
ITI 1121. Introduction to Computing II ∗

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of March 26, 2013

Abstract

• Iterator1 (part I)

∗These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.
1A great opportunity to discuss time complexity (asymptotic analysis, big-O), encapsulation, object-oriented

programming, interface, and more.

Motivation

Given a (singly) linked list implementation, called LinkedList, of the interface
List, defined as follows.

public interface List<E> {

public abstract boolean add(E obj);

public abstract E get(int index);

public abstract boolean remove(E obj);

public abstract int size();

}

Motivation

Given a (singly) linked list implementation, called LinkedList, of the interface
List, defined as follows.

public interface List<E> {

public abstract boolean add(E obj);

public abstract E get(int index);

public abstract boolean remove(E obj);

public abstract int size();

}

Consider writing statements to traverse the list. Compare writing the
code inside and outside of the implementation.

Motivation

Given a (singly) linked list implementation, called LinkedList, of the interface
List, defined as follows.

public interface List<E> {

public abstract boolean add(E obj);

public abstract E get(int index);

public abstract boolean remove(E obj);

public abstract int size();

}

Consider writing statements to traverse the list. Compare writing the
code inside and outside of the implementation.

⇒ The difficulties would be the same for a doubly linked list.

Traversing a list inside/outside of the class

List<String> colors;

colors = new LinkedList<String>();

colors.add("bleu");

colors.add("blanc");

colors.add("rouge");

colors.add("jaune");

colors.add("vert");

colors.add("orange");

A — traversing a linked list inside of the class

A — traversing a linked list inside of the class

Being inside of the implementation, the nodes can be accessed directly.

A — traversing a linked list inside of the class

Being inside of the implementation, the nodes can be accessed directly.

Node<E> p = head;

while (p != null) {

System.out.println(p.value);

p = p.next;

}

B — traversing a linked list outside of the class

B — traversing a linked list outside of the class

Traversing a list without having access to the underlying implementation requires
using E get(int pos).

B — traversing a linked list outside of the class

Traversing a list without having access to the underlying implementation requires
using E get(int pos).

for (int i=0; i < colors.size(); i++) {

System.out.println(colors.get(i));

}

B — traversing a linked list outside of the class

Traversing a list without having access to the underlying implementation requires
using E get(int pos).

for (int i=0; i < colors.size(); i++) {

System.out.println(colors.get(i));

}

⇒ How efficient, w.r.t. time, this code is compared to writing it within the class
LinkedList?

B — traversing a linked list outside of the class

Traversing a list without having access to the underlying implementation requires
using E get(int pos).

for (int i=0; i < colors.size(); i++) {

System.out.println(colors.get(i));

}

⇒ How efficient, w.r.t. time, this code is compared to writing it within the class
LinkedList? Much faster, faster, same, slower, much slower?

Timing results

Here are the timing results for 20, 000, 40, 000 and 80, 000 nodes lists, averaged
over 5 runs (times in milliseconds).

Timing results

Here are the timing results for 20, 000, 40, 000 and 80, 000 nodes lists, averaged
over 5 runs (times in milliseconds).

nodes A B
20,000 2 20,644
40,000 5 94,751
80,000 12 407,059

Timing results

Here are the timing results for 20, 000, 40, 000 and 80, 000 nodes lists, averaged
over 5 runs (times in milliseconds).

nodes A B
20,000 2 20,644
40,000 5 94,751
80,000 12 407,059

⇒ For 80, 000 nodes it takes 6.5 minutes traversing the list using get(pos) vs
12 ms for the other approach.

Timing results

Here are the timing results for 20, 000, 40, 000 and 80, 000 nodes lists, averaged
over 5 runs (times in milliseconds).

nodes A B
20,000 2 20,644
40,000 5 94,751
80,000 12 407,059

⇒ For 80, 000 nodes it takes 6.5 minutes traversing the list using get(pos) vs
12 ms for the other approach. What can explain this huge difference?

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0)

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1)

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2)

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3)

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3) 4

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3) 4

.
get(n-1)

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3) 4

.
get(n-1) n

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3) 4

.
get(n-1) n

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3) 4

.
get(n-1) n

n∑
i=1

i =
n(n+ 1)

2
=

n2 + n

2
≈ n2

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Call Number of nodes visited
get(0) 1
get(1) 2
get(2) 3
get(3) 4

.
get(n-1) n

n∑
i=1

i =
n(n+ 1)

2
=

n2 + n

2
≈ n2

Implementation A visits n nodes, implemenation B visits n2 nodes!

nodes A B
20,000 2 20,644
40,000 5 94,751
80,000 12 407,059

Executing the following statements (implementation B).

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

Executing the following statements (implementation B).

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

It is as if implementation A had been written like this.

for (int i=0; i< size(); i++) {

Node p = head;

for (int j=0; j<i; j++) {

p = p.next;

}

System.out.println(p.value);

}

Executing the following statements (implementation B).

for (int i=0; i< names.size(); i++) {

System.out.println(names.get(i));

}

It is as if implementation A had been written like this.

for (int i=0; i< size(); i++) {

Node p = head;

for (int j=0; j<i; j++) {

p = p.next;

}

System.out.println(p.value);

}

Instead of this.

Node p = head;

while (p != null) {

System.out.println(p.value);

p = p.next;

}

What mechanism could the implementation provide that would allow to efficiently
traverse the list?

What mechanism could the implementation provide that would allow to efficiently
traverse the list?

We are outside of the class definition, therefore, we do not have access to the
implementation (p.next and such), yet the need to traverse a data structure is
frequent.

What mechanism could the implementation provide that would allow to efficiently
traverse the list?

We are outside of the class definition, therefore, we do not have access to the
implementation (p.next and such), yet the need to traverse a data structure is
frequent.

The concept that we are introducing today will apply to a specific context,
TRAVERSING A LIST.

WE WILL NOT PROVIDE A GENERAL MECHANISM TO MAKE get(i)
EFFICIENT ALWAYS.

Iterator: introduction

• A uniform mechanism to traverse a variety of data structures, such as lists,
but also trees and other data structures to be seen in CSI 2114;
• Gives access to all the elements, one a time.
• It’s a mechanism that is used by Java’s own collections.

Concept

‘‘create an iterator’’ (* positioned before the start of the list *)

while (‘‘has more elements?’’) {

‘‘move the iterator forward and return the value’’

‘‘process the value’’

}

Concept

Iterator interface

The implementation of the Iterator is separated from its usage by creating an
interface for it.

public interface Iterator<E> {

public abstract boolean hasNext();

public abstract E next();

}

p u b l i c i n t e r f a c e I t e r a t o r <E> {
/∗∗
∗ Returns the next e lement in the l i s t . This method may be c a l l e d
∗ r e p ea t e d l y to i t e r a t e through the l i s t .

∗
∗ @return the next e lement in the l i s t .

∗ @exception NoSuchElementException i f the i t e r a t i o n has no next e lement .
∗/

p u b l i c abst ract E n e x t () ;

/∗∗
∗ Returns t rue i f t h i s l i s t i t e r a t o r has more e lements when

∗ t r a v e r s i n g the l i s t in the forward d i r e c t i o n . (In o ther words , r e turns

∗ t rue i f next would re turn an element ra the r than
∗ throwing an excep t i on .)

∗
∗ @return t rue i f the l i s t i t e r a t o r has more e lements when
∗ t r a v e r s i n g the l i s t in the forward d i r e c t i o n .
∗/

p u b l i c abst ract boolean hasNext () ;
}

Issues

• Which class will be implementing the interface?

Issues

• Which class will be implementing the interface?
• How to create and initialize a new iterator?

Issues

• Which class will be implementing the interface?
• How to create and initialize a new iterator?
• How to move the iterator forward?

Issues

• Which class will be implementing the interface?
• How to create and initialize a new iterator?
• How to move the iterator forward?
• How to detect the end?

Issues

• Which class will be implementing the interface?
• How to create and initialize a new iterator?
• How to move the iterator forward?
• How to detect the end?

⇒ This process is modeled on traversing an array and should be familiar.

Implementation -1-

In our first implementation, the class LinkedList developed earlier is modified
to implement the interface Iterator. This involves modifying the header of the
class, adding “implements Iterator”, and to provide an implementation for each
of the methods defined in the interface, next() and hasNext().

head

l

B CA

current

head

l

B CA

current

head

l

B CA

current

head

l

B CA

current

Usage
L i s t<E> l = new L i n k e d L i s t<E>();

// Operat ions t ha t add e lements to the l i s t . . .

// Pos i t i on the i t e r a t o r to the l e f t o f the l i s t

I t e r a t o r <E> i = l . i t e r a t o r () ;

whi le (i . hasNext ()) {

E o = i . n e x t () ;

// do something wi th o
}

Implementation -1-

In our first implementation, the class LinkedList developed earlier is modified
to implement the interface Iterator. This involves modifying the header of the
class, adding “implements Iterator”, and to provide an implementation for each
of the methods defined in the interface.

p u b l i c c l a s s L i n k e d L i s t<E> implements L i s t<E>, I t e r a t o r <E> {

p r i v a t e s t a t i c c l a s s Node<E> {
. . .

}

p r i v a t e Node head<E>;

p r i v a t e Node c u r r e n t<E>;

p u b l i c E n e x t () { . . . }

p u b l i c boolean hasNext () { . . . }

// . . .

}

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

(a) Iterator moves one position forward;

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

(a) Iterator moves one position forward;
(b) then returns the value of the current element.

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

(a) Iterator moves one position forward;
(b) then returns the value of the current element.

3. A danger awaits you when calling “next”, what is it?

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

(a) Iterator moves one position forward;
(b) then returns the value of the current element.

3. A danger awaits you when calling “next”, what is it?
• Look at the functional definition of next, the iterator moves forward one

position then returns a value, it’s possible that there is no next element!

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

(a) Iterator moves one position forward;
(b) then returns the value of the current element.

3. A danger awaits you when calling “next”, what is it?
• Look at the functional definition of next, the iterator moves forward one

position then returns a value, it’s possible that there is no next element!
• Give two examples where that would be the case:

Remarks

1. Why is the iterator positioned to the left of the list and not on the first
element?
• To correctly process the case of the empty list; positioning the iterator onto

the first element implies there will always be a first element.
2. Functional definition of “next()”:

(a) Iterator moves one position forward;
(b) then returns the value of the current element.

3. A danger awaits you when calling “next”, what is it?
• Look at the functional definition of next, the iterator moves forward one

position then returns a value, it’s possible that there is no next element!
• Give two examples where that would be the case:

– The empty list;
– The iterator was already positioned on the last element of the list.

Current limitation

Current limitation

Our current implementation does not allow for multiple iterators!

while (i.hasNext()) {

oi = i.next();

while (j.hasNext()) {

oj = i.next();

// process oi and oj

}

}

What’s needed then?

• We need as many references (variables) as iterators;

What’s needed then?

• We need as many references (variables) as iterators;

• An iterator has to have access to the implementation (Node);

What’s needed then?

• We need as many references (variables) as iterators;

• An iterator has to have access to the implementation (Node);

• An iterator needs access to the instance variables of the class LinkedList.

Allowing for multiple iterators

⇒ Suggestions?

head

l

DB CA E

head

l

DB CA

current

i

current

j

head

l

DB CA

current

i

current

j

LinkedList<String> l1 = new LinkedList<String>();

l1.addLast("A");

l1.addLast("B");

l1.addLast("C");

l1.addLast("D");

LinkedList<Integer> l2 = new LinkedList<Integer>();

l2.addLast(new Integer(1));

l2.addLast(new Integer(2));

l2.addLast(new Integer(3));

Iterator<String> i, j;

Iterator<Integer> k;

i = l1.iterator();

j = l1.iterator();

k = l2.iterator();

head

l1

DB CA

current

i

current

j

head

l2

2 31

current

k

head

l1

DB CA

current

i

current

j

head

l1

DB CA

current

i

current

j

head

l2

2 31

current

k

if (j.hasNext()) {

String o = j.next();

}

head

l1

DB CA

current

i

current

j

head

l1

DB CA

current

i

current

j

head

l2

2 31

current

k

while (j.hasNext()) {

String o = j.next();

}

head

l1

DB CA

current

i

current

j

head

l1

DB CA

current

i

current

j

head

l2

2 31

current

k

if (i.hasNext()) {

String o = i.next();

}

head

l1

DB CA

current

i

current

j

head

l1

DB CA

current

i

current

j

head

l2

2 31

current

k

head

l2

2 31

current

k

if (k.hasNext()) {

Integer o = k.next();

}

head

l1

DB CA

current

i

current

j

head

l1

DB CA

current

i

current

j

head

l2

2 31

current

k

head

l2

2 31

current

k

while (k.hasNext()) {

Integer o = k.next();

}

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

Node<E> head;

private class ListIterator implements Iterator<E> {

// ...

}

}

• LinkedListIterator is an inner class;
• LinkedListIterator implements Iterator;
• LinkedList does not implement Iterator.

Getting in Touch with your Inner Class (web resource)

www.javaranch.com/campfire/StoryInner.jsp

http://www.javaranch.com/campfire/StoryInner.jsp

Getting in Touch with your Inner Class (web resource)

www.javaranch.com/campfire/StoryInner.jsp

http://www.javaranch.com/campfire/StoryInner.jsp

Getting in Touch with your Inner Class (web resource)

www.javaranch.com/campfire/StoryInner.jsp

http://www.javaranch.com/campfire/StoryInner.jsp

Inner class: summary

• “An inner class is a nested class that is not explicitely or implicitely declared
static.” The Java Language Specification;

Inner class: summary

• “An inner class is a nested class that is not explicitely or implicitely declared
static.” The Java Language Specification;

• An object of the outer class creates an instance of an inner class:

– An object of an inner class has one outer object;

Inner class: summary

• “An inner class is a nested class that is not explicitely or implicitely declared
static.” The Java Language Specification;

• An object of the outer class creates an instance of an inner class:

– An object of an inner class has one outer object;
– An object of the outer class may have zero, one or several instances of its

inner class;

Inner class: summary

• “An inner class is a nested class that is not explicitely or implicitely declared
static.” The Java Language Specification;

• An object of the outer class creates an instance of an inner class:

– An object of an inner class has one outer object;
– An object of the outer class may have zero, one or several instances of its

inner class;
– An object of an inner class has access to the instance variables and

methods of its outer object, we say that their name space is shared.

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

Node<E> head;

private class ListIterator implements Iterator<E> {

// ...

}

}

• LinkedListIterator is an inner class;
• LinkedListIterator implements Iterator;
• LinkedList

underlinedoes not implement Iterator.

⇒ What are the instance variable of a LinkedListIterator?

Each object must have a variable (instance), a reference to the current element
that it designates, current:

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private Node<E> head;

private class ListIterator implements Iterator<E> {

private Node<E> current; // <---

...

}

}

The new implementation allows for several iterators to co-exist.

head

l

DB CA

current

i

current

j

Its constructor initialises current to null, a value which, symbolically, designates
being before the start of the list.

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private Node<E> head;

private class ListIterator implements Iterator<E> {

private Node<E> current;

private ListIterator() {

current = null; // <---

}

...

}

...

}

How to create an iterator?

How to create an iterator?

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private Node<E> head;

private class ListIterator implements Iterator<E> {

private Node<E> current;

private ListIterator() {

current = null;

} ...

}

public Iterator<E> iterator() {

return new ListIterator(); // <---

} ...

}

⇒ iterator(): is an instance method of an object of the class LinkedList.

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private Node<E> head;

private class ListIterator implements Iterator<E> {

private Node<E> current;

private ListIterator() {

current = null;

}

public E next() {

if (current == null) {

current = head;

} else {

current = current.next;

}

return current.value;

}

public boolean hasNext() { ... }

}

public Iterator<E> iterator() {

return new ListIterator<E>();

} ...

}

Usage

List<Double> doubles = new LinkedList<Double>();

doubles.add(new Double(5.1));

doubles.add(new Double(3.2));

double sum = 0.0;

Iterator<Double> i = doubles.iterator();

while (i.hasNext()) {

Double v = i.next();

sum = sum + v.doubleValue();

}

⇒ Exercise: trace the execution of the above statements.

We’ve worked hard to create a mechanism to traverse the list.
What is worth it?

We’ve worked hard to create a mechanism to traverse the list.
What is worth it?

Intel Pentium III 750.0 MHz (2000)

nodes inside iterator
(ms) (ms)

10,000 2 3
20,000 4 5
40,000 8 11
80,000 14 19

160,000 23 48

We’ve worked hard to create a mechanism to traverse the list.
What is worth it?

Intel Pentium III 750.0 MHz (2000)

nodes inside iterator
(ms) (ms)

10,000 2 3
20,000 4 5
40,000 8 11
80,000 14 19

160,000 23 48

2.66 GHz Intel Core i5 (2009)

nodes inside iterator get
(ms) (ms) (ms)

200,000 2 1 54,896
400,000 3 3 336,844
800,000 6 5 1,715,142

1,600,000 11 9 7,209,248

Many iterators

List<Double> doubles = new LinkedList<Double>();

for (int c=0; c<5; c++) {

doubles.add(new Double(c));

}

Iterator<Double> i = doubles.iterator();

while (i.hasNext()) {

Double iVal = i.next();

Iterator<Double> j = doubles.iterator();

while (j.hasNext()) {

Double jVal = j.next();

System.out.println("("+iVal+","+jVal+")");

}

}

⇒ (0.0,0.0), (0.0,1.0), . . . , (0.0,4.0), . . . , (4.0,4.0).

Iterator and new for loop

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);

int s = 0;

for (Iterator<Integer> it = ints.iterator(); it.hasNext();) {

Integer i = it.next();

s += i.intValue();

}

System.out.println(s);

Iterator and new for loop

Java 5 introduces a new syntax for the for loop that automagically creates and
uses an iterator to traverse a list, and unboxes the elements returned by the
iteration.

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);

int s = 0;

for (int i : ints) {

s += i;

}

System.out.println(s);

Iterator and new for loop

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);

int s = 0;

for (int i : ints) {

s += i;

}

System.out.println(s);

What type can be used with the new for loop?

Iterator and new for loop

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);

int s = 0;

for (int i : ints) {

s += i;

}

System.out.println(s);

What type can be used with the new for loop? Any type that has an iterator.

Iterator and new for loop

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);

int s = 0;

for (int i : ints) {

s += i;

}

System.out.println(s);

What type can be used with the new for loop? Any type that has an iterator.
What is the Java way to enforce this?

Iterator and new for loop

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);

int s = 0;

for (int i : ints) {

s += i;

}

System.out.println(s);

What type can be used with the new for loop? Any type that has an iterator.
What is the Java way to enforce this? Any class that implements the interface
Iterable<E>.

Iterable<E>

public interface Iterable<E> {

public Iterator<E> iterator();

}

where

public interface Iterator<E> {

public boolean hasNext();

public E next();

public void remove();

}

Iterable

public class LinkedList<E> implements List<E>, Iterable<E> {

private static class Node<T> { ... }

private Node<E> head;

private class ListIterator implements Iterator<E> {

...

}

...

}

Iterable

public interface List<E> extends Iterable<E> {

...

}

public class LinkedList<E> implements List<E> {

private static class Node<T> { ... }

private Node<E> head;

private class ListIterator implements Iterator<E> {

...

}

...

}

Arrays and new for loop

For the sake of completeness, the new for loop can also be applied to arrays.

int[] xs = new int[] { 1, 2, 3 };

int sum = 0;

for (int x : xs) {

sum += x;

}

Concurrent modifications: “Fail-fast”

add(E o) and remove()

Let’s add two methods to the interface Iterator, add(E o) and remove().

add()

By definition, i.add(value) will insert the new value immediately before the
next element that would be returned by next().

add()

By definition, i.add(value) will insert the new value immediately before the
next element that would be returned by next().

Therefore, the next call to next() is unaffected!

current
i

first

last

doubles

2.718 7.389

current
i

first

last

doubles

2.718 3.142 7.389

⇒ Call to i.add(new Double(3.142)), adding an element at an intermediate
position in the list, notice that i.next() returns the same value with or without
the insertion!

first

last

doubles

2.718 3.142 7.389

current
i

current
i

first

last

doubles

1.618 2.718 3.142 7.389

⇒ Adding an element when the iterator is positioned to the left of the list, i.add(
new Double(1.618)), again i.next() returns the same value with or without
insertion.

current
i

first

last

doubles

1.618 2.718 3.142 7.389

current
i

first

last

doubles

1.618 2.718 3.142 7.389 9.806

⇒ Adding an element when positioned at the end of the list, i.add(new Double(
1.618)), notice that hasNext() returns the same value with or without insertion!

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private Node<E> first;

private class ListIterator implements Iterator<E> {

private Node<E> current;

private ListIterator() { current = null; }

public E next() { ... }

public boolean hasNext() { ... }

public boolean add(E o) {

if (o == null)

return false;

if (current == null) {

first = new Node<E>(o, first);

current = first;

} else {

current.next = new Node<E>(o, current.next);

current = current.next;

}

return true;

}

public void remove() { ... }

}

public Iterator<E> iterator() { return new ListIterator(); }

// ... all the usual methods of LinkedList

}

What would the following test program display?

public class Test {

public static void main(String[] args) {

LinkedList<String> l = new LinkedList<String>();

Iterator<String> i = l.iterator();

for (int c=0; c<5; c++) {

i.add("element-" + c);

}

i = l.iterator();

while (i.hasNext()) {

System.out.println(i.next());

}

}

}

element-0

element-1

element-2

element-3

element-4

remove()

Removes from the list the last element that was returned by next().

A call i.add(value) immediately followed by i.remove() keeps the list
unchanged.

⇒ Notice that remove() does return the element that was removed, it is intended
that a previous call to next() has saved the value.

current
i

first

last

doubles

2.718 3.142 7.389

current
i

first

last

doubles

2.718 7.389

⇒ Removing an element at an intermediate position, i.remove(), notice that the
value of i.next() is the same with or without removal.

current
i

first

last

doubles

1.618 2.718 3.142 7.389

first

last

doubles

2.718 3.142 7.389

current
i

⇒ Removing the first element, i.remove(), the value of i.next() remains
unchanged.

current
i

first

last

doubles

1.618 2.718 3.142 7.389 9.806

currentifirstlastdoubles1.6182.7183.1427.389

⇒ Removing the last element, i.remove(), the value of hasNext() is the same
with or without removal.

Iterator

public interface Iterator<E> {

public abstract E next();

public abstract boolean hasNext();

public abstract void add(E o);

public abstract void remove();

public abstract boolean hasPrevious();

}

Public methods of LinkedList

int size();

void add(E o);

E get(int pos);

E remove(int pos);

Iterator<E> iterator();

Limitation of the current implementation?

Limitation of the current implementation?

Concurrent modifications to the list!

Limitation of the current implementation?

Concurrent modifications to the list! Having many iterators on the same list
poses no problems as long as long no concurrent modifications occur.

Many iterators and concurrent modifications

Consider:

[1.618, 2.718, 3.142, 7.389, 9.806]

i

j

What would occur if a program calls i.remove()? What should occur of j?

Consider:

[1.618, 2.718, 3.142, 7.389, 9.806]

i

j

After the call j.remove() what should be the value of i.next()?

3 2 6

i

current

current

j

first

last

l

⇒ Consider what would occur after i.remove().

current

i

current

j

first

last

l
3 6

2

⇒ j is now invalid!

Implementation 3: fail-fast

The solution that we will adopt is called fail-fast and consists of making an
iterator invalid as soon as a modification to the list has occurred that was not
made by the iterator itself; i.e. the modification was made by another iterator or
an instance method of the class LinkedList.

Implementation 3: fail-fast

The solution that we will adopt is called fail-fast and consists of making an
iterator invalid as soon as a modification to the list has occurred that was not
made by the iterator itself; i.e. the modification was made by another iterator or
an instance method of the class LinkedList.

Implementing this solution requires:

1. Adding a counter of modifications to the header of the list (modCount);

2. Adding a counter of modifications to the iterators (expectedModCount);

first

last

l

modCount
0

l = new LinkedList();

first

last

l

modCount
1

6.0

l.addFirst(new Double(6.0));

first

last

l

modCount
2

2.0 6.0

l.addFirst(new Double(2.0));

first

last

l

modCount
3

6.0

l.deleteFirst();

1. When creating a new list, the modification counter is set to 0;

first

last

l

modCount
0

l = new LinkedList();

first

last

l

modCount
1

6.0

l.addFirst(new Double(6.0));

first

last

l

modCount
2

2.0 6.0

l.addFirst(new Double(2.0));

first

last

l

modCount
3

6.0

l.deleteFirst();

1. When creating a new list, the modification counter is set to 0;
2. Notice that modCount counts the number of modifications and not the

number of elements in the list. Following the call to deleteFirst(), modCount
is 3 and not 1.

first

last

l

modCount
4

6.02.0

l.addFirst(2.0);

first

last

l
3.0 2.0

modCount

6.0

5

l.addFirst(3.0);

l
first

last

3.0 2.0

modCount

6.0

current

modCount

i

5

5

Iterator i = iterator();

⇒ Creating a new Iterator does not change modCount!

l
first

last

3.0 2.0

modCount

6.0

current

modCount

i

5

5

i.next();

l
first

last

3.0 2.0

modCount

6.0

5

current

modCount

i

5

i.next();

l
first

last

3.0 2.0

modCount

6.0

5

current

modCount

i

5

i.next();

⇒ Similarly, traversing the list does not change modCount.

l
first

last

3.0 2.0

modCount

6.0

current

modCount

i

current

modCount

j

5

5

5

Both iterators are valid

l
first

last

3.0 2.0

modCount

current

modCount

j

6

6

current

modCount

i

5

j.remove();

⇒ The iterator whose expectedModCount has the same value as the one in the
header of the list remains valid; all the other ones are not.

Changes to the class LinkedList

The list operations that modify the list, addFist, deleteFirst, etc. must now
change the value of modCount.

Changes to the class LinkedList

The list operations that modify the list, addFist, deleteFirst, etc. must now
change the value of modCount.

When creating a new list, modCount must be set to zero.

Modifications to ListIterator

When creating a new iterator, the value modCount from the header of the list
must be copied to the instance variable expectedModCount.

Modifications to ListIterator

When creating a new iterator, the value modCount from the header of the list
must be copied to the instance variable expectedModCount.

The methods for adding and removing elements must update both, their own
expectedModCount and modCount in the header of the list.

Modifications to ListIterator

When creating a new iterator, the value modCount from the header of the list
must be copied to the instance variable expectedModCount.

The methods for adding and removing elements must update both, their own
expectedModCount and modCount in the header of the list.

All the iterator’s methods must be changed so that the precondition “is
valid?” is true, otherwise they must throw the appropriate exception,
ConcurrentModificationException.

isValid()

To facilitate writing the methods of the inner class ListIterator, we create a new
method called isValid().

isValid()

To facilitate writing the methods of the inner class ListIterator, we create a new
method called isValid().

The method checks that expectedModCount == modCount.

isValid()

To facilitate writing the methods of the inner class ListIterator, we create a new
method called isValid().

The method checks that expectedModCount == modCount.

Appendix : Accessing Members of the Outer Object

In the previous example, the modification counter of the inner class
(expectedModCount) was given a different name than that of the outer class
(modCount) to avoid a name conflict.

The syntax LinkedList.this.modCount could also be used in the inner class
(ListIterator) to refer to the instance variable of the outer object (LinkedList).

public class Outer {

private int value = 99;

public class Inner {

private int value;

public Inner() {

this.value = Outer.this.value + 1;

}

public int getValue() {

return value;

}

}

public Inner newInner() {

return new Inner();

}

public int getValue() {

return value;

}

}

Accessing Members of the Outer Object

class Test {

public static void main(String[] args) {

Outer o = new Outer();

System.out.println("o.getValue() -> " + o.getValue());

Outer.Inner i = o.newInner();

System.out.println("i.getValue() -> " + i.getValue());

System.out.println("o.getValue() -> " + o.getValue());

}

}

Accessing Members of the Outer Object

// > java Test

// o.getValue() -> 99

// i.getValue() -> 100

// o.getValue() -> 99

Advanced (optional) example

public class A {

private int value = 99;

public class B {

private int value;

public B() { this.value = A.this.value + 1; }

public class C {

private int value;

public C() {

this.value = B.this.value + 1;

}

public int getValue() {

System.out.println("A.this.value = " + A.this.value);

System.out.println("B.this.value = " + B.this.value);

System.out.println("this.value = " + this.value);

return value;

}

}

}

}

class D {

public static void main(String[] args) {

A.B.C abc = new A().new B().new C();

System.out.println("abc.getValue() -> " + abc.getValue());

}

}

// > java D

// A.this.value = 99

// B.this.value = 100

// this.value = 101

// abc.getValue() -> 101

