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Abstract

• Binary search tree (part II)

⇤These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.



Binary search tree

A binary search tree is a binary tree such that each node verifies the following
properties:

• All the nodes in its left sub-tree have values that are less than the value of this
node or the left sub-tree is empty;

• All the nodes in its right sub-tree have values that are greater than the value
of this node or the right sub-tree is empty.
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Implementing a binary search tree

public class BinarySearchTree< E extends Comparable<E> > {

private static class Node<E> {

private E value;

private Node<E> left;

private Node<E> right;

}

private Node<E> root;
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Traversing a tree

Pre-order: current, left, right;

In-order: left, current, right;

Post-order: left, right, current.



Traversing a tree

private void visit( Node<E> current ) {

System.out.print( " " + current.value );

}



Traversing a tree

private void visit( Node<E> current ) {

System.out.print( " " + current.value );

}

public void preOrder() {

preOrder( root );

}

public void inOrder() {

inOrder( root );

}

public void postOrder() {

postOrder( root );

}



Pre-order

private void preOrder( Node<E> current ) {

if ( current != null ) {

visit( current );

preOrder( current.left );

preOrder( current.right );

}

}

preOrder -> 8 5 15 9 11 29
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In-order

private void inOrder( Node<E> current ) {

if ( current != null ) {

inOrder( current.left );

visit( current );

inOrder( current.right );

}

}

inOrder -> 5 8 9 11 15 29
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Post-order

private void postOrder( Node<E> current ) {

if ( current != null ) {

postOrder( current.left );

postOrder( current.right );

visit( current );

}

}

postOrder -> 5 11 9 29 15 8
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Full binary tree
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A binary tree is a full binary tree if all its nodes have exactly two children, except
for the leaves.



Binary tree

A binary tree of depth d is balanced if all the nodes at depth less than d� 1 (i.e.
[0, 1 . . . d� 2]) have exactly two children.
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Binary tree

A binary tree of depth d is balanced if all the nodes at depth less than d� 1 (i.e.
[0, 1 . . . d� 2]) have exactly two children.

5

8

15

12 292 7

1 4 5013

Is this a balanced tree?



Binary tree

A binary tree of depth d is balanced if all the nodes at depth less than d� 1 (i.e.
[0, 1 . . . d� 2]) have exactly two children.
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Is this a balanced tree?

Yes, the depth of the tree is d = 3, all the nodes at depth 0 and 1 ( d� 2) have
exactly two children. Nodes at depth 2 have 0, 1 or 2 children. Nodes at depth
3 have no children.



Binary tree

Is this a balanced tree?
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Binary tree

Is this a balanced tree?
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No, the depth of the tree is d = 3, node 5 at depth 1 ( d � 2) does have two
children.



Binary tree
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• A balanced binary tree of depth d has 2d to 2

d+1 � 1 nodes;

• The depth of a balanced binary tree of size n is blog2 nc.



Discussion

Discuss the relationship between the e�ciency of the method contains and the
topology of the tree (balanced or not).
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Remarks

• When looking up for a value, each comparison eliminates a sub-tree;
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Remarks

• When looking up for a value, each comparison eliminates a sub-tree;

• The maximum number of nodes visited depends on the depth of the tree;

• Hence, balanced trees are advantageous (since the depth of a balanced tree is
blog2 nc compared to n for an ill-balanced tree).



Remarks

n blog2 nc
10 3
100 6
1,000 9
10,000 13
100,000 16
1,000,000 19
10,000,000 23
100,000,000 26
1,000,000,000 29
10,000,000,000 33
100,000,000,000 36
1,000,000,000,000 39
10,000,000,000,000 43
100,000,000,000,000 46
1,000,000,000,000,000 49



Remarks

• Methods that follow a single path along the tree, from the root to some node,
can easily be implemented without recursion, see contains;



Remarks

• Methods that follow a single path along the tree, from the root to some node,
can easily be implemented without recursion, see contains;

• Methods that visit more than one sub-tree are often simpler to implement with
help of recursion, see toString.



boolean add( E obj )

Exercise. Starting with an empty tree, add all the following elements: “Lion”,
“Fox”, “Rat”, “Cat”, “Pig”, “Dog”, “Tiger”.

What are your conclusions?



In order to add an element, the insertion point must be located. What method
is it most similar to?
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In order to add an element, the insertion point must be located. What method
is it most similar to? It is similar to the method contains.

What are the necessary changes? Here is the method contains:

public boolean contains( E obj ) {

boolean found = false;

Node<E> current = root;

while ( ! found && current != null ) {

int test = obj.compareTo( current.value );

if ( test == 0 ) {

found = true;

} else if ( test < 0 ) {

current = current.left;

} else {

current = current.right;

}

}

return found;

}



boolean add( E obj )

Special cases?



boolean add( E obj )

Special cases?

Operations that involve change the variable root are special cases, just like
operations that are changing the variable head are special cases in the case of a
linked list.



boolean add( E obj )

Special cases?

Operations that involve change the variable root are special cases, just like
operations that are changing the variable head are special cases in the case of a
linked list.

if ( current == null ) {

root = new Node<E>( obj );

}



General case:

boolean done = false;

while ( ! done ) {

int test = obj.compareTo( current.value );

if ( test == 0 ) {

done = true;

} else if ( test < 0 ) {

if ( current.left == null ) {

current.left = new Node<E>( obj );

done = true;

} else {

current = current.left;

}

} else {

if ( current.right == null ) {

current.right = new Node<E>( obj );

done = true;

} else {

current = current.right;

}

}

}



boolean add( E obj )

• It always replaces a null value by a new node;
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• It always replaces a null value by a new node;

• The existing structure of the tree is not changed;



boolean add( E obj )

• It always replaces a null value by a new node;

• The existing structure of the tree is not changed;

• The topology of the tree depends largely on the order of insertion.



boolean remove( E obj )

Removing elements implies changing the structure of the tree (except for leaves).

Explore various cases using the tree on the next page.

Eliminate each of the 12 nodes, one by one.
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boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
What should be done?



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
What should be done? parent.left = null;
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Consider the following cases:

• Removing the leftmost node.
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1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
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Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
What should be done? parent.left = null;

2. The node has a right sub-tree;
Node 7 of the sub-tree 9 is an example;



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
What should be done? parent.left = null;

2. The node has a right sub-tree;
Node 7 of the sub-tree 9 is an example;
What should be done?



boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
What should be done? parent.left = null;

2. The node has a right sub-tree;
Node 7 of the sub-tree 9 is an example;
What should be done? parent.right = “right sub tree”;

Lucia Moura
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boolean remove( E obj )

Consider the following cases:

• Removing the leftmost node.

– How many sub-cases there are?
– There are two sub-cases:
1. The node has no sub-trees;

Node 1 of the sub-tree 6 is an example;
What should be done? parent.left = null;

2. The node has a right sub-tree;
Node 7 of the sub-tree 9 is an example;
What should be done? parent.right = “right sub tree”;

3. The node cannot have a left sub-tree, because it would not be the leftmost
one!

Lucia Moura
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boolean remove( E obj )

Consider the following cases:

• Removing the root of a sub-tree.

– How many cases there are?
– There are 4 cases:
1. The node has no sub-trees;

What should be done? Remove this node;
2. The node has a left sub-tree only;

What should be done? Replace the node by that sub-tree;
3. The node has a right sub-tree only;

What should be done? Replace the node by that sub-tree;
4. The node has two sub-trees that are not null;

What should be done? There are two strategies: 1) replacing the
value of that node with the one that immediately precedes, hence, the
rightmost value of its left sub-tree, or, 2) replace the value of this node
with the one that immediately follows,



boolean remove( E obj )

Consider the following cases:

• Removing the root of a sub-tree.

– How many cases there are?
– There are 4 cases:
1. The node has no sub-trees;

What should be done? Remove this node;
2. The node has a left sub-tree only;

What should be done? Replace the node by that sub-tree;
3. The node has a right sub-tree only;

What should be done? Replace the node by that sub-tree;
4. The node has two sub-trees that are not null;

What should be done? There are two strategies: 1) replacing the
value of that node with the one that immediately precedes, hence, the
rightmost value of its left sub-tree, or, 2) replace the value of this node
with the one that immediately follows, hence, the leftmost value of its
right sub-tree.



Case 1: removing a leaf
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Case 1: removing a leaf
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Case 1: removing a leaf
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Case 2: t.remove( new Integer( 34 ) )

Before:
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Case 3: t.remove( new Integer( 34 ) )
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Case 4: t.remove( new Integer( 6 ) )
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4

6

9

7 112 5

1 3 128 10



Case 4: t.remove( new Integer( 6 ) )

After:
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Node<E> remove( E obj )

// pre-condtion:

if ( obj == null ) {

throw new IllegalArgumentException( "null" );

}

if ( root == null ) {

throw new NoSuchElementException( );

}



Node<E> remove( E obj )

// Replacing the root element (special case)

if ( obj.compareTo( root.value ) == 0 ) {

root = removeTopMost( root );

}



Node<E> remove( E obj )

} else { // obj is not found at the root

Node<E> current, parent = root;

if ( obj.compareTo( root.value ) < 0 ) {

current = root.left;

} else {

current = root.right;

}

// ...



Node<E> remove( E obj )

// ...

while ( current != null ) {

int test = obj.compareTo( current.value );

if ( test == 0 ) {

if ( current == parent.left ) {

parent.left = removeTopMost( current );

} else {

parent.right = removeTopMost( current );

}

current = null; // stopping criteria

} else {

parent = current;

if ( test < 0 ) {

current = parent.left;

} else {

current = parent.right;

}

}

}



Node<E> removeTopMost( Node<E> current )

private Node<E> removeTopMost( Node<E> current ) {

Node<E> top;

if ( current.left == null ) {

top = current.right;

} else if ( current.right == null ) {

top = current.left;

} else {

current.value = getLeftMost( current.right );

current.right = removeLeftMost( current.right );

top = current;

}

return top;

}



E getLeftMost( Node<E> current )

private E getLeftMost( Node<E> current ) {

if ( current == null ) {

throw new IllegalArgumentException( "null" );

}

if ( current.left == null ) {

return current.value;

}

return getLeftMost( current.left );

}



Node<E> removeLeftMost( Node<E> current )

private Node<E> removeLeftMost( Node<E> current ) {

if ( current.left == null ) {

return current.right;

}

Node<E> top = current, parent = current;

current = current.left;

while ( current.left != null ) {

parent = current;

current = current.left;

}

parent.left = current.right;

return top;

}



Alternative implementation

public void remove( E obj ) {

Node<E> parent = null, current = root; boolean done = false;

while ( current != null ) {

int test = obj.compareTo( current.value );

if ( test == 0 ) {

Node<E> newTop = removeTopMost( current );

if ( current == root ) {

root = newTop;

} else if ( current == parent.left ) {

parent.left = newTop;

} else {

parent.right = newTop;

}

current = null;

} else {

parent = current;

if ( test < 0 ) {

current = parent.left;

} else {

current = parent.right;

}

}

}

}



Remove (recursive implementation)

public void remove( E obj ) {

// pre-condtion:

if ( obj == null ) {

throw new IllegalArgumentException( "null" );

}

root = remove( root, obj );

}



private Node<E> remove( Node<E> current, E obj ) {

Node<E> result = current;

int test = obj.compareTo( current.value );

if ( test == 0 ) {

if ( current.left == null ) {

result = current.right;

} else if ( current.right == null ) {

result = current.left;

} else {

current.value = getLeftMost( current.right );

current.right = remove( current.right, current.value );

}

} else if ( test < 0 ) {

current.left = remove( current.left, obj );

} else {

current.right = remove( current.right, obj );

}

return result;

}



Iterators

java.util.Iterator<E> i = t.iterator();

while ( i.hasNext() ) {

System.out.println( i.next() );

}

But which order?



Iterators

Iterator<E> i = t.preOrderIterator();

while ( i.hasNext() ) {

System.out.println( i.next() );

}



Iterators

Strategy?



Iterators

private class PreOrderIterator implements Iterator<E> {

private Stack<E> trail;

private PreOrderIterator() {

trail = new LinkedStack<E>();

if ( root != null ) {

trail.push( root );

}

}

// ...



Iterators

public boolean hasNext() {

return ! trail.isEmpty();

}



Iterators

public E next() {

if ( trail.isEmpty() ) {

throw new NoSuchElementException();

}

Node<E> current = trail.pop();

if ( current.right != null ) {

trail.push( current.right );

}

if ( current.left != null ) {

trail.push( current.left );

}

return current.value;

}



Remarks

A variety of trees exist, including self-balancing search trees (AVL, Red-Black, B).

A general tree is a tree such that its nodes are allowed to have more than two
children.


