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Abstract

e Queues
— ArrayQueue

*These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.



Definitions

A queue is a linear abstract data type such that insertions are made at one end,
called the rear, and removals are made at the other end, called the front.

Queues are sometimes called FIFOs: first-in first-out.
enqueue () = Queue = dequeue()

The two basic operations are:

enqueue: adds an element to the rear of the queue;

dequeue: removes and returns the element at the front of the queue.

= Software queues are similar to physical ones: queuing at the supermarket, at
the bank, at cinemas, etc.



ADT

public interface Queue<E> {
public abstract boolean isEmpty();
public abstract void enqueue( E o );
public abstract E dequeue();



Using an array

public class ArrayQueue<E> implements Queue<E> {
private E[] elems;
public boolean isEmpty() { ... }

public void enqueue( E o ) { ... }
public E dequeue() { ... }



Array implementation of a queue

Implementation 1: Let's set the front of the queue to a fix location, say 0, and
use an instance variable to indicate the location of the rear element.
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= Contrary to the array-based implementation of a stack, using an array to
implement a queue will create some problems, which we will circumvent, of
course!



Array implementation of a queue

public class ArrayQueue<E> implements Queue<E> {

private E[] elems;
private int rear;

public boolean isEmpty() { ... }
public void enqueue( E o ) { ... }
public E dequeue() { ... }



Remarks

e Just like stacks,

— rear can be made to designate the first free location (instead of the element
itself);
— a queue could be implemented in the upper part of the array.

= Without effects on the efficiency.



Insertion (enqueue)

Inserting an element into a queue, when the front location is fixed, is similar to

adding an element onto a stack.
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= (i) the variable rear is incremented by 1, then (ii) the new element is stored
at the position designated by rear.



Removal (dequeue)

What about removing an element?



Removal (dequeue)

What about removing an element?

All the elements must be moved one position toward the front of the queue so
that the front element remains at a fixed location, here O.

Save the value to be returned;

For i from 1 to (rear - 1) move the element at position i to ¢ — 1;
Set rear cell to null;

Decrement rear by 1;

Return the saved value.

ok



Removal (dequeue)
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Removal (dequeue)

For each element that's removed, n — 1 elements must be moved!
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Removal (dequeue)

For each element that's removed, n — 1 elements must be moved!

The more elements there are in the queue, the more costly the removal operation
becomes.

Doubling the number of elements in the queue means doubling the cost of the
removal operations.

On the other hand, for a fixed-size array, the cost of inserting an element remains
constant.

= What improvements can be made?



Array-based implementation

Implementation 2: the front and the rear of the queue are now moving, this
will require two instance variables, one that points at the front element and
one that points at the rear.
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Removal (dequeue)

General case:
To remove an element, (i) save the value located at the position designated by

front to a (local) temporary variable, (ii) set the cell designated by front to null,
(iii) increment front and (iv) return the saved value.

Removal is now done in constant time, always the same four steps above.
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Removal (dequeue)

General case:

To remove an element, (i) save the value located at the position designated by

front to a (local) temporary variable, (ii) set the cell designated by front to null,
(iii) increment front and (iv) return the saved value.

Removal is now done in constant time, always the same four steps above.

Mission accomplished?

Any particular problem with this implementation?



Inserting (enqueue)

What about insertions?



Inserting (enqueue)

What about insertions?

Just like before:

1. Increment by one the variable rear,

2. Insert the new value at the position designated by rear.



This implementation has a special case, when the queue has reached the upper
part of the array, and there are free cells in its lower part, all the elements must

be moved.
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This new implementation allows to remove elements efficiently, i.e. does not
depend on the size of the queue.
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This new implementation allows to remove elements efficiently, i.e. does not
depend on the size of the queue.

The price to pay is that whenever the queue reaches the limit of the array and
front is not 0, i.e. the queue is not full, then the queue must be re-positioned to
the lower part of the array, i.e. all the elements are moved.

The larger the queue the more costly this operation becomes.
For implementation 1, adding an element is done efficiently but removal is slow.

For implementation 2, it is the contrary, adding an element now becomes the
slow operation (because it needs to re-position the queue from time to time) but
removal is always fast.

= Can both operations be implemented efficiently?



Array-based implementation

Implementation 3: to make both operations fast this implementation uses a
circular array. Two instance variables will be needed, front and rear.
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Insertion: (i) increment the value of rear, (ii) insert the element at the position
designated by rear.

Removal: save the element found at position front, set the position to null
iIncrement front and return the saved value.



Memory diagram




Memory diagram
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Circular array

How to implement a circular array?



Circular array

How to implement a circular array?

The idea is as follows, once the queue reaches the end of the array, the free cells
at the start of the array are re-used (if they are free, of course).
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Enqueue could be implemented as follows:

rear = rear + 1;
if ( rear == MAX_QUEUE_SIZE ) {
rear = 0;

+

What other technique can be used to implement a wraparound?



Enqueue could be implemented as follows:

rear = rear + 1;
if ( rear == MAX_QUEUE_SIZE ) {
rear = 0;

+

What other technique can be used to implement a wraparound?

We can use modulo arithmetic !

rear = ( rear + 1 ) % MAX_QUEUE_SIZE;

Ljust like increasing the number of seconds in the class Time.



Insertion (enqueue)

1. rear = ( rear+1 ) Y MAX_QUEUE_SIZE,
2. add the element at the position designated by rear.



Removal (dequeue)

save the value found at the position designated by front,
set that location to null,

front = ( front+1 ) % MAX_QUEUE_SIZE,

return the saved value.

= Wi

= What occurs when the queue is empty?
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We can see that it is no longer possible to distinguish the empty queue and the
one which is full on the basis of the values of rear and front alone.

Solutions?



There are many implementation techniques:

e use a boolean instance variable (isEmpty);
e use a sentinel value (-1) for rear and/or front;
e count the number of elements (size)



For our implementation, we will use a sentinel for the value of rear, here -1.

public class CircularQueue<E> implements Queue<E> {
private static final int MAX_QUEUE_SIZE = 100;

private E[] q;
private int front, rear;

public CircularQueue() {
q = (E[]) new Object[ MAX_QUEUE_SIZE 1];
front = 0;
rear = -1; // represents the empty queue

/] ...



public void enqueue( E o ) {
rear = ( rear+1l ) % MAX_QUEUE_SIZE;
ql rear 1 = o;



public boolean isEmpty() {
return ( rear == -1 ) ;

+

public boolean isFull() {



public E peek() {
return q[ front ];

+

public E dequeue() {



Insertion (enqueue)

An alternative implementation would be to use an instance variable to count the
number of elements.

1. rear = ( rear+1 ) % MAX_QUEUE_SIZE;
2. add the new element at the position designated by rear;
3. increment count.



oL

Removal (dequeue)

save the front value;

set that location to null;

front = ( front+1 ) % MAX_QUEUE_SIZE;
decrement count;

return the saved value.



empty()

1. count ==



isFull()

1. count == MAX_QUEUE_SIZE



