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Orthogonal Latin Squares

Latin squares

Definition

A Latin square of order n is an n X n array, with symbols in
{1,...,n}, such that each row and each column contains each of
the symbols in {1,...,n} exactly once.
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Orthogonal Latin Squares Orthogonal Arrays

Orthogonal Latin Squares

Definition (Orthogonal Latin Squares)

Two Latin squares L1 and Lo of order n are said to be orthogonal
if for every pair of symbols (a,b) € {1,...,n} x {1,...,n} there
exist a unique cell (7, ) with Li(¢,5) = a and La(7,5) = b.

Example of orthogonal Latin squares of order 3:

1]2]3 1]3
Li=|3]1 Ly=[3]2]1
2131 2|1
(L.1) | (23) | (32)
33) | (12) | 21
22) | (31) | (1,3)
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Orthogonal Latin Squares

Orthogonal Latin squares of order 5 and 7

e 4
(sewn by Prof. Karen Meagher)
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Orthogonal Latin Squares

Euler’'s 36 officers problem

1. Leonhard Euler's Puzzle of the 36 Officers

Une question fort curieuse is the way Euler introduces this puzzle. It involves 36 officers from six regiments. In this illustration
we will distinguish the regiments by their colors: black, red, blue, green, purple and brown. Each regiment is represented by
officers of six different ranks, which here we will characterize as King, Queen, Rook, Bishop, Knight, Pawn. Here they are
(set in Eric Bentzen's Ch
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Ther problem is to line them up in a six by six array so that each row and each column holds one officer of each rank and one

officer from each regiment.

Reference: http://www.ams.org/samplings/feature-column/fcarc-latiniil
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hogonal Latin Squares

Euler’'s conjecture

Extracted from wikipedia:
Euler's conjecture and disproof [edit]

Orthogonal Latin squares were studied in detail by Leonhard Euler, who took the two sets to be S={A, B, C, ...}, the first n
upper-case letters from the Latin alphabet, and T={a, B, v, ...}, the first n lower-case letters from the Greek alphabet—
hence the name Graeco-Latin square.

In the 1780s Euler demonstrated methods for constructing Graeco-Latin squares where n is odd or a multiple of 4.1%!
Observing that no order-2 square exists and being unable to construct an order-6 square (see thirty-six officers problem), he
conjectured that none exist for any oddly even number n = 2 (mod 4). The non-existence of order-6 squares was confirmed
in 1901 by Gaston Tarry through a proof by exhaustion. However, Euler's conjecture resisted solution until the late 1950s.

In 1959, R.C. Bose and S. S. Shrikhande constructed some counterexamples (dubbed the Euler spoilers) of order 22 using
mathematical insights. Then E. T. Parker found a counterexample of order 10 using a one-hour computer search on a
UNIVAC 1206 Military Computer while working at the UNIVAC division of Remington Rand (this was one of the earliest
combinatorics problems solved on a digital computer).

In April 1959, Parker, Bose, and Shrikhande presented their paper showing Euler's conjecture to be false for all n = 10.
Thus, Graeco-Latin squares exist for all orders n = 3 except n=6.
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Orthogonal Latin Squares

Euler’s conjecture disproved

In Chapter 6 of Stinson (2004), you can find various constructions
leading to the dispoof of Euler’'s conjecture:

Theorem
Let n be a positive integer and n % 2 or 6. Then there exist 2
orthogonal Latin squares of order n.
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Orthogonal Latin Squares MOLS

Orthogonal Latin squares of odd order

Construction
Let n > 1 be odd. We build two orthogonal Latin squares of order
n, L1 and Lo, as follows:

Li(i,j) = (i+j) modn
Lo(i,j) = (i—7) modn

Proving these are orthogonal Latin squares:

They are Latin squares, since if we fix i (or j) and vary j (or i) we
run through all distinct elements of Z,.

Let (a,b) € Zy, X Z,. We must show there exist a unique cell 7, j
such that Li(i,7) = a and Ly(i,7) = b; in other words, this system
of equations has a unique solution 1, j:

(i +7) = a (mod n),
(1 —7) =b (mod n).



Orthogonal Latin Squares

continuing verification

Verify that this system has a unique solution:

(i +7) = a (mod n),
(i —j) = b (mod n).
We get

2i=a+b (mod n),
2j =a—b (mod n).
And since 2 has an inverse in Z,, for n odd, namely "TH we get

1
i= n—2+- (a+b) (mod n),

n+1
5 (a —b) (mod n).

j=
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Orthogonal Latin Squares

Example of the construction for n =5

011|234 014|321
1121340 1101432
Li=12|3|4]0|1 Ly=|2]110|4|3
3/14|10]1]2 312|1]0]4
41011123 41312|1]0
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Orthogonal Latin Squares

Direct product of Latin squares

The direct product of two Latin squares L and M of order n and
m (respectively) is an nm x nm array given by

(L x M)((i1,42), (j1, j2)) = (L(i1, j1), M (i2, j2))-
Example:

L =|2|3]1 M*
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Direct product of Latin squares

Lemma

If L is a Latin square of order n and M is a Latin square of order
m, then L x M is a Latin square of order n x m.

Proof: Consider a row (i1,i2) of L x M. Let 1 < z,y < n, we will
show how to find the symbol (x,y) in row (i1,42). Since L is a
Latin square, there exists a unique column j; such that

L(i1,j1) = «. Since M is a Latin square, there exists a unique
column ja such that L(ig, jo) = y. Then

(L x M) ((i1,82) (1 32) = (2, ). O
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Orthogonal Latin Squares

Direct product construction

Theorem (Direct Product)

If there exist orthogonal Latin squares of orders n and m, then
there exist orthogonal Latin squares of order nm.

Proof: Suppose L1 and Lo are orthogonal Latin squares of order n
and M; and M, are orthogonal Latin squares of order m. We will
show that L x M; and Lo x My are orthogonal Latin squares of
order nm. The previous Lemma shows they are Latin squares. We
must show that they are orthogonal. Take an ordered pair of
symbols ((z1,y1), (x2,y2)), we must find a unique cell

((i1,42), (j1,72)) such that (L1 x My)((i1,42), (j1,J2)) = (®1,51)
and (Lg x M3)((i1,12), (j1,J2)) = (z2,y2). In other words, we
need to show Ll(ilajl) = I, Ml(ig,jg) = Y1, Lg(il,jl) = I,
M>(i2, j2) = ya, First and third, comes from L; and Ly orthogonal.
Second and fourth, follows from M7 and Ms orthogonal. [
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Orthogonal Latin Squares
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We take L1 and Lo orthogonal Latin squares of order 3, and

My and Ms orthogonal Latin squares of order 4.

We build L; x My and Ly x My orthogonal Latin squares of order
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Sufficient condition for orthogonal Latin squares

Theorem

If n # 2 (mod 4), then there exist orthogonal Latin squares of
order n

Proof: If n is odd, apply the odd construction seen a few pages
before.

If n > 2 is a power of two, say n = 2¢, for i > 2, then we apply a
recursive construction. Cases ¢ = 2,3 (n = 4,8) can be build
directly. Then any n = 2¢, i > 4 can be build by induction from
ni1 = 4 and ny = 2072 using the product construction.

Finally, suppose that n is even, n # 2 (mod 4) and not a power of
two. We can write n = 2'n’ where i > 2 and n’ is odd. In this
case, apply the known constructions for n; = 2%, ng = n’ and
combine them using the product construction. [J
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Mutually Orthogonal Latin Squares

Definition (MOLS)

A set of s Latin squares L1, ..., L, of order n of order are
mutually orthogonal if L; and L; are orthogonal for all
1<i<j<s. AsetofsMOLS of order n is denoted s MOLS(n).

One important problem is to determine the maximum number of
MOLS of order n, denoted N (n).

The case n = 1 is not interesting as N (1) = co.

We have the following upper bound on N(n).

Theorem
Ifn>1 then N(n) <n—1. J
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Orthogonal Latin Squares

Theorem
Ifn>1 then N(n) <n— 1. J

proof. Suppose Li,...,Ls are s MOLS(n). Assume wlog that the
first row of each of these squares is (1,2,...,n). Note that
Li(2,1),...,Ls(2,1) must be all distinct since any pair of the
form (x,z) already appeared in the first row of the superpositions
of any two squares. Furthermore L;(2,1) # 1 since L;(1,1) = 1.
Therefore, L1(2,1),...,Ls(2,1) are s distinct elements of
{2,...,n},s0s<n—-1.0

The extreme case is interesting since n — 1 MOLS(n) correspond
to an affine plane of order n!
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MOLS and affine planes

Let (X, A) be an affine plane of order n, i.e. a (n?,n,1)-BIBD.
We will show how to build n —1 MOLS(n) from it.
An affine plane has n + 1 paralell classes, each with n blocks.

Example:
X =1{1,2,3,4,5,6,7,8,9}
A = {123,456, 789,147, 258, 369, 159, 267, 348, }

A, A1, Arg, Ao, Ao, Aoz, Az, As o, A3 3,
Define L,(i,j) =k if and only if A, ; N Api1; € Az

(1,1):1,(1,2):9, (1,3) : 5,
(2,1):6, (2,2):2,(2,3) : 7,
(3,1):8,(3,2) : 4, (3,3) : 3.

1132 1{3]2
Ly = 113 La=]2|1]3
3121 3121
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Remember L,(i,j) =k if and only if A, ; N Ayut1 € Azke
(1,1):1, (1,2):9, (1,3) : 5,

1 2 113
2 3| Lo=|2]1]3
3 1 3121

Justification:

e [, is a Latin square because row ¢ cannot contain two equal
symbols, since they come from different blocks in the same paralel
class and the same is true for any column.

e Lets now prove that L, and L, are orthogonal. Consider £, ¢; we
need to find 4, j such that L, (4,5) = k and Ly(i,j) = ¢. Now,
there is a unique z € A, ;N A, ¢, since blocks in different parallel
classes must intersect. There is a unique ¢ such that z € A, ; since
these blocks form a parallel class; similarly there is a unique j such
that z € A, 1. Thus,L,(i,7) =k and L,(i,5) =+.
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The construction can be reversed. Starting from n — 1 MOLS(n),
Li,...,L, 1.

Build an affine plane with point set X = {1,...,n} x{1,...,n}.
Fori1<z<n—-1land1<k<n

Define also

Apg = {(k,j) : 1 <j <n},

Appirp={0,k): 1 <i<n}.
We need to show this is a (n?,n,1)-BIBD. Clearly | X| = n? and
each block has n points. Also the number of blocks is n(n + 1), so
it is enough to show that every pair of points does not occur in
more than one block. Suppose {(i1, 1), (i2,72)} € Ay, &, and
{G1, 1), (G2, J2) } C Ay ky-
This means Lx1 (il,jl) = ]{31, Lxl (ig,jg) = k‘l, LIQ(il,jl) = kg,
L,,(i2,j2) = ka. Because the Latin square are orthogonal we must
have 1 = x9.

Latin Squares and Orthogonal Arrays Lucia Moura



Orthogonal Latin Squares MOLS Orthogonal Arrays

Equivalence: n — 1 MOLS, projective and affine planes

Using the equivalence between n — 1 MOLS and affine planes and
a known equivalence between affine planes and projective planes,
we get the following theorem.

Theorem

Let n > 2. The existence of one of the following designs implies
the existence of the other two designs:

Q@ n—1 MOLS(n)

@ an affine plane of order n

© a projective plane of order n
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Orthogonal Latin Squares MOLS Orthogonal Arrays

MOLS(n) for non prime power n

Theorem
If there exist s MOLS(n;), 1 <i < ¥, then there exist s MOLS(n),
where n = nq X ng X ... X ny.

Proof. Generalize the direct product construction to deal with s
MOLS and generalize the direct product to combine ¢ Latin
squares. Then observe that the direct product preserves
orthogonality. [
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Orthogonal Latin Squares MOLS

MOLS(n) for non prime power n (continued)

Theorem (MacNeish's Theorem)

Suppose that n _has prime power factorization n = p{* - - - py*,
where p; are different primes and e; > 1 for 1 < i < /. Let

s=min{p]’ —1:1<1i </}

Then, there exists s MOLS(n).

Proof. There exist an affine plane of order pfl for1 <i</¥. So
there exist p;* —1 MOLS(p;*). So there are s MOLS(p;") for
1 <4 < {. Apply the previous theorem to combine these MOLS. [J
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Orthogonal Arrays

Orthogonal arrays and MOLS

Definition
An orthogonal array OA(t, k,n) is a n' x k array with entries from

a set of n symbols such that any subarray defined by t of its
columns has every t-tuple of points in exactly one row.

il il e el el Nol N
H=O ORIk OO
|l ol—|lolrlolrlo
= OO ORI F=O

We'll show that OA(2,k = s + 2,n) are equivalent to s MOLS(n).



Orthogonal Arrays

Equivalence between OAs with t = 2 and MOLS

Take s MOLS(n): Ly,..., Ls.

For each 1 <14, j, <mn, create a row (4,75, L1(7,7),...,Ls(7,7)),
forming a n? x (s +2) array A

We need to show that in any two columns 1 <z < y < s+ 2, each
pair of symbols (a,b) occur in a row in those columns.

Case 1: x = 1,y = 2: Obvious by construction.

Case 2: x =1,y > 3: Since L, is a Latin square, there exist some
J such that Ly(a, j) = b.

Case 3: x = 2,y > 3: Since L, is a Latin square, there exist some
i such that Ly(i,a) = b.

Case 4: y > = > 3: Since L, and L, are orthogonal, there exist
unique 7, j such that L,(i,7) = a and Ly(i,5) = b.

Therefore, A is an OA(2,k,n). O
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Orthogonal Arrays

Equivalence between OAs with t = 2 and MOLS (reversed)

We can reverse the construction to build MOLS from an OA.

Take A an OA(2,k,n).

We build s = k£ — 2 MOLS as follows.

Use the first two columns as the index of rows and columns of the
MOLS; each Latin square correspond to one of the columns
3,...k, and is defined as follows. For every row 1 < r < n2, of the
OA and 1 < ¢ < s, take

Le(A(r,1), A(r,2)) = A(r,c + 2).

We will show Ly, ..., Ls form a set of s MOLS(n).

e L. is a Latin square because of the orthogonal property of
columns (1,¢) and (2, ¢).

e L. is orthogonal to Ly because of the orthogonality property of
columns (¢, d).

d



Orthogonal Arrays

Equivalence between OAs with t = 2 and MOLS

2 MOLS(3) equivalent to OA(2,4, 3):
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A construction for OA(t, q + 1, q) for g prime power

Theorem (Bush (1952))

For ¢ > 2 a prime power and ¢ >t —1 > 0. Then there exists an
OA(t,q+1,q).

Springer Series
in Statistics

AS. Hedayat
N.J.A. Sloane

John Stufken

reference book on OAs:
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Orthogonal Arrays

Bush's construction

@ Associate to each row a polynomial:
f(x) =ag+ a1z +...a;_12'1, for each possible tuple

((l(),(ll, Tt 7at—1) S F;
@ Associate to each of the first ¢ columns a distinct element
a € Fy.
@ In the array position indexed by row (ag,a,---,a;—1) and
tf

column « put the value f(a) =ap+a1a+...aq1—1¢ L

@ In the last row, put the value a;_1.
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Orthogonal Arrays

Bush’s construction: example for g =3 and t = 3

0 1 2 * 0 1 2 x

0zZ +0z+0 | 0O 0O 0 O

0z2+0z+1 |1 1 1 0

0z +0z+2 | 2 2 2 0
0z24+1z+0 |0 1 2 0 122 +1e+2 | 2 0 2 1
0z241z+1 |1 2 0 0 122 4+2x4+0 | 0 0 2 1
0z?4+1z+2 |2 0 1 0 1224241 |1 1 0 1
02242240 | 0 2 1 0 122 +2¢4+2 | 2 2 1 1
0z24+2z+1 |1 0 2 0 222 +0z4+0 | 0 2 1 2
0z24+22+2 |2 1 0 0 222 + 0z + 1 1 0 2 2
122 +0x4+0 | 0 1 1 1 222 +0z+2 |2 1 0 2
1z240z4+1 |1 2 2 1 22 +1z4+40 | 0 0 1 2
122 +0x4+2 |2 0 0 1 222 4+1z4+1 |1 1 2 2
122 +1z4+0 | 0 1 0 1 222 +1z4+2 |2 2 0 2
122 +1z+1 |1 2 1 1 222 +2z+0 | 0 1 0 2
222 42z4+1 |1 2 1 2
222 +2x+2 | 2 0 2 2
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Orthogonal Arrays

Bush's construction: verification

We take a t-set of columns, consider the subarray determined by
those columns. We need to verify that each ¢-tuple in Fg does not
get repeated as a row.

If the ¢ columns ¢y, ..., c; are among the first ¢ columns, consider
tuple (bey s beyy - -+ bey)-

We know that there is a unique polynomial p; of degree ¢ — 1 such

that pi(am) = bC1api(aC2) = bCQ’ ..., and pi(a&s) = bct'
Thus (be,, bey, - - -, be,) appears in a unique row i.
If t — 1 columns cq,...,c;—1 are among the first ¢ columns,

together with the last column. If there were two polynomials p;,
and p;,, we get that p = p;, — p;, has degree t — 2 and

plae ) =0,...,p(ae,_,) =0. This is only possible of p is the
identically null polynomial, and so p;, = pi,.

O
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