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Introduction

Covering array examples

array on alphabet {0,...,g — 1}; k columns;
find covering array with minimum n.

Examples: g =3,k =4

K
K 1234
= 1[0lofo]o
12 3 4 2(0[1]1]2
1loToloTo a[0[2f2[1
2[0[1]1]0 shlater
3lo[2[2]2 s [1121100
411101211 7[2[o[1[1
514]1]0]2 8[2[1]2]0
6[1]2[1]0 N= 9[2[2]0l2
702/0]1]2
8/2|1/2|0 \
o[2[2]0[1 Ogig og;i
N= 1000 0|11 ot St
21112]al 2[1]0]2] (0as, k —2 MOLS, lower bound)

Covering Arrays and Generalizations Lucia Moura



Introduction Constructions Extremal set systems Extremal set-partition systems Covering array on graphs Other generalizations

Covering array definition

Definition: Covering Array

A covering array with k factors, g levels for each factor and size n,
denoted by C'A(n; k,g), is an n x k array with symbols from

[0, g — 1] such that for every pair of columns, every ordered pair in
[0, g — 1]? is covered at least once.

Objective: given k and g find a covering array with mininum size n.
CAN(k,g) = min{n : there exists a CA(n;k,g)}.

Example: ¢ =2,k = 4:
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Introduction

Application: component interaction testing

Testing pairwise interaction of factors.

of a hardware system factors influencin ication sucess . N
inputs to software or
. ial £
Operating System ( linux/windows ) Topic ( superconnectivity /Cayley graphs ) clreuits
‘Web browser ( netscape / mozilla) Professor ( Anna Llado’ / Oriol Serra ) testl 1 1 11
File format ( pdf / postseript ) Student ( Jordi Moragas /Amanda Montejano ) test2 1000
Printer (- hp/ epson ) Meeting place ( UpC /tapas bar ) test3 0 1 00
testd 0 0 10
ests 000 1
L
Z . 3
5 2 K]
o 2 . &
) 5. w
e = 2 g =
§E5285 v 48E
Factors:  § £'5 £ binary Factors: &5 S 5 binary
SEZEE&  outcome: E &A= outcome:
testl 110101 PASS/FAIL ]'7‘dp¢|| jERININ] ACCEPTED/REJECTED
test2 |1]0[0]0| PASS/FAIL paper2 [1]0[0]0 PTED/REJECTED Correct/Incorrect Output
test3 [0[1]0]0] PassFAlL paper3 [0 [1]0]0 TED/REJECTED
testd |00 1][0] PASS/FAIL paper4 [0]0]1]0 ACCEPTED/REJECTED
test5 [0]0[0]1] PASS/FAIL paperS [0]0o[1] acceptEDREIECTED
s .
covering 1Tololo exhaustive testing: 2°4=16 tests
array: of1olo
olol1]o pairwise testing: 5 tests
ololof1

Assumption: failures come from the interaction of 2 or less factors.
All 2-way interactions are covered.

May not detect bad 3—way interactions — example: . Oriol Serra  Jordi Moragas  tapas bar
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Introduction

Advertisement: buy covering arrays!

e AETG (Telcordia): http://aetgweb.argreenhouse.com/
(web service) price per year: US$6,000 - US$16,000

o TestCover.com: http://www.testcover.com/
(web service) license price per year: US$1,200

o CaseMaker: http://www.casemakerinternational.com/
(GUI software) price not in their web page

@ Pro-test (SigmaZone):
http://www.sigmazone.com /protest.htm
(GUI software) license: US$399

@ Other tools: IBM Intelligent Test Case Handler, CATS,
OATS, IPO, TConfig, TCG (NASA), AllPairs, Jenny,
ReduceArray2, DDA, Test Vector Generator, OA1, CTE-XL,
PICT (Microsoft), rdExpert.
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Introduction

Covering array generalizations important for applications

e mixed alphabet sizes: factors may have different number of
possible values
example: 2 OSs, 3 browses, 4 file formats, 10 printers.

Covering Arrays and Generalizations Lucia Moura



Introduction

Covering array generalizations important for applications

e mixed alphabet sizes: factors may have different number of
possible values
example: 2 OSs, 3 browses, 4 file formats, 10 printers.

o forbiden configurations: some combinations may be
forbidden (not supported)
example: (linux,internet explorer) not allowed.

Covering Arrays and Generalizations Lucia Moura



Introduction

Covering array generalizations important for applications

e mixed alphabet sizes: factors may have different number of
possible values
example: 2 OSs, 3 browses, 4 file formats, 10 printers.

o forbiden configurations: some combinations may be
forbidden (not supported)
example: (linux,internet explorer) not allowed.

o higher strength: want to test 3-way interaction of factors
example: failures may occur due to bad 3-way combinations (Oriol,
Jordi, Tapas bar)

Covering Arrays and Generalizations Lucia Moura



Introduction

Covering array generalizations important for applications

e mixed alphabet sizes: factors may have different number of
possible values
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Introduction

Covering array generalizations important for applications

e mixed alphabet sizes: factors may have different number of
possible values
example: 2 OSs, 3 browses, 4 file formats, 10 printers.

o forbiden configurations: some combinations may be
forbidden (not supported)
example: (linux,internet explorer) not allowed.

o higher strength: want to test 3-way interaction of factors
example: failures may occur due to bad 3-way combinations (Oriol,
Jordi, Tapas bar)

@ mixed strength: certain factors need higher srength
example: all pairwise + (student,professor,meeting place)

@ covering arrays on graphs: certain combinations don’t need
interactions tested example: all pairwise interactions except
(topic, professor), (meeting place, student)
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Constructions

Covering array: summary of results

o general lower bound: CAN(k,g) > ¢°
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o CAN(k,g) = ¢? iff JOA(k, g, A = 1) iff I(k — 2) MOLS of
order g. Only possible for k < g + 1.
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o CAN(k,g) = ¢? iff JOA(k, g, A = 1) iff I(k — 2) MOLS of
order g. Only possible for k < g + 1.

o CAN(k,g) <CAN(k+1,9)
e CAN(k,g) < CAN(k,g+1)
o CAN(k,g = 2) has been solved.

@ For general g: direct and recursive constructions.

Covering Arrays and Generalizations Lucia Moura



Constructions

Covering array: summary of results

o general lower bound: CAN(k,g) > ¢°

o CAN(k,g) = ¢? iff JOA(k, g, A = 1) iff I(k — 2) MOLS of
order g. Only possible for k < g + 1.

o CAN(k,g) <CAN(k+1,9)

e CAN(k,g) < CAN(k,g+1)

o CAN(k,g = 2) has been solved.

@ For general g: direct and recursive constructions.

@ Non-constructive asymptotic result known for fixed g:

CAN(k, g) ~ % logk, ask — oo
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Covering array optimization questions

Fix g.
Minimizing n for fixed k (number of tests)

CAN(k,g) = min{n : there exists a CA(n;k,g)}.

Maximizing k for fixed n (number of factors)

CAK(n,g) = max{k : there exists a CA(n;k,qg)}.

Relationship between min-max problems

CAN(k,g) = min{n : CAK(n,g) > k}.

Covering Arrays and Generalizations Lucia Moura



Introduction Constructions Extremal set systems Extremal set-partition systems Covering array on graphs Other generalizations

Direct construction via Orthogonal arrays

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor,
denoted by OA(k, g), is an g2 x k array with symbols from a
[0, g — 1]G such that for every pair of columns, every ordered pair
in [0, g — 1]? is appears at exactly once.

@ For g a prime power, there exists g mutually orthogonal Latin
squares which gives an OA(g + 1, g) orthogonal array.

(equivalent to the existence of a projective plane of order g).
Construction uses finite fields.
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Direct construction via Orthogonal arrays

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor,
denoted by OA(k, g), is an g2 x k array with symbols from a
[0, g — 1]G such that for every pair of columns, every ordered pair
in [0, g — 1]? is appears at exactly once.

@ For g a prime power, there exists g mutually orthogonal Latin
squares which gives an OA(g + 1, g) orthogonal array.

(equivalent to the existence of a projective plane of order g).
Construction uses finite fields.
e For g prime power, CAN(k,g) = g° forall k < g+ L.
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Direct construction via Orthogonal arrays

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor,
denoted by OA(k, g), is an g2 x k array with symbols from a
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in [0, g — 1]? is appears at exactly once.

@ For g a prime power, there exists g mutually orthogonal Latin
squares which gives an OA(g + 1, g) orthogonal array.
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Direct construction via Orthogonal arrays

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor,
denoted by OA(k, g), is an g2 x k array with symbols from a
[0, g — 1]G such that for every pair of columns, every ordered pair
in [0, g — 1]? is appears at exactly once.

@ For g a prime power, there exists g mutually orthogonal Latin
squares which gives an OA(g + 1, g) orthogonal array.

(equivalent to the existence of a projective plane of order g).
Construction uses finite fields.
e For g prime power, CAN(k,g) = g° forall k < g+ L.

@ For g not a prime power, use the larger knwon number of

MOLS:
o CAN(k,6) =36 for k =1,2,3, but CAN(4,6) > 36.
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Direct construction via Orthogonal arrays

Definition: Orthogonal Array

An orthogonal array with k factors, g levels for each factor,
denoted by OA(k, g), is an g2 x k array with symbols from a
[0, g — 1]G such that for every pair of columns, every ordered pair
in [0, g — 1]? is appears at exactly once.

@ For g a prime power, there exists g mutually orthogonal Latin
squares which gives an OA(g + 1, g) orthogonal array.
(equivalent to the existence of a projective plane of order g).
Construction uses finite fields.

e For g prime power, CAN(k,g) = g° forall k < g+ L.

@ For g not a prime power, use the larger knwon number of
MOLS:
o CAN(k,6) =36 for k =1,2,3, but CAN(4,6) > 36.
o CAN(k,10) = 100 for k = 1,2,3,4, but CAN(5,10)? = 100.
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Constructions
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Recursive construction:

CA(12=4*3,3)

12345 6789101112

0/0]0]0Jl0|0[0]0]|0]0|O|O

NN O O

NN O O

NN OO

N—HNOHO

—ANONO

—ANONO

—ANONO

—ANONO|

O O—HH NN

size=9+6=15

O O N

OO+ NN

110[2[2]/1|0|2]|2|[1]0]|2]2
1/1[0]1}/1)1]0]1][a]1]|0[1
1/2]/1|0}[1]2/1]0|/1[2]1]0
2/0/1|1)2|0]1]|1||2|0|2|1

0[1/1]2]joj1]|1]2)|0j1|1|2
0]2/2]1)|0]|2|2]|1]|0]2|2]1

2|112]0]|2{1]2]|0]|[2]1]2|0

2121012][2[2]0]2][2]2]0]2

OO+ NN

CA(NL+N2,k1*k2,)

CA(NLKk1,G)+OD(N2,k2,)

CA(4,3)

1234
1/0/0]0|0
2|0/1)1]2
3(0/2|2|1
41110122

size=9

5l1/1]0[1
6[1[2[1]0
7[2[o]2[1
s[2[1]2]0
9[2[2]o0]2

o—N

NN O O

o— N

—"NONO-

o N

OO—HAHNN -

CA(3,3) with 3 dioint rows:

0D(3.3)

size=6

Lucia Moura
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Constructions

Algorithmic construction: Greedy method

Greedy method used in the AETG system (D. Cohen, Dalal,
Fredman and Patton (1997)):

“Choose one test at a time. At each stage select a test that covers
the maximum number of uncovered pairs.”

@ Good news: for fixed g, CA size is proportional to log k.

@ Bad news: to pick a test covering the maximum number of
uncovered tests is NP-complete, so the authors use a heuristic
for test selection which does not guarantee the logarithmic
growth.

The DDA (determinisitc density algorithm) by M. Cohen, Colbourn
and Turban (2004):

@ greedy method that runs in polynomial time;

o for fixed g, CA size is proportional to log k; this is based on a
guarantee that each selected test cover the average number of
uncovered tests.
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Extremal set systems

CAs with g=2 are extremal set systems

setsystem S complement: C

columnl |{1,2} {3,4,5}
column2 [{1,3} {245}
column3 [{1,4} {2,3,5}

column4 |{1,5} {2,3,4}

GRrWOWN P
o000 |k
OOk O
OO0k
R (oo |o |

base set = {1,2,3,4,5}

@ S must be pairwise intersecting: pair (1,1) is covered.
@ (' must be pairwise intersecting: pair (0,0) is covered.

@ each of S and (' must have the Sperner property: pairs (0, 1)
and (1,0) covered.
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Extremal set systems

Sperner theorem for set systems

A system of subsets of an n-set has the Sperner property if no two
subsets in the system are comparable.

Sperner's Theorem (1928)
If A has the Sperner property, then | A| < (LZJ).
2

The upper bound is only acchieved by the set of all (|75 |)-subsets
of the n-set, or by its (subsetwise) complement.
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Extremal set systems

Erdos-Ko-Rado theorem for set systems

A system of subsets of an n-set is (pairwise) intersecting if every

two subsets in the system have nonempty intersection.

Examples:

(n=5) A={{1,2,3},{1,4,5},{2,3,4},{2,4,5},{3,4,5}}

(n=6) B={{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},
{1,3,5},{1,3,6},{1,4,5},{1,4,6},{1,5,6}}

Erdos-Ko-Rado Theorem (1961)

Let A be an intersecting system of subsets of an n-set, such that
each subset has cardinality at most k.
If n > 2k, then |A] < (}7]).

Moreover, if n > 2k, then equality holds if and only if A is a
k-uniform trivially intersecting system.
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Extremal set systems

Optimal construction for binary alphabet

Pick all |n/2]|-subsets of [1,n] that contain a common element.

n even:
123456
111000
n odd: 110100
12345 110010
11000 110001
10100 101100
10010 101010
10001 101001
100110
100101
100011

Note: the arrays are transposed here (k x n).
Both A and A are intersecting and Sperner.
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Extremal set systems

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n,t = 2,9 =2) = (|,/ja1). Moreover, this bound is
attained by a |n/2|-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to a CA.
o (Case 1) n even.
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Extremal set systems

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n,t = 2,9 =2) = (|,/ja1). Moreover, this bound is
attained by a |n/2|-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to a CA.
o (Case 1) n even.
o A*={A A: Ae A} is Sperner.
@ Sperner’s theorem implies |A*| < (n%)

o [Al < AT < 3(,7) = (2t O

n/2—-1
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Extremal set systems

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n,t = 2,9 =2) = (|,/ja1). Moreover, this bound is
attained by a |n/2|-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to a CA.
o (Case 1) n even.
o A*={A A: Ae A} is Sperner.
@ Sperner’s theorem implies |A*| < (n%)
o [Al < 3 < 3(0) = ()2 1)- O
o (Case 2) n odd.
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Extremal set systems

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n,t = 2,9 =2) = (|,/ja1). Moreover, this bound is
attained by a |n/2|-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to a CA.
o (Case 1) n even.
o A*={A A: Ae A} is Sperner.
@ Sperner’s theorem implies |A*| < (n%)
o I3 < 5(0) = (o) O
o (Case 2) n odd.
@ Wlog assume |A| < [n/2], forall A € A.
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Extremal set systems

The binary covering array theorem

Theorem (Katona 1973, Kleitman and Spencer 1973)

CAK(n,t = 2,9 =2) = (|,/ja1). Moreover, this bound is
attained by a |n/2|-uniform trivially 1-intersecting set system.

Proof: Let A be the set system corresponding to a CA.
o (Case 1) n even.
o A*={A A: Ae A} is Sperner.
@ Sperner’s theorem implies |A*| < (n%)
o [Al < 3 < 3(0) = ()2 1)- O
o (Case 2) n odd.
@ Wlog assume |A| < [n/2], forall A € A.
e A is l-intersecting, so by the EKR theorem, |A] < (Ln%_Jlfl)
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Extremal set-partition systems

Covering arrays are systems of set partitions

@ A covering array (strength 2) is a system of set-partitions:
123458678910
column1 |O0|O|O|2j1j1]|2]|2|2|0 {1,2,3,10}  {4,5,6} {7,8,9
column2 |0 [1]2]ola]2]of1]2]0]| {14710} {258 {369
column3 |0]1]|2]2fof1]a]|2]{of1]| {159 {2,6,7,10 {3,4.8}
columnalolol2l1]2]ol2]0[1]1] {1268 {49100 {357

Covering Arrays and Generalizations Lucia Moura



Extremal set-partition systems

Covering arrays are systems of set partitions

@ A covering array (strength 2) is a system of set-partitions:
123458678910
column1 |O0|O|O|2j1j1]|2]|2|2|0 {1,2,3,10}  {4,5,6} {7,8,9
column2 |0 [1]2]ola]2]of1]2]0]| {14710} {258 {369
column3 |0]1]|2]2fof1]a]|2]{of1]| {159 {2,6,7,10 {3,4.8}
columnalolol2l1]2]ol2]0[1]1] {1268 {49100 {357

@ Maximization problem:
Given N, find a set partition system P with maximum |P|
that is (pairwise) strongly intersecting:
For all P,) € P we have

forall e P,Q; € Q, PnNQ;#0.
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Extremal set-partition systems

Strongly intersecting condition: upper bound via 2-parts

Theorem (Stevens, Moura and Mendelsohn 1998)
2n

2
g9

This theorem only uses the two smallest parts of each partition,
and the following fact:

Consider a pair of set systems, A;, As,..., A and By, Bo, ..., By,
with |A;| + |B;| < ¢ and |4;] < a < ¢/2, and such that
A; N B; =0, and all other sets intersect. Then, k < %(Z)

It is possible to relabel symbols of the covering array so that
|Pyjl < [2] and |Py| + | Pyl < [2]
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Extremal set-partition systems

Stronly intersecting versus Sperner formulation

Strongly intersecting formulation:
Partitions P and ) corresponding to two columns of a covering
array must satisfy:

forall P, e P,Q; € Q, PnNQ;#0.

Strongly Sperner formulation:
Partitions P and () corresponding to two columns of a covering
array must satisfy:

forall e P,Q; €Q, P ZQ;and P, ¢ Q;
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Sperner's theorem for set-partition systems

largest cardinality k of a system P of g-partitions of [1,n] such that for
all P;,P; € P:

VP € P;,VP' € P;(PZP'andP'¢P). (Weakly) Sperner

Theorem (Meagher, Moura and Stevens 2005)
Let g,n such that n =cg+r and 0 <r < g. Then,

1 n
< .

Theorem (Meagher, Moura and Stevens 2005)
Let g,n such that g|n. Then, N,(V,V) = (Z:ll) Moreover, this
g

bound is met if and only if the g-partitions are uniform (all parts
with cardinality ).
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Extremal set-partition systems
Example: weakly Sperner property

n=2g n=3q
{1,2,3},{4,5,6} {1,2,3},{4,5,6},{7,8,9}
{1,2,4},{3,5,6} {1,2,4},....
{1,2,5},{3,4,6} {1,2,5},...
{1,2,6},{3,4,5} {1,2,6},...
{1,3,4},{2,5,6}
{1,3,5},{2,4,6}
{1,3,6},{2,4,5}
{1,4,5},{2,3,6} .
{1,4,6},{2,3,5} {1,7,8},...
{1,5,6},{2,3,4} {1,8,9},{2,3,4},{5,6,7}
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Comparison of two bounds obtained

Theorem (Stevens, Moura and Mendelsohn 1998)
2n
CAK(n,2,9) < %(LiJ).

g
2]

Theorem (Meagher, Moura and Stevens 2005)
If g|n, then CAK(n,2,g) < (”_1).

z_j
g

if g > 2, g|n, then
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Erdos-Ko-Rado theorem for set-partition systems

We are interested on a maximal partition system P such that:
@ each partition of [1,n] have g parts of size 7
@ two partitions P, Q) € P are such that there exists P; € P and
Qj € Q such that [P, NQ;| <p.
Useful for bounds on “anti-covering-arrays” for certain uniform
cases. Ex: n=g¢? p=2

Conjecture
Suppose g|n, and let ¢ = n/g be the size of each part of the

(uniform) partition system. |P| = (Z:g)U(n —c,g—1).
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Required property:
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Conjecture:
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@ Conjecture has been proven for p = ¢:

Conjecture:
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Extremal set-partition systems

Required property: Conjecture:
1 2 9

b | I I R R
I R L e
) | I I R S I
]‘ | | o S
d N R
. @E o s [

@ Conjecture has been proven for p = ¢:

Theorem (Meagher and Moura 2005)

Letn>g>1andlet P C U; be a maximal partition system in
which every two partitions share at least one class. Let c =n/g.
Then, |P| =U(n—c¢,g —1)
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Covering array on graphs

Covering array on graphs

factors influencing publication sucess with knwon SAFE INTERACTIONS:

Topic ( superconnectivity /Cayley graphs )
Professor ( Annallado’ / Oriol Serra )

Student ( Jordi Moragas /AmandaMontgjano )
Meeting place ( UpC /tapasbar )

- g for complete graph
o 885 minN =5
Factorss 35 3 8

FE®B= _
paperl [1]1]11 For this graph
paper2 |1]|1]0]0 minN=4
paper3 |0 |0 [0 |0
paper4 |0[0[1]1

¢
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Covering array on graphs: definition

Definition: Covering Array

A covering array on a graph G with alphabet size g and size n,
denoted by C'A(n; G, g), is an n x k = |V(G)| array with symbols
from [0, g — 1] such that for every pair of columns corresponding to
an edge of G, every ordered pair in [0, g — 1] is covered at least
once.

Objective: given G and g find a covering array with mininum size
n.

CAN(G, g) = min{n : there exists a CA(n;G,g)}.

Determining CAN(G,2) is NP-complete (Serousi and Bshouty)
reduction to 3-COLOUR.
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Graph homomorphisms

Definition: graph homomorphism

A graph homomorphism from graph G to graph H, denoted
G — H is a mapping from V(G) to V(H) that takes edges to

edges.

Vertex colouring = homomorphism to the complete graph with
number0fColours vertices.

G H G H
|
% ;D(; \ C °
~._ 7 3 AA A
See book “Graphs and homomorphisms” by Hell and Nesetril,
2004.
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Covering array on graphs

Qualitative independence graph

The qualitative independence graph QI(n,g) has:
@ Vertex Set: all g-partitions of [1,n] that have every class of
size at least g.
o Edges: two vertices are connected if their partitions are
qualitatively independent (P, @ are qualitatively independent
if P,NQ; #0 forall i,3.)

135124

1234

134125

15]23 13| 245
120

141235
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Covering array on graphs

Why QI(n, g) are interesting?

Results by Meagher and Stevens (2005):
@ A k-clique in QI(n,g) corresponds to a CA(n, k, g);

e A CA(n,G,g) exists if and only if there exists a graph
homomorphism G — QI(n, g);

e CAN(G,g) = min{n: G — QI(n,g)}.
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Covering array on graphs

Clique and chromatic bounds

Corollary (Meagher and Stevens 2005): If there exists a
homomorphism G — H, then CAN(G,g) < CAN(H,g).

It is well-known that there exists homomorphisms:
Kw(G) — G — Kx(G)'

Therefore: CAN(w(G),g) < CAN(G,g) < CAN(x(G), g).

This gives the “colouring construction”:
@ k-colour the vertices of G.
e build a CA(n,k,g).
e pull back a CA(n, G, g).
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Covering array on graphs

Colouring construction

@ k-colour the vertices of G.
@ build a CA(n, k, g).

e pull back a CA(n, G, g).

abcde A WY
00000 G o Jooo
0lols aﬁl/// 0l1
02022 ' 022
10102 e b{ 102
11119 / 119
12121 q—c 7 3 121
20201 / 201
21212 212
22220 220
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Binary alphabet results

o w(QI(n,2)) = (Tél) (Kleitman and Spencer, Katona 1973).
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Binary alphabet results

(
[

(Kleitman and Spencer, Katona 1973).

o w(QI(n
o X(QI(n

n
n
2

130 (
%([ ]

)1 (Meagher and Stevens 2005)
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Covering array on graphs

Binary alphabet results

o w(QI(n,2)) = (ngl) (Kleitman and Spencer, Katona 1973).
2
o x(QI(n,2)) = [%( 1)1 (Meagher and Stevens 2005)

o If CAN(G,2) <n, then there exists a CAN(n, G, 2) with
[51 0’s per row (nearly balanced). (Meagher and Stevens
2005)
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Binary alphabet results

o w(QI(n,2)) = (ngl) (Kleitman and Spencer, Katona 1973).
2
o x(QI(n,2)) = [%( 1)1 (Meagher and Stevens 2005)

o If CAN(G,2) <n, then there exists a CAN(n, G, 2) with
[51 0’s per row (nearly balanced). (Meagher and Stevens
2005)
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Covering array on graphs

Binary alphabet results

o w(QI(n,2)) = (ngl) (Kleitman and Spencer, Katona 1973).
2
o x(QI(n,2)) = [%( 1)1 (Meagher and Stevens 2005)

o If CAN(G,2) <n, then there exists a CAN(n, G, 2) with
[51 0’s per row (nearly balanced). (Meagher and Stevens
2005)

Conjecture for general g (Meagher)

If CAN(G, g) < n, then there exists a CAN(n, G, g) that is
nearly balanced (each symbol appears either [7] or | 2] times).
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Binary alphabet results

o w(QI(n,2)) = (}a ) (Kleitman and Spencer, Katona 1973).
2

1)
o x(QI(n,2)) = [%( 1)1 (Meagher and Stevens 2005)

o If CAN(G,2) <n, then there exists a CAN(n, G, 2) with
[51 0’s per row (nearly balanced). (Meagher and Stevens
2005)

Conjecture for general g (Meagher)

If CAN(G, g) < n, then there exists a CAN(n, G, g) that is
nearly balanced (each symbol appears either [7] or | 2] times).

o If true, we can concentrate on AUQI(n,g) (almost uniform
qualitative independence graphs)!
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Other generalizations

Mixed covering arrays

Different factors/parameters can have different alphabet sizes.

gi=

br orroly
FPororoly
oo rroly
ORrPoRFRO|Nn
NN R P OO (g

References:

@ Moura, Stardom, Stevens and Williams, “Mixed covering
arrays” (2003)

@ Colbourn, Martirosian, Mullen, Shasha, Sherwood and Yucas,
“Pruducts of mixed covering arrays of strength two” (2006)

@ Sherwood, “A column expansion construction for optimal and
near-optimal mixed covering arrays” (preprint).
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Other generalizations

Mixed covering arrays on graphs

Combine covering array on graphs with mixed alphabet sizes.
Reference:

@ Meagher, Moura, Zekaoui, ‘Mixed covering arrays on
graphs” ,(to appear):
generalize graph homomorphism results; give optimal
constructions for special classes of graphs.

@ Cheng, “The Test Suite Generation Problem: Optimal
Instances and Their Implications”, preprint.
Give optimal constructions for special classes of graphs and
for hypertrees.
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Other generalizations

strength (¢ > 3)

t=3
k=5
o2

PORPPFRPOOFROOR

ORrPOOFrROOREF
OrOFrOFrOFrOoPr
PP OOOOORrRFRE
[cloNeoNoNaN il e N

References:

@ Chateauneuf and Kreher, “"On the state of covering arrays of
strength three ", 2002.

@ Colbourn, Martirosyan, Trung, and Walker, “Roux-type
Constructions for Covering Arrays of Strengths Three and
Four" (2006).

@ etc.
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Other generalizations

Locating arrays

We not only want to detect that an error exists, but we want to
know which t-interaction caused the error.
Related to design of experiments and combinatorial group testing.

mixed covering array 2*3*3*3*3*3

d=1 t=2
00000 1111111111000 00
r 01221021121200210 2320
10122 202112120001022
21012 1202710212020102
22101112020021222010
12210211202002102201

Reference:
@ Colbourn and McClary, “Locating and detecting arrays:
existence and minimization”, preprint.
Work in progress by myself with Martinez, Panario and Stevens on
the adaptive problem.
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Other generalizations
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