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Intro

Introduction to the course

What are :

Combinatorial Structures?

Combinatorial Algorithms?

Combinatorial Problems?
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Combinatorial Structures

Combinatorial Structures
Combinatorial structures are collections of k-subsets/k-tuple/permutations
from a parent set (finite).

Undirected Graphs:
Collections of 2-subsets (edges) of a parent set (vertices).

V = {1, 2, 3, 4} E = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}

Directed Graphs:
Collections of 2-tuples (directed edges) of a parent set (vertices).

V = {1, 2, 3, 4} E = {(2, 1), (3, 1), (1, 4), (3, 4)}

Hypergraphs or Set Systems:
Similar to graphs, but hyper-edges are sets with possibly more than
two elements.

V = {1, 2, 3, 4} E = {{1, 3}, {1, 2, 4}, {3, 4}}

Introduction to Combinatorial Algorithms Lucia Moura



Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Building blocks: finite sets, finite lists (tuples)
Finite Set
X = {1, 2, 3, 5}

I undordered structure, no repeats
{1, 2, 3, 5} = {2, 1, 5, 3} = {2, 1, 1, 5, 3}

I cardinality (size) = number of elements, |X| = 4.

A k-subset of a finite set X is a set S ⊆ X, |S| = k.
For example: {1, 3} is a 2-subset of X.

Finite List (or Tuple)
L = [1, 5, 2, 1, 3]

I ordered structure, repeats allowed
[1, 5, 2, 1, 3] 6= [1, 1, 2, 3, 5] 6= [1, 2, 3, 5]

I length = number of items, length of L is 5.

An n-tuple is a list of length n.
A permutation of an n-set X is a list of length n such that every
element of X occurs exactly once.

X = {1, 2, 3}, π1 = [2, 1, 3] π2 = [3, 1, 2]
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Combinatorial Structures

Graphs

Definition

A graph is a pair (V,E) where:
V is a finite set (of vertices).
E is a finite set of 2-subsets (called edges) of V .

G1 = (V,E)
V = {0, 1, 2, 3, 4, 5, 6, 7} E = {{0, 4}, {0, 1}, {0, 2}, {2, 3}, {2, 6},

{1, 3}, {1, 5}, {3, 7}, {4, 5}, {4, 6},
{4, 7}, {5, 6}, {5, 7}, {6, 7}}
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Combinatorial Structures

Complete graphs are graphs with all possible edges.

KK1 K3 K42
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Combinatorial Structures

Substructures of a graph: hamiltonian cycle

Definition

A hamiltonian cycle is a closed path that passes through each vertex once.

The list [0, 1, 5, 4, 6, 7, 3, 2] describes a hamiltonian cycle in the graph:
(Note that different lists may describe the same cycle.)
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Problem (Traveling Salesman Problem)

Given a weight/cost function w : E → R on the edges of G, find a
smallest weight hamiltonian cycle in G.
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Combinatorial Structures

Substructures of a graph: cliques

Definition

A clique in a graph G = (V,E) is a subset C ⊆ V such that {x, y} ∈ E,
for all x, y ∈ C with x 6= y.
(Or equivalently: the subgraph induced by C is complete).
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Some cliques: {1, 2, 3}, {2, 4, 5}, {4, 6}, {1}, ∅
Maximum cliques (largest): {1, 2, 3, 4}, {3, 4, 5, 6}, {2, 3, 4, 5}
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Combinatorial Structures

Famous problems involving cliques

Problem (Maximum clique problem)

Find a clique of maximum cardinality in a graph.

Problem (All cliques problem)

Find all cliques in a graph without repetition.
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Combinatorial Structures

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X,B) where:
X is a finite set (of points/vertices).
B is a finite set of subsets of X (blocks/hyperedges).

Graph: A graph is a set system with every block with cardinality 2.

Partition of a finite set:
A partition is a set system (X,B) such that
B1 ∩B2 = ∅ for all B1, B2 ∈ B, B1 6= B2, and ∪B∈B B = X.

Steiner triple system (a type of combinatorial designs):
B is a set of 3-subsets of X such that for each x, y ∈ X,x 6= y, there
exists eactly one block B ∈ B with {x, y} ⊆ B.
X = {0, 1, 2, 3, 4, 5, 6}
B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}
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Combinatorial Structures
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Combinatorial Structures
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Combinatorial Algorithms

Combinatorial algorithms

Combinatorial algorithms are algorithms for investigating combinatorial
structures.

Generation
Construct all combinatorial structures of a particular type.

Enumeration
Compute the number of all different structures of a particular type.

Search
Find at least one example of a combinatorial structures of a
particular type (if one exists).
Optimization problems can be seen as a type of search problem.
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Combinatorial Algorithms

Generation
Construct all combinatorial structures of a particular type.

I Generate all subsets/permutations/partitions of a set.
I Generate all cliques of a graph.
I Generate all maximum cliques of a graph.
I Generate all Steiner triple systems of a finite set.

Enumeration
Compute the number of all different structures of a particular type.

I Compute the number of subsets/permutat./partitions of a set.
I Compute the number of cliques of a graph.
I Compute the number of maximum cliques of a graph.
I Compute the number of Steiner triple systems of a finite set.
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Combinatorial Algorithms

Search
Find at least one example of a combinatorial structures of a
particular type (if one exists).
Optimization problems can be seen as a type of search problem.

I Find a Steiner triple system on a finite set. (feasibility)
I Find a maximum clique of a graph. (optimization)
I Find a hamiltonian cycle in a graph. (feasibility)
I Find a smallest weight hamiltonian cycle in a graph. (optimization)
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Combinatorial Algorithms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard or their
corresponding “decision problems” are NP-complete.

P = class of decision problems that can be solved in polynomial
time. (e.g. Shortest path in a graph is in P)
NP = class of decision problems that can be verified in polynomial
time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, P ⊆ NP.
NP-complete are problems in NP that are at least “as hard as” any
other problem in NP.

An important unsolved complexity question is the P=NP question.
One million dollars offered for its solution!

It is believed that P6=NP which, if true, would mean that there exist
no polynomial-time algorithm to solve an NP-hard problem.

There are several approaches to deal with NP-hard problems.
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Combinatorial Algorithms

Approaches for dealing with NP-hard problems

Exhaustive Search
I exponential-time algorithms.
I solves the problem exactly

(Backtracking and Branch-and-Bound)

Heuristic Search
I algorithms that explore a search space to find a feasible solution that is

hopefully “close to” optimal, within a time limit
I approximates a solution to the problem

(Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algor’s)

Approximation Algorithms
I polynomial time algorithm
I we have a provable guarantee that the solution found is “close to”

optimal.

(not covered in this course)
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Combinatorial Algorithms

Types of Search Problems
1) Decision Problem: 2) Search Problem
A yes/no problem Find the guy.
Problem 1: Clique (decision) Problem 2: Clique (search)
Instance: graph G = (V,E), Instance: graph G = (V,E),
target size k target size k
Question: Find:
Does there exist a clique C a clique C of G
of G with |C| = k? with |C| = k, if one exists.

3) Optimal Value: 4) Optimization:
Find the largest target size. Find an optimal guy.
Problem 3: Clique (optimal value) Problem 4: Clique (optimization)
Instance: graph G = (V,E), Instance: graph G = (V,E),
Find: Find:
the maximum value of |C|, a clique C such that
where C is a clique |C| is maximize (max. clique)
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Course Outline

Topics for the Course
Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

1 Generating elementary combinatorial objects [text Chap2]
Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.

2 Exhaustive Generation and Exhaustive Search [text Chap4]
Backtracking algorithms (exhaustive generation, exhaustive search,
optimization)
Branch-and-bound (exhaustive search, optimization)

3 Heuristic Search [text Chap 5]
Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

4 Computing Isomorphism and Isomorph-free Exhaustive
Generation [text Chap 7 + Kaski&Ostergard’s book Chap 3,4]
Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.
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Course Outline

Course evaluation

45% Assignments
3 assignments, 15% each
covering: theory, algorithms, implementation

55% Project: individual, chosen by student
5% Project proposal (up to 1 page)
40% Project paper (10-15 page)
10% Project presentation (15-20 minute talk)
research (reading papers related to course topics),
original work (involving one or more of: modelling, application,
algorithm design, implementation, experimentation, analysis)
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