
Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Introduction to Combinatorial Algorithms

Lucia Moura

Fall 2010

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Intro

Introduction to the course

What are :

Combinatorial Structures?

Combinatorial Algorithms?

Combinatorial Problems?

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Combinatorial Structures
Combinatorial structures are collections of k-subsets/k-tuple/permutations
from a parent set (finite).

Undirected Graphs:
Collections of 2-subsets (edges) of a parent set (vertices).

V = {1, 2, 3, 4} E = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}

Directed Graphs:
Collections of 2-tuples (directed edges) of a parent set (vertices).

V = {1, 2, 3, 4} E = {(2, 1), (3, 1), (1, 4), (3, 4)}

Hypergraphs or Set Systems:
Similar to graphs, but hyper-edges are sets with possibly more than
two elements.

V = {1, 2, 3, 4} E = {{1, 3}, {1, 2, 4}, {3, 4}}

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Building blocks: finite sets, finite lists (tuples)
Finite Set
X = {1, 2, 3, 5}

I undordered structure, no repeats
{1, 2, 3, 5} = {2, 1, 5, 3} = {2, 1, 1, 5, 3}

I cardinality (size) = number of elements, |X| = 4.

A k-subset of a finite set X is a set S ⊆ X, |S| = k.
For example: {1, 3} is a 2-subset of X.

Finite List (or Tuple)
L = [1, 5, 2, 1, 3]

I ordered structure, repeats allowed
[1, 5, 2, 1, 3] 6= [1, 1, 2, 3, 5] 6= [1, 2, 3, 5]

I length = number of items, length of L is 5.

An n-tuple is a list of length n.
A permutation of an n-set X is a list of length n such that every
element of X occurs exactly once.

X = {1, 2, 3}, π1 = [2, 1, 3] π2 = [3, 1, 2]
Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Graphs

Definition

A graph is a pair (V,E) where:
V is a finite set (of vertices).
E is a finite set of 2-subsets (called edges) of V .

G1 = (V,E)
V = {0, 1, 2, 3, 4, 5, 6, 7} E = {{0, 4}, {0, 1}, {0, 2}, {2, 3}, {2, 6},

{1, 3}, {1, 5}, {3, 7}, {4, 5}, {4, 6},
{4, 7}, {5, 6}, {5, 7}, {6, 7}}

6

0

1

2

3

4

5 7

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Complete graphs are graphs with all possible edges.

KK1 K3 K42

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Substructures of a graph: hamiltonian cycle

Definition

A hamiltonian cycle is a closed path that passes through each vertex once.

The list [0, 1, 5, 4, 6, 7, 3, 2] describes a hamiltonian cycle in the graph:
(Note that different lists may describe the same cycle.)

6

0

1

2

3

4

5 7

Problem (Traveling Salesman Problem)

Given a weight/cost function w : E → R on the edges of G, find a
smallest weight hamiltonian cycle in G.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Substructures of a graph: cliques

Definition

A clique in a graph G = (V,E) is a subset C ⊆ V such that {x, y} ∈ E,
for all x, y ∈ C with x 6= y.
(Or equivalently: the subgraph induced by C is complete).

43

6

5

21

Some cliques: {1, 2, 3}, {2, 4, 5}, {4, 6}, {1}, ∅
Maximum cliques (largest): {1, 2, 3, 4}, {3, 4, 5, 6}, {2, 3, 4, 5}

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Famous problems involving cliques

Problem (Maximum clique problem)

Find a clique of maximum cardinality in a graph.

Problem (All cliques problem)

Find all cliques in a graph without repetition.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X,B) where:
X is a finite set (of points/vertices).
B is a finite set of subsets of X (blocks/hyperedges).

Graph: A graph is a set system with every block with cardinality 2.

Partition of a finite set:
A partition is a set system (X,B) such that
B1 ∩B2 = ∅ for all B1, B2 ∈ B, B1 6= B2, and ∪B∈B B = X.

Steiner triple system (a type of combinatorial designs):
B is a set of 3-subsets of X such that for each x, y ∈ X,x 6= y, there
exists eactly one block B ∈ B with {x, y} ⊆ B.
X = {0, 1, 2, 3, 4, 5, 6}
B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X,B) where:
X is a finite set (of points/vertices).
B is a finite set of subsets of X (blocks/hyperedges).

Graph: A graph is a set system with every block with cardinality 2.

Partition of a finite set:
A partition is a set system (X,B) such that
B1 ∩B2 = ∅ for all B1, B2 ∈ B, B1 6= B2, and ∪B∈B B = X.

Steiner triple system (a type of combinatorial designs):
B is a set of 3-subsets of X such that for each x, y ∈ X,x 6= y, there
exists eactly one block B ∈ B with {x, y} ⊆ B.
X = {0, 1, 2, 3, 4, 5, 6}
B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X,B) where:
X is a finite set (of points/vertices).
B is a finite set of subsets of X (blocks/hyperedges).

Graph: A graph is a set system with every block with cardinality 2.

Partition of a finite set:
A partition is a set system (X,B) such that
B1 ∩B2 = ∅ for all B1, B2 ∈ B, B1 6= B2, and ∪B∈B B = X.

Steiner triple system (a type of combinatorial designs):
B is a set of 3-subsets of X such that for each x, y ∈ X,x 6= y, there
exists eactly one block B ∈ B with {x, y} ⊆ B.
X = {0, 1, 2, 3, 4, 5, 6}
B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Structures

Set systems/Hypergraphs

Definition

A set system (or hypergraph) is a pair (X,B) where:
X is a finite set (of points/vertices).
B is a finite set of subsets of X (blocks/hyperedges).

Graph: A graph is a set system with every block with cardinality 2.

Partition of a finite set:
A partition is a set system (X,B) such that
B1 ∩B2 = ∅ for all B1, B2 ∈ B, B1 6= B2, and ∪B∈B B = X.

Steiner triple system (a type of combinatorial designs):
B is a set of 3-subsets of X such that for each x, y ∈ X,x 6= y, there
exists eactly one block B ∈ B with {x, y} ⊆ B.
X = {0, 1, 2, 3, 4, 5, 6}
B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Combinatorial algorithms

Combinatorial algorithms are algorithms for investigating combinatorial
structures.

Generation
Construct all combinatorial structures of a particular type.

Enumeration
Compute the number of all different structures of a particular type.

Search
Find at least one example of a combinatorial structures of a
particular type (if one exists).
Optimization problems can be seen as a type of search problem.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Generation
Construct all combinatorial structures of a particular type.

I Generate all subsets/permutations/partitions of a set.
I Generate all cliques of a graph.
I Generate all maximum cliques of a graph.
I Generate all Steiner triple systems of a finite set.

Enumeration
Compute the number of all different structures of a particular type.

I Compute the number of subsets/permutat./partitions of a set.
I Compute the number of cliques of a graph.
I Compute the number of maximum cliques of a graph.
I Compute the number of Steiner triple systems of a finite set.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Generation
Construct all combinatorial structures of a particular type.

I Generate all subsets/permutations/partitions of a set.
I Generate all cliques of a graph.
I Generate all maximum cliques of a graph.
I Generate all Steiner triple systems of a finite set.

Enumeration
Compute the number of all different structures of a particular type.

I Compute the number of subsets/permutat./partitions of a set.
I Compute the number of cliques of a graph.
I Compute the number of maximum cliques of a graph.
I Compute the number of Steiner triple systems of a finite set.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Search
Find at least one example of a combinatorial structures of a
particular type (if one exists).
Optimization problems can be seen as a type of search problem.

I Find a Steiner triple system on a finite set. (feasibility)
I Find a maximum clique of a graph. (optimization)
I Find a hamiltonian cycle in a graph. (feasibility)
I Find a smallest weight hamiltonian cycle in a graph. (optimization)

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard or their
corresponding “decision problems” are NP-complete.

P = class of decision problems that can be solved in polynomial
time. (e.g. Shortest path in a graph is in P)
NP = class of decision problems that can be verified in polynomial
time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, P ⊆ NP.
NP-complete are problems in NP that are at least “as hard as” any
other problem in NP.

An important unsolved complexity question is the P=NP question.
One million dollars offered for its solution!

It is believed that P6=NP which, if true, would mean that there exist
no polynomial-time algorithm to solve an NP-hard problem.

There are several approaches to deal with NP-hard problems.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard or their
corresponding “decision problems” are NP-complete.

P = class of decision problems that can be solved in polynomial
time. (e.g. Shortest path in a graph is in P)
NP = class of decision problems that can be verified in polynomial
time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, P ⊆ NP.
NP-complete are problems in NP that are at least “as hard as” any
other problem in NP.

An important unsolved complexity question is the P=NP question.
One million dollars offered for its solution!

It is believed that P6=NP which, if true, would mean that there exist
no polynomial-time algorithm to solve an NP-hard problem.

There are several approaches to deal with NP-hard problems.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard or their
corresponding “decision problems” are NP-complete.

P = class of decision problems that can be solved in polynomial
time. (e.g. Shortest path in a graph is in P)
NP = class of decision problems that can be verified in polynomial
time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, P ⊆ NP.
NP-complete are problems in NP that are at least “as hard as” any
other problem in NP.

An important unsolved complexity question is the P=NP question.
One million dollars offered for its solution!

It is believed that P6=NP which, if true, would mean that there exist
no polynomial-time algorithm to solve an NP-hard problem.

There are several approaches to deal with NP-hard problems.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard or their
corresponding “decision problems” are NP-complete.

P = class of decision problems that can be solved in polynomial
time. (e.g. Shortest path in a graph is in P)
NP = class of decision problems that can be verified in polynomial
time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, P ⊆ NP.
NP-complete are problems in NP that are at least “as hard as” any
other problem in NP.

An important unsolved complexity question is the P=NP question.
One million dollars offered for its solution!

It is believed that P6=NP which, if true, would mean that there exist
no polynomial-time algorithm to solve an NP-hard problem.

There are several approaches to deal with NP-hard problems.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard or their
corresponding “decision problems” are NP-complete.

P = class of decision problems that can be solved in polynomial
time. (e.g. Shortest path in a graph is in P)
NP = class of decision problems that can be verified in polynomial
time. (e.g. Hamiltonian path in a graph is in NP)
Therefore, P ⊆ NP.
NP-complete are problems in NP that are at least “as hard as” any
other problem in NP.

An important unsolved complexity question is the P=NP question.
One million dollars offered for its solution!

It is believed that P6=NP which, if true, would mean that there exist
no polynomial-time algorithm to solve an NP-hard problem.

There are several approaches to deal with NP-hard problems.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Approaches for dealing with NP-hard problems

Exhaustive Search
I exponential-time algorithms.
I solves the problem exactly

(Backtracking and Branch-and-Bound)

Heuristic Search
I algorithms that explore a search space to find a feasible solution that is

hopefully “close to” optimal, within a time limit
I approximates a solution to the problem

(Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algor’s)

Approximation Algorithms
I polynomial time algorithm
I we have a provable guarantee that the solution found is “close to”

optimal.

(not covered in this course)

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Combinatorial Algorithms

Types of Search Problems
1) Decision Problem: 2) Search Problem
A yes/no problem Find the guy.
Problem 1: Clique (decision) Problem 2: Clique (search)
Instance: graph G = (V,E), Instance: graph G = (V,E),
target size k target size k
Question: Find:
Does there exist a clique C a clique C of G
of G with |C| = k? with |C| = k, if one exists.

3) Optimal Value: 4) Optimization:
Find the largest target size. Find an optimal guy.
Problem 3: Clique (optimal value) Problem 4: Clique (optimization)
Instance: graph G = (V,E), Instance: graph G = (V,E),
Find: Find:
the maximum value of |C|, a clique C such that
where C is a clique |C| is maximize (max. clique)

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Course Outline

Topics for the Course
Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

1 Generating elementary combinatorial objects [text Chap2]
Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.

2 Exhaustive Generation and Exhaustive Search [text Chap4]
Backtracking algorithms (exhaustive generation, exhaustive search,
optimization)
Branch-and-bound (exhaustive search, optimization)

3 Heuristic Search [text Chap 5]
Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

4 Computing Isomorphism and Isomorph-free Exhaustive
Generation [text Chap 7 + Kaski&Ostergard’s book Chap 3,4]
Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Course Outline

Topics for the Course
Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

1 Generating elementary combinatorial objects [text Chap2]
Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.

2 Exhaustive Generation and Exhaustive Search [text Chap4]
Backtracking algorithms (exhaustive generation, exhaustive search,
optimization)
Branch-and-bound (exhaustive search, optimization)

3 Heuristic Search [text Chap 5]
Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

4 Computing Isomorphism and Isomorph-free Exhaustive
Generation [text Chap 7 + Kaski&Ostergard’s book Chap 3,4]
Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Course Outline

Topics for the Course
Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

1 Generating elementary combinatorial objects [text Chap2]
Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.

2 Exhaustive Generation and Exhaustive Search [text Chap4]
Backtracking algorithms (exhaustive generation, exhaustive search,
optimization)
Branch-and-bound (exhaustive search, optimization)

3 Heuristic Search [text Chap 5]
Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

4 Computing Isomorphism and Isomorph-free Exhaustive
Generation [text Chap 7 + Kaski&Ostergard’s book Chap 3,4]
Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Course Outline

Topics for the Course
Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

1 Generating elementary combinatorial objects [text Chap2]
Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.

2 Exhaustive Generation and Exhaustive Search [text Chap4]
Backtracking algorithms (exhaustive generation, exhaustive search,
optimization)
Branch-and-bound (exhaustive search, optimization)

3 Heuristic Search [text Chap 5]
Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

4 Computing Isomorphism and Isomorph-free Exhaustive
Generation [text Chap 7 + Kaski&Ostergard’s book Chap 3,4]
Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Course Outline

Topics for the Course
Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

1 Generating elementary combinatorial objects [text Chap2]
Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.

2 Exhaustive Generation and Exhaustive Search [text Chap4]
Backtracking algorithms (exhaustive generation, exhaustive search,
optimization)
Branch-and-bound (exhaustive search, optimization)

3 Heuristic Search [text Chap 5]
Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

4 Computing Isomorphism and Isomorph-free Exhaustive
Generation [text Chap 7 + Kaski&Ostergard’s book Chap 3,4]
Graph isomorphism, isomorphism of other structures.
Computing invariants. Computing certificates.
Isomorph-free exhaustive generation.

Introduction to Combinatorial Algorithms Lucia Moura

Introduction Combinatorial Structures Combinatorial Algorithms Course Outline

Course Outline

Course evaluation

45% Assignments
3 assignments, 15% each
covering: theory, algorithms, implementation

55% Project: individual, chosen by student
5% Project proposal (up to 1 page)
40% Project paper (10-15 page)
10% Project presentation (15-20 minute talk)
research (reading papers related to course topics),
original work (involving one or more of: modelling, application,
algorithm design, implementation, experimentation, analysis)

Introduction to Combinatorial Algorithms Lucia Moura

	Introduction
	Intro

	Combinatorial Structures
	Combinatorial Structures

	Combinatorial Algorithms
	Combinatorial Algorithms

	Course Outline
	Course Outline

