Exhaustive Generation: Backtracking and
Branch-and-bound

Lucia Moura

Fall 2013

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Backtracking Intro
@00

Knapsack

Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits pg,p1,...,Pn-1
Weights wo, w1, ..., Wn_1
Knapsack capacity M

Find: and n-tuple [xg, z1,...,2,-1] € {0,1}"
such that P = Z?:_ol p;x; is maximized,
subject to Z:-L:_Ol wiz; < M.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Backtracking Intro

oeo

Knapsack

Example
Objects: 1 2 3 4
weight (Ib) 8 1 5 4
profit $500 | $1,000 | $ 300 | $ 210

Knapsack capacity: M =10 Ib.

Two feasible solutions and their profit:

T1 To X3 T4 | profit
1 1 0 0 |$1,500
0 1 1 1 $ 1,510

This problem is NP-hard.

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Backtracking Intro
ooe

Knapsack

Naive Backtracking Algorithm for Knapsack

Examine all 2" tuples and keep the ones with maximum profit.

Global Variables X, Opt P, OptX .
Algorithm KNAPSACKL (1)
if (1= n) then
if ZZ "o wizi < M then CurP «— Z?:_()l Dis;
if (CurP > OptP) then
OptP «— CurP;
OptX «— [xo,x1,...,Tn-1];
else x; < 1; KNAPSACK] (I + 1);
x; < 0; KNAPSACKL (I +1);

First call: OptP «— —1; KNAPSACK]1 (0).

Running time: 2" n-tuples are checked, and it takes ©(n) to check each
solution. The total running time is ©(n2").

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Backtracking Intro

(1o}

A General Backtracking Algorithm

A General Backtracking Algorithm

@ Represent a solution as a list: X = [zg,x1,x2,...].
e Each z; € P; (possibility set)

e Given a partial solution: X = [z¢,x1,...,2;_1], we can use
constraints of the problem to limit the choice of z; to C; C P, (choice
set).

@ By computing C; we prune the search tree, since for all y € P\ C; the
subtree rooted on [zg, x1,...,%;—1,y] is not considered.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

A General Backtracking Algorithm
8 1 5 4
$500 $1,000 $300 $210

Backtracking Intro
Part of the search tree for the previous Knapsack example:
M = 10.

wj
Di
[1 C1={0,1}

[1
c2={0,1}

c3={0}
[11,0] c4={0}

[1,00,0]

profit= $500

Lucia Moura

[1,1,0,0]
profit=$1,500

> pruning

Exhaustive Generation: Backtracking and Branch-and-bound

Backtracking Intro

(1o}

Backtracking Algorithm with Pruning

General Backtracking Algorithm with Pruning

Global Variables X = [zg,x1,...], C;, for [=0,1,...).

Algorithm BACKTRACK (I)
if (X = [zo,21,...,2;-1] is a feasible solution) then
“Process it”
Compute Cj;
for each x € C; do
Ty <~ T
BACKTRACK(l 4 1);

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Backtracking Intro

oe

Backtracking Algorithm with Pruning

Backtracking with Pruning for Knapsack

Global Variables X, OptP, OptX.
Algorithm KNAPSACK2 (I, CurW)
if (I =n) then if (31 piz; > OptP) then
OptP «— Y174 pii;
OptX «— [xo,%1,...,Tn_1];
if (I =n) then C; — 0
else if (CurW + w; < M) then C; — {0, 1};
else C; — {0};
for each x € C; do
Ty —

KNAPSACK2 (I + 1, CurW + wixy);

First call: KNAPSACK2 (0,0).

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Generating all cliques
#0000

Generating all cliques

Backtracking: Generating all Cliques

ProBLEM: All Cliques
INSTANCE: a graph G = (V, E).

FinD: all cliques of G without repetition
0 1 2
6 5 4 3

Cliques (and maximal cliques): @, {0}, {1},...,{6},
{0,1},{0,6},{1,2}, {1,5},{1,6}, {2, 3}, {2,4}, {3, 4}, {5, 6},
{0,1,6},{1,5,6},{2,3,4}.

Definition
Clique in G(V, E): C C V such that for all z,y € C, x # y, {z,y} € E.
Maximal clique: a clique not properly contained into another clique.

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Generating all cliques
(o] lelele]

Generating all cliques

Many combinatorial problems can be reduced to finding cliques (or the
largest clique):

o Largest independent set in G (stable set): is the same as largest
clique in G.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
(o] lelele]

Generating all cliques

Many combinatorial problems can be reduced to finding cliques (or the
largest clique):

o Largest independent set in G (stable set): is the same as largest
clique in G.

@ Exact cover of sets by subsets: find clique with special property.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
(o] lelele]

Generating all cliques

Many combinatorial problems can be reduced to finding cliques (or the
largest clique):
o Largest independent set in G (stable set): is the same as largest
clique in G.
@ Exact cover of sets by subsets: find clique with special property.
@ Find a Steiner triple system of order v: find a largest clique in a
special graph.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
(o] lelele]

Generating all cliques

Many combinatorial problems can be reduced to finding cliques (or the
largest clique):
o Largest independent set in G (stable set): is the same as largest
clique in G.
@ Exact cover of sets by subsets: find clique with special property.
@ Find a Steiner triple system of order v: find a largest clique in a
special graph.
o Find all intersecting set systems: find all cliques in a special graph.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
(o] lelele]

Generating all cliques

Many combinatorial problems can be reduced to finding cliques (or the
largest clique):

o Largest independent set in G (stable set): is the same as largest
clique in G.

Exact cover of sets by subsets: find clique with special property.

Find a Steiner triple system of order v: find a largest clique in a
special graph.

Find all intersecting set systems: find all cliques in a special graph.
o Etc.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
00e00

Generating all cliques

In a Backtracking algorithm, X = [z, z1,...,2;_1] is a partial solution
<~ {z0,21,...,2-1} is a clique.

But we don’t want ot get the same k-clique k! times:

[0, 1] extends to [0, 1, 6]

[0, 6] extends to [0, 6, 1]

So we require partial solutions for be in sorted order:
ro<r1 <2< ...<T]-1-

Let S;_1 = {$0,$1, . ,xl—l} for X = [$0,$1, .. ,xl—l]-
The choice set of this point is:

if l=0then Cy =V

if { > 0 then

C = {weV\S_1:v>z_71and {v,z} € Eforall x € S;_1}
= {velC 1 \{z_1}:{v,yy 1} € Fand v >z 1}

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
[e]e]e] o]

Generating all cliques

So,
Co=V
C={veC_\{ri-1} :{v,ry_1} € Fand v > x;_1}, for [> 0

To compute C;, define:

Ay ={u eV :{u,v} € E} (vertices adjacent to v)
B,={v+1,v+2,...,n—1} (vertices larger than v)
C = A-’El—l NB; , NC_;.

To detect if a clique is maximal (set inclusionwise):
Calculate NV;, the set of vertices that can extend S;_1:
No=V

Ny =N;_1 N Azl_l.

S;_1 is maximal < N, = (.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques
0000e

Generating all cliques

Algorithm ALLCLIQUES(!)
Global: X, /(I =0,...,n—1), A;, B; pre-computed.

if (I = 0) then output ([]);
else output ([zg, 1, ..., x1-1]);
if (1=0) then N; <V,
else N; «— Ay, |, N Nj_q;
if (N; = () then output (“maximal”);
if (I =0) then C; — V;
else C; — Ay, , N By, , NC_y;
for each (z € (;) do
T — T

ALLCLIQUES(I + 1);

First call: ALLCLIQUES(0).

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

acking Intro ting all cliques i e Cove h-and-Bound

Average Case Analysis of ALLCLIQUES

Average Case Analysis of ALLCLIQUES

Let G be a graph with n vertices and
let ¢(G) be the number of cliques in G.

The running time for ALLCLIQUES for G is in O(nc(G)),
since O(n) is an upper bound for the running time at a node,
and ¢(Q) is the number of nodes visited.

Let G,, be the set of all graphs on n vertices.

|Gnl| = 2(2) (bijection between G,, and all subsets of the set of unordered
pairs of {1,2,...,n}).

Assume the graphs in G,, are equally likely inputs for the algorithm (that
is, assume uniform probability distribution on G,,).

Let T'(n) be the average running time of ALLCLIQUES for graphs in G,,.
We will calculate T'(n).

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques

0@00

Average Case Analysis of ALLCLIQUES

T'(n) = the average running time of ALLCLIQUES for graphs in G,,.
Let ¢(n) be the average number of cliques in a graph in G,,.

Then, T'(n) € O(né(n)).

So, all we need to do is estimating ¢(n).

VN > ceg, ¢(G) 1 .
= =T = w2 A9

We will show that:

é(n) < (n+1)n'e2" for n > 4.

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Generating all cliques

[e]e] le)

Average Case Analysis of ALLCLIQUES

SKEETCH OF THE PROOF:
Define the indicator function, for each sunset W C V:

vow={§ e
Then,

_ 1

c(n) = NG > @)

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Generating all cliques

[e]e]e])

Average Case Analysis of ALLCLIQUES

- (&)
Now, for fixed W, > qeq X(G, W) =212/ 2)

(Number of subsets of (‘2/) containing edges of W)

cn) = —— 3 21

() ey
LN (Mam-) —y W)
2 2 @2 2.50)

(i)

o(3)”

A technical part of the proof bounds ¢ as follows: t; < nl°g2"

(see the textbook for details)

So, &(n) = > 1 otk < S p_gnlo82" = (n+ 1)nlo82" € O(nlos27+1),
Thus, T'(n) € O(né(n)) C O(n'oe2n+2),

So, €(n) = > j_ytk, where tj, =

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Estimating tree size
0000000000

Estimating the size of a Backtrack tree

Estimating the size of a Backtrack tree

State Space Tree: tree size = 10

Probing path P;: Probing path Ps:
Estimated tree size: N(P;) =15 Estimated tree size: N(P2) =9

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Estimating tree size
0@00000000

Estimating the size of a Backtrack tree

P1

Probing path P;: Probing path Ps:
Estimated tree size: N(P;) =15 Estimated tree size: N(P) =9

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Estimating tree size
0000000000

Estimating the size of a Backtrack tree

Game for chosing a path (probing):

At each node of the tree, pick a child node uniformly at random.

For each leaf L, calculate P(L), the probability that L is reached.

We will prove later that the expected value of N of N(L) turns out to be
the size of the space state tree. Of course,

N= > P(L)N(L) (by definition)
L leaf

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Estimating tree size
[e]e]e] lelelele]ele}

Estimating the size of a Backtrack tree

In the previous example, consider 7' (number is estimated number of
nodes at this level)

P(Ls) = 1/8, P(L4) = P(Ls) = P(Lg) = 1/6
N(Ly) = N(Ls) =1+2+4+8=15
(Lg) =1+2+6=9

1

1 1
Z><7+2><(§><15)—|-3><(6><9):10:|T|

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Estimating tree size
[e]e]e]e] lelele]ele]

Estimating the size of a Backtrack tree

In practice, to estimate N, do k probes Li, Lo, ..., L, and calculate the
average of N(L;):

N _ i N(L)
est — — ;.
k
Algorithm ESTIMATEBACKTRACKSIZE()
s+— 1, N« 1;1<0;
Compute Cy;
while C; # () do
C |Cl|;
S« C*8;
N «— N +s;
x; < a random element of C;;
Compute Cy11 for [xg, x1,...,2);
l—1+1;
return N;

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Estimating tree size

00000e0000

Estimating the size of a Backtrack tree

In the example below, doing only 2 probes:

clxz | s| NJ|| P Clclz|s| N
1] 1 1] 1
0 bc|?2 21 3 0 bc|2| c|2]| 3
l|del|2]| e|4]| 7 1| f,9,h |3 6| 9
214,512 18|15 2 0
3 0

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

racking Intro all cliques Estimating tree size Branch-and-Bound

0000008000

Estimating the size of a Backtrack tree

Theorem
For a state space tree T', let P be the path probed by the algorithm
ESTIMATEBACKTRACKSIZE.

If N = N(P) is the value returned by the algorithm, then the expected
value of N is |T)|.

Proof.
Define the following function on the nodes of T

1, if1=0
S(fwo, 21, - @) = { Ca| x S0, 21, - 213])

(s < c¢* s in the algorithm)
The algorithm computes: N(P) =) y.p S(Y).

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Estimating tree size
0000000e00

Estimating the size of a Backtrack tree

P = P(X) is a path in T" from root to leaf X, say X = [zg, z1,...,%1-1].
Call XZ‘ = [:co,xl, . ,.’L‘i].
The probability that P(X) chosen is:

1 1 1 1

Colwo)] ~[Citen)] T e (mn)] S(X)

So,
N =) prob(P(X)) x N(P(X))

YeT Xel(T):YeP(X S()

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Estimating tree size
0000000080

Estimating the size of a Backtrack tree

We claim that: Z{XE,C(T)YEP(X)} ﬁ = ﬁ

Proof of the claim:

Let Y be a non-leaf. If Z is a child of Y and Y has ¢ children, then
S(Z)=cx S(Y).

So,
Z 1 Cex 1 _ 1

{Z:Z is a child of Y} S(Z) cx S(Y) S(Y)

Iterating this equation until all Z's are leafs:

1 1
S) 2

X S(X)
{X:X is a leaf descendant of Y}

So the claim is proved!

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Estimating tree size
000000000e

Estimating the size of a Backtrack tree

Thus,

=

[
N
=
=

1
2 5m

YeT {XeL(T):YeP(X)}
1
= Y)——
YeT
= > 1=|T|
YeT

The theorem is thus proved!

Lucia Moura

Exhaustive Generation: Backtracking and Branch-and-bound

Exact Cover
00000

Exact Cover

Exact Cover

ProOBLEM: Exact Cover
INSTANCE: a collection S of subsets of R = {0,1,...,n — 1}.
QUESTION: Does S contain an exact cover of R

Rephrasing the question:
Does there exist S’ = { Sy, Sz .-+ 5z,_, } € S such that every element
of R is contained in exactly one set of §'?

Transforming into a clique problem:
S=1{50,51,...,5m-1}

Define: G(V, E) in the following way: V ={0,1,,...,m — 1}
{i,jleE < SinNS;=0

An exact cover of R is a clique of GG that covers R.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Exact Cover
[o] lelele]e]

Exact Cover

Good ordering on S for prunning:
S sorted in decreasing lexicographical ordering.

Choice set:
c, =V
C, = Ay NBy_ ,NC_y, if 1 >0,
where
Ay, = {yeV:5n8, =0} (vertices adjacent to x)

B, = {yG Vi 5: >lex Sy}

Further pruning will be used to reduce C; by removing H,'s, which will be
defined later.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Exact Cover
[e]e] lele]e]

Exact Cover

Example: (corrected from book page 121)

J Sj rank(S;) A;NBj corrected?
0 013, 104 10 Y
1 015 98 12

2 024 84 7,9 Y
3 025 82 8,9,12 Y
4 036 73 59 Y
5 124 52 0

6 126 49 11 Y
7 135 42 Y
8 146 37

9 1 32

10 25,6 19
11 3,45 14
12 3,46 13

[y
o
iy
SSS-'_,SS
=
N

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Exact Cover
[e]e]e] le]e]

Exact Cover

=
=| o1
= O

H;101234]56789 |10 | 11,12

//ﬂ\
[‘01 [1 2 [3] [4
[0.10] 27 129 [38 [3‘.91 [45] [49]
[39,12]
solution

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Exact Cover
0O000e0

Exact Cover

ExAcTCOVER (n,S)
Global X, C;, 1 = (0,1,...)
Procedure ExAcTCOVERBT(,77)
if (=0) then Uy — {0,1,...,n—1};
r« 0;
else Uy «— Uj_1 \ Say_y;
r—r,
while (r € U;) and (r <n) dor «—r+1;
if (r = n) then output ([xo, z1,...,2;-1])-
if (1 =0) then C) — {0,1,...,m —1};
else C] — Ay, N By, ,NC_y;
C, — C, N Hy;
for each (z € (;) do
T — T
EXACTCOVERBT(I +1,7);

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Exact Cover
O0000e

Exact Cover

Main

m «— |S|;
Sort S in decreasing lexico order
fori«—0tom—1do

A —{j:8nS; =0}

B —{i+1,i+2,...,m—1}
fori«—0ton—1do

H; —{j:5;n{0,1,...,i} = {i}};
H, —0;
ExacTCovERBT(0, 0);

(U; contains the uncovered elements at level i.
7 is the smallest uncovered in U;.)

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

acking Intro G h-and-Bound

Backtracking with bounding

Backtracking with bounding

When applying backtracking for an optimization problem, we use
bounding for prunning the tree.

Let us consider a maximization problem.

Let profit(X) = profit for a feasible solution X.

For a partial soluion X = [zg, z1,...,x;_1], define
P(X)=max { profit(X’): for all feasible solutions
X' =[z0, 21, T1—1,Z]y - T4 }-

A bounding function B is a real valued function defined on the nodes of
the space state tree, such that for any feasible solution X, B(X) > P(X).
B(X) is an upper boud on the profit of any feasible solution that is
descendant of X in the state space tree.

If the current best solution found has value OptP, then we can prune
nodes X with B(X) < OptP, since P(X) < B(X) < OptP, that is, no
descendant of X will improve on the current best solution.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Bounding
o]]

Backtracking with bounding

General Backtracking with Bounding

Algorithm BOUNDING(!)
Global X, OptP, OptX, C;, 1 = (0,1,...)
if ([zo,x1,...,21-1] is a feasible solution) then
P — profit([zg, z1, ..., 21-1]);
if (P > OptP) then
OptP «— P;
OptX — [xg,x1,...,21-1);
Compute Cj;
B — B([zo, 1, ..., x1-1]);
for each (x € (;) do
if B < OptP then return;
T — x;
BounpING(I + 1)

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Bounding

®00000000

Maxclique problem

Maximum Clique Problem

PROBLEM: Maximum Clique (optimization)
INSTANCE: a graph G = (V, E).
FinD: a maximum clique of G.

This problem is NP-complete.

2 3 Maximum cliques:

6 {2345},{3456}

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Bounding

O@0000000

Maxclique problem

Modification of ALLCLIQUES to find the maximum clique (no bounding).
Blue adds bounding to this algorithm.

Algorithm MAXCLIQUE(])
Global: X, Ci(l=0,...,n—1), A;, B; pre-computed.
if (I > OptSize) then
OptSize «—
OptClique «— [xo, 1, ..., 2—1];
if (I =0) then C; — V;
else C; «— Ay, , N By, , NC_y;
M «— B([x0,X1,-..,X1-1]);
for each (z € (;) do
if (M < OptSize) then return;
x; «— x; MAXCLIQUE(l + 1);
Main
OptSize — 0; MAXCLIQUE(0);
output OptClique;

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Bounding

000000000

Maxclique problem

Bounding Functions for MAXCLIQUE

Definition

Induced Subgraph

Let G = (V,E) and W C V. The subgraph induced by W, G[W], has
vertex set W and edgeset: {{u,v} € E:u,v € W}.

If we have:
partial solution: X = [z, z1,...,2;_1] with choice set Cj,
extension solution X = [xo,21,..., 21,2, ..., Zj],

Then {z;,...,z;} must be a clique in G[C;].

Let mc(l) denote the size of a maximum clique in G[C;], and let ub(l) be
an upper bound on mec(1).

Then, a general bounding function is B(X) = + ub]l].

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Bounding

000e00000

Maxclique problem

Bound based on size of subgraph

General bounding function: B(X) =1 + ubll].
Since mc(l) < |Cy|, we derive the bound:

Bi(X) =1+]C.

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

racking Intro

Bounding Branch-and-Bound

000080000
Maxclique problem

Bounds based on colouring
Definition (Vertex Colouring)
Let G = (V, E) and k a positive integer. A (vertex) k-colouring of G is a

function

CoLor: V —{0,1,...,k— 1}
such that, for all {z,y} € E, CoOLOR(z) #COLOR(y).

Example: a 3-colouring of a graph:
1

@ colour0
2 3 O colour 1
S colour 2

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Bounding

000008000

Maxclique problem

If G has a k-colouring, then the maximum clique of G has size at most k.

Lemma J

Proof. Let C be a clique. Each x € C must have a distinct colour. So,
|C| < k. This is true for any clique, in particular for the maximum clique.

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Bounding

0O00000e00

Maxclique problem

Finding the minimum colouring gives the best upper bound, but it is a hard
problem. We will use a greedy heuristic for finding a small colouring.
Define COLOURCLASS[h| = {i € V : COLOUR[i| = h}.

GREEDYCOLOUR(G = (V, F))
Global CoLOUR
k < 0; // colours used so far
fori —0ton—1do
h « 0;
while (h < k) and (A;NCoLOURCLASS[A] # 0) do
h+—h+1;
if (h==Fk) then k — k+1;
CoLOURCLASS[A] «+ 0;
CoLOURCLASS[h] «~COLOURCLASS[A] U {i};
COLOUR[i| = h;
return k;

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

Bounding

000000080

Maxclique problem

Sampling Bound:

Statically, beforehand, run GREEDYCOLOUR(G), determining k and
CoLOUR|z]| for all zx € V.

SAMPLINGBound(X = [z¢,x1,...,21-1])
Global C;, COLOUR
return [+ |[{COLOUR[z] : = € C;};

Greedy Bound:
Call GREEDYCOLOUR dynamically.

GREEDYBound(X = [z9,x1,...,21-1])
Global C;
k «—GREEDYCOLOUR(GI[C)]);
return [+ k;

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Bounding

0O0000000e

Maxclique problem

Number of nodes of the backtracking tree: random graphs with edge

density 0.5
vertices 50 100 150 200 250
edges 607 2535 5602 9925 15566
max clique size 7 9 10 11 11
bounding function:
none 86387 | 257145 | 1659016 | 7588328 | 26182672
size bound 3202 | 57225 | 350310 | 1434006 | 5008757
sampling bound 2268 | 44072 | 266246 | 1182514 | 4093535
greedy bound 430 5734 22599 91671 290788

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Branch-and-Bound
e0

Branch-and-bound

Branch-and-bound

The book presents branch-and-bound as a variation of backtracking in
which the choice set is tried in decreasing order of bounds.

However, branch-and-bound is usually a more general scheme.

It often involves keeping all active nodes in a priority queue, and processing
nodes with higher priority first (priority is given by upper bound).

Next we look at the book’s version of branch-and-bound.

Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Branch-and-Bound
o]]

Branch-and-bound

Algorithm BRANCHANDBOUND(1)
external B(), PROFIT(); global C; (I =0,1,...)
if ([zo,21,...,7;—1] is a feasible solution) then
P —ProrFI1([20, 21, ..., T1-1])
if (P > OptP) then OptP «— P;
OptX «— [xo,x1,...,21-1];
Compute C;; count « 0;
for each (z € C;) do
nextchoice[count] «— x;
nextbound|[count] — B([zo, x1,...,Ti-1,]);
count «— count + 1;
Sort nextchoice and nextbound by decreasing order of nextbound,
for i < 0 to count — 1 do
if (nextbound[i] < OptP) then return;
x] < nextchoiceil;
BRANCHANDBOUND(I + 1);

Exhaustive Generation: Backtracking and Branch-and-bound Lucia Moura

	Backtracking Intro
	Knapsack
	A General Backtracking Algorithm
	Backtracking Algorithm with Pruning

	Generating all cliques
	Generating all cliques
	Average Case Analysis of AllCliques

	Estimating tree size
	Estimating the size of a Backtrack tree

	Exact Cover
	Exact Cover

	Bounding
	Backtracking with bounding
	Maxclique problem

	Branch-and-Bound
	Branch-and-bound

