Combinatorial Testing and Covering Arrays

Lucia Moura
School of Electrical Engineering and Computer Science
University of Ottawa
lucia@eecs.uottawa.ca

Winter 2017

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Software and Network Testing

We want to test a system:
@ a program
@ a circuit
@ a package that integrates several pieces of software
o different platforms where a package needs to run correctly
@ a highly configurable software
@ a GUI interface
@ a cloud application

We would like a test suite that gives a good coverage of the
input parameter space in order to detect the maximum number of
errors /bugs/faults.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Combinatorial Software Testing

First we isolate the system parameters and its possible values
@ the input parameters of a program and its possible values

Mortgage Calculator

(5,4,11,17,6)

(2,2,2,2,2)
@ the components of a platform and its configurations

Component
Web Browser | Operating | Connection | Printer
System Type Config
Config: | Netscape(0) || Windows(0) LAN(0) Local (0)
1E(1) Macintosh(1) PPP(1) Networked(1)
Other(2) Linux(2) ISDN(2) Screen(2)
(37 31 3a 3)

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Pairwise Testing

Testing a system with k = 4 components each having v = 3 values:

Component
Web Browser || Operating || Connection | Printer
System Type Config
Config: | Netscape(0) || Windows(0) LAN(0) Local (0)
TE(1) Macintosh(1) | PPP(1) | Networked(1)
Other(2) Linux(2) ISDN(2) Sereen(2)

Test all possibilities: 3% = 81 tests.
Pairwise testing can be done with only 9 tests.

Test Case | Browser (o5} Connection | Printer
1 NetScape | Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape | Macintosh PPP Screen
4 1IE Windows ISDN Screen
5 1IE Macintosh LAN Networked
6 1IE Linux PPP Local
7 Other Windows PPP Networked
8 Other Linux LAN Screen
9 Other | Macintosh ISDN Local

(example from Colbourn 2004)

Covering Arrays with strength ¢t = 2, k = 4 parameters, v = 3 values for
each, can cover all pairwise interactions with N = 9 tests.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Pairwise Testing

Covering array:
strength ¢ = 2, k = 5 paramters, values (3,2,2,2,3), N = 10 tests

Test | OS | Browser | Protocol | CPU | DBMS
1 XP IE IPv4 Intel | MySQL
2 XP Firefox IPv6 AMD | Sybase
3 XP IE IPv6 Intel | Oracle
4 OS X | Firefox IPv4 AMD | MySQL
5 0S X IE IPv4 Intel | Sybase
6 OS X | Firefox IPv4 Intel | Oracle
7 RHEL IE IPv6é AMD | MySQL
8 RHEL | Firefox IPv4 Intel | Sybase
9 RHEL | Firefox IPv4 AMD | Oracle
10 | OSX | Firefox IPv6 AMD | Oracle

(example taken from Khun, Kacker and Lei 2010)

testing all possibilities (t = 5): 32 x 23 = 72 tests
pairwise testing (¢ = 2): 10 tests

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Pairwise Testing

Covering array:
strength ¢ = 2, k = 5 paramters, values (3,2,2,2,3), N = 10 tests

Test 92 Browser | Protocol (?1{ DBMS
1 /XP\ IE IPv4 ntel | MySQL
2 XP Firefox IPv6 AMD |\Sybase
3 XP IE IPv6 Intel |1Oracle
4 0OS X Firefox IPv4 AMD | MySQL
5 oS X IE IPv4 Intel | Bybase
6 OS X || Firefox IPv4 Intel racle
7 1| RHEL IE IPv6 AMD | MySQL
8 RHEL || Firefox IPv4 Intel |Sybase
9 RHEL | Firefox IPv4 AMD | Oracle
10 \os x[Firefox IPv6 \(\MD Oracle

(exa taken from Khun, Kacker and*fei 2010)

testing all possibilities (t = 5): 32 x 23 = 72 tests
pairwise testing (¢ = 2): 10 tests

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Why to use pairwise testing?

e Economy: we use a minimal number of tests.
example: k = 20 parameters with v = 10 values each.
testing all combinations:10%" tests (in general = v%)
pairwise testing:155 tests (in general O(vlogk))

@ Robustness: we have good coverage in practice.
most software errors (75%-80%) are caused by certain
parameter values or by the interaction of two of values.

“Evaluating FDA recall class failures in medical devices... 98% showed that the problem could have been
detected by testing the device with all pairs of parameter settings.” (Wallace and Kuhn, 2001)

Cohen, Dalal, Fredman, Patton (1996) - AETG software

Dalal, Karunanithi, Leaton, Patton, Horowicz (1999)

Kuhn and Reilly (2002)

covering pairs imply other coverage measures.

“Our initial trial of this was on a subset Nortel’s internal e-mail system where we able cover 97% of
branches with less than 100 valid and invalid testcases, as opposed to 27 trillion exhaustive test cases.”
(Burr and Young, 1998)

“The block coverage obtained for [pairwise] was comparable with that achieved by exhaustively testing all
factor combinations ..." (Dunietz et al., 1997)

Cohen, Dalal, Fredman, Patton (1996, 1997) - AETG software

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Increasing the coverage strength (¢-way coverage)

@ we can use intermediate strength values between ¢ = 2
(pairwise) and ¢t = k (testing full parameter space).

o the "tradeoff” is that increasing t, we increase robustness, but
also the number of tests

o studies show that usually ¢ € [2, 6] is sufficient to detect all
the software errors Kuhn, Wallace e Gallo (2004)

Cumulative percent

—— Medicaldevices
—— Browser

eb server
NASA distributed database

4
Interactions

Figure 2. Cumulative error detection rate for fault-triggering conditions. Many faults
were caused by a single parameter value, a smaller proportion resulted from an

interaction between two parameter values, and progressively fewer were triggered
by three-, four-, five, and six -way interactions.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering Arrays

t-way combinatorial testing requires covering arrays of strength ¢
strength ¢t = 3; v = 2 symbols; k£ = 10 columns; N = 13 rows

0[{0[0O[0]0O]O|0]O[O]O
1111111111
1(1]1]0}1|0]|0j0|0]|1
1101114010 |1]0|0
1(0]0]0}1|1]{1]0|0]0
Oj1(1(0]j0]1|0]0Of1]O
Ojof1f(o0j1j0 1|{1|1]|0
1j1jo0(140j0(1|0|1]0
0j{0fOf1]j1}j110]0O}1|1
0{0f1(1]0jO|1]|0O]O]|1
0[1(0f1]1]0|0]1]0]0
1{0]0]0j0|0]|0Oj1|1]|1
0[1[0|0]JO]1|1]1]0]|1

Definition (Covering Arrays)

A covering array of strength t, k factors, v symbols per factor and
size N, denoted CA(N;t,k,v), is an N x k matrix with symbols
from a v-ary alphabet G such that in each ¢ X N subarray, each
t-tuple in G is covered at least once.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing

Covering Arrays

t-way combinatorial testing requires covering arrays of strength ¢
strength ¢t = 3; v = 2 symbols; k£ = 10 columns; N = 13 rows

- o
O[O0 [fO}y O|0|fOK O FOR{ O[O
1)1 Yl\ 1)1 1\ 11§11
1({1f140(1JojojJojo|1
1011 |0fJ1Q0f140¢(0
1{OJOJO (11 F1R040|0
O[1f1H0|OF1JOJOY1|0
O[O 1RO |LIHOFLYyLRL|O
1{1§O0f1(OfJOJIQOf1{0
O(OgOgL|1§1JoOfoOp1|1
O(0f1f1|0JOFLIFOfO |1
O[1§0fJ1|1§O0fJOQj140(O0
1{OR0fO[0OROJORLIYT [T
011]0/[0]0 1 0]1

Definition (Covering Arrays)

A covering array of strength t, k factors, v symbols per factor and
size N, denoted CA(N;t,k,v), is an N x k matrix with symbols
from a wv-ary alphabet G such that in each ¢ X N subarray, each
t-tuple in G is covered at least once.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering Array Minimization

Given t (strength), k& (number of paramters) and v (#values).

Minimize N (#tests)
CAN (t,k,v) = min{N : there exists a CA(N;t,k,v)}.

Covering array logarithmic growth
@ CAN(t=2,k,v=2)={min N : ((N/ﬂ) >k} =
log k(1 + o(1)) (Katona 1973, Kleitman and Spencer 1973)
e t=2 v>2fixed, k — oc:
CAN(t = 2,k,v) = glogk(1+ o(1))
(Gargano, Korner and Vaccaro 1994)
o CAN(t, k,v =2) < 219081 Jog k (Naor et al 1993,1996,1998)
o CAN(t, k,v) <v'(t —1)logk(1+ o(1))
(Godbole, Skipper and Sunley 1996)

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

Covering array minimization and logarithmic growth

Given t (strength), k& (number of parameters) and v (#values).

Minimize N (#tests)
CAN(t,k,v) = min{N : there exists a CA(N;t,k,v)}. J

For fixed v and t CAN (t, k,v) = O(logk).

Use the greedy density method (Bryce & Colbourn 2007).
One-test-at-a-time greedy method that garantees N = O(log k).

Excellent for software testing: F#tests grows with the log of the
#parameters!

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

Construction of (minimum /small) covering arrays

e combinatorial methods: recursive and direct
Survey: Charlie Colbourn, “"Combinatorial Aspects of Covering
Arrays’, 2004 (34 pages)

o algorithms

e greedy methods:
e AETG (D. Cohen, Dalal, Fredman, Patton 1996, 1997),
one-test-at-a-time, tries to approximate logarithmic growth
e greedy density method (Bryce e Colbourn 2007),
one-test-at-a-time, logarithmic guaranty
¢ |IPOG algoritm (J. Lei), ACTS tool/NIST (Khun and
Kacker): alternates row growth and column growth

o heuristic methods
e tabu search: Zekaoui (2006), Torres-Jimenez (2012)
e simulated annealing: M. Cohen (2003-2008), Torres-Jimenez
(2010-2012)

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

Covering Array Construction

@ Practical, more flexible methods:
greedy methods (fast, number of tests is not optimized)
heuristic search (slower, number of tests is smaller)

@ Method to get the best possible covering arrays:
select the best results, using a combination of:
good ingredients (direct constructions or heuristic searches)
+ the best recursive constructions

See table maintained by Colbourn with the best known sizes
of covering arrays.

Combinatorial Testing and Covering Arrays Lucia Moura

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

Covering Arrays

Example of good ingredients to use in recursive
constructions

e orthogonal arrays: CA(N = ¢*t =2,k <q+1,v=q)
(Bush method using finite fields F})

0000
0122
1220
2202
2021
0211
2110
1101
1012

@ method using LFSR for t = 3:
CAIN=2¢° —1;t=3,k< @ +q+1,v=0q)
(Raaphorst, Moura, Stevens 2012)

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

Example of a good recursive construction: Product

in this example: parameter t = 2

CA(43)
12 3 4
1/0lojofo CA(12=4*3,3)
2[0[1[1]2
3(ol2]2]1 12345 6789101112
41lo2]2 olololo][o[o]o]ol[olo]o]o
5l1[1/0]1 ol1]1|2][o[a]1]2][0]1][1]2
6[1]2[1]0 o[2[2[1][o]2]2[1|[0[2]2]1
7[2][o]1]1 1jo]2[2][1]o]2[2|[1[o]2]2
8|2[1]2]0 1/1]0f1)1]1]0]1][1]1]|0]2
9[2[2]0l2 1/2]1]o][1[2[1]o][1][2]1]0
. 2l0[1]1|[2[o]1]1)[2]0]1]1
size=9 2[120 2[12[0l[2]1]2]0
2[2]0]2][2]2]0|2]|2[2]0]2
CA(3,3) with 3 digaint rows: 0/0(/0]0||1|1]1]|1]2[2/2/2
0/00/0/[2(2|2|2(1/1]1] 1
000 1/1{1/1||0/0/00| 2 2 2 2
111 1/1{1/12 22 2[0[0/00
222 2(2/2|2|0/0/0/0]|1|1{1|1
ol1]2 2/2/2/2]1111 10/0/0/0
923 Size=9+6=15
oD(E3) 5 126
2/0/1
210 CA(N1,k1,0)+OD(N2,k2,0)= CA(N1+N2,k1*k2
+ = + *
size=6 (N1,k1,g)+OD(N2k2,g)= CA() .9)

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

Current State

@ Combinatorial sofware testing is useful and effective.

@ There are ready-to-use tools for use in applications:
e ACTS by NIST (EUA) ¢ < 6 (open source, free)
e Hexawise: comercial ¢t < 6 (SaaS, free for academic use,
nonprofit e companies up to 5 users; otherwise annual fee)
e Testcover.com: automatic generator (¢ = 2) (Saa$S,
subscription: $100/month)

@ There is active research in the area of algorithms and
combinatorial constructions to optimize the number of tests
(rows) in covering arrays.

There are some efforts to deal with additional restrictions.

@ There is active research in the area of software testing
evaluating the effectiveness and adapting combinatorial
software testing to many types of applications.

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

An in-depth view of covering array constructions

@ The rest of our study of covering arrays will use a survey talk
entitled " Covering Arrays and Generalizations” (2006).
@ We will refer to the following sections covered there:

e Introduction and summary of results.

o Constructions: using OAs, blocksize recursive (product), direct
construction of binary CAs.

o Covering array on graphs.

o Other generalizations.

Combinatorial Testing and Covering Arrays Lucia Moura

Covering Arrays

References

e C. CoLBOURN, Combinatorial Aspects of Covering Arrays, Le
Matematiche (Catania), 2004. (survey article)

o L. MoURA, Covering Arrays and Generalizations, Survey
Talk, UPC seminar, November 2006.

Combinatorial Testing and Covering Arrays Lucia Moura

	Combinatorial Software Testing
	Covering Arrays

