows that (((((G>a1)>a2)>

. . .>ai)>ai+1)>ai+2)>. . .>ak = (((((G>a1)>a2)>. . .>ai+1)>ai)>ai+2)>. . .>ak.

This shows that swapping the order of two consecutive elements of an ordered multiset

of vertices does not affect the result of switching on the multiset, and therefore the

order in which the vertices of a multiset are switched on in a graph does not affect

the graph which results from these switches.

The result of the previous lemma means that for any multiset M of vertices of G we

may economically write G > M to describe the graph produced by switching on all

of the vertices of the multiset M in the graph G.

Lemma 1.1.12 Let G be a graph, let M be a multiset whose elements are vertices

of G, and let M ′ be a multiset with SM ′ = { v : µM(v) ≡ 1 (mod 2) } and µM ′(v) = 1

for all v ∈ SM ′. Then G>M = G>M ′.

Proof: Let v be some element of M with µM(v) > 1. (If no such element ex-

ists, then M = M ′ and we are done.) Then order the elements of M so that if

s ∈ M appears after a v, then s = v, i.e. so that the ordering is of the form

(s1, s2, . . . , sk, v, . . . , v) where si 6= v for all i ∈ {1, 2, . . . , k}. Lemma 1.1.11 shows that

ordering the elements of M has no effect on G>M . Now let Mv = (s1, s2, . . . , sk, v) if

µM(v) is odd, or (s1, s2, . . . , sk) if µM(v) is even. Repeated applications of Lemma 1.1.7

show that G>M = G>Mv. In this way, we can remove all pairs of elements of the

1.1. Definitions 7

form (v, v) from M , eventually producing M ′, with SM ′ = { v : µM(v) ≡ 1 (mod 2) }

and µM ′(v) = 1 for all v ∈ V (G).

Note that, as a consequence of the previous lemma, the set of graphs obtained by

switching on all possible multisets of vertices of a graph of order n has maximum

cardinality 2n.

We now define a concept that is central to this thesis.

Definition 1.1.13 The switch deck of a graph G, denoted SD(G), is the multiset

composed of all of the switch cards of G, i.e. SD(G) = 〈G> v : v ∈ V (G)〉. The

switch deck of a multiset of graphs G, denoted SD(G), is the multiset composed of all

of the switch cards of all of the graphs which compose G, that is, for all X ∈ SD(G),

we have µSD(G)(X) =
∑

G:X∈SD(G)

µSD(G)(X) · µG(G). The switch decks of two graphs G1

and G2 are isomorphic (denoted SD(G1) ∼= SD(G2)) if there is a bijective mapping

θ : SD(G1) → SD(G2) such that θ(C1) ∼= C1 for all C1 ∈ SD(G1). If k is a positive

integer, then the k-switch deck of a multiset of graphs G, denoted SDk(G), is the

multiset consisting of all graphs produced, for each G ∈ SG, and each k-vertex subset

of V (G), by switching on all of the vertices of this subset in G and taking µG(G) copies

of each such graph. Finally, we define SD0(G) = G for all multisets G of graphs.

Definition 1.1.14 Two graphs G1 and G2 are vertex-switch equivalent (VSE for

short) if V (G1) = V (G2) and SD(G1) ∼= SD(G2). Furthermore G1 and G2 are s-

vertex-switch equivalent (s-VSE for short) if V (G1) = V (G2) and SDs(G1) ∼= SDs(G2).

Definition 1.1.15 A graph G is vertex-switch reconstructible (or VSR for short) if,

for any graph H which is vertex-switch equivalent to G, we have H ∼= G. A graph

property P is vertex-switch reconstructible (VSR for short) if, for any pair of VSE

graphs G and H, the property has the same value (i.e., P (G) = P (H)). A graph G

is s-vertex-switch reconstructible if for any graph H which is s-VSE to G, we have

8 1. The Vertex-Switching Reconstruction Problem

a b

c d

G

a b

c d

H

a b

c d

G ax÷

d a

c b

H ax÷

a b

c d

G bx÷

H dx÷

d a

c b

a b

c d

G cx÷

a b

c d

G dx÷

H cx÷

a d

b c

H bx÷

a d

b c

Figure 1.2: Two vertex-switch equivalent graphs

H ∼= G.

This means that if a graph G is not VSR, there is some graph H with V (G) =

V (H) and G 6∼= H such that SD(G) ∼= SD(H). If a graph property P is not VSR,

then there are two graphs G and H that are VSE but P (G) 6= P (H).

Example 1.1.16 Figure 1.2 shows two graphs that have isomorphic switch decks.

Note that, since G > a and G > b are isomorphic, vertices a and b of G are vertex-

switch similar. The isomorphism between SD(G) and SD(H) is implied in Figure 1.2

by the ordering of the switch cards in SD(H), and by the labelling of the vertices of

these switch cards. Since G and H have isomorphic switch decks, and V (G) = V (H),

they are therefore VSE, and since G 6∼= H, neither G nor H is VSR.

1.2 Introduction to the Thesis

The vertex-switching reconstruction problem asks for a characterisation of the non-

VSR graphs. Currently, the only known non-VSR graphs have four vertices. All

9 non-VSR graphs of order 4, as well as their switch decks, are listed in the first

1.2. Introduction to the Thesis 9

four rows of the table in Figure 1.3. Although many classes of graphs have been

shown to be VSR, the general problem is still open. This thesis reviews the published

knowledge about the vertex-switching reconstruction problem, and presents some new

related results. A number of very different approaches to this problem have yielded a

variety of results. The contents of this thesis are arranged according to the approach

used in attacking the problem.

The question of which graphs are not VSR was first posed by Stanley in 1985 [14].

He showed that if a graph of order n is not VSR, then n ≡ 0 (mod 4). In Chapter 2

we present the proof of this result, which uses an approach based on linear algebra.

In Chapter 3, we present a proof, due to Krasikov [6], showing that every vertex of

a non-VSR graph G with more than 4 vertices must have an associated distinct vertex

called an “H-switch partner”, for any graph H that is VSE to G but not isomorphic

to G. When we switch on both v and its H-switch partner in G, the result is a graph

isomorphic to H. This then leads to some restrictions on the structure of a non-VSR

graph G of order > 4; for example, G must be connected and cannot be regular.

Chapter 4 then establishes some properties of a non-VSR graph with more than

4 vertices. In particular, we present an upper and lower bound on the number of

edges, an inequality relating the maximum and minimum degrees of the graph, and

an upper bound on the order of the automorphism group of the graph.

This is followed, in Chapter 5, by a proof that any two graphs of order n > 4

with the same switch deck have the same number of induced subgraphs isomorphic

to any given graph of order less than n
2
. This result is then reshaped into a set of

results that can be used to speed up an exhaustive search for a non-VSR graph.

Finally, in Chapter 6 we discuss the results of an exhaustive search for a non-VSE

graph of the two smallest previously-unsolved orders, 8 and 12. This search reveals

that all graphs of order 8 and 12 are vertex-switch reconstructible.

10 1. The Vertex-Switching Reconstruction Problem

1.3 Some Simple Results

We begin our journey by establishing a few lemmas, some of which clarify what is

actually going on when we switch on the vertices of a graph, and some of which are

quite useful in more substantial proofs.

Lemma 1.3.1 Vertex-switch similarity is an equivalence relation on the vertex set of

a graph.

Proof: We would like to show that vertex-switch similarity is reflexive, symmet-

ric, and transitive. Let u, v and w be vertices of a graph G. Then u is VS-similar

to itself, since G > u ∼= G > u. Therefore, vertex-switch similarity is reflexive. If u

is VS-similar to v, then G > u ∼= G > v, and so G > v ∼= G > u, which means v is

VS-similar to u. This shows vertex-switch similarity to be symmetric. Finally, if u is

VS-similar to v and v is VS-similar to w, then G > u ∼= G > v and G > v ∼= G > w.

Therefore G> u ∼= G> w, and so u is VS-similar to w. It follows that VS-similarity

is transitive. We conclude that VS-similarity is an equivalence relation.

Definition 1.3.2 The equivalence classes on the vertex set of a graph G with respect

to VS-similarity are called the vertex-switch similarity classes of G.

Note that the vertex-switch similarity classes of a graph G partition V (G).

Lemma 1.3.3 Vertex-switch equivalence is an equivalence relation on the set of all

graphs.

Proof: We would like to show that vertex-switch equivalence is reflexive, sym-

metric, and transitive. Let G be any graph. Then SD(G) ∼= SD(G) (and clearly

V (G) = V (G)), so G is VSE to itself and hence vertex-switch equivalence is reflexive.

Also, for any graphs G1 and G2, if V (G1) = V (G2) and SD(G1) ∼= SD(G2), then

1.3. Some Simple Results 11

V (G2) = V (G1) and SD(G2) ∼= SD(G1). Therefore, G2 is VSE to G1 if and only if G1

is VSE to G2. Therefore, vertex-switch equivalence is symmetric. Finally, if G1, G2

and G3 are all graphs with V (G1) = V (G2) and V (G2) = V (G3), and if G1 is VSE to

G2 and G2 is VSE to G3, then V (G1) = V (G3), and SD(G1) ∼= SD(G2) ∼= SD(G3) and

so SD(G1) ∼= SD(G3). This shows that G1 is VSE to G3. Thus vertex-switch equiva-

lence is also transitive. We conclude that vertex-switch equivalence is an equivalence

relation.

Now we show that a few simple properties of a graph are vertex-switch recon-

structible. In particular, the number of vertices, number of edges, and degree sequence

of a graph are all VSR. The latter means that if two graphs (on the same vertex set)

have isomorphic switch decks, then they must have the same degree sequence (see

Definition 1.3.6).

Lemma 1.3.4 The order of a graph is a VSR property.

Proof: Let G and H be any VSE graphs. Then, since SD(G) ∼= SD(H), it follows

that |SD(G)| = |SD(H)|. However, for any graph K we have |SD(K)| = νK , and so

νG = νH . Since any two VSE graphs have the same number of vertices, we conclude

that the order of a graph is vertex-switch reconstructible.

Lemma 1.3.5 The size of a graph of order not equal to 4 is a VSR property.

Proof: Let G and H be any VSE graphs, and let v ∈ V (G). The number of edges

in G> v is

εG − dG(v) + ((νG − 1)− dG(v)) = εG − 2dG(v) + νG − 1.

12 1. The Vertex-Switching Reconstruction Problem

Now since
∑

v∈V (G)

dG(v) = 2εG, summing the number of edges inG>v over all v ∈ V (G)

gives ∑
v∈V (G)

(
εG − 2dG(v) + νG − 1

)
= νGεG − 4εG + ν2

G − νG

= ν2
G − νG + (νG − 4)εG.

Therefore the total number of edges in all of the graphs in SD(G) is ν2
G − νG +

(νG − 4)εG. Similarly, the total number of edges in all of the graphs in SD(H) is

ν2
H − νH + (νH − 4)εH . Since SD(G) ∼= SD(H), there is a bijection which maps each

graph in SD(G) to an isomorphic graph in SD(H), and so the total number of edges

in the graphs of SD(G) equals the total number of edges in the graphs of SD(H).

Therefore,

ν2
G − νG + (νG − 4)εG = ν2

H − νH + (νH − 4)εH

We also note that νG = νH from Lemma 1.3.4, and so

ν2
G − νG + (νG − 4)εG = ν2

G − νG + (νG − 4)εH

(νG − 4)εG = (νG − 4)εH

Therefore, if νG 6= 4, then εG = εH . This means that any graph which is VSE to a

graph with other than 4 vertices must have the same size as that graph, and so the

size of a graph with other than 4 vertices is VSR.

Currently, the only known non-VSR graphs all have order 4. The first column

of Figure 1.3 consists of isomorphism classes of the graphs of order 4, grouped ac-

cording to vertex-switch equivalance. The graphs in the second column represent the

isomorphism classes of the graphs in the switch decks belonging to the graph(s) in

1.3. Some Simple Results 13

or or

or

or

or

G SD(G)

Figure 1.3: Switch decks of graphs on four vertices

the first column. The figure therefore demonstrates that all of the graphs in the first

column of any chosen row are VSE, and that, since no two rows contain isomorphic

switch decks in their second columns, graphs from different rows of the first column

of the figure are not VSE.

Definition 1.3.6 Let G be a graph. Then the degree sequence of G is the multiset

composed of the degrees of the vertices of G.

Lemma 1.3.7 The degree sequence of a graph with order not equal to 4 is VSR.

Proof: Let G be a graph with νG 6= 4. Since νG 6= 4, Lemma 1.3.5 shows

εG = |E(G)| is vertex-switch reconstructible. Let {v1, v2, . . . , vνG
} be the vertex set

of G. The switch deck of G consists of νG switch cards. For all 1 ≤ i ≤ νG, let

14 1. The Vertex-Switching Reconstruction Problem

Mi = G> vi. Then εMi
= εG + νG − 2dG(vi)− 1, that is,

dG(vi) = 1
2
(εG − εMi

+ νG − 1). (1.3.1)

We conclude that the degree sequence of a graph of order not equal to 4 is VSR.

1.4 Some Properties of Vertex Switching

We now establish a number of useful tools for working with vertex switching. We

begin with some rules for simplifying certain expressions involving vertex switching.

Lemma 1.4.1 Let G1 and G2 be two graphs with V (G1) = V (G2), and let v ∈ V (G1).

Then G1 > v = G2 > v if and only if G1 = G2.

Proof: Suppose G1 = G2. Then, clearly, G1 > v = G2 > v. Now suppose

G1 > v = G2 > v. Then (G1 > v) > v = (G2 > v) > v, and so by Lemma 1.1.7, we have

G1 = G2.

Lemma 1.4.2 Let G be a graph of order at least 3, and let v, w ∈ V (G) such that

G> v = G> w. Then v = w.

Proof: Since G > v = G > w, we have G > v > w = G > w > w, which, by

Lemma 1.1.7, equals G. Suppose v 6= w. Let x ∈ V (G) \ {v, w}. Now observe that

eG>v>w(v, x) = eG>v(v, x) = 1− eG(v, x). Therefore G> v > w 6= G, a contradiction.

Thus v = w.

Lemma 1.4.3 Let G be a graph on a vertex set V , and let U,U ′ ⊆ V . If G > U =

G> U ′, then either U = U ′ or V \ U = U ′.

1.4. Some Properties of Vertex Switching 15

Proof: Let U,U ′ ⊆ V such that G> U = G> U ′. Let A = U ∩ U ′. Then

G> (U \ A) = G> U > A = G> U ′ > A = G> (U ′ \ A),

and hence

G> ((U ∪ U ′) \ A) = G> (U \ A) > (U ′ \ A) = G.

Now for any v, w ∈ V , we have vw ∈ E(G) if and only if vw ∈ E(G> ((U ∪U ′) \A)).

Consequently, v and w are either both in (U ∪U ′)\A, or neither. Since this holds for

any two vertices of V , we conclude that either (U ∪U ′) \A = V or (U ∪U ′) \A = ∅.

Hence either U∪U ′ = V and A = ∅, or else U∪U ′ = A. The former yields U ′ = V \U ,

and the latter U = U ′, as claimed.

The following result, which will become quite useful in Chapter 4, shows that

switching on a set of vertices of a graph has the same effect as switching on all of the

vertices not in the set. This implies that, given a graph, we can produce all of the

graphs obtained by switching on each vertex subset, by considering only the subsets

consisting of at most half of the vertices.

Lemma 1.4.4 Let G be a graph, and let U ⊆ V (G). Then G>U = G> (V (G) \U).

Proof: Let U = V (G) \ U . We will show that eG>U(x, y) = eG>U(x, y) for

all pairs x, y ∈ V (G). Let x and y be distinct elements of U . Since switching

on any vertex other than x or y does not affect the mutual adjacency of x and y,

we have eG>U(x, y) = eG(x, y), and eG>U(x, y) = eG>x>y(x, y). But eG>x>y(x, y) =

1− eG>x(x, y) = 1− (1− eG(x, y)) = eG(x, y). Therefore, eG>U(x, y) = eG(x, y), and

so eG>U(x, y) = eG>U(x, y). Similarly, if x and y are distinct elements of U , then

eG>U(x, y) = eG(x, y) = eG>U(x, y). The only other possibility is that one of x and y

is in U and the other is in U . In this case, eG>U(x, y) = 1 − eG(x, y) = eG>U(x, y).

Therefore eG>U(x, y) = eG>U(x, y) for all distinct x and y in V (G), and so G> U =

16 1. The Vertex-Switching Reconstruction Problem

G> (U \ V (G)).

Another way of looking at the previous proof is to observe that switching on a

set of vertices affects only the edges (and non-edges) that have a single endpoint in

that set. This then leads us to the following simple result.

Corollary 1.4.5 If G is a graph, then G> V (G) = G.

Proof: Let U = ∅. Then V (G) \ U = V (G), and the result follows from

Lemma 1.4.4.

Now we examine the interaction between complementing a graph and switching

on its vertices. We will see that the operations of vertex switching and complemen-

tation commute with one another, and that complementation preserves vertex-switch

equivalence.

Definition 1.4.6 Let G be a graph. Then the complement of G, denoted G, is the

graph with V (G) = V (G) and E(G) = { vw : v, w ∈ V (G), v 6= w, and eG(v, w) =

0 }.

Definition 1.4.7 Let G1, G2, and H1 be graphs, with V (H1) ⊆ V (G1). Let ϕ be an

isomorphism that maps G1 to G2. Then ϕ induces an isomorphism that maps H1 to

the graph H2, where V (H2) = ϕ(V (H1)) and E(H2) = {ϕ(x)ϕ(y) : xy ∈ E(H1) }.

We then write ϕ(H1) = H2.

Lemma 1.4.8 Let G and H be graphs, and let ϕ be an isomorphism which maps G

to H. Then ϕ is an isomorphism from G to H.

Proof: Since ϕ(G) = H, we have eG(x, y) = eH(ϕ(x), ϕ(y)) for all x, y ∈ V (G)

with x 6= y. Then eG(x, y) = 1 − eG(x, y) = 1 − eH(ϕ(x), ϕ(y)) = eH(ϕ(x), ϕ(y)).

1.4. Some Properties of Vertex Switching 17

Thus ϕ(G) = H.

Lemma 1.4.9 Let G be a graph and let v ∈ V (G). Then G> v = G> v.

Proof: Let x, y ∈ V (G) with x 6= y. Suppose x = v. Then eG>v(x, y) =

1− eG(x, y) = 1− (1− eG(x, y)) = 1− (eG>v(x, y)) = eG>v(x, y). Now suppose x 6= v

and y 6= v. Then eG>v(x, y) = eG(x, y) = 1− eG(x, y) = 1− eG>v(x, y) = eG>v(x, y).

Thus in all cases, eG>v(x, y) = eG>v(x, y), and so G> v = G> v.

Lemma 1.4.10 Let G and H be vertex-switch equivalent graphs. Then G and H are

vertex-switch equivalent as well.

Proof: Since V (G) = V (H) implies V (G) = V (H), we need only show that there

is a bijection ψ2 : SD(G)→ SD(H) such that for all C ∈ SD(G), we have ψ2(C) ∼= C.

Since G and H are VSE, we have SD(G) ∼= SD(H). This means there is a bijec-

tive mapping ψ : SD(G)→ SD(H) such that if ψ(G>v) = H>w for some w ∈ V (H),

then G> v ∼= H > w. Define a map ψ2 : SD(G)→ SD(H) by ψ2(G> v) = H > w if

ψ(G> v) = H >w for some w ∈ V (G), for all v ∈ V (G). Since ψ is a bijection, ψ2 is

a bijection as well. Let G> v be any element of SD(G), and let H > w = ψ(G> v).

Then since G> v ∼= H >w, there is some isomorphism ϕ from G> v to H >w. Now

we can apply Lemma 1.4.8 to see that ϕ is also an isomorphism from G> v to H > w.

Applying Lemma 1.4.9 then shows that ϕ is an isomorphism from G > v to H > w,

and therefore G> v ∼= H > w. Thus SD(G) ∼= SD(H), and so G and H are VSE.

Corollary 1.4.11 Let G be a graph. Then G is VSR if and only if G is VSR.

18 1. The Vertex-Switching Reconstruction Problem

Proof: Since G = G, it suffices to show that if G is VSR, then so is G. Sup-

pose G is VSR, and suppose further that G is not VSR. Then there is some graph

H on V (G) that is VSE to G, such that G 6∼= H. Now by Lemma 1.4.10, we have

that G and H are VSE. However, G 6∼= H implies G 6∼= H, which contradicts our sup-

position that G is VSR. Thus G is VSR. Therefore, G is VSR if and only if G is VSR.

Another useful result shows that, given an isomorphism that maps one graph to

another, switching on a vertex in the first graph produces a graph which the isomor-

phism maps to the graph produced by switching on the image under the isomorphism

of this vertex in the second graph.

Lemma 1.4.12 Let G1 and G2 be graphs with V (G1) = V (G2), let u ∈ V (G1), and

let ϕ be an isomorphism that maps G1 to G2. Then ϕ is an isomorphism from G1 >u

to G2 > ϕ(u).

Proof: Let x and y be any two distinct vertices of ϕ(G1>u). Then eϕ(G1>u)(x, y) =

eG1>u(ϕ
−1(x), ϕ−1(y)). Suppose ϕ−1(x) = u. Then

eϕ(G1>u)(x, y) = eG1>u(u, ϕ
−1(y))

= 1− eG1(u, ϕ
−1(y))

= 1− eG2(ϕ(u), y) (since ϕ is an isomorphism from G1 to G2)

= 1− eG2(x, y)

= eG2>x(x, y)

= eG2>ϕ(u)(x, y).

Now suppose ϕ−1(x) 6= u and ϕ−1(y) 6= u. Then x 6= ϕ(u) and y 6= ϕ(u). Therefore,

eϕ(G1>u)(x, y) = eG1>u(ϕ
−1(x), ϕ−1(y))

= eG1(ϕ
−1(x), ϕ−1(y))

1.4. Some Properties of Vertex Switching 19

= eG2(x, y) (since ϕ is an isomorphism from G1 to G2)

= eG2>ϕ(u)(x, y) (since x 6= ϕ(u) and y 6= ϕ(u)).

Therefore, eϕ(G1>u)(x, y) = eG2>ϕ(u)(x, y) for all x and y in V (G1) with x 6= y, and so

ϕ(G1 > u) = G2 > ϕ(u).

The notion of vertex similarity (defined below) is stronger than that of vertex-

switch similarity, as we shall see in the following lemma.

Definition 1.4.13 Two vertices u and v of a graph G are similar if some automor-

phism of G maps u onto v.

Lemma 1.4.14 Let G be a graph, and let u and v be similar vertices of G. Then u

and v are vertex-switch similar.

Proof: Since u and v are similar, there is some ϕ ∈ Aut(G) such that ϕ(u) = v.

Then by Lemma 1.4.12, we have that ϕ is an isomorphism from G>u to ϕ(G)>ϕ(u),

and ϕ(G) > ϕ(u) = G> ϕ(u) = G> v. Therefore G> u ∼= G> v, and so u and v are

vertex-switch similar.

The example below shows that the converse of the previous lemma is not true.

Definition 1.4.15 Two vertices u and v of a graph G are vertex-switch pseudosimilar

if G> u ∼= G> v but u and v are not similar.

Example 1.4.16 Figure 1.4 shows an example of a graph with two vertex-switch

pseudosimilar vertices, namely u and v. Note that u and v are not similar in G.

(This is easily verified since there is a set S = {u, a, b} of three vertices including u

such that G[S] has three edges, but there is no such set of three vertices which includes

20 1. The Vertex-Switching Reconstruction Problem

a b

c d

v

u

G

a b

c d

v

u

G ux÷ G vx÷

a b

c d

v

u

Figure 1.4: A graph with two vertex-switch pseudosimilar vertices

v, and therefore no automorphism of G can map u to v.) However, G > u ∼= G > v.

Therefore, u and v are vertex-switch pseudosimilar.

Ellingham [3] completely characterised all graphs in which vertex-switch similar

vertices exist. Unfortunately this characterisation does not distinguish between sim-

ilar pairs and vertex-switch pseudosimilar pairs. This means that his results cannot

be used to find graphs with pairs of vertices which are vertex-switch pseudosimilar.

Chapter 2

Graphs of Order Not Divisible by 4

The first result about the vertex switching reconstruction problem was proven in

the same paper that introduced the problem. In 1985, Stanley [14] showed that

all graphs whose order is not divisible by 4 must be vertex-switch reconstructible.

However, his proof does not show how to reconstruct such a graph from its switch

deck. He also proved some results related to a more general problem, namely, the

question of which graphs can be reconstructed from the multiset of graphs produced

by switching on all s-vertex subsets of their vertices, for any fixed s. (Graphs which

can be so reconstructed are termed s-VSR.) However, this more general question is

outside of the scope of this thesis.

The proof of the s = 1 case is quite involved. Therefore an informal description

of the proof might be helpful at this point. Stanley treats graphs as binary vectors,

whose coordinates correspond to unordered pairs of distinct vertices. In this world,

switching on a vertex v of a graph G is modelled by adding (modulo 2) the vector

corresponding to the star graph with all possible edges incident with v to the vector

corresponding to G. Then we move to the world of formal linear combinations of these

vectors. From this viewpoint, we can create an operator (the “unlabelling” operator)

which maps a graph to the formal sum of the vectors of the graphs in its isomorphism

21

22 2. Graphs of Order Not Divisible by 4

class. We can also define a transformation, called the switch-deck transformation,

which maps a graph to the formal sum of the vectors of the graphs in its switch deck.

Then, by use of these operators, we can express algebraically the notion of two graphs

having isomorphic switch decks. The switch deck operator is then shown to be have

a left inverse whenever a certain linear transformation (the Fourier transform of the

characteristic function of the set of star graphs) never achieves the value of 0. Finally,

the Fourier transform of the characteristic function of the set of star graphs is shown

to take on the value 0 only when the number of vertices is divisible by 4.

Before we dive into all of this, we will define the Fourier transform. The version

presented here is a special case of the usual definition.

2.1 The Discrete Fourier Transform

A formal definition of a graph vector is required before we can describe the Fourier

transform.

Definition 2.1.1 Let G be a graph of order n with vertex set V = {v1, v2, . . . , vn},

and let k =
(

n
2

)
. Then the graph vector of G, denoted XG, is the element of Zk

2 with

coordinates indexed by {vi, vj} ∈ V × V such that XG[{vi, vj}] = eG(vi, vj) (where

X[i] denotes the ith coordinate of the vector X). We also define XG > vi (where

vi ∈ νG) to mean the graph vector XG>vi
.

We will use the above definitions of G, n, V , and k throughout this chapter. Note

that the association between a particular coordinate of a graph vector and a pair of

vertices of the graph associated with that graph vector is the same for all graphs on

the same set of vertices. Therefore, given a set of graphs on the same vertex set, we

may refer to the pair of vertices corresponding to a particular coordinate of a graph

vector without specifying a particular graph vector.

2.1. The Discrete Fourier Transform 23

Definition 2.1.2 LetX, Y ∈ Zk
2, and letX = (a1, a2, . . . , ak) and Y = (b1, b2, . . . , bk),

where ai, bi ∈ Z2 for all i ∈ {1, 2, . . . , k}. Then the dot product of X and Y , denoted

X · Y , is the scalar value
k∑

i=1

aibi.

The following properties are an immediate consequence of the previous definition.

Lemma 2.1.3 Let X, Y, Z ∈ Zk
2, and let X = (a1, a2, . . . , ak), Y = (b1, b2, . . . , bk),

and Z = (c1, c2, . . . , ck), where ai, bi, ci ∈ Z2 for all i ∈ {1, 2, . . . , k}. Then

(i) X · Y = Y ·X, and

(ii) (X + Y) · Z = (X · Z) + (Y · Z).

Lemma 2.1.4 Let k be a positive integer, and let X ∈ Zk
2. Then (evaluated in R)

∑
Y ∈Zk

2

(−1)(X·Y) =

2k, if X = 0;

0, otherwise.

Proof: Let e(X) be the number of 0 elements of SX =
〈
X · Y : Y ∈ Zk

2

〉
. Then

the number of 1 elements of SX is 2k− e(X). If X ·Y is even, then (−1)X·Y = 1, and

if X · Y is odd, then (−1)X·Y = −1. Therefore,∑
Y ∈Zk

2

(−1)(X·Y) = e(X)− (2k − e(X)) = 2e(X)− 2k.

If Xis the zero vector, then X · Y is 0 for all Y ∈ Zk
2, and so e(X) = 2k. In this case,∑

Y ∈Zk
2

(−1)(X·Y) = 2(2k)− 2k = 2k. Now suppose X has at least one non-zero coordi-

nate. Let r be the position of the first 1 in X. For every Y ∈ Zk
2, there is a unique

Y ′ ∈ Zk
2 which differs from Y only in position r. Then the set {X ·Y,X ·Y ′} contains

one even and one odd element. Since Zk
2 can be partitioned into pairs of the form

{Y, Y ′}, exactly half of the elements of SX are even, and so e(X) = 1
2
2k. Therefore,∑

Y ∈Zk
2
(−1)(X·Y) = 2(1

2
)2k − 2k = 2k − 2k = 0.

24 2. Graphs of Order Not Divisible by 4

Definition 2.1.5 Define Fk as the set of all functions which map graph vectors with

k coordinates to real numbers, i.e. Fk = { f : Zk
2 → R }.

Definition 2.1.6 Let k be a positive integer. The Fourier transform is a mapping

from Fk to Fk defined by f 7→ f̂ where, for all X ∈ Zk
2,

f̂(X) =
∑
Y ∈Zk

2

(−1)X·Y f(Y).

Lemma 2.1.7 The Fourier transform has a left inverse, given by

f(X) =
1

2k

∑
Y ∈Zk

2

(−1)X·Y f̂(Y), for all f ∈ Fk, X ∈ Zk
2. (2.1.1)

Proof: To show that the Fourier transform has a left inverse, it suffices to prove

(2.1.1); that is, to show that

f(X) =
1

2k

∑
Y ∈Zk

2

(−1)X·Y

∑
Z∈Zk

2

(−1)Y ·Zf(Z)

 (2.1.2)

for all X ∈ Zk
2. Fix X ∈ Zk

2. For any Z ∈ Zk
2, let W = X + Z. Then the right hand

side of (2.1.2) is equal to

1

2k

∑
Y ∈Zk

2

(−1)X·Y

∑
W∈Zk

2

(−1)Y ·(W−X)f(W −X)


=

1

2k

∑
W∈Zk

2

∑
Y ∈Zk

2

(
(−1)X·Y (−1)Y ·(W−X)f(W −X)

)
=

1

2k

∑
W∈Zk

2

∑
Y ∈Zk

2

(
(−1)X·Y (−1)(Y ·W−Y ·X)f(W −X)

)
=

1

2k

∑
W∈Zk

2

∑
Y ∈Zk

2

(
(−1)(X·Y +Y ·W−Y ·X)f(W −X)

)
=

1

2k

∑
W∈Zk

2

∑
Y ∈Zk

2

(
(−1)(X·Y +Y ·W−X·Y)f(W −X)

)
=

1

2k

∑
W∈Zk

2

∑
Y ∈Zk

2

(
(−1)Y ·Wf(W −X)

)

2.2. Unlabelling 25

=
1

2k

∑
W∈Zk

2

f(W −X)
∑
Y ∈Zk

2

(−1)Y ·W

 . (2.1.3)

Using Lemma 2.1.4, we know that
∑
Y ∈Zk

2

(−1)Y ·W = 0 when W 6= 0. Therefore, (2.1.3)

is equal to

1

2k
f(0−X)

∑
Y ∈Zk

2

(−1)Y ·0


=

1

2k
f(0−X)(2k) (also by Lemma 2.1.4)

= f(0−X)

= f(X) (since X = −X in Zk
2)

as required.

2.2 Unlabelling

We now formally define the vector space of linear combinations of graph vectors, which

then allows us to define the unlabelling operator. This is a linear transformation which

maps a graph vector to a (formal) sum of the graph vectors of all members of the

isomorphism class of the original graph. This is used to express the notion of graphs

being isomorphic—two graphs are isomorphic if and only if the their vectors have

equal images under the unlabelling operator.

Throughout this section, we let r = 2k, and let Zk
2 = {X1, X2, . . . , Xr}.

Definition 2.2.1 The star graph on vertex set V where n = |V |, with v as the centre

(where v ∈ V) is the graph containing n−1 edges, each with one endpoint at v. This

graph is denoted Cn(V, v). Where V is understood, we may write simply Cn(v).

26 2. Graphs of Order Not Divisible by 4

Lemma 2.2.2 Let G be a graph, and let v ∈ V . Then XG>v = XG +XCn(v) (where

the addition is performed in Zk
2).

Proof: Since Cn(v) contains all possible edges incident with v, the graph vector

XCn(v) has a 1 in precisely those coordinates which correspond to edges incident with

v.

Suppose XCn(v)[{a, b}] = 0 for some a, b ∈ V . Then (XG + XCn(v))[{a, b}] =

XG[{a, b}], and we also have v 6∈ {a, b}. Hence switching on v does not change the

{a, b}-coordinate of the corresponding graph vector. We thus have XG>v[{a, b}] =

XG[{a, b}]. It follows that XG>v[{a, b}] = (XG +XCn(v))[{a, b}].

Now suppose XCn(v)[{a, b}] = 1 for some a, b ∈ V . Then (XG +XCn(v))[{a, b}] =

XG[{a, b}] + 1, and we also have v ∈ {a, b}. Hence XG>v[{a, b}] = XG[{a, b}] + 1 =

(XG+XCn(v))[{a, b}]. Therefore, since for all coordinates {a, b} we haveXG>v[{a, b}] =

(XG +XCn(v))[{a, b}], this shows that XG>v = XG +XCn(v).

Definition 2.2.3 Define Vn as the vector space of all formal linear combinations of

elements of Zk
2 with coefficients in R. That is, if W ∈ Vn, then W = c1X1 + c2X2 +

· · ·+ crXr, for c1, c2, . . . , cr ∈ R.

Let Symn be the group of all permutations on n items. A permutation σ on

a set V induces an action on the set of all graphs with vertex set V as follows:

σ(G) = (V,E ′), where E ′ = {σ(vi)σ(vj) : vivj ∈ E(G) }. Hence vivj ∈ E ′ if and only

if σ−1(vi)σ
−1(vj) ∈ E(G), and

Xσ(G)[{vi, vj}] = XG[{σ−1(vi), σ
−1(vj)}]. (2.2.1)

The action of σ on Zk
2 is simply defined as σ(XG) = Xσ(G) for all graphs G. Now we

extend the definition to all of Vn by

σ

(
r∑

i=1

ciXi

)
=

r∑
i=1

ciσ(Xi). (2.2.2)

2.2. Unlabelling 27

Next, we show that any σ ∈ Symn, in its action on Vn as defined above, is a linear

transformation.

Lemma 2.2.4 Let σ ∈ Symn, let c ∈ R, and let X =
r∑

i=1

aiXi and Y =
r∑

i=1

biXi,

where ai, bi ∈ R for all i ∈ {1, 2, . . . , r}. Then

(i) σ(cX) = cσ(X), and

(ii) σ(X + Y) = σ(X) + σ(Y).

Proof: (i) Observe that

σ(cX) = σ

(
c

r∑
i=1

aiXi

)

= σ

(
r∑

i=1

caiXi

)

=
r∑

i=1

caiσ(Xi) (by Equation (2.2.2))

= c

(
r∑

i=1

aiσ(Xi)

)

= cσ

(
r∑

i=1

aiXi

)
(again by Equation (2.2.2))

= cσ(X).

(ii) Observe that

σ(X + Y) = σ

(
r∑

i=1

aiXi +
r∑

i=1

biXi

)

= σ

(
r∑

i=1

(ai + bi)Xi

)

=
r∑

i=1

(ai + bi)σ(Xi) (by Equation (2.2.2))

=
r∑

i=1

aiσ(Xi) +
r∑

i=1

biσ(Xi)

28 2. Graphs of Order Not Divisible by 4

= σ

(
r∑

i=1

aiXi

)
+ σ

(
r∑

i=1

biXi

)
(by Equation (2.2.2))

= σ(X) + σ(Y).

We now have two different ways of adding two graph vectors. Such an addition

can occur either in Zk
2 or in Vn. Unless otherwise specified, for the balance of this

chapter, addition of graph vectors will occur in Vn.

We are now ready to define the unlabeling operator, which can be used to describe

the isomorphism class of a graph in terms of graph vectors.

Definition 2.2.5 The unlabeling on Vn is a mapping Υ : Vn → Vn defined by

Υ(W) =
∑

σ∈Symn

σ(W)

for all W ∈ Vn.

Note that the unlabeling of a graph vector XG is the formal sum of the vectors of the

graphs produced by permuting the vertices of G in all possible ways. Note also that

every graph isomorphic to G appears in Υ(XG) with coefficient equal to the size of

the automorphism group of the graph.

Lemma 2.2.6 Unlabelling is a linear map.

Proof: We require Υ(cX) = cΥ(X) for all c ∈ R and all X ∈ Vn, and Υ(X+Y) =

Υ(X) + Υ(Y) for all X, Y ∈ Vn. First,

Υ(cX) =
∑

σ∈Symn

σ(cX)

=
∑

σ∈Symn

cσ(X) (by Lemma 2.2.4)

2.2. Unlabelling 29

= c
∑

σ∈Symn

σ(X)

= cΥ(X).

Next,

Υ(X + Y) =
∑

σ∈Symn

σ(X + Y)

=
∑

σ∈Symn

(σ(X) + σ(Y)) (by Lemma 2.2.4)

=
∑

σ∈Symn

σ(X) +
∑

σ∈Symn

σ(Y)

= Υ(X) + Υ(Y).

Therefore, Υ is a linear map.

Lemma 2.2.7 Let G, H be graphs on the same vertex set of size n. Then Υ(XG) =

Υ(XH) if and only if G ∼= H.

Proof: If G ∼= H, then there is some τ ∈ Symn such that τ(G) = H. Now,

Υ(XH) =
∑

σ∈Symn

σ(XH)

=
∑

σ∈Symn

Xσ(H)

=
∑

σ∈Symn

Xσ(τ(G))

=
∑

σ∈Symn

Xστ(G)

=
∑

σ∈Symn

στ(XG).

30 2. Graphs of Order Not Divisible by 4

Since as σ runs through all elements of Symn, so does στ (since Symn is a group

under composition), and so we have∑
σ∈Symn

(στ)(XG) =
∑

σ∈Symn

σ(XG) = Υ(XG).

Therefore G ∼= H implies Υ(XG) = Υ(XH).

Now assume G 6∼= H. Then the coefficient of XG in Υ(XH) is 0. However,

the coefficient of XG in Υ(XG) is nonzero. Therefore Υ(XG) 6= Υ(XH), and so

Υ(XG) = Υ(XH) implies G ∼= H.

2.3 The Switch-Deck Transformation

In order to give the vertex-switching reconstruction problem a presence in the world

of graph vectors, we define a linear transformation that maps a graph’s vector to a

formal sum of the vectors of the graphs of its switch deck. Then we will see that this

transformation and the unlabelling transformation commute.

Definition 2.3.1 The switch-deck transformation is the mapping φ : Vn → Vn de-

fined by

φ(W) =
n∑

j=1

r∑
i=1

ci(Xi +XCn(vj))

for all W =
r∑

i=1

ciXi, where ci ∈ R for all i, and where the sum Xi +XCn(vj) involves

addition in Zk
2, i.e., Xi + XCn(vj) = XG>vj

if Xi = XG. Note that for W = Xi (for

some i) we have φ(Xi) =
n∑

j=1

(Xi +XCn(vj)).

Lemma 2.3.2 Let G and H be VSE graphs. Then Υ(φ(XG)) = Υ(φ(XH)).

2.3. The Switch-Deck Transformation 31

Proof: By Definition 2.3.1 and Lemma 2.2.2, we have

φ(XG) =
n∑

j=1

(XG +XCn(vj)) =
n∑

j=1

XG>vj
.

Since Υ is a linear transformation (by Lemma 2.2.6), we also have

Υ(φ(XG)) = Υ

(
n∑

j=1

XG>vj

)
=

n∑
j=1

Υ(XG>vj
). (2.3.1)

Now since G and H are VSE, there exists a bijection β : {1, 2, . . . , n} → {1, 2, . . . , n}

such that G > vj
∼= H > vβ(j) for all j ∈ {1, 2, . . . , n}. Hence by Lemma 2.2.7,

Υ(XG>vj
) = Υ(XH>vβ(j)

), for all j ∈ {1, 2, . . . , n}. Thus

Υ(φ(XG)) =
n∑

j=1

Υ(XG>vj
)

=
n∑

j=1

Υ(XH>vβ(j)
)

=
n∑

j=1

Υ(XH>vj
) (since β is a bijection)

= Υ(φ(XH)) (by Equation (2.3.1)).

Lemma 2.3.3 The switch-deck transformation is a linear map.

Proof: In order for φ to be a linear map we must have φ(X + Y) = φ(X) + φ(Y)

for all X, Y ∈ Vn, and φ(cX) = cφ(X) for all c ∈ R and all X ∈ Vn. Let X, Y ∈ Vn

with X =
r∑

i=1

aiXi and Y =
r∑

i=1

biXi. Then X + Y =
r∑

i=1

(ai + bi)Xi and so

φ(X + Y) =
n∑

j=1

r∑
i=1

(ai + bi)(Xi +XCn(vj))

32 2. Graphs of Order Not Divisible by 4

(Note that for the balance of this proof, Xi +XCn(vj) refers to addition in Zk
2.)

=
n∑

j=1

r∑
i=1

(ai(Xi +XCn(vj)) + bi(Xi +XCn(vj)))

=

(
n∑

j=1

r∑
i=1

ai(Xi +XCn(vj))

)
+

(
n∑

j=1

r∑
i=1

bi(Xi +XCn(vj))

)

= φ(X) + φ(Y).

Furthermore, let c be a real scalar. Then

φ(cX) =
n∑

j=1

r∑
i=1

cai(Xi +XCn(vj))

= c
n∑

j=1

r∑
i=1

ai(Xi +XCn(vj))

= cφ(X)

Therefore, φ is a linear map.

Lemma 2.3.4 Let σ ∈ Symn and let X, Y ∈ Zk
2. Then σ(X + Y) = σ(X) + σ(Y),

where both additions occur in Zk
2.

Proof: Let Z ∈ Zk
2 such that Z = X + Y . Then for all vi, vj ∈ V , vi 6= vj, we

have Z[{vi, vj}] = (X + Y)[{vi, vj}] = X[{vi, vj}] + Y [{vi, vj}]. Therefore

σ(Z)[{vi, vj}] = σ(X + Y)[{vi, vj}]

= (X + Y)[{σ−1(vi), σ
−1(vj)}] (by Equation 2.2.1)

= X[{σ−1(vi), σ
−1(vj)}] + Y [{σ−1(vi), σ

−1(vj)}]

= σ(X)[{vi, vj}] + σ(Y)[{vi, vj}] (by Equation 2.2.1).

Thus, since σ(X + Y) and σ(X) + σ(Y) are equal in every coordinate, σ(X + Y) =

σ(X) + σ(Y).

2.3. The Switch-Deck Transformation 33

The following lemma and its corollaries were proven by Stanley [14].

Lemma 2.3.5 Unlabelling and the switch-deck transformation commute. That is,

Υφ = φΥ.

Proof: Let G be a graph, and let X be its corresponding graph vector. Then

φ(Υ(X)) = φ

 ∑
σ∈Symn

σ(X)


=

∑
σ∈Symn

φ(σ(X)) (since φ is linear)

=
∑

σ∈Symn

∑
v∈V

(σ(X) +XCn(v)) (since σ(X) ∈ Zk
2 for all X; + is in Zk

2)

=
∑

σ∈Symn

∑
v∈V

(σ(X) +XCn(σ(v))) (since σ(v) ranges over all V as v does)

=
∑

σ∈Symn

∑
v∈V

(σ(X) + σ(XCn(v)))

=
∑

σ∈Symn

∑
v∈V

σ(X +XCn(v)) (by Lemma 2.3.4)

=
∑

σ∈Symn

σ

(∑
v∈V

(X +XCn(v))

)
(by Lemma 2.2.4(ii))

=
∑

σ∈Symn

σ(φ(X))

= Υ(φ(X))

Corollary 2.3.6 If G and H are VSE graphs, then φ(Υ(XG)) = φ(Υ(XH)).

Proof: The result follows from the previous lemma, and Lemma 2.3.2.

34 2. Graphs of Order Not Divisible by 4

Now we are about to motivate the remainder of this chapter, by giving a sufficient

condition for a graph of a given order to be VSR.

Corollary 2.3.7 Assume the switch-deck transformation has a left inverse on Vn.

Then all graphs on n vertices are VSR.

Proof: Let G be a graph on n vertices. Suppose G is not VSR. Then there exists

a graph H such that G 6∼= H and G and H are VSE. Then φ(Υ(XG)) = φ(Υ(XH))

by Corollary 2.3.6. Since φ is assumed to have a left inverse, we thus have Υ(XG) =

Υ(XH). Then by Lemma 2.2.7, we have G ∼= H, a contradiction. Therefore G is

VSR.

2.4 Another View of the Switch-Deck Transforma-

tion

Next we consider another linear mapping, which resembles the switch-deck transfor-

mation, but operates on functions which map graph vectors onto real numbers, rather

than on linear combinations of graph vectors. We then describe a sufficient condition

for this mapping to have a left inverse. From there it will be a simple matter to relate

the existence of a left inverse of this mapping to the existence of a left inverse of the

switch-deck transformation (though that particular result will have to wait until the

next section).

Definition 2.4.1 Let Λ be a subset of some set S. Then the characteristic function

2.4. Another View of the Switch-Deck Transformation 35

of Λ is the mapping χΛ : S → Z2 where

χΛ(X) =

1 if X ∈ Λ;

0 otherwise.

Definition 2.4.2 Let Λ be some non-empty subset of Zk
2. Define the mapping ΘΛ :

Fk → Fk by

ΘΛ(f)(X) =
∑
Y ∈Λ

f(X + Y) for all X ∈ Zk
2.

Note that here, X + Y refers to addition in Zk
2, and the sum over all elements of Λ is

a sum of real numbers.

Lemma 2.4.3 Let Λ be some non-empty subset of Zk
2. Then ΘΛ is a linear transfor-

mation.

Proof: We need to show that if f, g ∈ Fk, and X ∈ Zk
2, and c is a scalar, then

ΘΛ(f + g)(X) = ΘΛ(f)(X) + ΘΛ(g)(X), and that ΘΛ(cf)(X) = cΘΛ(f)(X). First,

ΘΛ(f + g)(X) =
∑
Y ∈Λ

(f + g)(X + Y)

=
∑
Y ∈Λ

(f(X + Y) + g(X + Y))

=

(∑
Y ∈Λ

f(X + Y)

)
+

(∑
Y ∈Λ

g(X + Y)

)
= ΘΛ(f)(X) + ΘΛ(g)(X).

Next,

ΘΛ(cf)(X) =
∑
Y ∈Λ

(cf)(X + Y)

=
∑
Y ∈Λ

cf(X + Y)

= c
∑
Y ∈Λ

f(X + Y)

36 2. Graphs of Order Not Divisible by 4

= cΘΛ(f)(X).

Therefore ΘΛ is a linear transformation.

We are now on the threshold of proving our main result, namely, that graphs

with order not divisible by 4 are VSR. The following lemma is the key result of this

chapter. With it, we specify a sufficient condition for the existence of a left inverse

for ΘΛ, and soon for the switch-deck transformation as well.

Lemma 2.4.4 (Diaconis and Graham [2]) Let Γ be the set of elements of Zk
2 which

are the graph vectors of star graphs. Then the mapping ΘΓ has a left inverse whenever

the Fourier transform of the characteristic function of Γ is never 0 (that is, χ̂Γ(X) 6= 0

for all X ∈ Zk
2).

Proof: First, note that for each X ∈ Zk
2,

χ̂Γ(X) =
∑
Y ∈Zk

2

(−1)X·Y χΓ(Y) =
∑
Y ∈Γ

(−1)X·Y .

Next observe that ΘΓ(f), where f ∈ Fk, acts on Zk
2 as follows:

ΘΓ(f)(X) =
∑
Y ∈Γ

f(X + Y)

=
∑
Y ∈Γ

f(Y −X) (since Y −X = Y +X in Zk
2)

=
∑
Y ∈Zk

2

f(Y −X)χΓ(Y).

Then the Fourier transform of ΘΓ(f) acts on Zk
2 as follows:

Θ̂Γ(f)(X) =
∑
Y ∈Zk

2

(−1)X·Y ΘΓ(f)(Y)

=
∑
Y ∈Zk

2

(−1)X·Y

∑
Z∈Zk

2

f(Z − Y)χΓ(Z)



2.4. Another View of the Switch-Deck Transformation 37

=
∑
Y ∈Zk

2

∑
Z∈Zk

2

(
(−1)X·Y f(Z − Y)χΓ(Z)

)
=
∑
Z∈Zk

2

∑
Y ∈Zk

2

(
(−1)X·Y f(Z − Y)χΓ(Z)

)
.

Substituting W = Z − Y we obtain

Θ̂Γ(f)(X) =
∑
Z∈Zk

2

∑
W∈Zk

2

(
(−1)X·(Z+W)f(W)χΓ(Z)

)
(since W = −W in Zk

2)

=
∑
Z∈Zk

2

∑
W∈Zk

2

(−1)X·Wf(W)(−1)X·ZχΓ(Z)

 (from Lemma 2.1.3)

=
∑
Z∈Zk

2

(−1)X·ZχΓ(Z)

∑
W∈Zk

2

(−1)X·Wf(W)


= χ̂Γ(X)f̂(X).

If χ̂Γ(X) 6= 0 for all X ∈ Zk
2, we can divide both sides by χ̂Γ(X), giving

f̂(X) =
Θ̂Γ(f)(X)

χ̂Γ(X)
,

and since the Fourier transform has a left inverse on Fk (by Lemma 2.1.7), we can

therefore derive f from ΘΓ(f) as follows:

f(X) =
1

2k

∑
A∈Zk

2

(−1)X·Af̂(A)

=
1

2k

∑
A∈Zk

2

(−1)X·A

(
Θ̂Γ(f)(A)

χ̂Γ(A)

)

=
1

2k

∑
A∈Zk

2

(−1)X·A

(∑
Y ∈Zk

2
(−1)A·Y ΘΓ(f)(Y)

χ̂Γ(A)

)
. (2.4.1)

This shows that ΘΓ has a left inverse if χ̂Γ(X) 6= 0 for all X ∈ Zk
2.

We shall now explain the importance of Lemma 2.4.4 for the vertex-switching

reconstruction problem. First we need a couple of preliminary lemmas.

38 2. Graphs of Order Not Divisible by 4

Lemma 2.4.5 Let G and H be two graphs on the vertex set V . Then µSD(G)(H) =

µSD(H)(G).

Proof: For any v ∈ V , we have that G> v = H if and only if H > v = G. Hence

H occurs in SD(G) exactly as many times as G occurs in SD(H).

Lemma 2.4.6 Let G be a fixed graph on the vertex set V . Define fG ∈ Fk by

fG(X) =

1 if X = XG, and

0 otherwise.

Furthermore, let Γ = {XCn(v) : v ∈ V }. Then, for any graph H on V , we have

ΘΓ(fG)(XH) = µSD(G)(H).

Proof: From the definition of ΘΓ we have

ΘΓ(fG)(XH) =
∑
Y ∈Γ

fG(XH + Y)

=
∑
v∈V

fG(XH +XCn(v))

=
∑
v∈V

fG(XH>v)

= µSD(H)(G)

= µSD(G)(H) (by Lemma 2.4.5).

Thus ΘΓ(fG) (with fG defined as in Lemma 2.4.6) tells us how many copies of

a given graph occur in the switch deck of G. Hence, ΘΓ(fG)(Y) can be found from

SD(G) alone for every Y ∈ Zk
2. Because of this fact, if the left inverse of ΘΓ exists

then we can retrieve fG(X) for all X ∈ Zk
2, and thus the identity of G, from SD(G).

2.5. The Main Result 39

2.5 The Main Result

We now have essentially everything we need to prove the main result. One more

detail is required first: a way to get from φ to ΘΛ and back again.

Definition 2.5.1 Let Ω : Fk → Vn be defined by Ω(f) =
r∑

i=1

f(Xi)Xi, where f ∈ Fk

and Zk
2 = {X1, X2, . . . , Xr}.

Lemma 2.5.2 The mapping Ω is invertible.

Proof: Define a mapping A : Vn → Fk by setting A(W) = fW , where if

W =
r∑

i=1

ciXi, then fW (Xi) = ci for all i ∈ {1, 2, . . . , r}. We will show that A is the

inverse of Ω by showing that Ω(A(W)) = W for all W ∈ Vn and that A(Ω(f)) = f

for all f ∈ Fk.

Let f be any element of Fk. Then A(Ω(f)) = A

(
r∑

i=1

f(Xi)Xi

)
= f2 for some

f2 ∈ Fk. By the definition of A, it follows that f2(X) = f(X) for all X ∈ Zk
2, and so

f2 = f . Therefore A(Ω(f)) = f .

Now let W =
r∑

i=1

ciXi ∈ Vn. Then Ω(A(W)) = Ω(f), where f ∈ Fk and

f(Xi) = ci for all 1 ≤ i ≤ r. But Ω(f) =
r∑

i=1

f(Xi)Xi =
r∑

i=1

ciXi = W , and so

Ω(A(W)) = W . Therefore A = Ω−1, and so Ω is invertible.

And now, the main event at last.

Theorem 2.5.3 (Stanley [14]) Let G be a graph with νG 6≡ 0 (mod 4). Then G is

VSR.

Proof: First we shall show that φ has a left inverse whenever ΘΓ does. We begin

by noting that the mapping τC : Zk
2 → Zk

2, defined by τC(X) = X + C (for a fixed

C ∈ Zk
2), is invertible, since X+C+C = X. Therefore, τC is bijective. Recall that Γ

40 2. Graphs of Order Not Divisible by 4

is the set of graph vectors of all star graphs on V . Let W ∈ Vn, and let f = Ω−1(W).

Then we observe the following.

φ(W) = φ

∑
X∈Zk

2

f(X)X


=
∑

X∈Zk
2

f(X)φ(X) (since φ is linear)

=
∑

X∈Zk
2

f(X)

(∑
v∈V

(X +XCn(v))

)
(from the definition of φ)

=
∑

X∈Zk
2

f(X)

(∑
C∈Γ

(X + C)

)
(where the sum X + C is computed in Zk

2)

=
∑

X∈Zk
2

∑
C∈Γ

f(X)(X + C) (distributive law, since Vn is a vector space)

Since τC is a bijection, τC(X) runs over all elements of Zk
2 as X does, and so we may

replace X with τC(X), giving

φ(W) =
∑

X∈Zk
2

∑
C∈Γ

f(X + C)(X + C + C)

=
∑

X∈Zk
2

∑
C∈Γ

f(X + C)X (since C + C = 0 in Zk
2)

=
∑

X∈Zk
2

(∑
C∈Γ

f(X + C)

)
X

=
∑

X∈Zk
2

ΘΓ(f)(X)X.

Therefore, Ω−1(φ(W)) = ΘΓ(f), and so Ω−1φ = ΘΓΩ−1. Now assume ΘΓ has a

left inverse F . Then φ has a left inverse too, namely ΩFΩ−1.

Next we show that φ, indeed, has a left inverse if νG 6≡ 0 (mod 4). Let n = νG,

and assume n 6≡ 0 (mod 4). Suppose φ does not have a left inverse. Then, as shown

2.6. Related Results 41

above, ΘΓ has no left inverse, and, by Lemma 2.4.4, χ̂Γ(X) = 0 for some X ∈ Zk
2.

Recall from the proof of Lemma 2.4.4 that χ̂Γ(X) =
∑
Y ∈Γ

(−1)X·Y =
∑
v∈V

(−1)X·Cn(v).

Since XG · XH counts the number of edges that graphs G and H have in common,

we know that XG · Cn(vi) = dG(vi). Therefore χ̂Γ(XG) =
∑

v∈V (G)

(−1)dG(v). For this

expression to be 0, the number of even-degree vertices of G must equal the number

of odd-degree vertices of G. Since the sum of the degrees of a graph is even, there

must be an even number of vertices of odd degree, and therefore the same number of

vertices of even degree, and so the order of G must be divisible by 4. This contra-

dicts the assumption that n 6≡ 0 (mod 4). Therefore φ has a left inverse. Then by

Corollary 2.3.7, all graphs on n vertices are VSR.

2.6 Related Results

In a recent paper, Abatangelo and Dragomir [1, Corollary 2] show that if G and H

are non-isomorphic VSE graphs, then there exists a graph vector X such that

|Aut(G)|
∑
G′∼=G

(−1)X·XG′ 6= |Aut(H)|
∑

H′∼=H

(−1)X·XH′ .

This appears to be, essentially, a computational test for the existence of an isomor-

phism which maps G to H. Abatangelo and Dragomir state that the utility of this

result in the context of the vertex-switching reconstruction problem is unknown.

Much of the literature on vertex-switch reconstruction addresses the more general

problem of reconstructing G from its s-switch deck, for all values of s. Stanley [14]

extends the result of Theorem 2.5.3 to show that a graph G of order n is s-VSR if

the Krawtchouk polynomial

pn
s (x) =

s∑
i=0

(−1)i

(
x

i

)(
n− x
s− i

)

42 2. Graphs of Order Not Divisible by 4

has no even integer zeros in the interval [0, n]. Note that for s = 1, pn
s (x) = n − 2x,

and so pn
s has no even integer zeroes in [0, n] if 4 does not divide n.

Krasikov and Roditty also give some results for s ≥ 4 [10], and show that if pn
s (x)

has one or two even integer roots sufficiently far from n/2, then any graph G of order

n can be reconstructed from SDs(G) [11]. In particular, they show that all graphs of

order n are s-VSR if n = 2s + k, where k = 0, 1, or 3. Note that when s = 1 this

result is subsumed by Theorem 2.5.3.

Chapter 3

Switch Partners

In this chapter, we see that if G and H are two non-VSR graphs of order not equal

to 4 that are VSE but not isomorphic, then each vertex of G must have at least

one H-switch partner (defined below). Switching on any vertex of G and one of its

H-switch partners will produce a graph isomorphic to H. This result tells us quite

a bit about the structure of such graphs, should any exist. Among other things, we

get easily-computable necessary conditions when searching for non-VSR graphs. We

also see that disconnected graphs and regular graphs are VSR.

3.1 Existence of Switch Partners

Definition 3.1.1 Let G and H be VSE graphs and let v, w ∈ V (G). Then w is an

H-switch partner of v in G if G> v > w ∼= H. Note that if w is an H-switch partner

of v in G, then v is an H-switch partner of w in G (since G > v > w = G > w > v),

and in this case we say that v and w are an H-switch pair in G. When the graph H

is understood or indeterminate, we may refer simply to a switch pair in G.

Krasikov [6] proved the following quite useful lemma.

43

44 3. Switch Partners

Lemma 3.1.2 Let G and H be VSE graphs on the same vertex set V with ν = |V | 6=

4, and let v ∈ V . Then:

(i) if G 6∼= H, then v has an H-switch partner w in G such that w 6= v, and

(ii) for every H-switch partner w of v in G such that w 6= v, we have dG(v) +

dG(w) = ν − 2 + 2eG(v, w).

Proof:

(i) Since SD(G) ∼= SD(H), and SD(G) consists of graphs of the form G > x, and

SD(H) consists of graphs of the form H > x, there must be some vertex x ∈ V

such that G>v ∼= H>x. Then there exists an isomorphism ϕ : H>x→ G>v.

By Lemma 1.4.12, G>v = ϕ(H>x) = ϕ(H)>ϕ(x). Therefore G>v>ϕ(x) =

ϕ(H), and so G> v>ϕ(x) ∼= H, showing that ϕ(x) is an H-switch partner of v

in G. If ϕ(x) = v then H ∼= G> v > ϕ(x) = G> v > v = G, which contradicts

the fact that G 6∼= H. Therefore ϕ(x) 6= v.

(ii) Let w be an H-switch partner of v in G. Then switching on v in G removes

dG(v) edges and adds ν−dG(v)−1 new edges, and a subsequent switch on w in

G>v removes dG>v(w) = dG(w)+1−2eG(v, w) edges and adds ν−dG>v(w)−1 =

ν − dG(w) + 2eG(v, w)− 2 new edges. Since |E(G)| = |E(H)| = |E(G> v>w)|

(by Lemma 1.3.5), we have

−dG(v)+(ν−dG(v)−1)−(dG(w)+1−2eG(v, w))+(ν−dG(w)+2e(v, w)−2) = 0.

Therefore,

2ν − 2dG(v)− 2dG(w) + 4eG(v, w)− 4 = 0,

that is, dG(v) + dG(w) = ν − 2 + 2eG(v, w) as claimed.

3.2. Neighbourhoods of Switch Pairs 45

3.2 Neighbourhoods of Switch Pairs

Given an arbitrary switch pair in a non-VSR graph G, we can distinguish the vertices

of G according to the number of neighbours they have within the switch pair. This

outlook yields some interesting results that limit the structure of G.

Definition 3.2.1 Let G be a graph and let v, w ∈ V (G). Then the k-neighbourhood

of {v, w} in G (written Nk
G({v, w})) is the set of vertices in V (G) \ {v, w} which are

adjacent to exactly k members of {v, w}. For convenience, we may write Nk
G(v, w)

instead of Nk
G({v, w}).

Note that for any G, v, and w as above,

{{v}, {w}, N0
G(v, w), N1

G(v, w), N2
G(v, w)}

partitions V (G).

We shall see below (Lemma 3.2.3) that switching on a switch pair has the effect

of swapping the degrees of these two vertices and has no effect on the degree of any

vertex that is adjacent to just one member of the switch pair. But first, we need a

preliminary result.

Lemma 3.2.2 Let G be a graph and let v, w ∈ V (G) with v 6= w. Then dG>v>w(v) =

νG − dG(v) + 2eG(v, w)− 2.

Proof: Observe that dG>v(v) = νG − dG(v) − 1. Suppose eG(v, w) = 1. Then

eG>v(v, w) = 0, and so switching on w in G> v adds an edge that is incident with v.

Thus dG>v>w(v) = dG>v(v) + 1 = νG− dG(v) = νG− dG(v) + 2eG(v, w)− 2. Now sup-

pose eG(v, w) = 0. Then eG>v(v, w) = 1, and so switching on w in G> v removes an

edge that is incident with v. In this case, dG>v>w(v) = dG>v(v)−1 = νG−dG(v)−2 =

νG−dG(v)+2eG(v, w)−2. Thus in all cases, dG>v>w(v) = νG−dG(v)+2eG(v, w)−2,

as claimed.

46 3. Switch Partners

Lemma 3.2.3 Let G and H be VSE graphs with νG 6= 4. Let v, w ∈ V (G) with

v 6= w such that G> v > w ∼= H, and let K = G> v > w. Finally, let r ∈ N1
G(v, w).

Then:

(i) dK(v) = dG(w) (and dK(w) = dG(v)), and

(ii) dK(r) = dG(r).

Proof: Lemma 3.2.2 shows that dK(v) = νG − dG(v) + 2eG(v, w) − 2. Next,

from Lemma 3.1.2, we know that dG(v) + dG(w) = ν − 2 + 2eG(v, w). Therefore,

ν − dG(v) + 2eG(v, w) − 2 = dG(w), and so dK(v) = dG(w). By symmetry, we have

dK(w) = dG(v), thus proving (i).

Since r is adjacent to exactly one of v and w, and since switching on both v and

w in G results in deleting one edge incident with r and adjoining another, we have

dG(r) = dK(r), proving (ii).

The following lemma, due to Ellingham and Royle [5], says that, if v and w are

a switch pair of a non-VSR graph G, then the number of vertices adjacent to both v

and w is the same as the number of vertices adjacent to neither v nor w. It also says

that in this case there must be at least one vertex adjacent to both v and w (and

therefore at least one vertex adjacent to neither v nor w). Both of these results are

quite helpful in quickly eliminating potentially non-VSR graphs during an exhaustive

search. Part (i) of this lemma was stated but not proven in [5].

Lemma 3.2.4 Let G and H be VSE graphs with the same vertex set V . Let v, w ∈ V

be an H-switch pair in G with v 6= w. Then

(i) |N0
G(v, w)| = |N2

G(v, w)|, and

3.2. Neighbourhoods of Switch Pairs 47

(ii) if G 6∼= H, then |N0
G(v, w)| > 0.

Proof: We prove part (i) by observing that

|N0
G(v, w)| =

∑
x∈V \{v,w}

(1− eG(x, v))(1− eG(x,w))

=
∑
x∈V

(1− eG(x, v))(1− eG(x,w))

− (1− eG(v, v))(1− eG(v, w))− (1− eG(w, v))(1− eG(w,w))

=
∑
x∈V

(1− eG(x, v)− eG(x,w) + eG(x, v)eG(x,w))− 2(1− eG(v, w))

= νG − dG(v)− dG(w) +
∑
x∈V

eG(x, v)eG(x,w)− 2(1− eG(v, w))

= νG − (dG(v) + dG(w)) +
∑
x∈V

eG(x, v)eG(x,w)− 2 + 2eG(v, w),

which, since Lemma 3.1.2(ii) shows that dG(v) + dG(w) = νG − 2 + 2eG(v, w), equals

νG − (νG − 2 + 2eG(v, w)) +
∑
x∈V

eG(x, v)eG(x,w)− 2 + 2eG(v, w)

=
∑
x∈V

eG(x, v)eG(x,w)

=
∑
x∈V

eG(x, v)eG(x,w)− eG(v, v)eG(v, w)− eG(w, v)eG(w,w)

=
∑

x∈V \{v,w}

eG(x, v)eG(x,w)

= |N2
G(v, w)|.

Next, we will show that |N0
G(v, w)| 6= 0. Suppose |N0

G(v, w)| = 0. Then (from

the above) every vertex x ∈ V \ {v, w} is adjacent to exactly one of v and w in G;

that is, eG(x, v) = 1−eG(x,w). Define a permutation ϕ on V by ϕ(v) = w, ϕ(w) = v,

and ϕ(x) = x for all x ∈ V \ {v, w}, and let K = G> v>w. We shall show that ϕ is

an isomorphism from K to G. Indeed,

eϕ(K)(v, x) = eK(w, x) = 1− eG>v(w, x) = 1− eG(w, x)

48 3. Switch Partners

= eG(v, x)

and, by symmetry,

eϕ(K)(w, x) = eG(w, x)

for all x ∈ V \ {v, w}, and

eϕ(K)(v, w) = eK(v, w) = 1− eG>v(v, w) = 1− (1− eG(v, w)) = eG(v, w).

Hence ϕ(K) = G, i.e., ϕ is an isomorphism that maps K to G. Therefore G ∼= K,

and K ∼= H by the assumption of the lemma. Thus G ∼= H, a contradiction. We

conclude that |N0
G(v, w)| 6= 0, proving part (ii).

3.3 Neighbour Degrees

Since the degree sequence of a graph is VSR, switching on a switch pair of a non-VSR

graph produces a graph with the same degree sequence. This can be used to place a

condition on the degrees of the vertices which are adjacent to both or neither of the

elements of the switch pair.

The next two rather technical lemmas will be used to prove a relationship between

the sums of degrees of the vertices in N0
G(v, w) and N2

G(v, w), for a switch pair {v, w}.

Lemma 3.3.1 Let X and Y be multisets of integers with |X| = |Y |. Let X+ =

〈x+ 2 : x ∈ X〉, and let Y− = 〈y − 2 : y ∈ Y 〉. If X] Y = X+] Y−, then X = Y−

and Y = X+.

Proof: The proof proceeds by induction on |X|. Suppose |X| = 1, and let

X = 〈x1〉 and Y = 〈y1〉. Then X+ = 〈x1 + 2〉 and Y− = 〈y1 − 2〉. Furthermore,

X] Y = 〈x1, y1〉 and X+] Y− = 〈x1 + 2, y1 − 2〉. Now suppose X] Y = X+] Y−.

3.3. Neighbour Degrees 49

Then since x1 6= x1+2, we have x1 = y1−2. Therefore X = Y−. Similarly, y1 = x1+2,

and so Y = X+. Therefore, the claim holds for |X| = 1.

Suppose that for all X, Y , X+, and Y− as above, when |X| < n, the assumption

X] Y = X+] Y− implies X = Y− and Y = X+. Now take any two multisets X and

Y with X] Y = X+] Y− and |X| = |Y | = n. Let x be a minimum element of X.

Since X] Y = X+] Y−, we have x ∈ X+] Y−. Suppose x ∈ X+. Then there exists

some x′ ∈ X such that x′ + 2 = x. This contradicts the fact that x is a minimum

element of X. Therefore x ∈ Y−, and so there is some y ∈ Y such that y − 2 = x.

Now let X ′ = X \ 〈x〉, Y ′ = Y \ 〈y〉, X ′
+ = X+ \ 〈x+ 2〉, and Y ′

− = Y− \ 〈y − 2〉. It

is not hard to see that X ′] Y ′ = X ′
+] Y ′

−. Since also |X ′| = |Y ′| = n − 1, by the

induction hypothesis we have that X ′ = Y ′
− and Y ′ = X ′

+.

Now we note that

X = X ′] 〈x〉 = Y ′
−] 〈x〉 (since X ′ = Y ′

−)

= Y ′
−] 〈y − 2〉

= Y−.

Similarly,

Y = Y ′] 〈y〉 = X ′
+] 〈y〉 = X ′

+] 〈x+ 2〉 = X+.

Therefore X = Y− and Y = X+, as required, and the result follows by induction.

Now we will see that, given a switch pair of a non-VSR graph, adding 2 to the

degrees of each vertex that is adjacent to neither member of the switch pair produces

the multiset of the degrees of the vertices adjacent to both members of the switch

pair. This is another condition which fairly quickly can eliminate candidates from

the search for a non-VSE graph.

50 3. Switch Partners

Lemma 3.3.2 Let G and H be non-isomorphic VSE graphs on the same set of ver-

tices V with |V | 6= 4. Let v, w ∈ V be an H-switch pair in G. Then there exists a

bijection Π : N0
G(v, w) → N2

G(v, w) satisfying Π(a) = b ⇒ dG(b) = dG(a) + 2 for all

a ∈ N0
G(v, w).

Proof: Since νG 6= 4, by Lemma 1.3.7, the degree sequences of G and H are equal.

Let K = G > v > w. Since K ∼= H, the degree sequences of G and K are equal as

well.

Now let X = 〈dG(x) : x ∈ N0
G(v, w)〉, and let Y = 〈dG(y) : y ∈ N2

G(v, w)〉. Then

let XK = 〈dK(x) : x ∈ N0
G(v, w)〉, and let YK = 〈dK(y) : y ∈ N2

G(v, w)〉. Note that

for all x ∈ N0
G(v, w), we have dK(x) = dG(x) + 2, and for all y ∈ N2

G(v, w), we have

dK(y) = dG(y) − 2. Hence XK = 〈 d+ 2 : d ∈ X 〉 and YK = 〈 d− 2 : d ∈ Y 〉. Now

recall that

〈dG(v)〉] 〈dG(w)〉]
〈
dG(x) : x ∈ N1

G(v, w)
〉
]X] Y = 〈dG(x) : x ∈ V 〉 .

Therefore, since G and K have the same degree sequence (by Lemma 1.3.7),

〈dG(v)〉] 〈dG(w)〉]
〈
dG(x) : x ∈ N1

G(v, w)
〉
]X] Y

= 〈dK(v)〉] 〈dK(w)〉]
〈
dK(x) : x ∈ N1

G(v, w)
〉
]X+] Y−.

Lemma 3.2.3 shows that dG(x) = dK(x) for all x ∈ N1
G(v, w), and so〈

dG(x) : x ∈ N1
G(v, w)

〉
=
〈
dK(x) : x ∈ N1

G(v, w)
〉
.

From the same lemma, we also know that dG(v) = dK(w) and dK(v) = dG(w).

Therefore we are left with X] Y = X+] Y−. Since |X| = |Y | by Lemma 3.2.4(ii),

Lemma 3.3.1 shows that X = Y−. This means that for every element x of N0
G(v, w),

there is a corresponding element y of N2
G(v, w) such that dG(x) = dG(y) − 2, and

µX(dG(x)) = µY (dG(x) + 2).

We may now define a map Π : N0
G(v, w) → N2

G(v, w) as follows. For each

d ∈ X, let Xd = { z : z ∈ N0
G(v, w) and dG(z) = d }, and let Yd = { z : z ∈

3.3. Neighbour Degrees 51

N2
G(v, w) and dG(z) = d + 2 }. Order the elements of Xd and Yd arbitrarily, i.e.,

set Xd = {x1, x2, . . . , xk} and Yd = {y1, y2, . . . , yk}. Define Π(xi) = yi for each

i ∈ {1, 2, . . . , k}. Then Π is defined on all of N0
G(v, w) and is a bijection satisfying

dG(Π(x)) = dG(x) + 2 for all x ∈ N0
G(v, w).

Corollary 3.3.3 Let G and H be non-isomorphic VSE graphs with νG 6= 4. Let

v ∈ V (G) and let w be an H-switch partner of v in G. Then∑
x∈N2

G(v,w)

dG(x)−
∑

x∈N0
G(v,w)

dG(x) = 2|N2
G(v, w)|.

Proof: Choose a bijection Π : N0
G(v, w)→ N2

G(v, w) such that for all a ∈ N0
G(v, w),

we have dG(a) = dG(Π(a))− 2. Such a bijection exists by Lemma 3.3.2. Therefore,∑
x∈N0

G(v,w)

dG(x) =
∑

x∈N0
G(v,w)

(dG(Π(x))− 2) =
∑

x∈N2
G(v,w)

(dG(x)− 2),

and so∑
x∈N2

G(v,w)

dG(x)−
∑

x∈N0
G(v,w)

dG(x) =
∑

x∈N2
G(v,w)

dG(x)−
∑

x∈N2
G(v,w)

(dG(x)− 2)

=
∑

x∈N2
G(v,w)

dG(x)−

 ∑
x∈N2

G(v,w)

dG(x)− 2|N2
G(v, w)|


=

∑
x∈N2

G(v,w)

(dG(x)− dG(x)) + 2|N2
G(v, w)|

= 2|N2
G(v, w)|.

We end this section by observing that when the vertices of a switch pair are

switched on, the degrees of the neighbours of one member of the switch pair become

the degrees of the neighbours of the other member of the switch pair.

52 3. Switch Partners

Definition 3.3.4 Let G be a graph, and let v ∈ V (G). Define

NDG(v) = 〈dG(x) : x ∈ NG(v)〉 ,

i.e., NDG(v) is the multiset composed of the degrees of the neighbours of v.

Lemma 3.3.5 Let G and H be non-isomorphic VSE graphs with the same vertex set

V of size n 6= 4. Let v, w ∈ V such that G> v>w ∼= H. Finally, let K = G> v>w.

Then NDG(v) = NDK(w).

Proof: We begin by noting that NG(v) = N2
G(v, w) ∪ (NG(v) \ NG(w)), and

NK(w) = N2
K(v, w) ∪ (NK(w) \ NK(v)). We will first show that the multiset of

degrees of the vertices in N2
G(v, w) is equal to the multiset of degrees of the vertices

in N2
K(v, w).

By Lemma 3.3.2, there is a bijection Π : N0
G(v, w) → N2

G(v, w) such that for all

a ∈ N0
G(v, w), we have dG(a) + 2 = dG(Π(a)). Now let a ∈ N2

G(v, w). Then dG(a) =

dG(Π−1(a)) + 2. Since Π−1(a) ∈ N0
G(v, w), we have dG(Π−1(a)) = dK(Π−1(a)) − 2.

Thus dG(a) = dK(Π−1(a)). Since Π−1 is a bijection, this shows that the multiset of

degrees of the vertices in N2
G(v, w) is equal to the multiset of degrees of the vertices

in N2
K(v, w).

Next, we will show that the multiset of degrees of the vertices in NG(v) \NG(w)

is equal to the multiset of degrees of the vertices in NK(w) \NK(v). First, note that

(NG(v) \NG(w)) \ {w} = (NK(w) \NK(v)) \ {v}, since a vertex (other than w) that

is adjacent to v and not w in G must be adjacent to w and not v in K. Observe that

for every vertex x ∈ (NG(v)\NG(w))\{w}, we have dG(x) = dG>v(x)+1 = dK(x). If

w ∈ NG(v) \NG(w) (i.e., if vw ∈ E(G)), then v ∈ NK(w) \NK(v). In this case, part

(i) of Lemma 3.2.3 shows that dG(w) = dK(v). Therefore, the multiset of degrees of

the vertices in NG(v) \ NG(w) is equal to the multiset of degrees of the vertices in

NK(w) \NK(v). Thus, using the result of the previous paragraph, we may conclude

that NDG(v) = NDK(w).

3.4. Some VSR Graphs 53

3.4 Some VSR Graphs

We conclude this chapter with some substantial results. Disconnected graphs and

regular graphs are shown to be VSR.

Definition 3.4.1 A graph G is connected if for any partition of V (G) into two non-

empty subsets A and B there is at least one edge with one endpoint in A and the

other endpoint in B. If a graph is not connected, then it is disconnected, i.e., there is

a partition of V (G) into two non-empty subsets A and B such that no edge of G has

one endpoint in A and the other endpoint in B.

Definition 3.4.2 Let G be a graph and let U ⊆ V (G). The subgraph of G induced

by U (denoted G[U]) is the graph whose vertex set is U and whose edge set consists

of every edge of G that has both endpoints in U .

Definition 3.4.3 If G is a graph, then C is a connected component of G if C is a

connected graph, C = G[S] for some S ⊆ V (G), and there are no edges of G with

one endpoint in S and the other endpoint in V (G) \ S.

Theorem 3.4.4 below was proven by Krasikov [6], but the following simpler proof,

which relies on Lemma 3.2.4, appears in Ellingham and Royle [5].

Theorem 3.4.4 Let G be a disconnected graph G with νG 6= 4. Then G is VSR.

Proof: Suppose that G is not VSR. Then there is some graph H 6∼= G such that

H and G are VSE. Let v ∈ V (G) be in a connected component of G with a minimum

number of vertices, and let w be an H-switch partner of v. (Note that w exists and

w 6= v, by Lemma 3.1.2.) Since part (ii) of Lemma 3.2.4 shows that |N2
G(v, w)| > 0,

there is some x ∈ V (G) such that vx, wx ∈ E(G). Therefore v and w must lie in

54 3. Switch Partners

the same connected component of G. Since, by part (ii) of Lemma 3.1.2, we have

dG(v) + dG(w) = νG − 2 + 2eG(v, w), there must be exactly νG − 2 edges of G with

exactly one endpoint in {v, w}. This means there are least (νG−2)/2 distinct vertices

at the other end of these edges. These vertices must be in the same component of G

that contains v and w. Therefore there are at least νG/2 + 1 vertices in this compo-

nent. This is impossible since the component containing v (being smallest) can have

at most νG/2 vertices. Therefore, G is VSR.

Definition 3.4.5 A regular graph is a graph in which all vertices have the same

degree. If dG(v) = k for all v ∈ V (G), then we say that G is k-regular.

We now consider a simplified proof of a result due to Ellingham and Royle [5].

Theorem 3.4.6 Let G be a regular graph on n vertices, where n 6= 4. Then G is

VSR.

Proof: Suppose G is not VSR. Then there is some graph H with V (H) = V (G)

such that G 6∼= H and such that G and H are VSE. Let v ∈ V (G). By Lemma 3.1.2,

there exists some w ∈ V (G) such that G > v > w ∼= H. Since G 6∼= H, part (ii) of

Lemma 3.2.4 shows that there is some x ∈ V (G) such that x ∈ N0
G(v, w). This means

that dG>v>w(x) = dG(x)+2. Since G>v>w ∼= H, this means that H has a vertex of

degree dG(x) + 2. However, Lemma 1.3.7 shows that the degree sequences of G and

H are equal. Since G is regular, dG(y) = dG(z) for all y, z ∈ V (G), and consequently

dH(x) = dG(x) for all x ∈ V (G). This contradicts the fact that H has a vertex of

degree dG(x) + 2. Therefore G is VSR.

Chapter 4

Vertex-Switch Balance Equations

In this chapter, we review the known bounds on the number of edges and on the

degrees of the vertices of a non-VSR graph, and then improve the published bounds on

the number of edges. We also give an upper bound on the order of the automorphism

group of a non-VSR graph. These results are obtained by examining a set of “balance

equations”, developed by (and named by) Krasikov and Roditty [9]. These equations

in turn are developed by considering a pair of non-isomorphic VSE graphs G and H,

and counting the number of graphs isomorphic to G or H that are obtained from the

switch cards of G by switching on all possible k-subsets of vertices.

4.1 The Balance Equations

First, we develop an expression that describes the result of switching on all k-vertex

subsets of the members of a graph’s switch deck.

Lemma 4.1.1 (Krasikov and Roditty [9, Lemma 2.1])

Let G be a graph with n vertices, and let k be a positive integer. Then

SDk(SD(G)) =
n−k+1⊎

i=1

SDk−1(G)]

(
k+1⊎
i=1

SDk+1(G)

)
.

55

56 4. Vertex-Switch Balance Equations

Proof: Every element of SDk(SD(G)) is the result of switching on a single vertex

of G and then switching on a set of k vertices. Therefore,

SDk(SD(G)) =
⊎

S⊆V (G)
|S|=k

 ⊎
v∈V (G)

G> v > S



=
⊎

S⊆V (G)
|S|=k

(⊎
v∈S

G> v > S

)
]

 ⊎
v∈V (G)\S

G> v > S



=
⊎

S⊆V (G)
|S|=k

(⊎
v∈S

G> (S \ {v})

)
]

 ⊎
v∈V (G)\S

G> (S ∪ {v})



=
⊎

S⊆V (G)
|S|=k

(⊎
v∈S

G> (S \ {v})

)
]

⊎
S⊆V (G)
|S|=k

 ⊎
v∈V (G)\S

G> (S ∪ {v})


(4.1.1)

Now,

⊎
S⊆V (G)
|S|=k

(⊎
v∈S

G> (S \ {v})

)
=

⊎
T⊆V (G)
|T |=k−1

 ⊎
v∈V (G)\T

G> T



=
⊎

T⊆V (G)
|T |=k−1

n−(k−1)⊎
i=1

G> T



=

n−(k−1)⊎
i=1

 ⊎
T⊆V (G)
|T |=k−1

G> T


=

n−k+1⊎
i=1

SDk−1(G),

and

⊎
S⊆V (G)
|S|=k

 ⊎
v∈V (G)\S

G> (S ∪ {v})

 =
⊎

T⊆V (G)
|T |=k+1

(⊎
v∈T

G> T

)

4.1. The Balance Equations 57

=
⊎

T⊆V (G)
|T |=k+1

(
k+1⊎
i=1

G> T

)

=
k+1⊎
i=1

 ⊎
T⊆V (G)
|T |=k+1

G> T


=

k+1⊎
i=1

SDk+1(G).

Then, by combining these last two results with Equation (4.1.1), we get

SDk(SD(G)) =
n−k+1⊎

i=1

SDk−1(G)]

(
k+1⊎
i=1

SDk+1(G)

)
.

Next, we define notation for the number of graphs of a particular isomorphism

class in the s-switch deck of a graph.

Definition 4.1.2 Let G and H be graphs with V (G) = V (H), and let s be a non-

negative integer. For s ≥ 1, define Is(G→H) as the number of graphs isomorphic

to H which are obtained by switching on any set of s vertices in G. We define

I0(G→H) = 1 if G ∼= H, and 0 otherwise.

Now we may establish the balance equations, which relate the values of Is(G→

H) − Is(H→H) for various values of s. These equations eventually lead to bounds

on the number of edges and on vertex degrees of a non-VSR graph.

Lemma 4.1.3 (Krasikov and Roditty [9, Theorem 2.2])

Let G and H be non-isomorphic VSE graphs on the same set of n vertices. Then

for all k ∈ {2, 3, . . . , n}, we have

Ik(H→H)− Ik(G→H) = −n− k + 2

k

(
Ik−2(H→H)− Ik−2(G→H)

)
.

58 4. Vertex-Switch Balance Equations

Proof: Since G andH are VSE, we have SD(G) ∼= SD(H) and so SDk−1(SD(G)) ∼=

SDk−1(SD(H)). Therefore the sum of the multiplicities in SDk−1(SD(G)) of all graphs

isomorphic to H is the same as the sum of the multiplicities in SDk−1(SD(H)) of all

graphs isomorphic to H. From Lemma 4.1.1, since

SDk−1(SD(G)) =
n−k+2⊎

i=1

SDk−2(G)]

(
k⊎

i=1

SDk(G)

)
,

the sum of the multiplicities in SDk−1(SD(H)) of all graphs isomorphic to H is (n−

k + 2)Ik−2(H → H) + kIk(H → H)). Similarly, the sum of the multiplicities in

SDk−1(SD(G)) of all graphs isomorphic to H is (n−k+2)Ik−2(G→H)+kIk(G→H).

Therefore,

(n− k + 2)Ik−2(H→H) + kIk(H→H))

= (n− k + 2)Ik−2(G→H) + kIk(G→H),

and so

k

(
Ik(H→H)− Ik(G→H)

)
= (n− k + 2)

(
Ik−2(G→H)− Ik−2(H→H)

)
that is,

Ik(H→H)− Ik(G→H) = −n− k + 2

k

(
Ik−2(H→H)− Ik−2(G→H)

)
as claimed.

By iteratively applying the result of Lemma 4.1.3, we can get a simple closed-form

expression for Ik(H→H)− Ik(G→H) for even values of k.

Lemma 4.1.4 (Krasikov and Roditty [9, Corollary 2.4])

Let G and H be non-isomorphic graphs VSE on the same set of n vertices. Then

for all k ∈ {1, 2, . . . , bn
2
c},

I2k(H→H)− I2k(G→H) = (−1)k

(
n
2

k

)
.

4.1. The Balance Equations 59

Proof: By Lemma 4.1.3, we have, for all k ∈ {1, 2, . . . , bn
2
c},

I2k(H→H)− I2k(G→H) = −n− 2k + 2

2k

(
I2k−2(H→H)− I2k−2(G→H)

)
= −

n
2
− k + 1

k

(
I2k−2(H→H)− I2k−2(G→H)

)
.

Now we can recursively apply this equation, getting

I2k(H→H)− I2k(G→H)

= (−1)
n
2
− k + 1

k
(−1)

n
2
− k + 2

k − 1

(
I2k−4(H→H)− I2k−4(G→H)

)
= (−1)

n
2
− k + 1

k
(−1)

n
2
− k + 2

k − 1
· · · (−1)

n
2

1

(
I0(H→H)− I0(G→H)

)
= (−1)k

(
n
2

k

)(
I0(H→H)− I0(G→H)

)
= (−1)k

(
n
2

k

)
(1− 0)

= (−1)k

(
n
2

k

)
.

The preceding equations will lead us to a simple alternative proof of Theo-

rem 2.5.3. But first, we prove a simple lemma that results from the fact that switching

on a set of vertices has the same effect as switching on the complement of the set.

Lemma 4.1.5 (Krasikov and Roditty [9])

Let G and H be non-isomorphic VSE graphs on the same set of n vertices. Then,

for all k ∈ {0, 1, . . . , n}, we have

Ik(H→H)− Ik(G→H) = In−k(H→H)− In−k(G→H).

Proof: By Lemma 1.4.4, switching on a subset S of V (G) in G produces the same

result as switching on V (G) \ S in G. Therefore, for all k ∈ {0, 1, . . . , n}, we have

60 4. Vertex-Switch Balance Equations

Ik(H→H) = In−k(H→H) and Ik(G→H) = In−k(G→H). Thus,

Ik(H→H)− Ik(G→H) = In−k(H→H)− In−k(G→H).

And now we have another technical lemma, to be used in the proof of Theo-

rem 4.1.7 below.

Lemma 4.1.6 Let n be an odd integer. Then
(n

2
k

)
is not an integer for all k ∈

{1, 2, . . . , bn
2
c}.

Proof: Observe that(
n
2

k

)
=

n
2
(n

2
− 1)(n

2
− 2) · · · (n

2
− k + 1)

k!

=
1

2k

n(n− 2)(n− 4) · · · (n− 2k + 2)

k!

If
(n

2
k

)
is an integer, then 2k divides n(n−2)(n−4) · · · (n−2k−2), and so this product

must be even. Hence n must be even.

Theorem 4.1.7 (Krasikov and Roditty [9, Corollary 2.4])

Let G be a graph on n vertices, with n 6≡ 0 (mod 4). Then G is VSR.

Proof: SupposeG is not VSR. Then there exists some graphH with V (G) = V (H)

and G 6∼= H such that H and G are VSE. By Lemma 4.1.4, for all k ∈ {1, 2, . . . , bn
2
c},

we have

I2k(H→H)− I2k(G→H) = (−1)k

(
n
2

k

)
.

4.2. Bounds on the Size of a Non-VSR Graph 61

Since I2k(H→H) − I2k(G→H) is an integer, by Lemma 4.1.6, n is even. Now by

applying the result of Lemma 4.1.5, we get

I2k(H→H)− I2k(G→H) = In−2k(H→H)− In−2k(G→H),

and so (since n− 2k is even), by Lemma 4.1.4,

(−1)k

(
n
2

k

)
= (−1)

n
2
−k

(
n
2

n
2
− k

)
(−1)k = (−1)

n
2
−k

(−1)k−(n
2
−k) = 1

(−1)2k−n
2 = 1.

This means that 2k − n
2

is even, and therefore n
2

is even, or in other words, n ≡ 0

(mod 4). This contradicts the fact that n 6≡ 0 (mod 4), and so G is VSR.

4.2 Bounds on the Size of a Non-VSR Graph

Krasikov [7, Theorem 7] gives a bound on the number of edges in a non-VSR graph

G with νG 6= 4, which is described in the following lemma and its corollary.

Lemma 4.2.1 Let n ≡ 0 (mod 4), n 6= 4, and let G be a non-VSR graph of order

n. Then there is a set U of n
2

vertices of G such that there are exactly 1
8
n2 edges of

G with exactly one endpoint in U .

Proof: Since G is non-VSR, there is some graph H that is not isomorphic to G

but is VSE to G. Recall Lemma 4.1.4, which states that I2k(G→G)− I2k(H→G) =

(−1)k
(n

2
k

)
for all k ∈ {1, 2, . . . , bn

2
c}. Setting k = n

4
here gives In

2
(G→G) − In

2
(H→

G) = (−1)
n
4

(n
2
n
4

)
. Since

(n
2
n
4

)
6= 0, there is some set X of n

2
vertices in V (G) such that

either G > X ∼= G or H > X ∼= G. First suppose that G > X ∼= G. Then clearly

62 4. Vertex-Switch Balance Equations

εG>X = εG. Now suppose H > X ∼= G. Then let φ be an isomorphism from G to

H>X, and let X ′ = φ−1(X), so that H = φ(G)>X = φ(G>X ′) (by Lemma 1.4.12),

giving G>X ′ = φ−1(H) ∼= H. Since n 6= 4, Lemma 1.3.5 tells us that εG = εH . We

therefore have εG>X′ = εH = εG. Thus in all cases there is a set U (either X or X ′)

such that εG>U = εG.

Switching on all of the vertices of U in G does not change any of the edges with

both endpoints in U or with both endpoints in V (G) \ U . Therefore, the number of

edges with one endpoint in U and the other endpoint in V (G)\U must be the same in

G and in G>U . Let m be the number of edges of G with one endpoint in U and the

other endpoint in V (G)\U . Then the number of edges of G>U with one endpoint in

U and the other endpoint in V (G)\U is |U | ·(n−|U |)−m = n
2
(n− n

2
)−m = 1

4
n2−m.

Since m = 1
4
n2−m, we have m = 1

8
n2. Thus, there are exactly 1

8
n2 edges with exactly

one endpoint in U .

Corollary 4.2.2 Let n ≡ 0 (mod 4), n 6= 4, and let G be a non-VSR graph of order

n. Then 1
8
n2 ≤ εG ≤

(
n
2

)
− 1

8
n2.

Proof: Lemma 4.2.1 shows that there is a set U of vertices of G such that E(G)

contains 1
8
n2 edges with exactly one endpoint in U . Therefore 1

8
n2 ≤ εG.

Now Corollary 1.4.11 tells us that, since G is non-VSR, its complement G is

non-VSR as well, and so εG ≥ 1
8
n2. But εG =

(
n
2

)
− εG, and so

(
n
2

)
− εG ≥ 1

8
n2.

Therefore εG ≤
(

n
2

)
− 1

8
n2.

Krasikov and Roditty [9] describe a stricter bound on εG, but their proof of this

result contains a flaw, which was discovered by Ellingham and Royle [5]. However,

a better bound than that of Corollary 4.2.2 is still possible. The following theorem,

which is original to this thesis, improves Krasikov’s upper and lower bounds on the

4.2. Bounds on the Size of a Non-VSR Graph 63

number of edges of a non-VSR graph of order n by 1
4
n− 2 edges.

Theorem 4.2.3 Let n ≡ 0 (mod 4), n 6= 4, and let G be a non-VSR graph of order

n. Then 1
8
n2 + 1

4
n− 2 ≤ εG ≤

(
n
2

)
− 1

8
n2 − 1

4
n+ 2.

Proof: We begin by observing that n ≥ 8 since n ≡ 0 (mod 4) and n 6= 4. We

will first show that εG ≥ 1
8
n2 + 1

4
n− 2.

Lemma 4.2.1 shows that there is a set U of vertices of G such that E(G) contains

1
8
n2 edges with exactly one endpoint in U and |U | = n

2
. Let p be the number of edges

of G with both endpoints in U , and let q be the number of edges of G with both

endpoints in V (G) \ U . Then εG = 1
8
n2 + p+ q. Let p ≥ q without loss of generality.

Suppose p > 1
2
n−1. Then εG > 1

8
n2+ 1

2
n−1 > 1

8
n2+ 1

4
n−2, since n > 2. Now suppose

p ≤ 1
2
n− 1. Then the maximum degree of the vertices in U is at most 1

2
n+ p, since a

vertex in U can be an endpoint of at most 1
2
n edges whose other endpoint is not in U ,

and of at most p edges whose other endpoint is in U . Similarly, the maximum degree

of vertices in V \ U is at most 1
2
n+ q ≤ 1

2
n+ p. Let v be a vertex of G of minimum

degree. Since G is not VSR, there must be some graph H which is VSE to G but not

isomorphic to G. Then Lemma 3.1.2 tells us that there is some w ∈ V (G) such that

dG(v) + dG(w) = n− 2 + 2eG(v, w) ≥ n− 2. Therefore, dG(v) ≥ n− 2− dG(w), and

since dG(w) ≤ 1
2
n+p, we have dG(v) ≥ n−2− 1

2
n−p = 1

2
n−p−2. Now consider the

vertices of V (G) \U . Each of these vertices has degree at least 1
2
n− p− 2, and there

are 1
2
n of them. Thus the sum of the degrees of the members of V (G) \ U is at least

1
2
n(1

2
n − p − 2) = 1

4
n2 − 1

2
np − n. Each edge of G with both endpoints in V (G) \ U

contributes 2 to this sum. Therefore, the number of edges with exactly one endpoint

in V (G) \ U is at least 1
4
n2 − 1

2
np − n − 2q. However, the number of these edges is

exactly 1
8
n2, and so

1

4
n2 − 1

2
np− n− 2q ≤ 1

8
n2

1

8
n2 − 1

2
np− n− 2q ≤ 0

64 4. Vertex-Switch Balance Equations

1

2
np ≥ 1

8
n2 − n− 2q

p ≥ 1

4
n− 2− 4q

n
.

Since n ≡ 0 (mod 4) and n > 4, let n = 4k, where k > 1. Then p ≥ 1
4
n− 2− q

k
, and

so εG ≥ 1
8
n2 + 1

4
n− 2− q

k
+ q. Since k > 1, we have − q

k
+ q ≥ 1

2
q ≥ 0, and thus in all

cases εG ≥ 1
8
n2 + 1

4
n− 2.

Now Corollary 1.4.11 tells us that since G is non-VSR, G is non-VSR as well,

and so εG ≥ 1
8
n2 + 1

4
n − 2. But εG =

(
n
2

)
− εG, and so

(
n
2

)
− εG ≥ 1

8
n2 + 1

4
n − 2.

Therefore εG ≤
(

n
2

)
− 1

8
n2 − 1

4
n+ 2.

4.3 Degree Bounds

Krasikov [7] also establishes a bound on the minimum and maximum degree of a non-

VSR graph. This result is somewhat more involved, and requires some preliminary

work. We begin by noting that, if G and H are non-isomorphic VSE graphs, and i is

odd, then the i-switch decks of G and H contain equal numbers of graphs isomorphic

to H, as shown by the following lemma.

Lemma 4.3.1 Let G and H be non-isomorphic VSE graphs on the same set of n

vertices. Then, for all odd i ∈ {1, 2, . . . , n}, we have Ii(H→H)− Ii(G→H) = 0.

Proof: We will use induction on i. Suppose there exists v ∈ V (H) such that

H > v ∼= H. Then, since εH = εH>v = εH − dH(v) + (n− 1− dH(v)), we must have

dH(v) = n − dH(v) − 1. Therefore dH(v) = n−1
2

. This is impossible, since n is even

(by Theorem 2.5.3). Therefore, there is no such v, and so I1(H→H) = 0. Similarly,

suppose there is some v ∈ V (G) such that G > v ∼= H. If n 6= 4, then εG = εH

(by Lemma 1.3.5), and so again we get dG(v) = n−1
2

, an impossibility as n is even.

4.3. Degree Bounds 65

Therefore n = 4. By checking Figure 1.3 (on page 13), we see that there is no row of

the table which contains a graph K in the first column and a graph isomorphic to K

in the second column. This fact shows there is no vertex v such that G> v ∼= H, and

so I1(G→H) = 0. Therefore I1(H→H)− I1(G→H) = 0− 0 = 0.

Now let i be an odd element of {1, 2, . . . , n}, i > 1. Suppose Ik(H→H)−Ik(G→

H) = 0 for all odd k < i. Lemma 4.1.3 says that

Ii(H→H)− Ii(G→H) = −n− i+ 2

i

(
Ii−2(H→H)− Ii−2(G→H)

)
,

and since Ii−2(H→H) − Ii−2(G→H) = 0 (by the induction hypothesis, as i − 2 is

odd),

Ii(H→H)− Ii(G→H) = 0.

Thus, by induction, Ii(H→H)− Ii(G→H) = 0 for all odd i ∈ {1, 2, . . . , n}.

Next we note that for any graphG, the number of isomorphs ofG in the collection

of all k-switch decks of some graph H is the same for all graphs H that are VSE to

G and not isomorphic to G.

Lemma 4.3.2 Let G and H be non-isomorphic VSE graphs. Then

n∑
i=0

Ii(G→G) =
n∑

i=0

Ii(H→G).

Proof: First, since Lemma 4.3.1 shows that Ii(G→G) − Ii(H→G) = 0 for all

odd i ∈ {1, 2, . . . , n}, we have

n∑
i=1

(Ii(G→G)− Ii(H→G)) =

n/2∑
i=1

(I2i(G→G)− I2i(H→G)).

Lemma 4.1.4 gives I2k(G→G) − I2k(H→G) = (−1)k
(n

2
k

)
for all k ∈ {1, 2, . . . , bn

2
c},

and so

n∑
i=0

(
Ii(G→G)− Ii(H→G)

)
=

n
2∑

i=1

(−1)i

(
n
2

i

)
+ (1− 0)

66 4. Vertex-Switch Balance Equations

=

n
2∑

i=0

(−1)i

(
n
2

i

)
= (1− 1)

n
2

= 0.

Therefore,
n∑

i=0

Ii(G→G) =
n∑

i=0

Ii(H→G).

Our next few lemmas pave the way for Theorem 4.3.8, which gives a bound on

the extremal degrees of a non-VSR graph.

Lemma 4.3.3 (Krasikov [7, Theorem 8]) Let G and H be non-isomorphic VSE

graphs. Then
n∑

i=0

|Ii(G→G)− Ii(H→G)| = 2
n
2 .

Proof: Lemma 4.1.4 says that, for all k ∈ {1, 2, . . . , bn
2
c},

I2k(G→G)− I2k(H→G) = (−1)k

(
n
2

k

)
,

and so

|I2k(G→G)− I2k(H→G)| =
(

n
2

k

)
and

n
2∑

k=1

|I2k(G→G)− I2k(H→G)| =
n
2∑

k=1

(
n
2

k

)
.

Now recall Lemma 4.3.1, which shows that Ii(G→G) − Ii(H→G) = 0 for all odd

i ∈ {1, 2, . . . , n}. This result implies that

n
2∑

k=1

|I2k(G→G)− I2k(H→G)| =
n∑

k=1

|Ik(G→G)− Ik(H→G)|

4.3. Degree Bounds 67

and thus

n∑
k=1

|Ik(G→G)− Ik(H→G)| =
n
2∑

k=1

(
n
2

k

)
.

Therefore,

n∑
k=0

|Ik(G→G)− Ik(H→G)| =
n
2∑

k=1

(
n
2

k

)
+ 1

=

n
2∑

k=0

(
n
2

k

)
= (1 + 1)

n
2

= 2
n
2 .

Definition 4.3.4 Let G be a graph. Then the switching isomorphism class of G,

labelled GG, is the set of graphs K such that V (K) = V (G), K ∼= G, and there exists

a subset U ⊆ V (G) such that K = G> U .

Lemma 4.3.5 (Krasikov [7, Theorem 8]) Let G be a non-VSR graph of order n.

Then |GG| ≥ 2
n
2
−2.

Proof: Let K be any graph isomorphic to G and obtained by switching on some

subset of V (G). By Lemma 1.4.4, G > U = G > (V (G) \ U) for all U ⊆ V (G).

Furthermore, Lemma 1.4.3 shows that if G > U = G > U ′ and U 6= U ′, then

U = V (G) \ U . Therefore, K is counted exactly twice in
n∑

i=0

Ii(G→G). Hence,

n∑
i=0

Ii(G→G) = 2|GG|.

68 4. Vertex-Switch Balance Equations

Since G is not VSR, there is some graph H such that G and H are VSE, but

G 6∼= H. Now Lemma 4.3.2 shows
n∑

i=0

Ii(H→G) =
n∑

i=0

Ii(G→G). Thus we have

2|GG| =
1

2

n∑
i=0

(
Ii(G→G) + Ii(H→G)

)
.

Now for all i ∈ {0, 1, 2, . . . , n}, since Ii(H → G) is non-negative, we have Ii(G→

G) + Ii(H→G) ≥ |Ii(G→G)− Ii(H→G)|. Therefore

2|GG| ≥
1

2

n∑
i=0

|Ii(G→G)− Ii(H→G)|.

Since Lemma 4.3.3 gives
n∑

i=0

|Ii(G→G)− Ii(H→G)| = 2
n
2 ,

we thus have 4|GG| ≥ 2
n
2 , that is, |GG| ≥ 2

n
2
−2 as claimed.

A definition and a brief lemma are now required before moving on to the main

result.

Definition 4.3.6 Let G be a graph with vertex set V , and let v ∈ V . Define

Star(G, v) = (V,E∗), where E∗ = { vw : w ∈ V, vw ∈ E(G) }. That is, Star(G, v) is

the spanning subgraph of G containing all edges of G incident with v (and no other

edges).

Lemma 4.3.7 Let G be a graph with vertex set V , let v ∈ V , and let S be a graph

with vertex set V , all of whose edges are incident with v. Then there exists at most

one graph K ∈ GG such that S = Star(K, v).

Proof: First we show that there exists a unique set U ⊆ V \ {v} such that

S = Star(G> U, v).

We begin by showing existence. Define U ⊆ V \ {v} as follows. For any x ∈

V \ {v}, let:

4.3. Degree Bounds 69

(a) x ∈ U if xv ∈ E(G) and xv 6∈ E(S), or if xv 6∈ E(G) and xv ∈ E(S), and

(b) x 6∈ U if xv ∈ E(G) and xv ∈ E(S), or if xv 6∈ E(G) and xv 6∈ E(S).

Then v 6∈ U and S = Star(G> U, v), as required.

Next, we show uniqueness. Let U ′ ⊆ V \ {v} be such that S = Star(G> U ′, v).

We will show that U = U ′. Take any x ∈ U ′. If xv ∈ E(G), then xv 6∈ E(G>U ′), and

hence xv 6∈ E(S). Thus x ∈ U , by the above definition of U . Similarly, if xv 6∈ E(G),

then xv ∈ E(G> U ′), and hence xv ∈ E(S). Again, it follows that x ∈ U .

Now, take any x ∈ (V \{v})\U ′. If xv ∈ E(G), then xv ∈ E(G>U ′), and hence

xv ∈ E(S). Thus x 6∈ U by the above definition of U . Similarly, if xv 6∈ E(G), then

xv 6∈ E(G> U ′), and hence xv 6∈ E(S). Again, it follows that x 6∈ U .

We conclude that U = U ′; that is, there exists a unique set U ⊆ V \ {v} such

that S = Star(G > U, v). (Note, however, that G > U need not be isomorphic to G;

that is, it may be that G> U 6∈ GG.)

Finally, suppose that there exist K1, K2 ∈ GG such that S = Star(K1, v) =

Star(K2, v). We know there exist U1, U2 ⊆ V such that K1 = G>U1 and K2 = G>U2.

Since G > U1 = G > (V \ U1), we may assume that v 6∈ Ui, for i ∈ {1, 2}. It now

follows from the above that U1 = U2; that is, K1 = K2. Hence there exists at most

one K ∈ GG such that S = Star(K, v).

Now we come to the main result of this section. The best (published) bounds on

the minimum and maximum degree of a non-VSR graph are fairly weak, as we shall

see.

Theorem 4.3.8 (Krasikov [7, Theorem 8]) Let G be a graph of order n, with maxi-

mum degree ∆ and minimum degree δ that satisfy the inequality

min

((
n− 1

∆

)
,

(
n− 1

δ

))
<

1

n
2n/2−2.

70 4. Vertex-Switch Balance Equations

Then G is VSR.

Proof: Suppose G is not VSR. Since there is a vertex of G with degree ∆, every

element of GG (see Definiton 4.3.4) must have a vertex with degree ∆ as well. Fix a

vertex v of G. Consider the elements of GG for which the degree of v is ∆. There are(
n−1
∆

)
distinct sets of ∆ vertices that might be adjacent to v in such a graph. Each

of these sets corresponds to at most one element of GG, by Lemma 4.3.7. Therefore,

there can be at most
(

n−1
∆

)
graphs in GG for which the degree of v is ∆. Then, since

there are n choices for v, there can be at most n
(

n−1
∆

)
elements in GG. Recall that

Lemma 4.3.5 shows |GG| ≥ 2n/2−2. Thus n
(

n−1
∆

)
≥ 2n/2−2, and so

(
n−1
∆

)
≥ 1

n
2n/2−2.

Since

min

((
n− 1

∆

)
,

(
n− 1

δ

))
<

1

n
2n/2−2, (4.3.1)

this means that
(

n−1
δ

)
< 1

n
2n/2−2.

Similarly, there is a vertex of G with degree δ, and so every element of GG must

have a vertex of degree δ as well. Again, fix a vertex v of G. Then there are at

most
(

n−1
δ

)
elements of GG in which vertex v has degree δ. Therefore, since there

are n choices for v, we have
(

n−1
δ

)
≥ 1

n
2n/2−2. But inequality (4.3.1) tells us that(

n−1
δ

)
< 1

n
2n/2−2, which gives us a contradiction. Therefore, G is VSR.

Krasikov [8] also gave bounds on the minimum and maximum degree of a graph

that is not reconstructible from its s-switch deck, for all s, but in the case s = 1 these

bounds are slightly weaker than those of Theorem 4.3.8.

4.4 A Bound on the Number of Automorphisms

The lower bound on the size of the switching isomorphism class of a non-VSR graph

(proven by Lemma 4.3.5) led Krasikov to the degree bounds of Theorem 4.3.8. But

4.4. A Bound on the Number of Automorphisms 71

we can also exploit the switching isomorphism class bound in a different way. The

size of the switching isomorphism class of a graph is a lower bound on the size of the

isomorphism class of the graph. The multiset of n! graphs produced by permuting the

vertices of a graph G of order n in all possible ways can be partitioned into multisets

of identical graphs, each of which contains exactly |Aut(G)| elements. Putting these

facts together yields a weak upper bound on the order of the automorphism group of

G.

Lemma 4.4.1 Let G be a non-VSR graph of order n. Then |Aut(G)| ≤ n!
2n/2−2 .

Proof: First we show that the number of cosets of Aut(G) in Symn is equal

to the number of (labelled) graphs isomorphic to G. For this we define a mapping

Φ : Symn/Aut(G)→ Ξ(G) by Φ(θAut(G)) = θ(G) for all θAut(G) ∈ Symn/Aut(G).

We then show that Φ is a bijection, as follows. If θ(G) = ϕ(G), then ϕ−1θ(G) = G,

and so ϕ−1θ ∈ Aut(G). Thus ϕAut(G) = ϕϕ−1θAut(G) = θAut(G), and so since

θ(G) = ϕ(G) implies θAut(G) = ϕAut(G), we see that Φ is injective. Next, for any

H ∈ Ξ(G), let ϕ be an isomorphism that maps G to H. Then Φ(ϕAut(G)) = ϕ(G) =

H, and so Φ is surjective. Thus Φ is bijective, and therefore the number of cosets of

Aut(G) in Symn is equal to the number of (labelled) graphs isomorphic to G.

Since the index of Aut(G) in Symn is the number of graphs that are isomorphic

to G, i.e., [Symn : Aut(G)] = |Ξ(G)|, Lagrange’s Theorem tells us that |Symn| =

|Ξ(G)| · |Aut(G)|. Therefore, |Ξ(G)| = n!
|Aut(G)| . Since |GG| ≤ |Ξ(G)|, we have

|GG| ≤ n!
|Aut(G)| . Using the result of Lemma 4.3.5, namely |GG| ≥ 2n/2−2, we thus

get 2n/2−2 ≤ n!
|Aut(G)| , and so |Aut(G)| ≤ n!

2n/2−2 .

72 4. Vertex-Switch Balance Equations

Chapter 5

Counting Subgraphs from a Switch

Deck

We now examine a result proven by Ellingham and Royle [5], which states that if G

is a graph of order n, and if k < n
2
, then for any graph K on k vertices, the number

of induced subgraphs of G which are isomorphic to K is reconstructible from SD(G).

This result can then be used to prove that graphs that contain no triangles are VSR.

Using this subgraph counting theorem in an exhaustive search for non-VSR graphs is

computationally expensive, since it would require us to calculate, store, and compare

the counts of each isomorphism class of the subgraphs of each graph. Therefore we

close this chapter with some properties of VSE graphs that are consequences of the

subgraph counting theorem, but are computationally faster to check.

5.1 The Subgraph Switch Matrix

In this section, we define the subgraph switch matrix, which encodes the effect of

vertex switching on induced subgraphs of a graph.

Definition 5.1.1 Let S = (S1, S2, . . . , Sm) be an m-tuple of graphs on a fixed vertex

73

74 5. Counting Subgraphs from a Switch Deck

set. The switch matrix of S (denoted M(S)) is defined by M(S)(i,j) = I1(Sj→Si) for

all i ∈ {1, 2, . . . ,m} and all j ∈ {1, 2, . . . ,m}.

In other words, the (i, j)th entry of a switch matrix counts the number of graphs in

SD(Sj) which are isomorphic to Si.

Lemma 5.1.2 Let k ∈ N, let m be the number of pairwise non-isomorphic graphs

on a fixed set V of k vertices, and let S = (S1, S2, . . . , Sm) be an ordering of the m

pairwise non-isomorphic graphs on V . Then each column sum of the switch matrix

of S is equal to k.

Proof: Consider any j ∈ {1, 2, . . . ,m}. Note that the switch deck of Sj consists

of exactly k members of S (with multiplicities), and so
m∑

i=1

I1(Sj → Si) = k. Since

M(S)(i,j) = I1(Sj→Si), we have
m∑

i=1

M(S)(i,j) = k.

If S is the set of all pairwise non-isomorphic graphs of a given order, and G ∈ S,

then multiplying M(S) on the right by a column vector consisting of a 1 in the

position corresponding to the graph G, and 0 in every other position, produces a

vector (the column of M(S) corresponding to G) whose coordinate corresponding to

a graph H is I1(G → H), that is, µSD(G)(H), for all H ∈ S. Therefore, if M(S)

were invertible, we could reconstruct a graph from its switch deck, thereby solving

the vertex-switching reconstruction problem. Unfortunately we cannot address the

invertibility of this matrix, but we can use it to produce an invertible matrix that

describes something interesting about vertex-switching.

Definition 5.1.3 Let k and n be positive integers with k ≤ n, let m be the num-

ber of pairwise non-isomorphic graphs on a fixed set V of k vertices, and let S =

(S1, S2, . . . , Sm) be an ordering of a set of m pairwise non-isomorphic graphs on

5.2. Reconstructing Subgraph Counts 75

V . Then the subgraph switch matrix of S with respect to n (denoted K(S, n)) is

M(S) + (n− k) · Im, where Im is the identity matrix of order m.

5.2 Reconstructing Subgraph Counts

Consider the following question. Given a graph G on a set of n vertices, pick a subset

of k vertices of G and let Sj be the subgraph of G induced on these k vertices. Looking

at the same subset of k vertices in each of the n switch cards of G, how many of the

n subgraphs of these switch cards which are induced by this set of k vertices belong

to each of the m isomorphism classes of the graphs on k vertices? This question is

answered by the following lemma.

Lemma 5.2.1 Let G be a graph on a vertex set V of size n, let {C1, C2, . . . , Cn} be

the set of switch cards of G, let k be a positive integer with k ≤ n, let m be the number

of non-isomorphic graphs of order k, and let S = (S1, S2, . . . , Sm) be an ordering of

m pairwise non-isomorphic graphs on a set of k vertices. Fix i, j ∈ {1, 2, . . . ,m} and

assume there exists P ⊆ V such that G[P] ∼= Sj. Then K(S, n)(i,j) equals the number

of switch cards C of G such that C[P] ∼= Si.

Proof: Fix v ∈ V and let C = G > v. Then if v 6∈ P , we have C[P] = G[P].

Otherwise C[P] is obtained from G[P] (which is isomorphic to Sj) by switching on a

single vertex (namely, v). There are n − k switch cards of G of the first type since

there are n− k vertices in V (G) \ P . On the other hand, the number of switch cards

C whose induced subgraph C[P] is isomorphic to Si is I1(Sj→ Si). Therefore, the

total number of switch cards whose subgraph induced by P is isomorphic to Si is

equal to I1(Sj→Si) when i 6= j and I1(Sj→Si)+ (n−k) when i = j, that is, is equal

to K(S, n)(i,j) in both cases.

76 5. Counting Subgraphs from a Switch Deck

The previous lemma says that K(S, n)(i,j) gives the number of induced subgraphs

isomorphic to Si in all of the switch cards of G produced by each induced subgraph

of G isomorphic to Sj. For each such Sj, there will be n− k unchanged copies, since

no vertex of Sj is switched on in n − k of the switch cards, and as many will come

from each Sj in G as there are occurrences of Si in the switch deck of Sj.

We now define a few terms that will be of use in subsequent proofs.

Definition 5.2.2 For a proposition P , define

T (P) =

0, if P is false;

1 if P is true.

Definition 5.2.3 Let S and G be graphs. Then the subgraph number of S in G

(denoted Sbg(G,S)) is the number of induced subgraphs of G which are isomorphic

to S.

The following theorem, as well as the subsequent lemma and corollary, were

proven by Ellingham and Royle [5], although the result presented here is less general,

and thus the proofs herein use a somewhat different (and simpler) approach.

Theorem 5.2.4 Let k be a positive integer, and let m be the number of pairwise non-

isomorphic graphs of order k. Let G be a graph of order n. Let S = (S1, S2, . . . , Sm) be

an m-tuple of pairwise non-isomorphic graphs on a set of k vertices such that K(S, n)

is invertible. Then for any Si ∈ S, we can reconstruct Sbg(G,Si) from SD(G).

Proof: Let X be a column vector of dimension m, where Xi = Sbg(G,Si) for all

1 ≤ i ≤ m. Fix i ∈ {1, 2, . . . ,m}. We are going to count the total number of induced

subgraphs of all of the switch cards of G that are isomorphic to Si. On the one hand,

this number (call it A) is obviously equal to
∑

C∈SD(G)

Sbg(C, Si). On the other hand,

we observe that a switch card of G has an induced subgraph isomorphic to Si if and

5.2. Reconstructing Subgraph Counts 77

only if, for some P ⊆ V (G), we have C[P] ∼= Si. Then:

A =
∑

P⊆V (G)

∑
C∈SD(G)

T (C[P] ∼= Si)

=
m∑

j=1

∑
P⊆V (G)

T (G[P] ∼= Sj)
∑

C∈SD(G)

T (C[P] ∼= Si)

=
m∑

j=1

∑
P⊆V (G)

T (G[P] ∼= Sj)K(S, n)(i,j)

=
m∑

j=1

Sbg(G,Sj)K(S, n)(i,j)

=
m∑

j=1

K(S, n)(i,j)Sbg(G,Sj).

Therefore, ∑
C∈SD(G)

Sbg(C, Si) =
m∑

j=1

K(S, n)(i,j)Sbg(G,Sj)

and so

K(S, n) ·X = N ,

where

Ni =
∑

C∈SD(G)

Sbg(C, Si).

Since K(S, n) is assumed to be invertible, we have X = K(S, n)−1N . Now, N is

obtained directly from SD(G), and K(S, n) is independent of G. Hence, for each

order-k graph H we can find Sbg(G,H), the number of induced subgraphs of G that

are isomorphic to H, from SD(G) alone.

The proof of the following lemma is due in part to a theorem that has been

independently proven many times (see [15]), and which is usually referred to as the

Levy-Desplanques Theorem. The Levy-Desplanques Theorem shows that if, for each

78 5. Counting Subgraphs from a Switch Deck

column of a matrix, the sum of the absolute values of the non-diagonal elements is

less than the absolute value of the diagonal element, then the matrix is invertible.

Lemma 5.2.5 Let k and n be positive integers with k < n
2
. Let m be the number

of pairwise non-isomorphic graphs of order k, and let S = (S1, S2, . . . , Sm) be an

ordering of m pairwise non-isomorphic graphs on a set of k vertices. Then K(S, n),

the subgraph switch matrix of S with respect to n, is invertible.

Proof: Recall thatK(S, n) = M(S)+(n−k)·Im. SinceM(S)(i,j) = I1(Sj→Si) for

all i, j, we have that M(S)(i,j) ≥ 0. In particular, this means that K(S, n)(i,i) ≥ n−k.

By the assumption, k < n
2
, whence K(S, n)(i,i) ≥ n− k > k. Since each column sum

in M(S) is k, the column sums of the absolute values of the non-diagonal elements

in K(S, n) are at most k, and hence are strictly less than the absolute values of the

diagonal elements. Symbolically, for all i ∈ {1, 2, . . . ,m}, we have∑
j

j 6=i

|K(S, n)(i,j)| < |K(S, n)(i,i)|. (5.2.1)

Now suppose K(S, n) is not invertible. Then there exists a non-zero vector x such

that K(S, n)x = 0. Let l ∈ {1, 2, . . . ,m} such that |xl| ≥ |xj| for all j ∈ {1, 2, . . . ,m}.

Then
m∑

j=1

K(S, n)(l,j)xj = 0, and thus

|K(S, n)(l,l)||xl| = |K(S, n)(l,l)xl| =
∣∣∣∣∑

j
j 6=l

K(S, n)(l,j)xj

∣∣∣∣.
By the triangle inequality, we get∣∣∣∣∑

j
j 6=l

K(S, n)(l,j)xj

∣∣∣∣ ≤∑
j

j 6=l

|K(S, n)(l,j)xj|,

and since |xj| ≤ |xl| for all j ∈ {1, 2, . . . ,m}, we have∑
j

j 6=l

|K(S, n)(l,j)xj| =
∑

j
j 6=l

|K(S, n)(l,j)||xj| ≤
∑

j
j 6=l

|K(S, n)(l,j)||xl|.

5.2. Reconstructing Subgraph Counts 79

Now bringing this all together, we get

|K(S, n)(l,l)||xl| ≤
∑

j
j 6=l

|K(S, n)(l,j)||xl| = |xl|
∑

j
j 6=l

|K(S, n)(l,j)|,

and so

|K(S, n)(l,l)| ≤
∑

j
j 6=l

|K(S, n)(l,j)| since |xl| 6= 0,

which contradicts Equation (5.2.1). Consequently, K(S, n) is invertible.

Corollary 5.2.6 Let K be a graph of order k, and let G be a graph of order n, where

n > 2k. Then Sbg(G,K) is reconstructible from SD(G).

Proof: Let m be the number of non-isomorphic graphs on k vertices, and let

S = (S1, S2, . . . , Sm) be an m-tuple of pairwise non-isomorphic graphs on a set of

k vertices, where Si = K for some i. From Lemma 5.2.5 we know that K(S, n) is

invertible. Therefore, by Theorem 5.2.4, we can reconstruct Sbg(G,Si) (and hence

Sbg(G,K)) from SD(G).

Corollary 5.2.7 Let G and H be VSE graphs of order ≥ 7 on the same vertex set.

Let K be a graph of order 3. Then Sbg(G,K) = Sbg(H,K).

Proof: Corollary 5.2.6 shows that Sbg(G,K) can be reconstructed from SD(G),

and that Sbg(H,K) can be reconstructed from SD(H). Since G and H are VSE,

SD(G) = SD(H). Therefore Sbg(G,K) = Sbg(H,K).

80 5. Counting Subgraphs from a Switch Deck

5.3 Triangle-Free Graphs

The first use to which we will put our induced subgraph counting result is a proof that

a non-VSR graph must contain at least one set of three mutually adjacent vertices.

First we will need to define a few very simple terms.

Definition 5.3.1 A path of length n in a graph G is a subgraph of G with vertex set

{v1, v2, . . . , vn+1} and edge set { vivi+1 : 1 ≤ i ≤ n }.

Definition 5.3.2 A cycle of length n of a graph G is a subgraph of G consisting of

a path of length n− 1 together with an edge joining the first and last vertex of this

path.

Definition 5.3.3 The complete graph on a set V , denoted K(V), is the graph for

which eK(V)(u, v) = 1 for all u, v ∈ V . Where V is understood, and n = |V |, we may

write simply Kn.

Definition 5.3.4 A graph G is triangle-free if no set of three vertices of G induces

a subgraph isomorphic to K3.

Now we present a short definition which will be used only in the context of the

following two results. However, it significantly simplifies the proofs.

Definition 5.3.5 Let G and H be non-isomorphic VSR graphs, and let v, w ∈ V (G)

be an H-switch pair in G. An edge xy of G is a v, w-balanced edge if x ∈ N1
G(v, w)

and y ∈ N1
G(v, w). An edge xy of G is a v, w-unbalanced edge if one element of {x, y}

is in N0
G(v, w) and the other is in N2

G(v, w).

Note that, in general, an edge of a graph may be neither v, w-balanced nor v, w-

unbalanced, for any switch pair v, w. However, we shall soon see that in a triangle-free

graph G, for every switch pair v, w, every edge of G is either v, w-balanced or v, w-

unbalanced.

5.3. Triangle-Free Graphs 81

The results of this section (below) are due to Ellingham and Royle [5].

Lemma 5.3.6 Let G be a non-VSR triangle-free graph of order n, where n 6= 4.

Then G contains no odd cycles.

Proof: Since G is not VSR, there exists a graph H which is not isomorphic to G

but which is VSE to G. Let v ∈ V (G). By Lemma 3.1.2, there exists some w ∈ V (G)

such that G> v > w ∼= H. Since Lemma 3.2.4 shows that |N2
G(v, w)| > 0, there is at

least one vertex adjacent to both v and w, and so vw 6∈ E(G) since G is triangle-free.

Let xy be any edge of G with neither endpoint in {v, w}. Then x and y cannot

both be in NG(v) or NG(w) since G is triangle-free. Observe that, by Theorem 2.5.3,

since G is non-VSR, we have n ≡ 0 (mod 4), and since n 6= 4, we have n ≥ 8. Now we

can apply Corollary 5.2.7, which tells us that the number of induced subgraphs of G

isomorphic toK3 must equal the number of induced subgraphs ofH isomorphic toK3,

since the order of K3 is less than half of the order of G, and G and H have isomorphic

switch decks. Therefore, H is triangle-free. This means that x and y cannot both be in

NG(v) or in NG(w), since otherwise the subgraph of G>v>w induced by {v, x, y} or

{w, x, y} would be isomorphic to K3. Thus, if x ∈ N2
G(v, w), then y ∈ N0

G(v, w), and

if x ∈ N0
G(v, w), then y ∈ N2

G(v, w). Furthermore, if x ∈ N1
G(v, w), then y ∈ N1

G(v, w).

Therefore, xy is either a v, w-balanced edge or a v, w-unbalanced edge. Furthermore,

the endpoints of a v, w-balanced edge are each adjacent to distinct members of {v, w},

since G is triangle-free.

Let P be a path in G that includes neither v nor w. Then P must consist entirely

of v, w-balanced and v, w-unbalanced edges. Let z be a vertex of P . If z ∈ N j
G(v, w),

where j = 0 or 2, then the edges of P incident with z are v, w-unbalanced edges.

In this case, the other endpoints of these two edges must be in N2−j
G (v, w). Thus,

the vertices along P alternate between members of the disjoint sets N0
G(v, w) and

N2
G(v, w). If z ∈ N1

G(v, w), then the edges of P incident with z are v, w-balanced

edges, and the other endpoints of these edges must be adjacent to the member of

82 5. Counting Subgraphs from a Switch Deck

{v, w} which is not adjacent to z. Therefore, the vertices along P alternate between

members of the disjoint sets NG(v) \NG(w) and NG(w) \NG(v).

Now consider any cycle C of G of length k which does not contain v or w. If we

remove an arbitrary edge of C we are left with a path of length k − 1. Therefore if

k is odd, the first and last vertices of this path will be adjacent to the same subset

of {v, w}. However, these vertices are adjacent in C, which is impossible, and so k

must be even. Therefore if G contains a cycle C of odd length, then C must contain

either v or w. Without loss of generality, assume C contains v. Then, since v was an

arbitrarily chosen vertex, C must contain every vertex of G, and so C has length n.

But n is even, which is impossible since C has odd length. Therefore, G contains no

cycle of odd length.

Theorem 5.3.7 Let G be a triangle-free graph of order n, where n 6= 4. Then G is

VSR.

Proof: Suppose G is not VSR. Then there is a graph H which is VSE to G but

is not isomorphic to G.

Take any vertex v ∈ V (G) and let w be an H-switch partner of v in G. (Such

a vertex must exist by Lemma 3.1.2.) We begin by showing that all edges of G with

neither endpoint in {v, w} must be either v, w-balanced edges or v, w-unbalanced

edges. Suppose, to the contrary, that there is a pair of vertices x, y 6∈ {v, w} that

are adjacent in G but that fall into one of the following categories (without loss of

generality):

(1) x ∈ N1
G(v, w) and y ∈ N0

G(v, w),

(2) x ∈ N1
G(v, w) and y ∈ N2

G(v, w),

(3) x ∈ N0
G(v, w) and y ∈ N0

G(v, w), or

5.3. Triangle-Free Graphs 83

(4) x ∈ N2
G(v, w) and y ∈ N2

G(v, w).

In cases (2) and (4), a subgraph of G induced by x, y, and a member of {v, w} that

is adjacent to x in G is a triangle, which is impossible since G is triangle-free. Now

let K = G> v > w. Since K and G are VSE, and G is triangle-free, Corollary 5.2.7

shows that K is triangle-free as well. But in cases (1) and (3), K contains a triangle

which is induced by x, y, and an element of {v, w} that is not adjacent to x in G.

Therefore all four cases are impossible, and so every edge of G with neither endpoint

in {v, w} is either a v, w-balanced edge or a v, w-unbalanced edge.

Next, we show that G has no v, w-balanced edges. Let z ∈ N2
G(v, w). (Such a

vertex must exist by part (ii) of Lemma 3.2.4.) First, note that eG(v, w) = 0, since

otherwise G[{v, x, z}] would be isomorphic to K3, contradicting the assumption of

the theorem. Now suppose there exists a v, w-balanced edge xy in G. Without loss

of generality, we have x ∈ NG(v) \NG(w) and y ∈ NG(w) \NG(v), and so z 6∈ {x, y}.

Then (z, v, x, y, w) is a cycle of odd length in G, which is impossible by Lemma 5.3.6.

Therefore, for every H-switch pair {v, w}, no v, w-balanced edges exist in G.

Next, suppose that, for every choice of an H-switch pair {v, w}, both NG(v) \

NG(w) and NG(w) \ NG(v) are empty. Then V (G) = N0
G(v, w) ∪ N2

G(v, w) ∪ {v, w},

and so |N0
G(v, w)| + |N2

G(v, w)| + 2 = n. Since |N0
G(v, w)| = |N2

G(v, w)|, we have

|N2
G(v, w)| = n−2

2
. Now since NG(v) \ NG(w) = ∅, and eG(v, w) = 0, this implies

dG(v) = |N2
G(v, w)|, and so dG(v) = n−2

2
for all v ∈ V (G). Therefore G is regular,

and, by Lemma 3.4.6, is therefore VSR, which contradicts our supposition that G is

not VSR.

Thus there exists some v ∈ V (G) such that, for some H-switch partner w of v

in G, we have (without loss of generality) NG(v) \ NG(w) 6= ∅. Let x be a vertex in

N1
G(v, w). Suppose there is some vertex y 6∈ {v, w} that is adjacent to x in G. We

have previously shown that the edge xy must be a v, w-unbalanced edge. However,

this is impossible, since x ∈ N1
G(v, w). Therefore, every vertex in N1

G(v, w) (which

84 5. Counting Subgraphs from a Switch Deck

contains NG(v) \ NG(w)) has degree 1 in G. Now suppose b ∈ NG(v) \ NG(w).

Then by Lemma 3.1.2, vertex b has an H-switch partner c in G, where c 6= b, and

dG(b) + dG(c) = n − 2 + 2eG(b, c). However, eG(b, c) = 0 as shown above. Since

dG(b) = 1, we have dG(c) = n − 3. Therefore, c is adjacent to all but one vertex

of V (G) \ {b, c} in G. Let d be this vertex. Suppose c = w. Then c is adjacent

to all vertices of V (G) \ {b, v, c} (since vw 6∈ E(G)), and so N2
G(b, c) = ∅, which

contradicts Lemma 3.2.4. Therefore, c 6= w. Suppose d = v or d = w. Then we have

c ∈ N1
G(v, w), and thus dG(c) = 1, a contradiction. Therefore d 6∈ {v, w}, and so d is

the only vertex in N0
G(b, c).

Recall that all the edges of G are v, w-unbalanced edges or edges with exactly

one endpoint in {v, w}. Since {b, c} is also an H-switch pair in G, there are also no

b, c-balanced edges. This means that every edge not incident with b or cmust have one

endpoint in N0
G(b, c), and the other endpoint in N2

G(b, c). However, N0
G(b, c) = {d},

and N2
G(b, c) = {v}. Therefore, all edges of G are edges incident with b (which can

only be bv), edges incident with c, and possibly dv. Now let J = G> b> c, and define

a permutation ϕ on V (G) by ϕ(b) = c, ϕ(c) = b, ϕ(v) = d, ϕ(d) = v, and ϕ(x) = x

for all x ∈ V (G) \ {b, c, d, v}. We shall show that ϕ is an isomorphism from G to J .

Observe that eϕ(G)(b, x) = eG(c, x) = 1 = eJ(b, x) and eϕ(G)(c, x) = eG(b, x) = 0 =

eJ(c, x), for all x ∈ V (G) \ {b, c, d, v}. Next, observe that eϕ(G)(v, x) = eG(d, x) =

0 = eJ(v, x) and eϕ(G)(d, x) = eG(v, x) = 0 = eJ(d, x), for all x ∈ V (G) \ {b, c, d, v}.

Finally, note the following.

eϕ(G)(b, v) = eG(c, d) = 0 = eJ(b, v)

eϕ(G)(b, c) = eG(c, b) = eG(b, c) = eJ(b, c)

eϕ(G)(b, d) = eG(c, v) = 1 = eJ(b, d)

eϕ(G)(c, v) = eG(b, d) = 0 = eJ(c, v)

eϕ(G)(c, d) = eG(b, v) = 1 = eJ(c, d)

5.4. Efficient Subgraph Counting 85

eϕ(G)(v, d) = eG(d, v) = eJ(v, d).

Therefore, eϕ(G)(x, y) = eJ(x, y) for all x, y ∈ V (G), and so ϕ is an isomorphism from

G to J . However, J is isomorphic to H (since b and c are an H-switch pair), but H is

not isomorphic to G. This contradiction shows that G is VSR, and thus triangle-free

graphs of order 6= 4 are VSR.

Definition 5.3.8 The edgeless graph on a vertex set V , denoted E(V), is the graph

for which eE(V)(u, v) = 0 for all u, v ∈ V . Where V is understood, and n = |V |, we

may write simply En.

Corollary 5.3.9 Let G be a graph of order n, where n 6= 4, such that no induced

subgraph of G is isomorphic to E3. Then G is VSR.

Proof: Suppose G is not VSR. Then there is some H which is VSE to G and

for which H 6∼= G. Then G and H are non-isomorphic. By Lemma 1.4.10, G and H

are VSE as well. Thus G is not VSR. Then, by Theorem 5.3.7, there is some set of

three vertices of G which induces a subgraph of G isomorphic to K3. These same

three vertices induce a subgraph of G that is isomorphic to E3, which contradicts the

assumption on G. Therefore, G is VSR.

5.4 Efficient Subgraph Counting

Corollary 5.2.6 provides a useful necessary condition for a graph G to be non-VSR

(namely that the number of induced subgraphs of G isomorphic to a given subgraph

whose order is less than half of the order of G can be reconstructed from SD(G)).

86 5. Counting Subgraphs from a Switch Deck

However, when conducting a search for non-VSR graphs, the result as stated is com-

putationally expensive to check for a given G, since we must create a candidate

non-isomorphic VSE graph H and compare the number of induced subgraphs of each

isomorphism class between G and H. The following results provide a less expensive

method for checking this condition, and are used in the search algorithm presented

in Chapter 6.

Definition 5.4.1 Let G be a graph on a vertex set V , and v, w ∈ V . Furthermore,

let S be a graph. Define Sbg(G,S,+v,−w) to be the number of induced subgraphs

of G that are isomorphic to S and that contain v but not w in their vertex set, i.e.,

Sbg(G,S,+v,−w) = |{P : P ⊆ V (G) \ {w}, G[P] ∼= S, and v ∈ P }|.

Then, similarly, define the following:

Sbg(G,S,+v,+w) = |{P : P ⊆ V (G), G[P] ∼= S, and {v, w} ⊆ P }|

Sbg(G,S,−v,−w) = |{P : P ⊆ V (G), G[P] ∼= S, and v, w 6∈ P }|.

Lemma 5.4.2 Let S be a graph. Let G and H be VSE graphs on the same vertex set

V , with |V (S)| < 1
2
|V |. Let v, w ∈ V be an H-switch pair in G with v 6= w, and let

K = G> v > w. Then

Sbg(G,S,+v,−w) + Sbg(G,S,+w,−v) + Sbg(G,S,+v,+w)

= Sbg(K,S,+v,−w) + Sbg(K,S,+w,−v) + Sbg(K,S,+v,+w).

Proof: From Corollary 5.2.6, we know that Sbg(G,S) = Sbg(H,S). Since K ∼= H,

we also know that Sbg(K,S) = Sbg(H,S), which means Sbg(G,S) = Sbg(K,S).

Since

Sbg(G,S) = Sbg(G,S,−v,−w) + Sbg(G,S,+v,−w)

5.4. Efficient Subgraph Counting 87

+ Sbg(G,S,+w,−v) + Sbg(G,S,+v,+w),

and Sbg(G,S) = Sbg(H,S) = Sbg(K,S), we have

Sbg(G,S,−v,−w) + Sbg(G,S,+v,+w) + Sbg(G,S,+w,−v) + Sbg(G,S,+v,+w)

= Sbg(K,S,−v,−w) + Sbg(K,S,+v,−w) + Sbg(K,S,+w,−v) + Sbg(K,S,+v,+w).

Note however thatK is obtained by switching only on vertices v and w in G. Hence all

induced subgraphs of G that include neither v nor w are unaffected by these switches.

Symbolically, Sbg(G,S,−v,−w) = Sbg(K,S,−v,−w). Thus we are left with

Sbg(G,S,+v,−w) + Sbg(G,S,+w,−v) + Sbg(G,S,+v,+w)

= Sbg(K,S,+v,+w) + Sbg(K,S,+w,+v) + Sbg(K,S,+v,+w).

Lemma 5.4.3 Let G and H be VSE graphs on the same vertex set V , with |V | ≥ 7.

Let v, w ∈ V (G) be an H-switch pair in G with v 6= w, and let K = G> v>w. Then

Sbg(K,E3,+v,+w) = Sbg(G,E3,+v,+w).

Proof: Suppose vw ∈ E(G). Then vw ∈ E(K). Thus Sbg(G,E3,+v,+w) = 0 =

Sbg(G,E3,+v,+w).

Now suppose vw 6∈ E(G). Then vw 6∈ E(K). Therefore, Sbg(G,E3,+v,+w) =

|N0
G(v, w)|, and Sbg(K,E3,+v,+w) = |N0

K(v, w)|. But N0
G(v, w) = N2

K(v, w), and

|N2
K(v, w)| = |N0

K(v, w)| by part (i) of Lemma 3.2.4. Thus |N0
G(v, w)| = |N0

K(v, w)|,

and so in all cases, Sbg(K,E3,+v,+w) = Sbg(G,E3,+v,+w).

88 5. Counting Subgraphs from a Switch Deck

Lemma 5.4.4 Let G and H be VSE graphs on the same vertex set V , with |V | ≥ 7.

Let v, w ∈ V (G) be an H-switch pair in G with v 6= w, and let K = G> v>w. Then

Sbg(K,K3,+v,+w) = Sbg(G,K3,+v,+w).

Proof: Suppose vw 6∈ E(G). Then vw 6∈ E(K). Thus Sbg(G,K3,+v,+w) = 0 =

Sbg(G,K3,+v,+w).

Now suppose vw ∈ E(G). Then vw ∈ E(K). Therefore, Sbg(G,K3,+v,+w) =

|N2
G(v, w)|, and Sbg(K,K3,+v,+w) = |N2

K(v, w)|. But N2
G(v, w) = N0

K(v, w), and

|N0
K(v, w)| = |N2

K(v, w)| by part (i) of Lemma 3.2.4. Thus |N2
G(v, w)| = |N2

K(v, w)|,

and so in all cases, Sbg(K,K3,+v,+w) = Sbg(G,K3,+v,+w).

Lemma 5.4.5 Let G and H be VSE graphs on the same vertex set V , with |V | ≥ 7.

Let v, w ∈ V (G) be an H-switch pair in G with v 6= w. Then Sbg(G,K3,+v,−w) +

Sbg(G,K3,+w,−v) is equal to the number of edges of G with neither endpoint in

NG(v)∪{v, w} plus the number of edges of G with neither endpoint in NG(w)∪{v, w}.

Proof: Let K = G> v > w. From Lemma 5.4.2 we get

Sbg(G,K3,+v,−w) + Sbg(G,K3,+w,−v) + Sbg(G,K3,+v,+w)

= Sbg(K,K3,+v,−w) + Sbg(K,K3,+w,−v) + Sbg(K,K3,+v,+w).

Then since Lemma 5.4.4 tells us that Sbg(K,K3,+v,+w) = Sbg(G,K3,+v,+w), we

get

Sbg(G,K3,+v,−w) + Sbg(G,K3,+w,−v)

= Sbg(K,K3,+v,−w) + Sbg(K,K3,+w,−v).

Let T be the set of all three-vertex subsets {T1, T2, . . . , Tk} of V such that K[Ti] ∼= K3

and v ∈ Ti and w 6∈ Ti for all Ti ∈ T . Clearly, |T | = Sbg(K,K3,+v,−w). Then

for every Ti ∈ T , the induced subgraph G[Ti] contains exactly one edge, which joins

5.4. Efficient Subgraph Counting 89

the two vertices of Ti \ {v}. Conversely, for any subset of three vertices {v, x, y} of

V where w 6∈ {x, y} and G[{v, x, y}] contains only one edge, namely xy, we have

K[{v, x, y}] ∼= K3. Therefore, |T | is equal to the number of edges of G with neither

endpoint in NG(v) ∪ {v, w}, and this equals Sbg(K,K3,+v,−w).

By a similar argument, Sbg(K,K3,+w,−v) is equal to the number of edges

of G with neither endpoint in NG(w) ∪ {v, w}. Therefore, Sbg(G,K3,+v,−w) +

Sbg(G,K3,+w,−v) is equal to the number of edges of G with neither endpoint in

NG(v)∪{v, w} plus the number of edges of G with neither endpoint in NG(w)∪{v, w}.

Lemma 5.4.6 Let G and H be VSE graphs on the same set V of vertices, with

|V | ≥ 7. Let v, w ∈ V (G) be distinct H-switch partners of each other in G, and

let K = G > v > w. Then Sbg(G,E3,+v,−w) + Sbg(G,E3,+w,−v) is equal to the

number of pairs of non-adjacent vertices of NG(v) \ {w} plus the number of pairs of

non-adjacent vertices of NG(w) \ {v}.

Proof: From Lemma 5.4.2 we get

Sbg(G,E3,+v,−w) + Sbg(G,E3,+w,−v) + Sbg(G,E3,+v,+w)

= Sbg(K,E3,+v,−w) + Sbg(K,E3,+w,−v) + Sbg(K,E3,+v,+w).

Then since Lemma 5.4.3 tells us that Sbg(K,E3,+v,+w) = Sbg(G,E3,+v,+w), we

get

Sbg(G,E3,+v,−w) + Sbg(G,E3,+w,−v)

= Sbg(G,E3,+v,−w) + Sbg(G,E3,+w,−v).

Let U be the set of all three-vertex subsets {U1, U2, . . . , Uk} of V such thatK[Ui] ∼= E3,

v ∈ Ui, and w 6∈ Ui for all Ui ∈ U . Clearly, |U| = Sbg(K,E3,+v,−w). Then for every

90 5. Counting Subgraphs from a Switch Deck

Ui ∈ U , the induced subgraph G[Ui] contains exactly two edges, both of which have

an endpoint at v. Conversely, for any subset of three vertices {v, x, y} of V where

w 6∈ {x, y} and G[{v, x, y}] contains exactly two edges, namely vx and vy, we have

K[{v, x, y}] ∼= E3. Therefore, |U| is equal to the number of pairs of non-adjacent

vertices of NG(v) \ {w}, and this equals Sbg(K,E3,+v,−w).

By a similar argument, Sbg(K,E3,+w,−v) is equal to the number of pairs of

non-adjacent vertices of NG(w) \ {v}. Therefore,

Sbg(G,E3,+v,−w) + Sbg(G,E3,+w,−v)

is equal to the number of pairs of non-adjacent vertices of NG(v) \ {w} plus the num-

ber of pairs of non-adjacent vertices of NG(w) \ {v}.

5.5 Related Results

Ellingham [4] has generalized Corollary 5.2.6 by showing that, if νK < νG

2
, then

Sbg(G,K) is reconstructible from SDs(G) for all values of s, if the Krawtchouk poly-

nomial

pn
s (x) =

s∑
i=0

(−1)i

(
x

i

)(
n− x
s− i

)
has no even roots in the interval [0, νK].

Chapter 6

Searching For Non-VSR Graphs

In this chapter, we are concerned with efficiently searching for a non-VSR graph with

a certain number of vertices. We know from Theorem 2.5.3 that we need only search

for graphs whose order is divisible by 4, and the 4-vertex graphs have already been

placed into switch equivalence classes (see Figure 1.3). Therefore our search need

only begin with graphs on 8 vertices (of which there are 12,346 isomorphism classes),

and may continue with graphs on 12 vertices (of which there are 165,091,172,592

isomorphism classes).

We perform an efficient search for a non-VSR graph by generating a represen-

tative of each isomorphism class of the set of all graphs of the desired order and

then checking each candidate for various necessary conditions, in increasing order

of algorithmic complexity. Then we compare the switch deck of each graph G that

satisfies all of these conditions to the switch decks of all graphs that can be obtained

by switching suitable pairs of vertices of G. If switching on a pair of vertices of a

graph G produces a graph H with G 6∼= H and SD(G) ∼= SD(H), then that graph is

not VSR.

The set of all non-isomorphic graphs of the desired order is generated using Bren-

dan McKay’s program geng, which is part of the nauty package [12]. Lemma 1.4.10

91

92 6. Searching For Non-VSR Graphs

states that if G and H are VSE then G and H are VSE as well. Therefore, if G is

VSR then G is VSR as well, and so we need only check one of G or G for vertex-

switch reconstructibility. This means that we need not check any graph G for which

εG > 1
4
νG(νG − 1). We also have a lower bound on the number of edges of G, as

provided by Theorem 4.2.3. Thus we need only search graphs whose number of edges

lies in the interval (1
8
ν2

G + 1
4
νG− 2, 1

4
νG(νG− 1)). This can be accomplished by means

of a geng command-line parameter, namely, “<lb>:<ub>”, where <lb> and <ub> are

the lower bound and upper bound on εG, respectively.

Similarly, Theorem 3.4.4 shows that disconnected graphs are VSR. A command-

line switch provided by geng (namely “-c”) allows us to generate only connected

graphs.

6.1 The geng Pruning Routine

The geng program can be configured to call a user-written “pruning” routine, which

can suppress the output of any undesirable graphs. In our case, we will also use

this routine to output a list of the potential switch partners for a chosen vertex of

each graph which passes all of the easily computable necessary conditions. We now

examine these necessary conditions in detail.

Lemma 3.1.2 gives us a fairly simple criterion for excluding a large number of

graphs from the search, based solely on their degree sequence. If G is a non-VSR

graph, then there must be a graph H which is VSE to G, such that any H-switch

partner w of v in G must have dG(v) + dG(w) = νG − 2 + 2eG(v, w). Note that this

condition is independent of H. The following algorithm checks for this condition and

stores all potential H-switch partners of each vertex in an array.

Algorithm 6.1.1 Finding Potential Switch Partners

Input: G: the graph to check.

6.1. The geng Pruning Routine 93

Output: P []: an array of sets of potential switch partners of each vertex.

for v ∈ V (G) do

P [v] = ∅

for w ∈ V (G) \ {v} do

if dG(v) + dG(w) = νG − 2 + 2eG(v, w) then

P [v] = P [v] ∪ {w}

end if

next w

next v

Once we have this set of potential switch partners, we can use other results to

eliminate elements from this set.

Condition 1. We can eliminate pairs {v, w} where |N0
G(v, w)| = 0 because of

Part (ii) of Lemma 3.2.4.

Condition 2. We can eliminate any potential switch pair which fails the condi-

tion specified in Lemma 3.3.2; namely, that the vertices of N0
G(v, w) are in one-to-one

correspondence with the vertices of N2
G(v, w) such that the degree of each element of

N0
G(v, w) is 2 less than the degree of the corresponding element of N2

G(v, w). More

precisely, we check that 〈 dG(x) + 2 : x ∈ N0
G(v, w) 〉 = 〈 dG(x) : x ∈ N2

G(v, w) 〉.

Condition 3. For each potential H-switch pair {v, w} in G, we can add the

number of triangles in G that include v but not w to the number of triangles that

include w but not v. Then by Lemma 5.4.5, this number must equal the number of

edges of G with both endpoints in NG(v) \ {w} plus the number of edges of G with

both endpoints in NG(w) \ {v}. Similarly, Lemma 5.4.6 tells us that the number of

non-adjacent pairs of vertices of NG(v) \ {w} plus the number of non-adjacent pairs

of vertices of NG(w) \ {v} must equal the number of non-adjacent pairs of vertices of

94 6. Searching For Non-VSR Graphs

NG(v) \ {w} plus the number of non-adjacent pairs of vertices of NG(w) \ {v}. Any

potential switch pair that fails either of these tests is discarded.

Condition 4. For each potential switch pair {v, w}, we can create the graph

H = G> v > w. Then if νG ≥ 9, Lemma 5.4.2 tells us that for each of the 11 graphs

of order 4 that are unique up to isomorphism, we can require the number of induced

subgraphs of G that are isomorphic to the order-4 graph that contain at least one of

v and w to be equal to the number of induced subgraphs of H that are isomorphic to

the order-4 graph that contain at least one of v and w. We then discard any switch

pair that fails this test.

Since part (i) of Lemma 3.1.2 states that all vertices of our graph must have at

least one switch partner, if we find even one vertex with no possible switch partner,

we can stop examining G and declare it to be VSR. For the sake of efficiency, we

start the search with the vertex that has the fewest potential switch partners, since

a smaller set of vertices is more likely to be eliminated quickly than a larger set.

Once we have pared down the list of potential H-switch pairs to those that pass

each of the above tests, if the graph has at least one remaining potential switch

partner for each vertex, then it is output for further testing, along with a list of all

potential switch partners for a chosen vertex. (The chosen vertex is one with the

minimum number of potential switch partners.)

Algorithm 6.1.2 CannotBeSwitchPartners(G, v, w, G4[11])

Input: G : the graph in question.

v, w: a potential switch pair.

G4[11]: an array, indexed by order-4 graph, of the number of induced subgraphs of G

isomorphic to the indexing graph. Initially (i.e. during the first call to this routine

for a given graph), G4[0] = −1, indicating that the count has not yet been taken.

Output: R[4]: an array of boolean values, indexed by condition number, indicating

whether the test for each condition has failed. If any element of this array is true,

6.1. The geng Pruning Routine 95

then v and w cannot be a switch pair.

R[1], R[2], R[3], R[4]← false

// Check for Condition 1.

N0 ← 0

DS0, DS2 ← ∅

for x ∈ V (G) \ {v, w} do

if eG(v, x)eG(w, x) = 1 then

DS2 ← DS2 ∪ {dG(x)}

else if eG(v, x) + eG(w, x) = 0 then

DS0 ← DS0 ∪ {dG(x) + 2}

N0 ← N0 + 1

end if

next x

if N0 = 0 then

R[1]← true

end if

// Check for Condition 2.

if DS2 6= DS0 then

R[2]← true

end if

// Check for Condition 3.

// Each of the following 4 variables counts the number of induced

subgraphs of G that contain exactly one element of {v, w},

96 6. Searching For Non-VSR Graphs

and that have only the specified edge(s).

// T3 counts those with 3 edges.

// V3 counts those with 2 edges, both incident with the elt of {v, w}.

// E3 counts those with no edges.

// I3 counts those with 1 edge, not incident with the element of {v, w}.

T3, V3, E3, I3 ← 0

for x ∈ {v, w} do

for a, b ∈ V (G) \ {v, w} do

if eG(x, a) · eG(x, b) · eG(a, b) = 1 then

T3 ← T3 + 1

else if eG(x, a) · eG(x, b) · (1− eG(a, b)) = 1 then

V3 ← V3 + 1

else if eG(x, a) + eG(x, b) + eG(a, b) = 0 then

E3 ← E3 + 1

else if eG(x, a) + eG(x, b)− eG(a, b) = −1 then

I3 ← I3 + 1

end if

next a, b

next x

if T3 6= I3 or E3 6= V3 then

R[3]← true

end if

// Check for condition 4.

Count4Subgraphs(G,G4)

H ← G> v > w

Count4Subgraphs(H,H4)

6.1. The geng Pruning Routine 97

if G4 6= H4 then

R[4]← true

end if

Algorithm 6.1.3 Count4Subgraphs(G, G4[11])

Input: G : the graph in question.

Output: G4[11]: an array, indexed by order-4 graph, of the number of induced sub-

graphs of G isomorphic to the indexing graph.

// Store the degree sequence of each isom class of the order-4 graphs.

A4[0]← 〈0, 0, 0, 0〉; A4[1]← 〈0, 0, 1, 1〉; A4[2]← 〈0, 1, 1, 2〉; A4[3]← 〈1, 1, 1, 1〉

A4[4]← 〈0, 2, 2, 2〉; A4[5]← 〈1, 1, 2, 2〉; A4[6]← 〈1, 1, 1, 3〉; A4[7]← 〈2, 2, 2, 2〉

A4[8]← 〈1, 2, 2, 3〉; A4[9]← 〈2, 2, 3, 3〉; A4[10]← 〈3, 3, 3, 3〉

G4[]← 0

for i, j, k, l ∈ V (G) do

di ← eG(i, j) + eG(i, k) + eG(i, l)

dj ← eG(j, i) + eG(j, k) + eG(j, l)

dk ← eG(k, i) + eG(k, j) + eG(k, l)

dl ← eG(l, i) + eG(l, j) + eG(l, k)

n← h such that A4[h] = 〈di〉] 〈dj〉] 〈dk〉] 〈dl〉

G4[n]← G4[n] + 1

end do

Note that G and H are two graphs on 4 vertices with the same degree sequence

if and only if G ∼= H, and so here we may safely compare degree sequences rather

than entire graphs.

98 6. Searching For Non-VSR Graphs

6.2 The IsVSR Program

The output of geng, when run with the above pruning algorithm, is a list of potentially

non-VSR graphs, along with, for each such graph, a designated vertex and a list of all

its potential switch partners. The following algorithm creates, for each input graph

G and its designated vertex v, each graph H formed by switching on v and one of

its listed potential switch partners. Then for each such H, if H 6∼= G then the switch

deck of H is compared to the switch deck of G. This is done by successively pairing

an unpaired element C of SD(G) with an unpaired element S of SD(H) such that

C ∼= S, until no more such pairings are possible. Then the number of such pairings is

output, along with a description of G and H. If the number of pairings is the same

as the order of G for some H, then G is not VSR.

Note that this algorithm was designed for clarity rather than speed, since, as will

be seen in the following section, it only needs to be executed a very small number of

times.

Algorithm 6.2.1 IsVSR(G, P [])

Inputs: G : the graph in question.

v: the designated vertex.

P : a set of potential switch partners of v.

Output: for each pair {v, w} where w ∈ P :

G: the input graph

H: G> v > w

I: true if and only if G ∼= H

N : the number of pairings of SD(G) and SD(H), whenever I = false, or 0 otherwise.

for w ∈ P do

N ← 0

6.3. Search Results 99

H ← G> v > w

if G ∼= H then

I ← true

else

I ← false

S ← SD(H)

for each C ∈ SD(G)

if ∃ S ∈ S such that S ∼= C then

S ← S \ {S}

N ← N + 1

end if

next C

end if

output N

next w

6.3 Search Results

The geng program was run for νG = 8 and νG = 12.

The following command line was used for the νG = 8 case.

gengvsr2 -c 8 8:14

Here, the “-c” instructs geng to produce only connected graphs; the “8” is the

order of the desired graphs, and the “8:14” specifies the lower and upper bound on

the number of edges.

In this case, 5827 graphs were examined, and of these, 2065 had at least one

potential switch partner for every vertex (such that dG(v)+dG(w) = ν−2+2eG(v, w)).

100 6. Searching For Non-VSR Graphs

Conditions passed # of graphs

1 1493

2 380

1 and 2 53

3 407

1 and 3 67

2 and 3 380

1, 2, and 3 53

Table 6.1: Results of gengvsr2 for order-8 graphs.

The output consisted of 53 graphs, with an aggregate set of 92 potential switch pairs.

Table 6.1 gives the number of graphs that passed each combination of conditions.

When these 53 graphs were passed as input to IsVSR, the result was that no

graphs had 8 pairings. The highest number of pairings was 5, which occurred in 10

different cases.

The following (DOS) command line was used for the νG = 12 case.

for /L %I in (0,1,999) do

gengvsr2 -c 12 19:33 %I/1000 >gengvsr2_12_\%I.out

This split up the search into 1000 roughly equal pieces. (The “n/1000” command

line switch is a feature of geng.) The entire search took roughly 130 hours of CPU

time on an Intel 6320 processor running at 1.86 GHz, and examined 89, 530, 434, 985

graphs. The program produced 177 graphs, with an aggregate set of 272 potential

switch pairs. Table 6.2 gives the number of order-12 graphs that passed each combi-

nation of conditions.

Note that, as shown in Tables 6.1 and 6.2, Condition 3 eliminates no graphs of

order 8 or 12 that Condition 2 does not. It seems likely that this is true for graphs

6.3. Search Results 101

Conditions passed # of graphs

1 18,595,858,307

2 3,243,322

1 and 2 1,208,103

3 7,364,622

1 and 3 3,452,237

2 and 3 3,243,322

1, 2, and 3 1,208,103

4 29,166

1 and 4 177

2 and 4 29,118

1, 2, and 4 177

3 and 4 29,166

1, 3, and 4 177

2, 3, and 4 29,118

1, 2, 3, and 4 177

Table 6.2: Results of gengvsr2 for order-12 graphs.

102 6. Searching For Non-VSR Graphs

Switch cards in common # of switch pairs

2 9

3 27

4 34

5 15

6 10

7 0

8 7

Table 6.3: Results of IsVSR for order-12 graphs.

of any order.

When these results were passed as input to IsVSR, the results were as follows.

In 170 cases, the graph produced by switching on the potential switch pair was iso-

morphic to the original graph. The other 102 cases are described in Table 6.3. In

no cases were there 12 switch cards in common between the switch decks of the two

graphs.

Assuming the program correctness of geng, of the pruning extensions to geng

implemented in gengvsr2, and of IsVSR, the results of these searches show that if G

is a non-VSR graph with νG 6= 4, since νG ≡ 0 (mod 4), then νG ≥ 16.

Chapter 7

Conclusion

Over the past 25 years, a number of results have been proven about the vertex-

switching reconstruction problem, but the question is still far from being solved. In

terms of the number of graphs shown to be VSR, Stanley’s result (a graph is VSR

if its order is not divisible by four) is still by far the most significant. Disconnected

graphs, triangle-free graphs, and regular graphs have also been shown to be VSR, but

these classes represent very few graphs (for example, of the graphs of order 12, these

classes taken together account for less than 0.7% of the total [13]).

Other results have shed light on the structure of a non-VSR graph of order > 4

(should such a graph exist), and might be useful in proving the non-existence of such

graphs. The most significant among these is the fact that each vertex of such a graph

G is a member of at least one switch pair (i.e., a pair of vertices which, when switched

on in G, produce a graph which is isomorphic to some particular graph which has

the same switch deck as G). The fact that the number of induced subgraphs of a

graph G that are isomorphic to another graph S can be gleaned from G’s switch deck

(provided νS < νG/2) appears to be sufficient to show a large number of graphs to be

VSR, based on the results of the computer search presented here.

The contributions of this thesis, apart from the clarification (and in some cases

103

104 7. Conclusion

simplification) of the published literature, include an improved bound on the number

of edges in a non-VSR graph, the first known bound on the order of the automorphism

group of a non-VSR graph, and an enumerative computer verification that all graphs

of order 8 or 12 are VSR. A few new structural results were proven as well. Given

a switch pair {v, w} in a non-VSR graph G, we know that adding 2 to the degree of

each vertex that is adjacent to neither vertex of the switch pair produces the multiset

of degrees of the vertices adjacent to both vertices of the switch pair. We also know

that the multiset of degrees of neighbours of v in G equals the multiset of degrees of

neighbours of w in G> v > w.

A few areas of research appear promising. The implications of Abatangelo and

Dragomir’s result (regarding the existence of a non-VSR pair of graphs implying the

existence of a graph with certain properties—see Section 2.6) are currently unclear.

The uses of Krasikov and Roditty’s balance equations have not yet been fully explored.

The last section of the proof (Theorem 5.3.7) that triangle-free graphs are VSR hints

at a possible extension to Lemma 3.2.4; for instance, there might be more that can

be said about the set of vertices adjacent to both members of a switch pair and the

set of vertices adjacent to neither members of the switch pair other than the fact

that the cardinality of these sets must be equal. It might be possible to show that

if a non-VSR graph (other than those of order 4) exists, then its vertices could be

partitioned into sets of switch pairs. Such a result would lead to a number of other

results that would restrict the structure of a non-VSR graph. Very little work has

been done concerning the automorphism group of a non-VSR graph, an important

concept in the context of vertex-switch equivalence which should be explored further.

Appendix A

gengvsr2 Program Source Code

#include <stdio.h>

#include <string.h>

#include "nauty.h"

#define N4GRAPHS 11

#define NROOTED3GRAPHS 6

#define CONDITION_1 1

#define CONDITION_2 2

#define CONDITION_3 3

#define CONDITION_4 4

typedef struct switchpartner {

int w;

int bViable;

} Switchpartner;

int bFirstTime = 1;

int gnCondition [4];

int gnConditions;

int gnGraphsSeen;

105

106 A. gengvsr2 Program Source Code

int gnGraphsPassingDSTest;

int gnGraphsPassingTest [4];

void initializeVSR(int n)

{

int i;

char s[8];

gnGraphsSeen = 0;

gnGraphsPassingDSTest = 0;

for (i=0; i<16; i++) {

gnGraphsFailingTestSet[i] = 0;

}

// Get , from stdin , a list of conditions to test:

scanf("%4s", &s);

if (feof(stdin)) {

strcpy(s, "1234");

}

gnConditions = strlen(s);

for (i=0; i<gnConditions; i++) {

gnCondition[i] = s[i] - ’0’;

if ((gnCondition[i] < 0) || (gnCondition[i] > (n > 8 ? 4 : 3))) {

fprintf(stderr , "Invalid condition number: %c\n", s[i]);

exit (-2);

}

gnGraphsPassingTest[i] = 0;

}

}

void dumpGraph(graph *g, int n)

{

int i,j;

107

set *gi;

int bFirst;

for (i=0; i<n; i++) {

gi = GRAPHROW(g,i,1);

printf("%d:", i);

bFirst = 1;

for (j=i+1; j<n; j++) {

if (ISELEMENT(gi,j)) {

if (! bFirst) {

printf(" ");

}

printf("%d", j);

bFirst = 0;

}

}

printf("; ");

}

printf("\n");

}

int degreeOf(graph *g, int v)

{

set *gv = GRAPHROW(g,v,1);

return(POPCOUNT (*gv));

}

// Given a set of bits respresenting the edges of a (labelled)

// 4-vertex graph , this array gives an index indentifying the

// unlabelled graph.

int canonical4Graph [64] = {0,1,1,2, 1,2,2,6, 1,2,2,4, 3,5,5,8,

1,2,3,5, 2,4,5,8, 2,6,5,8, 5,8,7,9,

108 A. gengvsr2 Program Source Code

1,3,2,5, 2,5,4,8, 2,5,6,8, 5,7,8,9,

2,5,5,7, 6,8,8,9, 4,8,8,9, 8,9,9,10};

// The degree sequences of the 11 unlabelled graphs on 4 vertices ,

// which happen to be unique and thus can identify the graph.

int dsCanonical4Graph[N4GRAPHS][4] = {

{0,0,0,0}, // E4

{0,0,1,1}, // single edge

{0,1,1,2}, // path of length 2 plus a vertex

{1,1,1,1}, // 2 disjoint paths of length 1

{0,2,2,2}, // K3 plus 1 vertex

{1,1,2,2}, // path of length 3

{1,1,1,3}, // star graph

{2,2,2,2}, // 4-cycle

{1,2,2,3}, // K3 plus 1 edge

{2,2,3,3}, // 4-cycle plus an edge

{3,3,3,3}}; // K4

void degreeSequenceOf4Subgraph(graph *g, int n, int i, int j, int k,

int l, int ds[])

{

// Returns the sorted (ascending) degree sequence of the subgraph

// of g induced by the vertices i, j, k, and l.

int t;

ds[0]= ISELEMENT(g+i,j)+ ISELEMENT(g+i,k)+ ISELEMENT(g+i,l);

ds[1]= ISELEMENT(g+j,i)+ ISELEMENT(g+j,k)+ ISELEMENT(g+j,l);

ds[2]= ISELEMENT(g+k,i)+ ISELEMENT(g+k,j)+ ISELEMENT(g+j,l);

ds[3]= ISELEMENT(g+l,i)+ ISELEMENT(g+l,j)+ ISELEMENT(g+l,k);

// sort the degree sequence of the induced subgraph

#define BUB_SORT(a,b) if (ds[a]>ds[b]){t=ds[a];ds[a]=ds[b];ds[b]=t;}

BUB_SORT (0,1);

109

BUB_SORT (1,2);

BUB_SORT (2,3);

BUB_SORT (0,1);

BUB_SORT (1,2);

BUB_SORT (0,1);

}

void count4SubgraphsIncluding(graph *g, int n, int v, int w,

int g4Count [])

{

// Count the number of each of the 11 unlabelled graphs on

// 4 vertices as they appear as induced subgraphs of g.

// Each induced subgraph must include vertex v and may not

// include vertex w.

// The result is returned in ds[].

int j,k,l;

int s1 , s2 , s3;

set *gv , *gj , *gk;

int ds4 [4];

int h;

gv = g+v;

for (j=0; j<n-2; j++) {

if ((j != v) && (j != w)) {

gj = g+j;

s1 = (ISELEMENT(gv,j) ? 1 : 0);

for (k=j+1; k<n-1; k++) {

if ((k != v) && (k != w)) {

gk = g+k;

s2 = (ISELEMENT(gv,k)?2:0) + (ISELEMENT(gj,k)?8:0);

for (l=k+1; l<n; l++) {

if ((l != v) && (l != w)) {

s3 = (ISELEMENT(gv,l) ? 4 : 0)

110 A. gengvsr2 Program Source Code

+ (ISELEMENT(gj ,l) ? 16 : 0)

+ (ISELEMENT(gk ,l) ? 32 : 0);

// Find the deg seq of the induced subgraph

degreeSequenceOf4Subgraph(g, n, v,j,k,l, ds4);

// Make sure the canonical 4-graph number

// obtained from the degree sequence equals

// the one obtained by the array lookup.

for (h=0; h<N4GRAPHS; h++) {

if ((dsCanonical4Graph[h][0] == ds4 [0]) &&

(dsCanonical4Graph[h][1] == ds4 [1]) &&

(dsCanonical4Graph[h][2] == ds4 [2]) &&

(dsCanonical4Graph[h][3] == ds4 [3])) {

if (canonical4Graph[s1+s2+s3] != h) {

printf("INTERNAL ERROR!\n");

exit (-1);

}

}

}

g4Count[canonical4Graph[s1+s2+s3]]++;

}

}

}

}

}

}

}

void countRooted3SubgraphsAvoiding(graph *g, int n, int v, int w,

int g3Count [])

{

// Count the number of each of the 6 rooted graphs on 3 vertices

111

// as they appear as induced subgraphs of G

// which are rooted at v and don’t contain w.

int i;

int j;

set *gi;

set *gv;

int bEdgevi , bEdgevj;

int nSubgraph;

for (i=0; i<NROOTED3GRAPHS; i++) {

g3Count[i] = 0;

}

gv = GRAPHROW(g,v,1);

for (i=0; i<n; i++) {

if ((i != v) && (i != w)) {

gi = GRAPHROW(g,i,1);

bEdgevi = ISELEMENT(gv,i);

for (j=i+1; j<n; j++) {

if ((j != v) && (j != w)) {

bEdgevj = ISELEMENT(gv,j);

if (ISELEMENT(gi, j)) { // there is an edge ij

if (bEdgevi && bEdgevj) {

nSubgraph = 5; // K3

} else if (bEdgevi || bEdgevj) {

nSubgraph = 3; // 2-path , v at one endpoint

} else {

nSubgraph = 1; // one edge , not incident with v

}

} else { // no induced subgraph edge not incident with v

if (bEdgevi && bEdgevj) {

nSubgraph = 4; // 2-path , v in the centre

112 A. gengvsr2 Program Source Code

} else if (bEdgevi || bEdgevj) {

nSubgraph = 2; // one edge , incident with v

} else {

nSubgraph = 0; // E3

}

}

g3Count[nSubgraph]++;

}

}

}

}

}

void degreeSequenceOfGraph(graph *g, int n, int ds[])

{

int i;

for (i=0; i<n; i++) {

ds[i] = degreeOf(g,i);

}

}

int unequalDegreeSequences(int ds1[], int ds2[], int n)

{

// Return true iff ds1 and ds2 represent equivalent sets.

// ds1 and ds2 don’t have to be sorted.

// ds2 will be destroyed.

int i,j;

int n2;

int bFound;

n2 = n;

113

for (i=0; i<n; i++) {

bFound = 0;

for (j=0; j<n2; j++) {

if (ds1[i] == ds2[j]) {

// delete the found element from ds2

n2 --;

ds2[j] = ds2[n2];

bFound = 1;

break;

}

}

if (! bFound) {

return (-1);

}

}

return (0);

}

void switchVertex(graph *g, int n, int v, graph *card)

{

// Switch on the vertex v in g and store the result in card.

int i;

set *gi;

set *cardi;

for (i=0; i<n; i++) {

gi = GRAPHROW(g, i, 1);

cardi = GRAPHROW(card , i, 1);

*cardi = *gi;

if (i == v) {

*cardi ^= ~((1<<(32-n)) -1); // flip the row of the adj mtx

}

114 A. gengvsr2 Program Source Code

FLIPELEMENT(cardi , v); // flip the col of the adj mtx

}

}

void dumpVertexAndSPs(int n, int v, int nSPs , Switchpartner nSP[])

{

int i;

int bSP[MAXN];

for (i=0; i<n; i++) {

bSP[i] = 0;

}

for (i=0; i<nSPs; i++) {

if (nSP[i]. bViable) {

bSP[nSP[i].w] = 1;

}

}

printf("%d ", v);

for (i=0; i<n; i++) {

printf("%d ", bSP[i]);

}

}

int pruneVSR2(graph *g, int n, int maxn)

{

// Return 0 iff g has at least one potential switch pair.

int v;

int w;

Switchpartner nPotentialSP[MAXN][MAXN];

// List of verts which might be a SP of each vert.

int nPotentialSPs[MAXN];

// Number of elements in each nPotentialSP [].

115

int nMinSPs = MAXN +1; // Smallest value in nPotentialSPs [].

int nVertexSPCountOrder[MAXN]; // Verts of g ordered by # of SPs.

graph card[MAXN][MAXN]; // g vswitch v.

set *gv; // Row v of graph g.

set *gw; // Row w of graph g.

int gDS[MAXN]; // The degree sequence of g.

int nCount4SubgraphsInG[N4GRAPHS]; // For speed.

// We only need to count the 4-subgraphs of this g once.

int r;

int bSomeVertHasNoSP;

int nSPsLeftForVert;

int nBestSurvivingVertex;

int nFewestSPsLeft;

int i,j,k;

int t;

int c;

int bBothOrNeither;

int nBoth;

int nNeither;

int nBothDS[MAXN]; // Degs of verts adj to both v and w in g.

int nNeitherDS[MAXN]; // Degs of verts adj to neither v nor w in g.

int n3Subgraphs[MAXN][NROOTED3GRAPHS];

// Number of each type of 3-vertex graph rooted at v

// and avoiding w as an induced subgraph of g.

int nCount4SubgraphsInH[N4GRAPHS];

// Number of each type of 4-vertex graph

// as an induced subgraph of g.

graph h[MAXN];

int bTestedVertex[MAXN];

int jj;

if (n == maxn) { // ignore this call if we’re not at the tree bottom

116 A. gengvsr2 Program Source Code

if (bFirstTime) {

initializeVSR(n);

bFirstTime = 0;

}

nCount4SubgraphsInG [0] = -1; // flag this array as uninitialized

gnGraphsSeen ++;

degreeSequenceOfGraph(g,n,gDS);

// Count the number of potential switch partners for each vertex

// (based only on degrees of vertices):

for (v=0; v<n; v++) {

nPotentialSPs[v] = 0;

for (w=0; w<n; w++) {

if (w != v) {

if (((gDS[v] + gDS[w] == n)&& ISELEMENT(g+v,w)) ||

((gDS[v] + gDS[w] == n-2) && !ISELEMENT(g+v,w))) {

nPotentialSP[v][nPotentialSPs[v]].w = w;

nPotentialSP[v][nPotentialSPs[v]]. bViable = 1;

nPotentialSPs[v]++;

}

}

}

// Find the vertex with the fewest possible switch partners:

if (nPotentialSPs[v] == 0) {

return (1); // prune this graph

// (Vertex v has no switch partners , so G must be VSR.)

}

nVertexSPCountOrder[v] = v;

card[v][0] = -1; // mark this vert’s card as ’uncomputed ’

}

gnGraphsPassingDSTest ++;

117

// Now sort the vertices according to the # of switch pairs.

// This will help find verts with no actual switch partners

// more quickly.

for (i=0; i<n-1; i++) {

for (j=0; j<n-i-1; j++) {

if (nPotentialSPs[nVertexSPCountOrder[j]] >

nPotentialSPs[nVertexSPCountOrder[j+1]]) {

t = nVertexSPCountOrder[j];

nVertexSPCountOrder[j] = nVertexSPCountOrder[j+1];

nVertexSPCountOrder[j+1] = t;

}

}

}

bSomeVertHasNoSP = 0;

for (c = 0; c < gnConditions; c++) {

nFewestSPsLeft = n+1;

for (v=0; v<n; v++) {

bTestedVertex[v] = 0;

}

for (k=0; k<n; k++) {

v = nVertexSPCountOrder[k];

gv = GRAPHROW(g,v,1);

// Compute the card if it hasn’t been done already:

if (card[v][0] == -1) {

switchVertex(g,n,v,card[v]);

}

nSPsLeftForVert = 0;

for (i=0; i<nPotentialSPs[v]; i++) {

if (nPotentialSP[v][i]. bViable) {

w = nPotentialSP[v][i].w;

if (bTestedVertex[w]) {

118 A. gengvsr2 Program Source Code

jj = -1;

for (j=0; j<nPotentialSPs[w]; j++) {

if (nPotentialSP[w][j].w == v) {

jj = j;

break;

}

}

if (jj == -1) {

fprintf(stderr ,

"ERR - no matching switch partner .\n");

exit (-3);

}

r = (nPotentialSP[w][jj]. bViable

? 0 : gnCondition[c]);

} else {

r = 0;

gw = GRAPHROW(g,w,1);

switch(gnCondition[c]) {

case CONDITION_1:

bBothOrNeither = 0;

for (j=0; j<n; j++) {

if ((j != v) && (j != w)) {

// If vtx j is adj to 0 or 2 of v,w

// then w can still be a SP of v.

if ((ISELEMENT(gv,j) != 0) ==

(ISELEMENT(gw ,j) != 0)) {

bBothOrNeither = 1;

break; // vtx v has a SP by cond1

}

}

}

if (bBothOrNeither == 0) {

r = CONDITION_1;

119

}

break;

case CONDITION_2:

nBoth = 0;

nNeither = 0;

for (j=0; j<n; j++) {

if (ISELEMENT(gv,j) && ISELEMENT(gw ,j)) {

nBothDS[nBoth] = gDS[j];

nBoth ++;

} else if ((! ISELEMENT(gv,j)) &&

(! ISELEMENT(gw,j))

&& (j != v) && (j != w)) {

nNeitherDS[nNeither] = gDS[j] + 2;

nNeither ++;

}

}

// (redundancy) Check that nBoth = nNeither:

if (nBoth != nNeither) {

printf("ERROR! nBoth != nNeither .\n");

exit (-1);

}

// Ensure adding 2 to each deg of the

// non -nbrs of {v,w} gives the degs of

// the nbrs of both v and w.

if (unequalDegreeSequences(nBothDS ,

nNeitherDS , nBoth)) {

r = CONDITION_2;

}

break;

case CONDITION_3:

countRooted3SubgraphsAvoiding(g,n,v,w,

n3Subgraphs[v]);

120 A. gengvsr2 Program Source Code

countRooted3SubgraphsAvoiding(g,n,w,v,

n3Subgraphs[w]);

// Count E3’s, and 2-paths centred on v:

if (n3Subgraphs[v][0]+ n3Subgraphs[w][0] !=

n3Subgraphs[v][4]+ n3Subgraphs[w][4]) {

r = CONDITION_3;

break;

}

// Count K3’s, and 1-paths avoiding v:

if (n3Subgraphs[v][1]+ n3Subgraphs[w][1] !=

n3Subgraphs[v][5]+ n3Subgraphs[w][5]) {

r = CONDITION_3;

break;

}

break;

case CONDITION_4:

// Count 4-subgraphs:

switchVertex(card[v],n,w,h);

for (j=0; j<N4GRAPHS; j++) {

nCount4SubgraphsInG[j] = 0;

}

count4SubgraphsIncluding(g, n, v, w,

nCount4SubgraphsInG);

count4SubgraphsIncluding(g, n, w, -1,

nCount4SubgraphsInG);

for (j=0; j<N4GRAPHS; j++) {

nCount4SubgraphsInH[j] = 0;

}

121

count4SubgraphsIncluding(h, n, v, w,

nCount4SubgraphsInH);

count4SubgraphsIncluding(h, n, w, -1,

nCount4SubgraphsInH);

for (j=0; j<N4GRAPHS; j++) {

if (nCount4SubgraphsInG[j] !=

nCount4SubgraphsInH[j]) {

r = CONDITION_4;

break;

}

}

break;

}

}

if (r != 0) {

// Mark this SP as impossible:

nPotentialSP[v][i]. bViable = 0;

} else {

nSPsLeftForVert ++;

}

} // if w >= 0

} // for i

if (nSPsLeftForVert == 0) {

return (1); // prune this graph

}

gnGraphsPassingTest[c]++;

if (nSPsLeftForVert < nFewestSPsLeft) {

nFewestSPsLeft = nSPsLeftForVert;

nBestSurvivingVertex = v;

122 A. gengvsr2 Program Source Code

}

bTestedVertex[v] = 1;

} // for k (v)

} // for c

// This graph might have a SP , and thus might be non -VSR.

dumpVertexAndSPs(n, nBestSurvivingVertex ,

nPotentialSPs[nBestSurvivingVertex],

nPotentialSP[nBestSurvivingVertex]);

return (0);

}

return (0); // don’t prune if we’re not at tree bottom (n verts)

} // pruneVSR2

typedef struct

{

long hi,lo;

} bigint;

void summaryVSR(bigint nout , double cpu)

{

int c;

printf("Tests: ");

for (c=0; c<gnConditions; c++) {

printf("%d ", gnCondition[c]);

}

printf("Graphs: %d %d ", gnGraphsSeen , gnGraphsPassingDSTest);

for (c=0; c<gnConditions; c++) {

printf("%d ", gnGraphsPassingTest[c]);

}

printf("\n");

}

Appendix B

IsVSR Program Source Code

#include <stdio.h>

#include <string.h>

#include "..\\ gtools.h"

#include "..\\ gengvsr2 \\ gengvsr2 \\ prunevsr2.h"

// Usage: IsVSR <n> [<input file name >]

// Read a list of graphs from stdin and check whether each is VSR.

// A graph is represented by a line of input.

// The line consists of a vertex number (v), followed by

// n binary values. Each of these is 1 iff

// the corresponding vertex can be a switch partner

// of the vertex v.

// This is followed by the certificate of the graph ,

// as produced by geng.

int compareGraphs(graph *g1, graph *g2 , int n)

{

// Return 0 if g1 = g2, -1 if g1 < g2 , or +1 if g1 > g2.

int i;

for (i=0; i<n; i++) {

123

124 B. IsVSR Program Source Code

if (g1[i] < g2[i]) {

return (-1);

} else if (g1[i] > g2[i]) {

return (1);

}

}

return (0);

}

void copyGraph(graph *gSource , graph *gTarget , int n)

{

// Copy gSource to gTarget.

int i;

for (i=0; i<n; i++) {

gTarget[i] = gSource[i];

}

}

void sortCards(graph card [][MAXN], int n)

{

// Put the graphs in card[] in canonical order.

int i,j;

int r;

graph t[MAXN];

for (i=n-1; i>0; i--) {

for (j=0; j<i; j++) {

r = compareGraphs(card[j], card[j+1], n);

if (r > 0) {

copyGraph(card[j+1], t, n);

copyGraph(card[j], card[j+1], n);

125

copyGraph(t, card[j], n);

}

}

}

}

int commonCards(graph g1[][MAXN], graph g2[][MAXN], int n)

{

// Return the number of cards that g1[] and g2[] have in common.

// The two decks must have their cards in canonical order.

int i1=0, i2=0;

int r;

int c = 0;

while ((i1 < n) && (i2 < n)) {

r = compareGraphs(g1[i1], g2[i2], n);

if (r < 0) {

i1++;

} else if (r > 0) {

i2++;

} else {

c++;

i1++;

i2++;

}

}

return(c);

}

void getCanonicalGraph(graph *g, int n, graph *gCanon)

{

// Order the vertices of g canonically.

int lab[MAXN], ptn[MAXN], orbits[MAXN];

126 B. IsVSR Program Source Code

static DEFAULTOPTIONS(options);

statsblk(stats);

setword workspace [1000];

options.getcanon = TRUE;

nauty(g,lab ,ptn ,NULL ,orbits ,&options ,&stats ,workspace ,

sizeof(workspace)/ sizeof(workspace [0]), 1,n, gCanon);

if (stats.errstatus != 0) {

printf("ERROR !\n");

exit (-1);

}

}

main(int argc , char **argv)

{

graph g[MAXN];

int n;

int v;

int i,j;

int c;

int bPossibleSP;

int nPossibleSP[MAXN]; // list of possible switch partners

int nPossibleSPs; // # of possible switch partners of given vtx

int mDummy , nDummy; // used in calling nauty

graph card[MAXN]; // a single switch card of G

graph gCard[MAXN][MAXN]; // G switch v, for each v

graph gCardCanon[MAXN][MAXN]; // SD(G)

graph h[MAXN]; // potentially VSE to G

graph gCanon[MAXN]; // G with vertices in a canonical order

graph hCanon[MAXN]; // H with vertices in a canonical order

graph hCardCanon[MAXN][MAXN]; // SD(H)

FILE *f;

127

sscanf(argv[1], "%d", &n);

nauty_check(WORDSIZE , 1, n, NAUTYVERSIONID);

f = (argc > 1 ? fopen(argv[2], "r") : stdin);

while (!feof(f)) {

if (fscanf(f, "%d", &v) == EOF) {

break;

}

nPossibleSPs = 0;

for (i=0; i<n; i++) {

fscanf(f, "%d", &bPossibleSP);

if (bPossibleSP) {

nPossibleSP[nPossibleSPs ++] = i;

}

}

getc(f); // swallow the blank

readg(f, g, 0, &mDummy , &nDummy);

// Create the switch deck of g:

for (i=0; i<n; i++) {

switchVertex(g,n,i,gCard[i]);

getCanonicalGraph(gCard[i], n, gCardCanon[i]);

}

sortCards(gCardCanon , n);

getCanonicalGraph(g,n,gCanon);

for (i=0; i<nPossibleSPs; i++) {

// Create H and output G and H.

switchVertex(gCard[v], n, nPossibleSP[i], h);

getCanonicalGraph(h,n,hCanon);

128 B. IsVSR Program Source Code

printf("G = ");

dumpGraph(g, n);

printf(" switch %d,%d gives H = ", v, nPossibleSP[i]);

dumpGraph(h, n);

// Check if G and H are isomorphic:

if (compareGraphs(gCanon ,hCanon ,n) != 0) {

// Create SD(H) and compare it to SD(G):

for (j=0; j<n; j++) {

switchVertex(h,n,j,card);

getCanonicalGraph(card ,n,hCardCanon[j]);

}

sortCards(hCardCanon , n);

c = commonCards(gCardCanon , hCardCanon , n);

printf(" %d cards in common .\n", c);

} else {

printf(" isomorphic .\n");

}

}

}

if (f != stdin) {

fclose(f);

}

return (0);

}

Bibliography

[1] Abatangelo, Vito and Dragomir, Sorin, “Discrete Fourier Calculus and Graph

Reconstruction”, Interdisciplinary Information Sciences, 13 (2007), No. 2, pp.

163–180

[2] Diaconis, P. and Graham, R.L., “The Radon Transform On Zk
2”, Pacific Journal

of Mathematics, 118 (1985), No. 2, pp. 323–345

[3] Ellingham, M.N., “Vertex-switching, isomorphism and pseudosimilarity”, Jour-

nal of Graph Theory, 15 (1991), No. 6, pp. 563–572

[4] Ellingham, M.N., “Vertex-Switching Reconstruction and Folded Cubes”, Journal

of Combinatorial Theory, Series B, 66 (1996), pp. 361–364

[5] Ellingham, M.N. and Royle, Gordon F., “Vertex-Switching Reconstruction of

Subgraph Numbers and Triangle-Free Graphs”, Journal of Combinatorial The-

ory, Series B, 54 (1992), pp. 167–177

[6] Krasikov, I., “A Note On The Vertex-Switching Reconstruction”, International

Journal of Mathematics and Mathematical Sciences, 11 (1988), No. 4, pp. 825–

827

[7] Krasikov, I., “Applications of Balance Equations to Vertex Switching Recon-

struction”, Journal of Graph Theory, 18 (1994), No. 3, pp. 217–225

129

130 BIBLIOGRAPHY

[8] Krasikov, I., “Degree conditions for vertex switching reconstruction”, Discrete

Mathematics, 160 (1996), pp. 273-278

[9] Krasikov, I., and Roditty, Y., “Balance equations for reconstruction problems”,

Archiv der Mathematik, 48 (1987), pp. 458–464

[10] Krasikov, I., and Roditty, Y., “Switching Reconstruction and Diophantine Equa-

tions”, Journal of Combinatorial Theory, Series B, 54 (1992), pp. 189–195

[11] Krasikov, I., and Roditty, Y., “More on Vertex-Switching Reconstruction”, Jour-

nal of Combinatorial Theory, Series B, 60 (1994), pp. 40–55

[12] McKay, Brendan, “nauty User’s Guide (Version 2.2)”,

http://cs.anu.edu.au/~bdm/nauty/nug.pdf

[13] Sloane, N.J.A., “The On-Line Encyclopedia of Integer Sequences”,

http:/www.research.att.com/~njas/sequences/

[14] Stanley, Richard P., “Reconstruction From Vertex-Switching”, Journal of Com-

binatorial Theory, Series B, 38 (1985), pp. 132–138

[15] Taussky, Olga, “A Recurring Theorem On Determinants”,

The American Mathematical Monthly, 56 (1949), No. 10, pp. 672–676

