
Preamble
Data types

Call-by-value
Scope

ITI 1121. Introduction to Computing II†

Marcel Turcotte
(with contributions from R. Holte)

School of Electrical Engineering and Computer Science
University of Ottawa

Version of January 11, 2015

†
Please don’t print these lecture notes unless you really need to!

Marcel Turcotte ITI 1121. Introduction to Computing II

Great coders are today’s rock stars
Will.I.Am

Watch the video at code.org!

http://www.youtube.com/watch?v=nKIu9yen5nc
http://code.org

Preamble
Data types

Call-by-value
Scope

Review

Objectives:

1. Discussing several concepts related to data types

2. Understanding the implications of the differences between
primitive and reference types

3. Reviewing call-by-value

4. Understanding the concept of scope

Lectures:

I Pages 597–631 of E. Koffman and P. Wolfgang.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Plan

1. What are variables and data types

2. Primitive vs reference

3. Comparison operators (primitive vs reference)

4. Auto-boxing/auto-unboxing;

5. Passing parameters

6. Scope

7. Memory management

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Variables

What is a variable?

I A variable is a place in memory, to hold a value, which we
refer to with help of a label

33(i) 0,000,123,456

...

...

4,294,967,296

0,000,000,000

0,000,123,457

0,000,123,455

byte i = 33 ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Variables

What is a variable?

I A variable is a place in memory, to hold a value, which we
refer to with help of a label

33(i) 0,000,123,456

...

...

4,294,967,296

0,000,000,000

0,000,123,457

0,000,123,455

byte i = 33 ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Variables

I will be using Greek letters to designate memory locations
(addresses) since in Java we don’t know the location of “objects”
and should not care!

33(i)

...

...

α + 1

α− 1

α

byte i = 33 ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types

What are data types for?

I Yes, it tells the compiler how much memory to allocate:

double f o rmu la ; // 8 by t e s
char c ; // 2 by t e s

I But it also? It gives information about the meaning
(semantic) of the data: which operations are allowed,
which data are compatible. Hence the following statement,

c = f l a g ∗ f o rmu la ;

will produce an error at compile time; data types are therefore
also useful to help detect errors in programs early on.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types

What are data types for?

I Yes, it tells the compiler how much memory to allocate:

double f o rmu la ; // 8 by t e s
char c ; // 2 by t e s

I But it also? It gives information about the meaning
(semantic) of the data: which operations are allowed,
which data are compatible. Hence the following statement,

c = f l a g ∗ f o rmu la ;

will produce an error at compile time; data types are therefore
also useful to help detect errors in programs early on.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types

What are data types for?

I Yes, it tells the compiler how much memory to allocate:

double f o rmu la ; // 8 by t e s
char c ; // 2 by t e s

I But it also?

It gives information about the meaning
(semantic) of the data: which operations are allowed,
which data are compatible. Hence the following statement,

c = f l a g ∗ f o rmu la ;

will produce an error at compile time; data types are therefore
also useful to help detect errors in programs early on.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types

What are data types for?

I Yes, it tells the compiler how much memory to allocate:

double f o rmu la ; // 8 by t e s
char c ; // 2 by t e s

I But it also? It gives information about the meaning
(semantic) of the data: which operations are allowed,
which data are compatible.

Hence the following statement,

c = f l a g ∗ f o rmu la ;

will produce an error at compile time; data types are therefore
also useful to help detect errors in programs early on.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types

What are data types for?

I Yes, it tells the compiler how much memory to allocate:

double f o rmu la ; // 8 by t e s
char c ; // 2 by t e s

I But it also? It gives information about the meaning
(semantic) of the data: which operations are allowed,
which data are compatible. Hence the following statement,

c = f l a g ∗ f o rmu la ;

will produce an error at compile time; data types are therefore
also useful to help detect errors in programs early on.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types (contd)

I To be more precise, there are concrete data types and
abstract data types

I Concrete data types specify both, the allowed operations and
the representation of the data

I Abstract Data Types (ADTs) specify only the allowed
operations

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types (contd)

I To be more precise, there are concrete data types and
abstract data types

I Concrete data types specify both, the allowed operations and
the representation of the data

I Abstract Data Types (ADTs) specify only the allowed
operations

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data types (contd)

I To be more precise, there are concrete data types and
abstract data types

I Concrete data types specify both, the allowed operations and
the representation of the data

I Abstract Data Types (ADTs) specify only the allowed
operations

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable
I References:

I Predefined:
I Arrays
I Strings

I User defined, reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans

I the value is stored at the memory location designated by
the label of the variable

I References:
I Predefined:

I Arrays
I Strings

I User defined, reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable

I References:
I Predefined:

I Arrays
I Strings

I User defined, reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable
I References:

I Predefined:

I Arrays
I Strings

I User defined, reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable
I References:

I Predefined:
I Arrays
I Strings

I User defined,

reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable
I References:

I Predefined:
I Arrays
I Strings

I User defined, reference to an instance of a class;

I The value of a reference variable is a memory location,
which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable
I References:

I Predefined:
I Arrays
I Strings

I User defined, reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Data Types in Java

In Java, we have primitive and reference data types:
I Primitive are:

I numbers, characters (but not Strings) and booleans
I the value is stored at the memory location designated by

the label of the variable
I References:

I Predefined:
I Arrays
I Strings

I User defined, reference to an instance of a class;
I The value of a reference variable is a memory location,

which points/references to the location of an object; it is
a pointer, a “link”, it’s a reference

I The declaration of a reference variable does not create an
object, does not allocate space for an object, it only
allocates memory to store the address of an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

> i n t [] a ;
a = new i n t [5] ;

(a)

...
α null

...

⇒ The declaration of a reference variable only allocates memory to
hold a reference (sometimes called pointer or address), null is a
special value (literal), which does not reference an object

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t [] a ;
> a = new i n t [5] ;

0

0
0

(a)

...

...

0

α null
...

0

β(instance)

⇒ The creation of a new instance, new int[5], allocates
memory to hold 5 integer values (and the housekeeping
information). Each cell of the array is initialized with the default
int value, which is 0.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t [] a ;
> a = new i n t [5] ;

0

0
0

(a)

...

...

0

α

...

0

β

β

(instance)

⇒ Finally, the reference of the newly created object is assigned to
the location designed by the label a.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

Because we don’t know (and shouldn’t care) about the actual
memory layout, we often use memory diagrams such as the
following,

0

0
0

(a)

...

...

0

α

...

0

β

β

(instance)

⇒
0

0
0

(a)

0

α

0

β

β

(instance)

⇒
0

0
0

a

0
0

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

Because we don’t know (and shouldn’t care) about the actual
memory layout, we often use memory diagrams such as the
following,

0

0
0

(a)

...

...

0

α

...

0

β

β

(instance) ⇒
0

0
0

(a)

0

α

0

β

β

(instance)

⇒
0

0
0

a

0
0

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

Because we don’t know (and shouldn’t care) about the actual
memory layout, we often use memory diagrams such as the
following,

0

0
0

(a)

...

...

0

α

...

0

β

β

(instance) ⇒
0

0
0

(a)

0

α

0

β

β

(instance)

⇒
0

0
0

a

0
0

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

In a memory diagram, I want to see:

I a box for every reference variable with an arrow pointing a the
designated object

I a box for every primitive variable with the value inside the box

I a box for every object

i n t [] a ;
a = new i n t [5] ;

⇒
0

0
0

a

0
0

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

In a memory diagram, I want to see:

I a box for every reference variable with an arrow pointing a the
designated object

I a box for every primitive variable with the value inside the box

I a box for every object

i n t [] a ;
a = new i n t [5] ; ⇒

0

0
0

a

0
0

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

Given the following class declaration:

p u b l i c c l a s s Constant {
p r i v a t e f i n a l S t r i n g name ;
p r i v a t e f i n a l double v a l u e ;
p u b l i c Constant (S t r i n g name , double v a l u e) {

t h i s . name = name ;
t h i s . v a l u e = va l u e ;

}
}

Draw the memory diagram for the following statments:

Constant c ;
c = new Constant (” go lden r a t i o ” , 1 .61803399) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

Given the following class declaration:

p u b l i c c l a s s Constant {
p r i v a t e f i n a l S t r i n g name ;
p r i v a t e f i n a l double v a l u e ;
p u b l i c Constant (S t r i n g name , double v a l u e) {

t h i s . name = name ;
t h i s . v a l u e = va l u e ;

}
}

Draw the memory diagram for the following statments:

Constant c ;
c = new Constant (” go lden r a t i o ” , 1 .61803399) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

1.6180339887

c

value

name "golden ratio"

an instance
of the class
String

an instance
of the class
Constant

a reference
variable of type
Constant

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

1.6180339887

c

value

name "golden ratio"

an instance
of the class
String

an instance
of the class
Constant

a reference
variable of type
Constant

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Memory diagram

1.6180339887

c

value

name "golden ratio"

an instance
of the class
String

an instance
of the class
Constant

a reference
variable of type
Constant

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Remember

I Variables have types

I Objects have classes

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Class Integer

In the following examples, we’ll be using our own class Integer:

c l a s s I n t e g e r {
i n t v a l u e ;

}

Usage:

I n t e g e r a ;
a = new I n t e g e r () ;
a . v a l u e = 33 ;
a . v a l u e++;
System . out . p r i n t l n (”a . v a l u e = ” + a . v a l u e) ;

We use the dot notation to access the value of an instance variable.
Java has a pre-defined class named Integer. It is called a
“wrapper” class; it wraps an int value into an object.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Class Integer

In the following examples, we’ll be using our own class Integer:

c l a s s I n t e g e r {
i n t v a l u e ;

}

Usage:

I n t e g e r a ;
a = new I n t e g e r () ;
a . v a l u e = 33 ;
a . v a l u e++;
System . out . p r i n t l n (”a . v a l u e = ” + a . v a l u e) ;

We use the dot notation to access the value of an instance variable.

Java has a pre-defined class named Integer. It is called a
“wrapper” class; it wraps an int value into an object.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Class Integer

In the following examples, we’ll be using our own class Integer:

c l a s s I n t e g e r {
i n t v a l u e ;

}

Usage:

I n t e g e r a ;
a = new I n t e g e r () ;
a . v a l u e = 33 ;
a . v a l u e++;
System . out . p r i n t l n (”a . v a l u e = ” + a . v a l u e) ;

We use the dot notation to access the value of an instance variable.
Java has a pre-defined class named Integer. It is called a
“wrapper” class; it wraps an int value into an object.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Class Integer

Adding a constructor

c l a s s I n t e g e r {
i n t v a l u e ;
I n t e g e r (i n t v) {

v a l u e = v ;
}

}

Usage:

I n t e g e r a ;
a = new I n t e g e r (33) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Primitive vs reference variables

i

...

33
...

i n t i = 33 ;

null

i

...

null
...

alias
...

I n t e g e r i , a l i a s ;
i = new I n t e g e r (33) ;
a l i a s = i ;

At compile time the necessary memory to hold the reference is
allocated

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Primitive vs reference variables

i

...

33
...

i n t i = 33 ;

null

i

...

...

33

null
...

alias
...

value

α

I n t e g e r i , a l i a s ;
i = new I n t e g e r (33) ;
a l i a s = i ;

Creating an object (new Integer(33))

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Primitive vs reference variables

i

...

33
...

i n t i = 33 ;

null

i

...

...

33

...

alias
...

value

α

α

I n t e g e r i , a l i a s ;
i = new I n t e g e r (33) ;
a l i a s = i ;

Assigning the reference of that object to the reference variable i

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Primitive vs reference variables

i

...

33
...

i n t i = 33 ;

i

...

...

33

...

alias
...

value

α

α

α

I n t e g e r i , a l i a s ;
i = new I n t e g e r (33) ;
a l i a s = i ;

Copying the value of the reference variable i into alias

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Primitive vs reference variables

i

...

33
...

i n t i = 33 ;

i

...

...

33

...

alias
...

value

I n t e g e r i , a l i a s ;
i = new I n t e g e r (33) ;
a l i a s = i ;

i and alias are both designating the same object!

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Primitive vs reference variables

i 33

i n t i = 33 ;

i

...

33

alias

value

I n t e g e r i , a l i a s ;
i = new I n t e g e r (33) ;
a l i a s = i ;

Using the memory diagram representation

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Wrappers

I For every primitive type there is an associated wrapper class

I For instance, Integer is the wrapper class for the primitive
type int

I A wrapper stores a value of a primitive type inside an object

I This will be paramount for stacks, queues, lists and trees

I Besides holding a value, the wrapper classes possess several
class methods, mainly to convert values from/to other types,
e.g. Integer.parseInt(“33”)

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Wrappers

I For every primitive type there is an associated wrapper class

I For instance, Integer is the wrapper class for the primitive
type int

I A wrapper stores a value of a primitive type inside an object

I This will be paramount for stacks, queues, lists and trees

I Besides holding a value, the wrapper classes possess several
class methods, mainly to convert values from/to other types,
e.g. Integer.parseInt(“33”)

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Wrappers

I For every primitive type there is an associated wrapper class

I For instance, Integer is the wrapper class for the primitive
type int

I A wrapper stores a value of a primitive type inside an object

I This will be paramount for stacks, queues, lists and trees

I Besides holding a value, the wrapper classes possess several
class methods, mainly to convert values from/to other types,
e.g. Integer.parseInt(“33”)

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Wrappers

I For every primitive type there is an associated wrapper class

I For instance, Integer is the wrapper class for the primitive
type int

I A wrapper stores a value of a primitive type inside an object

I This will be paramount for stacks, queues, lists and trees

I Besides holding a value, the wrapper classes possess several
class methods, mainly to convert values from/to other types,
e.g. Integer.parseInt(“33”)

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Wrappers

I For every primitive type there is an associated wrapper class

I For instance, Integer is the wrapper class for the primitive
type int

I A wrapper stores a value of a primitive type inside an object

I This will be paramount for stacks, queues, lists and trees

I Besides holding a value, the wrapper classes possess several
class methods, mainly to convert values from/to other types,
e.g. Integer.parseInt(“33”)

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement! Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement!

Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement!

Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement!

Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement!

Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement!

Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Quiz

This is valid Java statement, true or false?

I n t e g e r i = 1 ;

I If this is a valid statement, what are the implications?

I Okay, 1 is a value of a primitive type, int, but i is a reference
variable, of type Integer

I In Java 1.4 or older, this would cause a compile-time error!

I However, in Java 5, 6 or 7, this is a valid statement! Why?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Auto-boxing

This is because Java 5, 6 and 7 automagically transform the
following statement

I n t e g e r i = 1 ;

into

I n t e g e r i = new I n t e g e r (1) ;

This is called auto-boxing.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Auto-boxing

This is because Java 5, 6 and 7 automagically transform the
following statement

I n t e g e r i = 1 ;

into

I n t e g e r i = new I n t e g e r (1) ;

This is called auto-boxing.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Auto-unboxing

Similarly, the statement i = i + 5

I n t e g e r i = 1 ;
i = i + 5 ;

is transformed into

i = new I n t e g e r (i . i n tVa l u e () + 5) ;

where the value of the wrapper object designated by i is extracted,
unboxed, with the method call, i.intValue().

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Boxing/unboxing

Primitive Reference
byte Byte
short Short
int Integer
long Long
float Float
double Double
bool Boolean
char Character

All 8 primitive types have a corresponding wrapper class.

The
automatic conversion from primitive to reference type is called
boxing, and the conversion from reference to primitive type is
called unboxing.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Boxing/unboxing

Primitive Reference
byte Byte
short Short
int Integer
long Long
float Float
double Double
bool Boolean
char Character

All 8 primitive types have a corresponding wrapper class. The
automatic conversion from primitive to reference type is called
boxing,

and the conversion from reference to primitive type is
called unboxing.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Boxing/unboxing

Primitive Reference
byte Byte
short Short
int Integer
long Long
float Float
double Double
bool Boolean
char Character

All 8 primitive types have a corresponding wrapper class. The
automatic conversion from primitive to reference type is called
boxing, and the conversion from reference to primitive type is
called unboxing.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Does it matter?

l ong s1 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s1 = s1 + (l ong) 1 ;
}

Long s2 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s2 = s2 + (l ong) 1 ;
}

49 milliseconds 340 milliseconds

I Why?

On the right side, s2 is declared as a Long, hence, the line,

s2 = s2 + (long) 1 ;

is rewritten as,

s2 = new Long (s2 . l ongVa lue () + (long) 1) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Does it matter?

l ong s1 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s1 = s1 + (l ong) 1 ;
}

Long s2 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s2 = s2 + (l ong) 1 ;
}

49 milliseconds 340 milliseconds

I Why?

On the right side, s2 is declared as a Long, hence, the line,

s2 = s2 + (long) 1 ;

is rewritten as,

s2 = new Long (s2 . l ongVa lue () + (long) 1) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Does it matter?

l ong s1 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s1 = s1 + (l ong) 1 ;
}

Long s2 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s2 = s2 + (l ong) 1 ;
}

49 milliseconds 340 milliseconds

I Why?

On the right side, s2 is declared as a Long, hence, the line,

s2 = s2 + (long) 1 ;

is rewritten as,

s2 = new Long (s2 . l ongVa lue () + (long) 1) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Does it matter?

l ong s1 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s1 = s1 + (l ong) 1 ;
}

Long s2 = (l ong) 0 ;
f o r (j =0; j <10000000; j++) {

s2 = s2 + (l ong) 1 ;
}

49 milliseconds 340 milliseconds

I Why?

On the right side, s2 is declared as a Long, hence, the line,

s2 = s2 + (long) 1 ;

is rewritten as,

s2 = new Long (s2 . l ongVa lue () + (long) 1) ;

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Programming tip: benchmarking your code

long s t a r t , stop , e l a p s e d ;

s t a r t = System . c u r r e n tT im eM i l l i s () ; // s t a r t the c l o c k

f o r (j =0; j <10000000; j++) {
s2 += (long) 1 ; // s t and s f o r ‘ s2 = s2 + (long) 1 ’

}

s top = System . c u r r e n tT im eM i l l i s () ; // s top the c l o c k

e l a p s e d = stop − s t a r t ;

where System.currentTimeMillis() returns the number of
milliseconds elapsed since midnight, January 1, 1970 UTC
(Coordinated Universal Time).
System.nanoTime() also exists.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Programming tip: benchmarking your code

long s t a r t , stop , e l a p s e d ;

s t a r t = System . c u r r e n tT im eM i l l i s () ; // s t a r t the c l o c k

f o r (j =0; j <10000000; j++) {
s2 += (long) 1 ; // s t and s f o r ‘ s2 = s2 + (long) 1 ’

}

s top = System . c u r r e n tT im eM i l l i s () ; // s top the c l o c k

e l a p s e d = stop − s t a r t ;

where System.currentTimeMillis() returns the number of
milliseconds elapsed since midnight, January 1, 1970 UTC
(Coordinated Universal Time).
System.nanoTime() also exists.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Billion-dollar mistake (Null reference)

“I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. At that time, I was designing the first
comprehensive type system for references in an object oriented
language (ALGOL W). My goal was to ensure that all use of
references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn’t resist the
temptation to put in a null reference, simply because it was
so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty years.”

Tony Hoare

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators – primitive data types

Variables of primitive data types can be compared directly

i n t a = 5 ;
i n t b = 10 ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

What will be printed out on the output?

⇒ Prints “a < b”

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators – primitive data types

Variables of primitive data types can be compared directly

i n t a = 5 ;
i n t b = 10 ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

What will be printed out on the output?

⇒ Prints “a < b”

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t a = 5 ;
i n t b = 10 ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

a

...

5
...
10b
...

α

β

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators: primitive and reference types

What will happen and why?

i n t a = 5 ;
I n t e g e r b = new I n t e g e r (5) ;
i f (a < b) {

System . out . p r i n t l n (”a < b”) ;
} e l s e i f (a == b) {

System . out . p r i n t l n (”a == b”) ;
} e l s e {

System . out . p r i n t l n (”a > b”) ;
}

References.java:7: operator < cannot be applied to int,java.lang.Integer

if (a < b)

^

References.java:9: operator == cannot be applied to int,java.lang.Integer

else if (a == b)

^

2 errors

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators: primitive and reference types

What will happen and why?

i n t a = 5 ;
I n t e g e r b = new I n t e g e r (5) ;
i f (a < b) {

System . out . p r i n t l n (”a < b”) ;
} e l s e i f (a == b) {

System . out . p r i n t l n (”a == b”) ;
} e l s e {

System . out . p r i n t l n (”a > b”) ;
}

References.java:7: operator < cannot be applied to int,java.lang.Integer

if (a < b)

^

References.java:9: operator == cannot be applied to int,java.lang.Integer

else if (a == b)

^

2 errors

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t a = 5 ;
I n t e g e r b = new I n t e g e r (5) ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

a

...

5
...

b
...

α

β

5value

γ

γ

References.java:7: operator < cannot be applied to int,java.lang.Integer

if (a < b)

^

References.java:9: operator == cannot be applied to int,java.lang.Integer

else if (a == b)

^

2 errors

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t a = 5 ;
I n t e g e r b = new I n t e g e r (5) ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

a

...

5
...

b
...

5value

References.java:7: operator < cannot be applied to int,java.lang.Integer

if (a < b)

^

References.java:9: operator == cannot be applied to int,java.lang.Integer

else if (a == b)

^

2 errors

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t a = 5 ;
I n t e g e r b = new I n t e g e r (5) ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

a 5

b

5value

References.java:7: operator < cannot be applied to int,java.lang.Integer

if (a < b)

^

References.java:9: operator == cannot be applied to int,java.lang.Integer

else if (a == b)

^

2 errors

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators and reference types

What will be the result?

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (10) ;

i f (a < b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not equa l b”) ;

}

Less.java:14: operator < cannot be applied to MyInteger,MyInteger

if (a < b) {

^

1 error

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators and reference types

What will be the result?

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (10) ;

i f (a < b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not equa l b”) ;

}

Less.java:14: operator < cannot be applied to MyInteger,MyInteger

if (a < b) {

^

1 error

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Remarks

I These error messsages are produced by pre-1.5 Java compilers

I Starting with Java 1.5, autoboxing masks the “problem”

I In order to get same behaviour with the two environments,
let’s use our wrapper, MyInteger

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Class MyInteger

c l a s s MyInteger {
i n t v a l u e ;
MyInteger (i n t v) {

v a l u e = v ;
}

}

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

i n t a = 5 ;
MyInteger b = new MyInteger (5) ;

i f (a < b) {
System . out . p r i n t l n (”a < b”) ;

} e l s e i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a > b”) ;

}

a 5

b

5value

I Fix this!

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Solution

i n t a = 5 ;
MyInteger b = new MyInteger (5) ;

i f (a < b . v a l u e) {
System . out . p r i n t l n (”a i s l e s s than b”) ;

} e l s e i f (a == b . v a l u e) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a i s g r e a t e r than b”) ;

}

⇒ Prints “a equals b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Solution

i n t a = 5 ;
MyInteger b = new MyInteger (5) ;

i f (a < b . v a l u e) {
System . out . p r i n t l n (”a i s l e s s than b”) ;

} e l s e i f (a == b . v a l u e) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a i s g r e a t e r than b”) ;

}

⇒ Prints “a equals b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators and reference types

What will happen and why?

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a == b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not equa l b”) ;

}

⇒ The result is “a does not equal b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators and reference types

What will happen and why?

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a == b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not equa l b”) ;

}

⇒ The result is “a does not equal b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a == b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not e qua l s b”) ;

}

a

...

...
b

...

5value

5value

...

...

⇒ The result is “a does not equal b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a == b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not e qua l s b”) ;

}

a

...

...
b

...

5value

5value

...

...

⇒ The result is “a does not equal b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a == b) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not e qua l s b”) ;

}

a

b

5value

5value

⇒ The result is “a does not equal b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Solution

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a . e qu a l s (b)) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not b”) ;

}

where equals could have been defined as an instance method:

p u b l i c boolean e qua l s (MyInteger o t h e r) {
r e t u r n s t h i s . v a l u e == othe r . v a l u e ;

}

⇒ Would print “a equals b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Solution

MyInteger a = new MyInteger (5) ;
MyInteger b = new MyInteger (5) ;

i f (a . e qu a l s (b)) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not b”) ;

}

where equals could have been defined as an instance method:

p u b l i c boolean e qua l s (MyInteger o t h e r) {
r e t u r n s t h i s . v a l u e == othe r . v a l u e ;

}

⇒ Would print “a equals b”.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

What will happen?

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a != b”) ;

}

⇒ Prints “a == b”, why? because a and b reference the same
object (instance), in other words, the two memory locations are
the same; we say that b is an alias for a.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

What will happen?

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a != b”) ;

}

⇒ Prints “a == b”, why?

because a and b reference the same
object (instance), in other words, the two memory locations are
the same; we say that b is an alias for a.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

What will happen?

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a != b”) ;

}

⇒ Prints “a == b”, why? because a and b reference the same
object (instance), in other words, the two memory locations are
the same; we say that b is an alias for a.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators and reference types

What will happen?

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a . e qu a l s (b)) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not equa l b”) ;

}

⇒ prints “a equals b” because the two values are equal.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Comparison operators and reference types

What will happen?

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a . e qu a l s (b)) {
System . out . p r i n t l n (”a e qua l s b”) ;

} e l s e {
System . out . p r i n t l n (”a does not equa l b”) ;

}

⇒ prints “a equals b” because the two values are equal.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a == b) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a != b”) ;

}

a

b

5value

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

MyInteger a = new MyInteger (5) ;
MyInteger b = a ;

i f (a . e qu a l s (b)) {
System . out . p r i n t l n (”a == b”) ;

} e l s e {
System . out . p r i n t l n (”a != b”) ;

}

a

b

5value

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Remarks

I Two reference variables designate objects that are “logically
equivalent” if these objects have the same “content”, use the
method equals to test for “content or logical equality”‡

I In order to test if two reference variables designate the same
object, use the comparison operators ’==’ and ’ !=’

i f (a . e qu a l s (b)) { . . . }

vs

i f (a == b) { . . . }

‡We will continue the discussion when
learning about inheritance!

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Remarks

I Two reference variables designate objects that are “logically
equivalent” if these objects have the same “content”, use the
method equals to test for “content or logical equality”‡

I In order to test if two reference variables designate the same
object, use the comparison operators ’==’ and ’ !=’

i f (a . e qu a l s (b)) { . . . }

vs

i f (a == b) { . . . }

‡We will continue the discussion when
learning about inheritance!

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Memory representation
Primitive vs reference types
Comparison operators

Exercises

Experiment comparing these objects using equals and ==, you
might be surprised by the results.

S t r i n g a = new S t r i n g (” He l l o ”) ;
S t r i n g b = new S t r i n g (” He l l o ”) ;
i n t c [] = { 1 , 2 , 3 } ;
i n t d [] = { 1 , 2 , 3 } ;
S t r i n g e = ” He l l o ” ;
S t r i n g f = ” He l l o ” ;
S t r i n g g = f + ”” ;

In particular, try a == b and e == f.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Definition: arity

The arity of a method is simply the number of parameters; a
method may have no parameter, one parameter or many.

MyInteger () {
t h i s . v a l u e = 0 ;

}
MyInteger (i n t v) {

t h i s . v a l u e = v ;
}
i n t sum(i n t a , i n t b) {

r e t u r n a + b ;
}

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Definition: formal parameter

A formal parameter is a variable which is part of the definition of
the method; it can be seen as a local variable of the body of the
method.

i n t sum(i n t a , i n t b) {
r e t u r n a + b ;

}

⇒ a and b are formal parameters of sum.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Definition: actual parameter

An actual parameter is the variable which is used when the
method is called to supply the value for the formal parameter.

i n t sum(i n t a , i n t b) {
r e t u r n a + b ;

}
. . .
i n t midTerm , f ina lExam , t o t a l ;
t o t a l = sum(midTerm , f i na lExam) ;

midTerm and finalExam are actual parameters of sum, when the
method is called the value of the actual parameters is copied to the
location of the formal parameters.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.

When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped

I an activation frame (activation block or record) is created
(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed

I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved

I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)

I the execution of the calling method restarts with the next
instruction

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

Concept: call-by-value

In Java, when a method is called, the values of the actual
parameters are copied to the location of the formal parameters.
When a method is called:

I the execution of the calling method is stopped
I an activation frame (activation block or record) is created

(it contains the formal parameters as well as the local
variables)

I the value of the actual parameters are copied to the location
of the formal parameters

I the body of the method is executed
I a return value or (void) is saved
I (the activation frame is destroyed)
I the execution of the calling method restarts with the next

instruction
Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c c l a s s Test {

p u b l i c s t a t i c vo id i n c r ement (i n t a) {
a = a + 1 ;

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
i n t a = 5 ;
System . out . p r i n t l n (” b e f o r e : ” + a) ;
i n c r ement (a) ;
System . out . p r i n t l n (” a f t e r : ” + a) ;

}
}

What will printed?

b e f o r e : 5
a f t e r : 5

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c c l a s s Test {

p u b l i c s t a t i c vo id i n c r ement (i n t a) {
a = a + 1 ;

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
i n t a = 5 ;
System . out . p r i n t l n (” b e f o r e : ” + a) ;
i n c r ement (a) ;
System . out . p r i n t l n (” a f t e r : ” + a) ;

}
}

What will printed?

b e f o r e : 5
a f t e r : 5

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c s t a t i c v o i d i n c r ement (i n t a) {
a = a + 1 ;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

> i n t a = 5 ;
i nc r ement (a) ;

} 5a
args activation

frame for
main

Each method call has its own activation frame, which holds the
parameters and local variables (here, args and a)

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c s t a t i c v o i d i n c r ement (i n t a) {
a = a + 1 ;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

i n t a = 5 ;
> i n c r ement (a) ;

} 5a
args activation

frame for
main

activation
frame for
increment

a

When increment is called a new activation frame is created

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c s t a t i c v o i d i n c r ement (i n t a) {
a = a + 1 ;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

i n t a = 5 ;
> i n c r ement (a) ;

} 5a

5

args activation
frame for
main

activation
frame for
increment

a

The value of the actual parameter is copied to the location of the
formal parameter

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c s t a t i c v o i d i n c r ement (i n t a) {
> a = a + 1 ;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

i n t a = 5 ;
i nc r ement (a) ;

} 5a

6

args activation
frame for
main

activation
frame for
increment

a

The execution of a = a + 1 changes the content of the formal
parameter a, which is a distinct memory location the local variable
a of the main method

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

p u b l i c s t a t i c v o i d i n c r ement (i n t a) {
a = a + 1 ;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

i n t a = 5 ;
i nc r ement (a) ;

> } 5a
args activation

frame for
main

Control returns to the main method, the activation frame for
increment is destroyed

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

References and method calls

c l a s s MyInteger {
i n t v a l u e ;
MyInteger (i n t v) {

v a l u e = v ;
}

}
c l a s s Test {

p u b l i c s t a t i c v o i d i n c r ement (MyInteger a) {
a . v a l u e++;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

MyInteger a = new MyInteger (5) ;
System . out . p r i n t l n (” b e f o r e : ” + a . v a l u e) ;
i n c r ement (a) ;
System . out . p r i n t l n (” a f t e r : ” + a . v a l u e) ;

}
}

What will be printed out?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

s t a t i c v o i d i n c r ement (MyInteger a) {
a . v a l u e++;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

> MyInteger a = new MyInteger (5) ;
i n c r ement (a) ;

} a
args

5value

The local variable a of the main method is a reference to an
instance of the class MyInteger

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

s t a t i c v o i d i n c r ement (MyInteger a) {
a . v a l u e++;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

MyInteger a = new MyInteger (5) ;
> i n c r ement (a) ;
} a

args

a

5value

Calling increment, creating a new activation frame

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

s t a t i c v o i d i n c r ement (MyInteger a) {
a . v a l u e++;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

MyInteger a = new MyInteger (5) ;
> i n c r ement (a) ;
} a

args

a

5value

Copying the value of the actual parameter into the formal
parameter of increment

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

s t a t i c v o i d i n c r ement (MyInteger a) {
> a . v a l u e++;
}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

MyInteger a = new MyInteger (5) ;
i n c r ement (a) ;

} a
args

a

6value

Executing a.value++

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Primitive data types
Reference data types

s t a t i c v o i d i n c r ement (MyInteger a) {
a . v a l u e++;

}
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

MyInteger a = new MyInteger (5) ;
i n c r ement (a) ;

>} a
args

6value

Returning the control to the main method

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Definition: scope

The scope of a declaration is the region of the
program within which the entity declared by the
declaration can be referred to using a simple name

The Java Language Specification,
Third Edition, Addison Wesley, p. 117.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Definition: scope

The scope of a declaration is the region of the
program within which the entity declared by the
declaration can be referred to using a simple name

The Java Language Specification,
Third Edition, Addison Wesley, p. 117.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Definition: scope of a local variable in Java

The scope of a local variable declaration in a
block is the rest of the block in which the declaration
appears, starting with its own initializer and including any
further declarators to the right in the local variable
declaration statement

The Java Language Specification,
Third Edition, Addison Wesley, p. 118.

⇒ A.K.A. static or lexical scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Definition: scope of a local variable in Java

The scope of a local variable declaration in a
block is the rest of the block in which the declaration
appears, starting with its own initializer and including any
further declarators to the right in the local variable
declaration statement

The Java Language Specification,
Third Edition, Addison Wesley, p. 118.

⇒ A.K.A. static or lexical scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Definition: scope of a parameter Java

The scope of a parameter of a method or
constructor is the entire body of the method or
constructor

The Java Language Specification,
Third Edition, Addison Wesley, p. 118.

⇒ A.K.A. static or lexical scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Definition: scope of a parameter Java

The scope of a parameter of a method or
constructor is the entire body of the method or
constructor

The Java Language Specification,
Third Edition, Addison Wesley, p. 118.

⇒ A.K.A. static or lexical scope

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

p u b l i c c l a s s Test {
p u b l i c s t a t i c vo id d i s p l a y () {

System . out . p r i n t l n (”a = ” + a) ;
}
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

i n t a ;
a = 9 ; // v a l i d acce s s , w i t h i n the same b l o ck
i f (a < 10) {

a = a + 1 ; // ano the r v a l i d a c c e s s
}
d i s p l a y () ;

}
}

Is this a valid program?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

p u b l i c c l a s s Test {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

System . out . p r i n t l n (sum) ;
f o r (i n t i =1; i <10; i++) {

System . out . p r i n t l n (i) ;
}
i n t sum = 0 ;
f o r (i n t i =1; i <10; i++) {

sum += i ;
}

}
}

Is this a valid program?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

p u b l i c c l a s s Test {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

f o r (i n t i =1; i <10; i++) {
System . out . p r i n t l n (i) ;

}
i n t sum = 0 ;
f o r (i n t i =1; i <10; i++) {

sum += i ;
}

}
}

Is this a valid program?

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Memory management

What happens to objects when they are not referenced? Here what
happens to the object that contains the value 99?

MyInteger a = new MyInteger (7) ;
MyInteger b = new MyInteger (99) ;
b = a ;

I The JVM recuperates the memory space

I This process is called garbage collection

I Not all programming languages manage memory automatically

Java is not immune to memory leaks as will see in a few weeks. . .

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Memory management

What happens to objects when they are not referenced? Here what
happens to the object that contains the value 99?

MyInteger a = new MyInteger (7) ;
MyInteger b = new MyInteger (99) ;
b = a ;

I The JVM recuperates the memory space

I This process is called garbage collection

I Not all programming languages manage memory automatically

Java is not immune to memory leaks as will see in a few weeks. . .

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Memory management

What happens to objects when they are not referenced? Here what
happens to the object that contains the value 99?

MyInteger a = new MyInteger (7) ;
MyInteger b = new MyInteger (99) ;
b = a ;

I The JVM recuperates the memory space

I This process is called garbage collection

I Not all programming languages manage memory automatically

Java is not immune to memory leaks as will see in a few weeks. . .

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Summary

I Strong typing help detecting certain kinds of errors early

I Comparison operators always compare the value of the
expressions

I When comparing references we check that two references
designate the same object or not

I The method equals should be used to compare the content
of the objects

I In Java, call-by-value is the mechanism that is used for
method calls

I The scope of variable and parameter names is static in Java

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Summary

I Strong typing help detecting certain kinds of errors early

I Comparison operators always compare the value of the
expressions

I When comparing references we check that two references
designate the same object or not

I The method equals should be used to compare the content
of the objects

I In Java, call-by-value is the mechanism that is used for
method calls

I The scope of variable and parameter names is static in Java

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Summary

I Strong typing help detecting certain kinds of errors early

I Comparison operators always compare the value of the
expressions

I When comparing references we check that two references
designate the same object or not

I The method equals should be used to compare the content
of the objects

I In Java, call-by-value is the mechanism that is used for
method calls

I The scope of variable and parameter names is static in Java

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Summary

I Strong typing help detecting certain kinds of errors early

I Comparison operators always compare the value of the
expressions

I When comparing references we check that two references
designate the same object or not

I The method equals should be used to compare the content
of the objects

I In Java, call-by-value is the mechanism that is used for
method calls

I The scope of variable and parameter names is static in Java

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Summary

I Strong typing help detecting certain kinds of errors early

I Comparison operators always compare the value of the
expressions

I When comparing references we check that two references
designate the same object or not

I The method equals should be used to compare the content
of the objects

I In Java, call-by-value is the mechanism that is used for
method calls

I The scope of variable and parameter names is static in Java

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Summary

I Strong typing help detecting certain kinds of errors early

I Comparison operators always compare the value of the
expressions

I When comparing references we check that two references
designate the same object or not

I The method equals should be used to compare the content
of the objects

I In Java, call-by-value is the mechanism that is used for
method calls

I The scope of variable and parameter names is static in Java

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Next lecture

I Introduction to object-oriented programming
I Role of abstractions
I Activities of software development
I UML – Unified Modeling Language
I Example: Counter

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

References I

E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 2e edition, 2010.

P. Sestoft.
Java Precisely.
The MIT Press, second edition edition, August 2005.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
Java Language Specification.
Addison Wesley, 3rd edition, 2005.

Marcel Turcotte ITI 1121. Introduction to Computing II

Preamble
Data types

Call-by-value
Scope

Definitions
Examples

Please don’t print these lecture notes unless you really need to!

Marcel Turcotte ITI 1121. Introduction to Computing II

	Preamble
	Data types
	Memory representation
	Primitive vs reference types
	Comparison operators

	Call-by-value
	Definitions
	Primitive data types
	Reference data types

	Scope
	Definitions
	Examples

