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Computational Methods in Design Theory

The main computation problems involving designs are:
existence, exhaustive generation (or classification) and
counting.
Be aware that the word “enumeration” is often used with
different meanings (exhaustive generation or counting).

Backtracking is one of the most important methods for
solving these problems.

Isomorphism rejection plays an important role in the
efficiency of these methods.

Our presentation follows chapter by Gibbons and Ostergaard, CRC
Handbook of combinatorial designs, 2006.
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Complexity of Computational Methods

• Most design construction problems seem to be intractable, in the
sense that they appear to not have polynomial-time algorithms.

• It also seems unlikely that for generation problems we can have a
polynomial delay algorithm, i.e. an algorithm that constructs the
first design in polynomial time and the next designs within a
polynomial delay with respect to the previous one.

• For this reason, we only have available methods that run in
worst-case exponential time. Most methods employed fall into two
main categories:

exhaustive search (existence, classification, counting)

heuristic search (existence (=generation of one object),
generation of many distinct objects)
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Backtracking

Main ingredients of a backtracking algorithm:

“Building up feasible solutions one step at a time, covering all
possibilities in a systematic fashion.” [??]

If you run long enough, it is guarranted to find an optimal
solution (for optimization problems) or garranted to find all
feasible solutions (for generation problems).
WARNING: long enough can be impractical due to
combinatorial explosion!

We need clever pruning techniques, such as:

reject partial feasible solutions that cannot lead to a complete
solution; and or
reject partial feasible solutions that are equivalent to solutions
already generated in the search (isomorphism pruning at
partial solution level).
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Backtracking formulation

We will search for an object in a space X1 ×X2 × . . .×Xn where
the Xi may or may not be the same.
For all i ∈ {1, 2, . . . , n}, define a boolean-valued feasibility property

Πi : X1 ×X2 × . . .×Xi → {true, false}
such that for any (x1, x2, . . . , xn) ∈ X1 ×X2 × . . .×Xn the
following implication holds

Πi(x1, x2, . . . , xi) = true =⇒ ∀1 ≤ j ≤ i,Πj(x1, x2, . . . , xj) = true.

Existence: find one (x1, x2, . . . , xn) such that
Πi(x1, x2, . . . , xn) = true.
Classification: find all (x1, x2, . . . , xn) such that
Πi(x1, x2, . . . , xn) = true.
Counting: find the number of such solutions.

Backtracking: whenever Πi(x1, x2, . . . , xi) = false this partial
solution is not extended.
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Backtracking algorithm

Algorithm BacktrackSearch
procedure Search((x1, x2, . . . , xi), i)
begin

if i = n then
record (x1, x2, . . . , xn) as a solution

else for each xi+1 ∈ Xi+1 do
if Πi+1(x1, x2, . . . , xi+1) then

Search((x1, x2, . . . , xi+1), i+ 1)
end
main program:
begin

Search((),0)
end

An execution of the algorithm can be viewed as a search tree with
one node per recursive call.
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Backtracking for BIBDs

Searching for a BIBD(v, b, r, k, λ) with pointset P = {1, 2, . . . , v}
and set of indices of the blocks B = {1, 2, . . . , b}.

Block-by-block backtracking:
Use Xi = {B ⊂ P : |B| = k} and
Πi(x1, . . . , xi) =

“|{xj : {a, b} ⊆ xj , j ≤ i}| ≤ λ,∀{a, b} ⊆ P, a 6= b”

Point-by-point backtracking:
Use Xi = {S ⊂ B : |S| = r} and
Πi(x1, . . . , xi) =“|{{j, i} : |xj ∩ xi| 6= λ, j < i}| = 0”

Note: in both cases for generation efficiency, we assume xi ≤ xj
when i < j.
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Example block-by-block
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Example point-by-point
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Backtracking for BIBDs

For block-by-block, when λ = 1 we can use the fact that a pair of
points must occur in one block and define
Xi = {B ⊂ P : |B| = k, {e, f} ⊆ S} where the pair
{e, f} 6⊆ xj , ∀j < i, is fixed using a heuristic that tries to improve
performance.

In this case, we do not use xi ≤ xj for i < j as before, as we
traverse blocks in different orders.
Note that the Xi defined above are not uniform throughout the
search, but each Xi depends on the partial solution.

Minimum degree heuristic: use {e, f} to minimize |Xi|, so
reducing the degree of the current search tree node (reducing the
number of branches out of it).
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Example block-by-block using minimum degree heuristic
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Block-by-block approach as exact set cover

Problem: Exact Cover
Instance: a collection S of subsets of R = {0, 1, . . . , n− 1}.
Question: Does S contain an exact cover of R:

does there exist S ′ = {Sx0 , Sx1 , . . . , Sxl−1
} ⊆ S

such that every element of R is contained
in exactly one set of S ′?

For BIBD(v, b, r, k, λ):

R = {{x, y} : {x, y} ⊆ {1, . . . , v}, x 6= y}
S = {{{x, y} ∈ K} : K ⊆ {1, . . . , v}, |K| = k}

State-of-the-art algorithm: backtrack using the minimum degree
heuristic plus a specific data structure called Knuth’s dancing-links.
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Point-by-point approach as clique finding in graphs

Definition

Let G = (V,E) be a graph. A set C ⊆ V is a clique if for all
x, y ∈ C, x 6= y, {x, y} ∈ E.

Maximum clique problem: find a clique of maximum cardinality.
Maximum clique exhaustive generation: find all cliques of
maximum cardinality.

For BIBD(v, b, r, k, λ):

V = {S ⊂ B : |S| = r}
E = {{S1, S2} : |S1 ∩ S2| = λ}

We can use clique finder algorithms and apply to this graph; for
example: program Cliquer by Ostergaard.
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Improving the search

Using isomorph rejection
Reject partial solutions that are isomorphic to already
generated solutions.

Using strong feasibility conditions
Example: in point-by-point generation, prune the current
branch if one block contains more than k points.

Using ”look-ahead” techniques
Instead of minimum degree heuristic one can base their
choice on looking ahead on the implications of specific
choices. These look-ahead can be turned on and off during
the search. Gibbons and Mathon (1995) report on the
advantages of look ahead.

Branch and bound: For optimization problems: this is a
variation of backtracking that uses bounding and often a
different exploration order of the search tree (best-first).
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The enumeration status for Steiner triple systems

v number of non-isomorph STS(v)

7 1

9 1

13 2

15 80

19 11,084,874,829

The STS(19) were enumerated by Kaski and Ostergaard (2004).

Computational Methods to Construct Designs Lucia Moura



Introduction Exhaustive search Isomorph-free generation Heuristic search

The quest for STS(19)

Kaski and Ostergaard’s method had the following parts:

1 Enumerate particular partial STS(19) (sets of blocks)

2 Complete the partial STS(19) using block by block minimum
degree heuristic.

3 Reject some of the STS(19) so that only one object of each
isomorphism class remains.

Part 1 had 14, 648 seeds.
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Programming Assignment for Next Week

1 Program a backtracking algorithm for finding STS(v).

2 Apply your program to generate STS(7); you should be able
to find the 35 distinct STS(7).

3 Try your program on STS(v) for v = 9, 13, 15, and report on
your findings.

4 Describe your algorithm and any specifics of your data
structures and pruning strategies.

5 For each experiment, report on the number of nodes in the
backtracking search tree.
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Isomorphism of designs

Two designs are isomorphic if there is a relabeling of the points
that “transforms” blockset A into blockset B.

Definition

Two designs (X,A) and (Y,B), with |X| = |Y |, are isomorphic if
there is a bijection α : X → Y such that

[{α(x) : x ∈ A} : A ∈ A] = B.

The bijection α is called an isomorphism.

X = Y = {1, 2, 3, 4, 5, 6, 7}
A = {123, 145, 167, 246, 257, 347, 356}
B = {124, 235, 346, 457, 156, 267, 137}
α(1) = 1, α(2) = 2, α(3) = 4, α(4) = 5, α(5) = 6,
α(6) = 3, α(7) = 7.
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Automorphism group of a design

An isomorphism of a design to itself is called an automorphism.
The set of all automorphisms of a design form a group under the
operation composition of functions.

Y = {1, 2, 3, 4, 5, 6, 7}
B = {124, 235, 346, 457, 156, 267, 137}
The group of automorphisms of this design is a cyclic group
generated by the automorphism α(i) = (i mod 7) + 1.
Another way to represent this automorphism is using the cycle
notation for permutations α = (1234567).
The automorphism group of (Y,B) is

G = {α0, α1, α2, α3, α4, α5, α6}.

α0 = (1)(2)(3)(4)(5)(6)(7) is the identity permutation,
α1 = (1234567), α2 = (1357246), . . . , α6 = (1765432)
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Design Isomorphism as Coloured-Graph Isomorphism

Definition

Given a design D = (V,B) where V = {x1, . . . , xv} and
B = {B1, . . . , Bb}, define G(D) to be a graph with vertex set
{x1, x2, . . . , vv, B1, B2, . . . , Bb} with the xi vertices having one
colour and the Bi vertices having a second color, and edgeset
{{xi, Bj} : xi ∈ Bj}. The graph G(D) is the Levi graph of D.

Proposition

1 Designs D1 and D2 are isomorphic if and only if graphs
G(D1) and G(D2) are isomorphic (note the graph
isomorphism is required to preserve colours).

2 The automorphism group of a simple design D is isomorphic
to the automorphism group of the graph G(D).
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Design Isomorphism as Coloured-Graph Isomorphism

Algorithmic consequences

1 To test if two designs are isomorphic we can test if their Levi
graphs are isomorphic.

2 To compute the automorphism group of a design, we can
compute the automorphism group of its Levi graph.

Both tasks can be done using the nauty software developed by
Brendan McKay that returns a certificate for isomorphism of
coloured graphs and the automorphism group of a graph.
http://cs.anu.edu.au/~bdm/nauty
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Computing Isomorphism

In general, isomorphism is an equivalence relation on a set of
objects.
When generating combinatorial objects, we are often interested in
generating inequivalent objects:

Generate exactly one representative of each
isomorphism class.

(We don’t want to have isomorphic objects in our list.)

For example, when interested in graphs with certain properties, the
labels on the vertices may be irrelevant, and we are really
interested on the unlabeled underlying structure.

Isomorphism can be seen as a general equivalence relation, but for
combinatorial objects, isomorphism is defined through the
existence of an appropriate bijection (isomorphism) that shows
that two objects have the same structure.
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What are the issues in Isomorphism Computations?

Isomorphism: decide whether two objects are isomorphic.
Some approaches:

Compute an isomorphism invariant for an object
If two objects disagree on the invariant, then the objects are
NOT isomorphic; the converse is not true.
Compute a certificate for an object
Two objects are isomorphic if and only if they agree on the
certificate.
Put an object on canonical form
Two objects are isomorphic if and only if they have the same
canonical form.

Automorphism group generators: compute generators of the
automorphism group of an object.
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Isomorphism Invariants: examples

If two objects disagree on the invariant, then the objects are NOT
isomorphic; the converse is not true.
They are useful as quick checks to determine two objects are not
isomorphic.
Example of invariant: Number of triangles in a graph.

(picture from book by Kaski and Ostergaard 2006)
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Isomorphism Invariants: Steiner triple systems

Size of automorphism group: for the STS(15) this varies
between 2 and 20160.

Chromatic index of an STS: chromatic number of its block
intersection graph; for STS(15) this is 7, 8 or 9.

Number of parallel classes: The number of parallel classes in
an STS(15) varies from 0 to 56. These corresponds to the
number of independent sets of the block intersection graph
that has size v/3.

Number of Pasch configurations: 4 triples on 6 elements of
the form {a, b, c}, {a, d, e}, {b, e, f}, {c, d, f}. For STS(15)
the number of Pasch configurations varies from 0 to 105.

Block intersection graphs: this is in general an invariant, but
for STS(15) it can distinguish all 80 non-isomorphic ones.

See master’s thesis by Sally Shaul Kazin (2005) https:

//getd.libs.uga.edu/pdfs/kazin_sally_s_201205_ma.pdf
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Isomorphism Invariants: Steiner triple systems

The following non-isomorphic STS(15) have both 12 Pasch
configurations:

A more powerful invariant is the multiset that contains for each
block B, the number of Pasch configurations that uses block B.
This invariant distinguishes the two systems above.

(Example from book by Kaski and Ostergaard 2006)
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Isomorphism Certificates: examples

Two objects are isomorphic if and only if they agree on the
certificate.
• To check isomorphism of trees, a certificate can be build in
polynomial time.
• For general graphs, we do not have that and the most common
methods have exponential worst-case time. One quite fast method
in this genre is the nauty software by Brendan McKay.
• A certificate for simple graphs is based on its adjacency matrix.
Consider the binary (n(n− 1)/2)-tuple obtained from listing the
entries above the diagonal of its incidence matrix from top to
bottom; among all graphs isomorphic to G, get the tuple that is
the lexicographical largest to be the certificate of G.
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Certificate for graphs

Example: the 11 non-isomorhic graphs on 4 vertices have the
following certificates:
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Canonical representatives: examples

Two objects are isomorphic if and only if they have the same
canonical form.
Keep only the canonical representative of one’s isomorphism class;
in other words, if the object is not canonical, reject it.
This notion is related but not quite the same as the notion of
certificates. For each isomorphism class, we can define an unique
object that is the canonical object for the isomorphim class
(canonical representative).
Examples:

graphs: pick the graph whose incidence matrix gives the
certificate in the previous example.

designs: for a design, consider the point-block incidence
matrix; in each isomorphism class, select the canonical
representative to be the one that is lexicographical largest (or
alternatively, smallest).
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Summary of Isomorph-free Exhaustive Generation
Techniques using the Search Tree Model

1 Generate all (or way too many) but record
non-isomorphs
näıve method: keep only one copy of isomorphic final objects.

1 Isomorph rejection via recorded final objects.
2 Isomorph rejection via canonicity test of final objects.

2 Generate via an isomorph-free search tree
prune isomorphic nodes.

1 Isomorph rejection via recorded objects, where we record all
intermediate objects found so far.

2 Orderly generation: Isomorph rejection via canonicity test at
each node/intermediate object.

Not covered: “canonical augmentation” (McKay 1998) and

“method of homomorphisms” (Laue & others).
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Definitions and notation

Some notation used in the next Algorithms following Kaski &
Österg̊ard:

The domain of a search is a finite set Ω that contains all
objects considered in the search.
e.g. The set of all 0-1 matrices of size 4× 4 with entries on 0
or more rows set to value “?”.

A search tree is a rooted tree whose nodes are objects in the
domain Ω. Two nodes are joined by an edge if and only if
they are related by one search step. The root node is the
starting point of the search.

For a node X in a search tree we denote by C(X) the set of
child nodes of X. For a non-root node X we denote by P (X)
the parent node of X.

Note that a search tree is normally defined only implicitly through
the domain Ω, the root node R ∈ Ω and the rule X → C(X).
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4x4 0-1 matrices with 2 ones in each row and column: no isomorph rejection.
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Definitions and notation, continued

Let G be a group that acts on the search domain Ω.
Associate with every X,Y ∈ Ω the set

Iso(X,Y ) = {g ∈ G : gX = Y }.

Each element of Iso(X,Y ) is an isomorphism of X onto Y .
The objects X and Y are isomorphic if Iso(X,Y ) is
non-empty, and we write X ∼ Y (or X ∼G Y , to explicitly
specify G).
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4x4 0-1 matrices with 2 ones in each row and column: isomorph rejection
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Recorded objects method: only recording final objects

procedure Record-Final-Traverse(X:node)
if complete(X) then (if X is a final object)

if 6 ∃Y ∈ R such that X ∼ Y then
R ← R∪ {X}
output X (optional, since already recorded in R)

for all Z ∈ C(X) do
Record-Traverse(Z)

Problems:

it is näıvely possibly generating the full search tree
(lots of isomorphic intermediate nodes).

A lot of memory required to record all (non-iso) objects.
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Recorded objects method: recording all intermediate
objects

procedure Record-Traverse(X:node)
if 6 ∃Y ∈ R such that X ∼ Y then
R ← R∪ {X} (records and checks intermediate objects)
if complete(X) then output X if X is a final object, output it.
for all Z ∈ C(X) do

Record-Traverse(Z)

Solved the first problem: tree has no isomorphic nodes now!

Second problem is worse: a lot more memory required to
record all (non-iso) partial objects.

In any case, if employing this approach, we need a lot of
memory and efficient data structure to search for objects -
e.g. hashing table that stores certificate for found objects.
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Canonical objects and canonicity testing

Select a canonical representative from each isomorphism class of
nodes in the search tree.
Denote by ρ the canonical representative map for the action of G
on the search domain Ω, that we use to decide weather a node is
in canonical form.
The use of ρ eliminates the need to check against previously
generated objects. Instead, we only check whether the object of
interest is in canonical form, X = ρ(X), and thus we accept it, or
is not canonical, X 6= ρ(X), and thus we reject it.
Similarly to checking against recorded objects, we can do
canonicity test only on “final nodes” (nodes corresponding to final
objects) or at each node.
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Canonical object method: canonicity testing for final
objects

procedure Canrep-Final-Traverse(X:node)
if Complete(X) then if X = ρ(X) then output X
for all Y ∈ C(X) do

Canrep-Traverse(Y )

Like in Record-Final-Traverse, it is näıvely possibly
generating the full search tree (lots of isomorphic intermediate
nodes).

Solved the problem of memory and search for recorded
isomorphs since no need to record previous objects.
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Canonical object method: canonicity testing at each node
= Orderly Generation

procedure Canrep-Traverse(X:node)
if X = ρ(X) then

Report X: if Complete(X) then output X
for all Y ∈ C(X) do

Canrep-Traverse(Y )

Theorem

Canrep-Traverse reports exactly one node from each
isomorphism class of nodes, under the following assumptions:

for every node X, its canonical form ρ(X) is also a node; and

for every non-root node X in canonical form, it holds that the
parent node p(X) is also in canonical form.
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Canrep-Traverse is called orderly generation due to the
typical canonical representative:
an isomorphic object that is extremal in its isomorphism class
(largest lexicographically or smallest lexicographically).

The search tree is build so that the most significant parts are
completed first.

Orderly generation was introduced independently by Faradzev
(1977) and Read (1978).

Computational Methods to Construct Designs Lucia Moura
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Orderly generation example (lexicographically larger columns come first)
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Orderly generation for BIBDs using the point-by-point
approach

For each BIBD(v, b, r, k, λ) we need to generate an incidence
matrix, which is a 0-1 matrix such that:

There are r 1’s per row.
There are k 1’s per column.
The inner product between any two distinct rows is λ.

Orderly generation considers the lexicographical order of s× t
matrices A = (aij) as the lexicographical order of a corresponding
st-tuples:
w(A) = (a11, a12, . . . , a1t, a21, a22, . . . , , a2t, . . . , as1, as2, . . . , , ast)
Two matrices are isomorphic if one can be obtained from the
other by permuting the rows and the columns.
We say that a matrix is canonical (a canonical rep of its
isomorphism class) if it is the lexicographic maximum of matrices
in its isomorphism class.
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Orderly generation for BIBDs (contd)

Why the following conditions for Canrep-Traverse to work are
satisfied in this case?

for every node X, its canonical form ρ(X) is also a node; and

for every non-root node X in canonical form, it holds that the
parent node p(X) is also in canonical form.

Theorem

Let A be a canonical 01 matrix of size s× t. Then the submatrix
A[{1, 2, . . . , i}, .] (first i rows of A) is canonical for any 1 ≤ i ≤ s.
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Orderly generation for BIBDs: example

Generate canonical incidence matrices of the designs.

(Example from book by Kaski and Ostergaard 2006)Computational Methods to Construct Designs Lucia Moura
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Canonicity testing for BIBDs

A canonicty testing checks if a matrix A is the lexicographical
maximum of its isomorphism class.
This is done via backtracking, but extensive pruning is possible.
For more details see Chapter 6 of Kaski and Ostergaard 2006.
One thing to note is that we do not need to go through every row
and column permutation. Once a row permutation is fixed we can
obtain the lexicographical largest column permutation by sorting
the columns in decreasing lexicographical order.
Example: Consider a matrix A′ whose row permutation [2, 4, 3, 1]
gives matrix A below. Matrix ~A is the corresponding column
sorted matrix obtained from A:

Question: is the original matrix A′ canonical?
Computational Methods to Construct Designs Lucia Moura
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To learn more about orderly generation of BIBDs using the
point-by-point approach, see:

Denny and Gibbons, “Case studies and new results in
combinatorial enumeration”, J Combinatorial Designs 8
(2000), 239-260.

Denny, Search and enumeration techniques for incidence
structures, Master’s thesis, University of Auckland, 1998.
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Classification of BIBDs using Block by Block approach

The following approach has been used successfully:

1 Create a set of seed subsystems (each possible design must
contain at least one of these seeds).

2 Classify the seeds up to isomorphism.

3 Use another procedure to extend the seeds to every possible
full design.

4 Remove isomorphs from the list of designs obtained.

We will exemplify how this approach was used by Kaski and
Ostergaard to classify all the (over 11 billion) STS(19).
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STS(19): the seeds
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STS(19): the seeds

Combining these choices of F1 with all the choices of F2 there are
14, 648 nonisomorphic 25-blocks seeds.
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(slide by Peter Gibbons 2005)
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(slide by Peter Gibbons 2005)
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(slide by Peter Gibbons 2005)
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(slide by Peter Gibbons 2005)
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(slide by Peter Gibbons 2005)
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(slide by Peter Gibbons 2005)
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Nonexistence of Projective Planes of Order 10

The most important achievement in the classification of designs
was the exhaustive search for a projective plane of order 10, that
determined it does not exist.
This would be equivalent to a symmetric BIBD(111, 11, 1).

This herculean task was performed by:
Lam, Thiel and Swiercz, The nonexistence of projective planes
of order 10, Canadian J. Mathematics 41 (1989), 1117-1123.

This was more recently independently verified by Dominique Roy in
his master’s thesis at Carleton (2010).
https://curve.carleton.ca/system/files/etd/cf019cde-3f3e-44f6-9472-66c83299cee2/etd_pdf/

3937a3a053481c7f893b40477c790e62/roy-confirmationofthenonexistenceofaprojective.pdf

Dominique will give us an invited lecture next week on the topic.
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Programming exercise for next class

For next week, your assignment will be to use some of the
isomorphism rejection techniques studied to list all non-isomorphic
STS(v) for the first few values.

The number of nonisomorphic STS(v) for v = 7, 9, 13, 15 are
1, 1, 2 and 80 respectively.

Report on your methods and results.
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Heuristic search

Characteristics

The state space is not fully explored.

Randomization is often employed.

There is a concept of neighbourhood search.

Heuristics are applied to explore the solutions.
The word “heuristics” means “serving or helping to find or
discover” or “proceeding by trial and error”.
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Heuristic search approaches

The problem should be transformed so that a profit function is
maximized.
For search problems, we create a function that reflects progress
towards a feasible solution.
Types of heuristic search:

Hill climbing: go up the hill continuously until cannot
increase profit.
(can get stuck on local optima)

Simulated annealing: can go down hill according to a
controled probability.

Tabu Search: can go downhill to scape a local maximum;
keeps tabu list to avoid cycling.

Genetic algorithms: population of solutions is recombined to
obtain ”offsprings” with higher profit.

etc.
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Searching for Steiner Triple Systems

As Steiner triple systems are BIBD(v, 3, 1), we have that the point
replication number is r = v−1

2 and the number of blocks is

b = v(v−1)
6

Recall that for Steiner triple systems, the necessary conditions for
existence are also suficient.

Theorem

∃STS(v) ⇐⇒ v ≡ 1, 3 (mod 6)

So, there exists an STS(v) for v = 1, 3, 7, 9, 13, 15, 19, 21, 25, . . .
The fact that we know a few constructions for Steiner triple
systems, does not mean we can generate a good range of
non-isomorphic triple systems. Exhaustive search limits us in the
sizes of v for which we can compute all Steiner triple systems.
Heuristic search can help us to build many distinct triple systems
for the same order v through exploring the search space.
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Searching for Steiner Triple Systems

A partial Steiner triple system consists of a set of triples B with
each pair of points appearing in at most one Bi ∈ B. Then, we
can formulate the search problem as follows.

Problem: Construct a Steiner Triple System
Instance: v such that v ≡ 1, 3 (mod 6)
Find: Maximize |B|

subject to: ([1, v],B) is a
partial Steiner triple system

The universe X is the set of all sets of blocks B, such that
([1, v],B) is a partial Steiner triple system.

An optimal solution is any feasible solution with |B| = v(v−1)
6 .
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Stinson’s hill-climbing algorithm for STSs

Algorithm Stinson’s Algorithm(v)
Numblocks ← 0
V ← {1, 2, . . . v}
B ← ∅
While (Numblocks < v(v−1)

2 ) do { Switch()}
output (V,B)

Switch will either add a new block or substitute one existing block
by a new block.
There is no guarantee that the algorithm will ever terminate, but if
the choices done by heuristic Switch() are random, it seems in
practice that the algorithm always terminates successfully and runs
quickly.
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Stinson’s hill-climbing for STSs: Switch Algorithm

Definition

A point x is said to be a live point in ([1, v],B) if rx <
v−1
2 .

A pair {x, y} is said to be a live pair in ([1, v],B) if there exists no
B ∈ B with {x, y} ⊆ B

Algorithm Switch()
Choose a random live point x.
Choose random y, z such that

{x, y} and {x, z} are live pairs.

If ({y, z} is a live pair) then

B ← B ∪ {{x, y, z}}
Numblocks ← Numblocks +1

else

Let {w, y, z} ∈ B be the block containing {y, z}
B ← B ∪ {{x, y, z}} \ {{w, y, z}}
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Example

LIVE POINTS : 1,33%4,5 , 6,7 , 8,9
LIVE PAIRS :

{3/7,8} 1 : 2,4 , 6.7.49
2 : 1 , 6

, 7,8{13/5} 3 :
-

{ 32,9 } 4 : 1,7 ,

8,5[2/4,5] 5 : 6,718,5
6 : 1,2+5,7 , 8,9[ 34,6 }
7 : 1,2 , 4. 56,9
8 : 1,2 , 4,516,9
9 : 1

, 4,516,78

1 23 4 5  67 8 9 Jndexlwepoints live Points

I 0 0 5 0 3 0 0 0 0 .
1 4

 12

Fndexlive Pain Livepain
2 0 0 9 5 ↳ 0 O 0 3 1  23 4 s 6 7 8 9 1  23 4 s  67 8 NUM.↳PaiB

3590
6 1 487 2  21}§24 last!!:5,2234:

!!'t!y 69

ice
,

4 5  602 3 0 0 0 3 - 3 5  3000o 00 °  0 o 3 } o

O 4 1 4  40 ° 00

02
1 34.8 79 ^ 4 4534 1 2 0 O 0 4 3 ] s 0000 04 3 1 2 589+6 54

6 4 3 5 3  59 6 1

200507
3 4 6128

9  57 6 6686 7  74I 0.6 2 3  00 s
7256

I S 4 a 6
7  83

y

§/7
8

84506
3 2  00 '

8965
1 24 8 669S 00  326 I 4 0 9  754 8 1 6

 96
8 7 3

 87
8 6

9  32 g g9.
Computational Methods to Construct Designs Lucia Moura



Introduction Exhaustive search Isomorph-free generation Heuristic search

Implementing Switch in constant time
The presentation was adapted from Kreher and Stinson (1998).
We changed the initialization of live pairs to simplify
comprehension as well as separated the basic operations on the
data structures from the main code that uses it, making it more in
line with the object oriented approach.
We keep a list of live points using the following data structure
which allows insertions and deletions in constant time:

int NumLivePoints; int NumLivePoints[1..v];

int IndexLivePoints[1..v];

A list of live pairs can also allow constant t. insertion and deletion:

int NumLivePairs[1..v], int LivePairs[1..v][1..v-1],

int IndexLivePairs[1..v][1..v]

Block storage and detection if a pair is live can be achived using
Other[x][y], with Other[x][y]=z if {x, y, z} is a block and
Other[x][y]=0 if pair {x, y} is live.
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Basic Operations: Live Points

Global: int NumLivePoints, int NumLivePoints[1..v], int IndexLivePoints[1..v];

InitializeLivePoints() {

NumLivePoints=0;

for x=1 to v do IndexLivePoint[x]=0;

}

AddLivePoint(x) {

NumLivePoints++; pos= NumLivePoints;

LivePoints[pos]=x;

IndexLivePoints[x]=pos;

}

RemoveLivePoint(x) {

pos = IndexLivePoints[x];

IndexLivePoints[x]=0; // indicates x is dead point

// swap last element to occupy the space freed at pos:

lastElement= LivePoints[NumLivePoints];

LivePoints[pos]=lastElement;

NumLivePoints--;

}

Initialize(v) {

InitializeLivePoints();

InitializeLivePairs();

for x = 1 to v do {

AddtoLivePoints(x);

for y=1 to v do

if (x!=y) AddToLivePairs(x,y);

Other[x,y]=0;

}

}
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Basic Operations: Live Pairs

Global variables: int NumLivePairs[1..v], LivePairs[1..v][1..v-1], IndexLivePairs[1..v][1..v]

InitializeLivePairs() {

NumLivePairs=0;

for x=1 to v do

for y=1 to v do

IndexLivePairs[x][y]=0;

}

AddLivePair(x,y) {

If (NumLivePairs[x]=0) AddLivePoint(x);

NumLivePairs[x]++;

int pos= NumLivePairs[x];

LivePairs[x][pos]=y;

IndexLivePairs[x][y]=pos;

}

RemoveLivePair(x,y) {

pos = IndexLivePairs[x][y];

IndexLivePairs[x][y]=0; // indicates {x,y} is dead pair

// swap the element to occupy the space freed at position pos

lastpos=NumLivePairs[x];

lastElement= LivePairs[x][lastpos];

LivePairs[x][pos]=lastElement;

NumLivePairs[x]--;

If (NumLivePairs[x]=0) RemoveLivePoint(x);

}
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Initializing arrays

RevisedSwitch() {

r=randomInt(1,NumLivePoints);

x = LivePoints[r];

s=random(1,NumLivePairs[x]);

t=random(1,NumLivePairs[x]-1); if (t>=s) t++; // {s,t} random distinct pair

y = LivePairs[x][s]; z = LivePairs[x][t]

if (Other[y,z]=0) { // add block {x,y,z}

Other[x,y]=Other[y,x]=z; Other[x,z]=Other[z,x]=y; Other[y,z]=Other[z,y]=x;

RemoveLivePair(x,y); RemoveLivePair(y,x); RemoveLivePair(x,z);

RemoveLivePair(z,x); RemoveLivePair(y,z);RemoveLivePair(z,y);

Numblocks++;

}

else { // exchange block: add {x,y,z} remove {w,y,z}

Other[x,y]=Other[y,x]=z; Other[x,z]=Other[z,x]=y; Other[y,z]=Other[z,y]=x;

RemoveLivePair(x,y); RemoveLivePair(y,x); RemoveLivePair(x,z); RemoveLivePair(z,x);

Other[w,y]=Other[y,w]=Other[w,z]=Other{z,w]=0;

AddLivePair(w,y); AddLivePair(y,w);AddLivePair(w,z); AddLivePair(z,w);

}}

RevisedStinsonAlgorithm(v) {

NumBlocks = 0;

Initialize(v);

While (NumBlocks < v(v-1)/6) do

RevisedSwitch();

// construct blocks from array Other[,]

for x=1 to v do

for y=x+1 to v do {

z=Other[x,y];

if z>y then Blocks=Blocks U {{x,y,z}}

}

return Blocks
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Example of data structure

LIVE POINTS : 1,33%4,5 , 6,7 , 8,9
LIVE PAIRS :

{3/7,8} 1 : 2,4 , 6.7.49
2 : 1

, 6
, 7,8{13/5} 3 :

-

{ 32,9 } 4 : 1,7 ,

8,5[2/4,5] 5 : 6,718,5
6 : 1,2+5,7 , 8,9[ 34,6 }
7 : 1,2 ,

4. 56,9
8 : 1,2 , 4,516,9
9 : 1

, 4,516,78
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