ITI 1121. Introduction to Computing Il *

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of March 17, 2013

Abstract

e Linked List (Part 2)
— Tail pointer
— Doubly linked list
— Dummy node

*These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.

Time efficiency

Compare the time efficiency of the dynamic array (ArrayList) and linked list
(LinkedList) implementations of the interface List (both allow to store an
unlimited number of objects).

Let say that execution time of a method is variable (slow) if the number of
operations depends on the number of elements currently stored in the data
structure, and constant (fast) otherwise.

Time efficiency

Can you predict an overall winner beforehand?

ArrayList LinkedList

void addFirst(E o) slow fast
void addLast(E o) slow slow
void add(E o, int pos) slow slow
E get(int pos) fast slow

void removeFirst() slow fast

void removelast() fast slow

e Based on the above table, when would you use an array? Applications that
need a direct (random) access to the elements.

e Based on the above table, when would you use a singly-linked list? Applications
that add or remove elements at the start of the list only.

e Which implementation is more memory efficient?

Speeding up addLast for SinglyLinkedList

There is a simple implementation technique that makes adding an element at the
end of a list fast.

The problem with the singly linked list implementation is that one needs to
traverse the data structure to access the last element.

What if we could always access the last element efficiently — as we do for the
first element.

Got the idea?

Yes, adding an instance variable pointing to the tail element will solve our
problem.

Representing an empty list:

head

[—

[—H

General case:

10: 10: 00

11: 00: 00

12:12: 00

9: 59: 45

head

|

tail

next

next

next

next

val ue val ue val ue val ue

|

public class SinglyLinkedList<E> implements List<E> {
private static class Node<T> {

private T value;
private Node<T> next;

private Node(T value, Node<T> next) {
this.value = value;
this.next = next;

private Node<E> head;
private Node<E> tail;

//
+

= This involves adding a new instance variable, tail.

public void addLast(E t) {
Node<E> newNode = new Node<E>(t, null);

if (head == null) {
head = newNode;
tail = head;

} else {
tall .next = newNode;
tail = tail.next;

public E removeFirst() {

Node<E> nodeToDelete = head;
E result = nodeToDelete.value;

head = head.next;

nodeToDelete.value = null; // ¢ ‘scrubbing’’
nodeToDelete.next = null;

if (head == null) {

tail = null;
}

return result;

= The methods need to be modified accordingly!

Time efficiency (revision 1)

ArrayList LinkedList

void addFirst(E o) slow fast
void addLast(E o) slow fast
void add(E o, int pos) slow slow
E get(int pos) fast slow

void removeFirst() slow fast

void removelast() fast slow

How about removing the last element of the list?

It's still slow.

Speeding up removelast()

Maintaining a reference to the last element of the list does not make the removal
of the last element any faster, we still have to traverse the list:

10: 10: 00 11: 00: 00 12:12: 00 9:59: 45
val ue val ue val ue val ue
head
: next next next next
tail

nodeBef or eThelLast

[—F—

= What's needed then? How about a new instance variable previous?

Speeding up removelast()

| % 8 | [¢] [0
head | AN D D
NG \ " \ " \ "7

previous

tail

What do you think?

Speeding up removelast()

B | [C
head
. Z2NNEA
_* 7 \.* 7

previous

tail

Moving the reference tail one position to left is now easy and fast!

But moving the reference previous one position to the left is now tedious and
costly.

We'd need to access the previous element, the one before the

10: 10: 00

11: 00: 00

12: 12: 00

9: 59: 45

head

|

tail

val ue val ue val ue val ue

next

next

next

next

|

last:

But also to all its predecessors!

10:10: 00

head

[—H

tail
! head

L
El——:l_ C —

t ai

Empty list:
mpty lis

Singleton:

10:10: 00 11: 00: 00 12:12: 00 9:59: 45

head val ue val ue val ue val ue

[—

tail

[—

General case:

public class DoublyLinkedList<E> implements List<E> {
private static class Node<T> {

private T value;

private Node<T> previous; // <---

private Node<T> next;

private Node(T value, Node<T> previous, Node<T> next) {
this.value = value;
this.previous = previous; // <---
this.next = next;

}

private Node<E> head;
private Node<E> tail;
public DoublyLinkedList() {
head = null;
tail = null;

removelast() (special case: singleton)

removelast() (general case)

public E removeLast() {
// pre-condition: 7

Node<E> toDelete = tail;
E savedValue = toDelete.value;

if (head.next == null) {

head = null;
tail = null;
} else {

tail = tail.previous;
tail .next = null;

}
toDelete.value = null;
toDelete.next = null;

return savedValue;

+

= removeLast () does not involve traversing the list anymore.

Time efficiency (revision 2)

ArrayList LinkedList

void addFirst(E o) slow fast
void addLast(E o) slow fast
void add(E o, int pos) slow slow
E get(int pos) fast slow

void removeFirst() slow fast

void removelast() fast fast

Simple? Not so simple?

Whenever an operation changes the head pointer, a special case has to be made.

add(int pos, E o)

Pre-conditions?

if (o == null) {
throw new IllegalArgumentException("null");

+
if (pos < 0) {
throw new IndexOutOfBoundsException(Integer.toString(pos));

+

add(int pos, E 0)

Special case(s)?
I
!

head

tail

Adding an element a position O.

add(int pos, E o)

Special case: head = new Node<E>(o, null, head)
|
!

head

tail

What is missing?

add(int pos, E o)

Special case: head.next.previous = head

add(int pos, E o)
Special case:
if (pos == 0) {

head = new Node<E>(o, null, head);
head.next.previous = head;

Does cover all the cases?

What if the list was empty.

add(int pos, E o)

Special case:

if (pos == 0) {

head = new Node<E>(o, null, head);
if (tail == null) {

tail = head;
} else {

head.next.previous = head;

¥

add(int pos, E 0)

General case: adding an element at position 2.

40

add(int pos, E 0)

General case: traverse the list up to pos-1.

—

40

head
— 1 . Y

tail E

add(int pos, E 0)

General case: g = p.next

1

head
el Y

tail E
@

—

add(int pos, E o)

General case: p.next = new Node<E>(o, p, q)

add(int pos, E 0)

General case: ¢.previous = p.next

add(int pos, E o)

General case:

Node<E> p = head;

for (int 1 = 0; i < (pos-1); i++) {
p = p.next;

¥

Node<E> q = p.next;

p.next = new Node<E>(o, p, q);
q.previous = p.next;

Handles all the cases?

What if pos was too large?

add(int pos, E 0)

General case:

Node<E> p = head;
for (int i = 0; i < (pos-1); i++) {
if (p == null) {
throw new IndexOutOfBoundsException(Integer.toString(pos));
} else {
p = p.next;
I
+
Node<E> q = p.next;
p.next = new Node<E>(o, p, q);
q.previous = p.next;

Handles all the cases?

What about adding at the end of the list?

add(int pos, E o)

Node<E> p = head;
for (int i = 0; i < (pos-1); i++) {
if (p == null) {
throw new IndexOutOfBoundsException(Integer.toString(pos));
} else {
p = p.next;
+

}
Node<E> q = p.next;

p.next = new Node<E>(o, p, q);
if (p == tail) A

tail = p.next;
} else {

gq.previous = p.next;

¥

Dummy node

The following implementation techniques simplifies those cases. It consists in 1)
using a dummy node (a node that contains no data) as the first element of the
list and 2) creating a circular list.

The empty list consists of the dummy node pointing to itself.

\ 4

head

General case:

i | B D
head

@ -

.\) ||;
DA

public class SinglyLinkedList<E> implements List<E> {
private static class Node<T> {
private T value;
private Node<T> next;
private Node(T value, Node<T> next) {
this.value = value;
this.next = next;

¥

private Node<E> head;

public SinglyLinkedList() {
head = new Node<E>(null, null);
head.next = head;

// Classic singly linked-list implementation

public void add(E t) {
Node<E> newNode = new Node<E>(t, null);
if (head == null)
head = newNode;
else {
Node<E> p = head;
while (p.next != null) {
p = p.next;
}

p.next = newNode;

Dummy node (addLast)

The new element will be added after a node such that . . .
|
i |

head

|

head

// Dummy node implementation

public void add(E t) {
Node<E> p = head;
while (p.next != head) {
p = p.next;
}
p.next = new Node<E>(t, head);

Remarks (dummy node)

What makes the implementation of the methods more complex in the case of a
linked list without dummy node?

Modifications of the head of the list are special cases (remove, addFirst, addLast,

).

In the general case, the variable next of the previous node is changed, except
if the modification occurs at the first position, then the head variable must be
changed.

With the dummy node, it is always the variable next of the previous node that is
changed.

The nodes could also be doubly linked, and there could be a counter in the header
of the list.

Collection Framework

In Java the classes that are used to store objects are regrouped into a hierarchy
of classes called Collection.

There are four broad categories of collections: linear, hierarchical, graph and
unordered.

Linear collections comprise the lists, the stacks and the queues. Elements of a
linear collection all have a specific predecessor and successor(except for the first
and last element).

Hierarchical collections allow to represent various kinds of trees: e.g.: genealogical
information.

The graph collections are used to store directed, undirected, weighted and
unweighted graphs: e.g.: a graph that represents all the cities in Canada and
their distances.

Unordered collections include sets, bags and maps.

head
@

tail

head

>

prev -
next

head

head

10: 10: 00 11:00: 00 12:12: 00 9: 59: 45
A A
> — val ue val ue val ue val ue
prev] P
next \prev prev prev prev
A
10: 10: 00 11: 00: 00 12:12: 00 9: 59: 45
val ue val ue val ue val ue

