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Introduction

Isomorph-free exhaustive generation
We look at techniques for exhaustive generating without isomorphs all
objects of certain type.
These techniques have as starting point a backtracking search as we have
studied, where we incorporate isomorph rejection techniques.
Serves two purposes:

obtaining desirable isomorph-free list;
eliminate excessive redundant work.

The main references for these notes are the following book chapters:

P. Kaski and P. Österg̊ard, Classification Algorithms for Codes and
Designs, Springer, 2006.
Chapter 4: Isomorph-free Exhaustive Generation

L. Moura and I. Stojmenovic, Backtracking and isomorph-free
generation of polyhexes, in Handbook of Applied Algorithms: Solving
Scientific, Engineering, and Practical Problems, A. Nayak and I. Stojmenovic
(eds), 64 pages, John Wiley & Sons, New York, 2008.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Introduction

Summary of Isomorph-free Exhaustive Generation
Techniques using the Search Tree Model

1 Generate all (or way too many) but record non-isomorphs
näıve method: keep only one copy of isomorphic final objects (if only
leaves are final, we generate all)

1 Isomorph rejection via recorded final objects.
2 Isomorph rejection via canonicity test of final objects.

2 Generate via an isomorph-free search tree
prune isomorphic nodes; above is identical to this if all nodes are final

1 Isomorph rejection via recorded objects, where we record all
intermediate objects found so far.

2 Orderly generation: Isomorph rejection via canonicity test at each
node/intermediate object.

3 Canonical augmentation: Isomorph rejection via defining canonical
extensions of objects, rather than canonical objects.

(The so called “method of homomorphisms” (Laue & others) uses a more

algebraic approach, not the search-tree model, and it is not covered here.)
Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Back to Backtracking... (a few advices by Kaski and Österg̊ard)

Incorporate what you know into the algorithm. Use all
combinatorial info available; e.g. fix all that can be fixed.
Minimize the number of alternatives in a choice set. Branch on
a variable that minimizes the size of the choice set (e.g. Sudoku:
choose to branch on cells that have the least possible number of
choices); special case: constraint propagation or forcing.
Abort early if possible. Pruning via bounding; pruning via checking
implied infeasibility (constraints on partial objects).
Minimize the amount of work at each recursive call. The
number of nodes is huge, so reduce work at each node;
carefully design data structures for the following operations: update
d.s. after a choice; rewind d.s. to reflect backtrack; when search
returns from a recursive call, need to quickly determine next choice.
Keep it simple. Small loss of efficient is ok for a gain in simplicity;
complexity leads to errors.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Definitions and notation

Some notation used in the next Algorithms following Kaski & Österg̊ard:

The domain of a search is a finite set Ω that contains all objects
considered in the search.
e.g. The set of all 0-1 matrices of size 4× 4 with entries on 0 or more
rows set to value “?”.

A search tree is a rooted tree whose nodes are objects in the domain
Ω. Two nodes are joined by an edge if and only if they are related by
one search step. The root node is the starting point of the search.

For a node X in a search tree we denote by C(X) the set of child
nodes of X. For a non-root node X we denote by P (X) the parent
node of X.

Note that a search tree is normally defined only implicitly through the
domain Ω, the root node R ∈ Ω and the rule X → C(X).

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Four by four 0-1 matrices with exactly two ones in each row and in each column:

no isomorph rejection.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Definitions and notation, continued

Let G be a group that acts on the search domain Ω. Associate with
every X,Y ∈ Ω the set

Iso(X,Y ) = {g ∈ G : gX = Y }.

Each element of Iso(X,Y ) is an isomorphism of X onto Y . The
objects X and Y are isomorphic if Iso(X,Y ) is non-empty, and we
write X ∼ Y (or X ∼G Y , to explicitly specify G).

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Introduction

Four by four 0-1 matrices with exactly two ones in each row and in each column:

isomorph rejection

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Recorded Objects

Recorded objects method: only recording final objects

procedure Record-Final-Traverse(X:node)
if complete(X) then (if X is a final object)

if 6 ∃Y ∈ R such that X ∼ Y then
R ← R∪ {X}
output X (optional, since already recorded in R)

for all Z ∈ C(X) do
Record-Traverse(Z)

Problems:

it is näıvely possibly generating the full search tree
(lots of isomorphic intermediate nodes).

A lot of memory required to record all (non-iso) objects.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Recorded Objects

Recorded objects method: recording all intermediate
objects

procedure Record-Traverse(X:node)
if 6 ∃Y ∈ R such that X ∼ Y then
R ← R∪ {X} (records and checks intermediate objects)
if complete(X) then output X if X is a final object, output it.
for all Z ∈ C(X) do

Record-Traverse(Z)

Solved the first problem: tree has no isomorphic nodes now!

Second problem is worse: a lot more memory required to record all
(non-iso) partial objects.

In any case, if employing this approach, we need a lot of memory and
efficient data structure to search for objects - e.g. hashing table that
stores certificate for found objects.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Orderly generation and canonical objects

Canonical objects and canonicity testing

Select a canonical representative from each isomorphism class of nodes
in the search tree.
Denote by ρ the canonical representative map for the action of G on the
search domain Ω, that we use to decide weather a node is in canonical
form.
The use of ρ eliminates the need to check against previously generated
objects. Instead, we only check whether the object of interest is in
canonical form, X = ρ(X), and thus we accept it, or is not canonical,
X 6= ρ(X), and thus we reject it.
Similarly to checking against recorded objects, we can do canonicity test
only on “final nodes” (nodes corresponding to final objects) or at each
node.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura



Introduction Recorded Objects Orderly generation Canonical augmentation

Orderly generation and canonical objects

Canonical object method: canonicity testing for final
objects

procedure Canrep-Final-Traverse(X:node)
if Complete(X) then if X = ρ(X) then output X
for all Y ∈ C(X) do

Canrep-Traverse(Y )

Like in Record-Final-Traverse, it is näıvely possibly generating
the full search tree (lots of isomorphic intermediate nodes).

Solved the problem of memory and search for recorded isomorphs
since no need to record previous objects.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Orderly generation and canonical objects

Canonical object method: canonicity testing at each node
= Orderly Generation

procedure Canrep-Traverse(X:node)
if X = ρ(X) then

Report X: if Complete(X) then output X
for all Y ∈ C(X) do

Canrep-Traverse(Y )

Theorem

Canrep-Traverse reports exactly one node from each isomorphism
class of nodes, under the following assumptions:

for every node X, its canonical form ρ(X) is also a node; and

for every non-root node X in canonical form, it holds that the parent
node p(X) is also in canonical form.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Orderly generation and canonical objects

Canrep-Traverse is called orderly generation due to the typical
canonical representative:
an isomorphic object that is extremal in its isomorphism class (largest
lexicographically or smallest lexicographically).

The search tree is build so that the most significant parts are completed
first.

Orderly generation was introduced independently by Faradzev (1977) and
Read (1978).

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Orderly generation and canonical objects

Orderly generation example (lexicographically larger columns come first)

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Canonical augmentation method

Algorithm by McKay (1998).

Objects are required to be generated in a canonical way (instead of
being canonical).

We follow Kaski and Österg̊ard’s presentation of two variations
introduced by McKay:

I weak canonical augmentation (simplified framework); and
I canonical augmentation.

There are situations in which the simplified framework has
advantages.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Isomorphic objects may be generated by non-isomorphic paths...

Consider X and Y with X ∼ Y , and their sequence of ancestors:
X p(X) p(p(X)) p(p(p(X))) p(p(p(p(p(X))))

1100 1100 1100 1100 ????
1010 1010 1010 ???? ????
0101 0101 ???? ???? ????
0011 ???? ???? ???? ????

Y p(Y ) p(p(Y )) p(p(p(Y ))) p(p(p(p(p(Y ))))
1100 1100 1100 1100 ????
0011 0011 0011 ???? ????
0110 0110 ???? ???? ????
1001 ???? ???? ???? ????

ISO ISO NON-ISO! ISO ISO
We need a method to specify a canonical way to generate each nonroot
node of the search tree.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Defining a weak canonical parent for each nonroot node
Let Ωnr be the union of all orbits of G on Ω that contains a nonroot node
of the search tree.

Associate with each X ∈ Ωnr a weak canonical parent w(X) with the
following property:
for all X,Y ∈ Ωnr, X ∼ Y implies w(X) ∼ w(Y ).

We define the canonical way to generate X as the (finite) sequence:

X,w(X), w(w(X)), w(w(w(X))), . . .

In practice, this is tested one position at a time:
We say that X is generated by weak canonical augmentation if

p(X) ∼ w(X)

.
Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

What weak canonical augmentation gives us?

Let X,Y be isomorphic nodes, generated by canonical augmentation.
Then, we get by the definition of canonical augmentation that
w(X) ∼ w(Y ).

Therefore,
p(X) ∼ w(X) ∼ w(Y ) ∼ p(Y ).

That is, isomorphic nodes must have isomorphic parents.

If isomorphism rejection is applied on parent nodes, then isomorphic
nodes must be siblings!!!

Conclusion:
It is sufficient to apply isomorph rejection on siblings !!!

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation
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Canonical augmentation
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Canonical augmentation

Obtaining isomorph-free exhaustive generation with weak
canonical augmentation

Isomorph-free exhaustive generation relies on the following assumptions:

AW1 Isomorphic nodes have isomorphic children:
for all nodes X,Y , if X ∼ Y , then for every Z ∈ C(X) there exists a
W ∈ C(Y ) with Z ∼W .

AW2 For every nonroot node X, there exists a nonroot node Y such that
X ∼ Y and p(Y ) ∼ w(Y ).

These assumptions imply that, for every node X of the original tree
(before pruning with isomorph rejection), the canonical parent sequence of
X is realized on the level of isomorphism classes by a sequence of nodes
occurring in the search tree.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Generation by weak canonical augmentation

procedure Weak-Canaug-Traverse(X: node)
if Complete(X) then output X
Z ← ∅
for all Z ∈ C(X) do

if p(Z) ∼ w(Z) then
Z ← Z ∪ {Z}

remove isomorphs from Z
for all Z ∈ Z do

Weak-Canaug-Traverse(Z)

Theorem

When implemented on a search tree satisfying assumptions AW1 and
AW2, Weak-Canaug-Traverse reports exactly one node from every
isomorphism class of nodes.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Defining (strong) canonical augmentation in place of weak
In addition to the requirement that p(X) ∼ w(X), we require the
augmentation is done in a specific “way”.
The ordered pair (X, p(X)) contains information on how X was generated
by augmenting p(X).
An augmentation is defined to be an ordered pair (X,Z) ∈ Ω× Ω.
Two augmentations are isomorphic, (X,Z) ∼ (Y,W ), if and only if there
exists a g ∈ G with gX = Y and gZ = W .

Example:
The following augmentations are isomorphic; an isomorphism is
(h, k) = ((12), (1234)), corresponding to row and column permutations,

respectively:

1100 1100 0101 0101
( 1010 , 1010 ) , ( 0110 , 0110 )

0101 ???? 1010 ????
???? ???? ???? ????

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Defining a canonical parent for each nonroot node
Associate with each X ∈ Ωnr a canonical parent m(X) ∈ Ω satisfying the
following property:
for all X,Y ∈ Ωnr, X ∼ Y implies (X,m(X)) ∼ (Y,m(Y )).

We define the canonical way to generate X as the (finite) sequence:

X,m(X),m(m(X)),m(m(m(X))), . . .

In practice, this is tested one position at a time:
We say that X is generated by canonical augmentation if

(X, p(X)) ∼ (X,m(X)).

Note that canonical augmentation implies weak augmentation, but the
converse is not true.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

What canonical augmentation gives us?
Let Z,W be isomorphic nodes, generated by canonical augmentation.
Then, we get by the definition of canonical augmentation that
(Z,m(Z)) ∼ (Z, p(Z)) and (W,p(W )) ∼ (W,m(W )).

Therefore, (Z, p(Z)) ∼ (Z,m(X)) ∼ (W,m(W )) ∼ (W,p(W )).
In particular, p(Z) ∼ p(W ).
Again, assuming that isomorphism rejection is applied on parent
nodes, then isomorphic nodes must be siblings, i.e. p(Z) = p(W ).
Moreover:
Let P = p(Z) = p(W ). The fact that (Z,P ) ∼ (W,P ) implies
that there exists an a ∈ Aut(P ) with aZ = W .
Conclusion: Any two isomorphic nodes Z, W must be related by an
automorphism of their common parent node P !!!
We can do much more efficient isomorph rejection among siblings.
Example: if Aut(P ) is trivial (identity only), then we don’t need to
do isomorphism rejection among siblings.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Introduction Recorded Objects Orderly generation Canonical augmentation

Canonical augmentation

Obtaining isomorph-free exhaustive generation with
canonical augmentation

Isomorph-free exhaustive generation relies on the following assumptions:

AA1 Isomorphic nodes have isomorphic children such that an isomorphism
applies also to parent nodes:
for all nodes X,Y , if X ∼ Y , then for every Z ∈ C(X) there exists a
W ∈ C(Y ) with (Z,X) ∼ (W,Y ).

AA2 For every nonroot node X, there exists a nonroot node Y such that
X ∼ Y and (Y, p(Y )) ∼ (Y,m(Y )).

These assumptions are strengthenings of AW1 and AW2.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Canonical augmentation

Generation by canonical augmentation

procedure Canaug-Traverse(X: node)
if Complete(X) then output X
for all Z ∈ {C(X) ∩ {aZ : a ∈ Aut(X)} : Z ∈ C(X)} do

Select any Z ∈ Z
if (Z, p(Z)) ∼ (Z,m(Z)) then

Canaug-Traverse(Z)

Theorem

When implemented on a search tree satisfying assumptions AA1 and AA2,
Canaug-Traverse reports exactly one node from every isomorphism
class of nodes.

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Application to generation of hexagonal systems

Hexagonal systems (HSs) and computational chemistry
An h-mino, polyomino or polygonal system consists of h copies of a
regular polygon that are connected (two cells are connected by
sharing a common edge).
Polyhexes (or hexagonal systems) correspond to bezonoid
hydrocarbons, a class of molecules in organic chemistry composed of
carbon and hydrogen atoms.
Here, we call hexagonal systems (HSs) the geometrically planar,
simply connected (=no holes) polyhexes.

(a) (b)Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Application to generation of hexagonal systems

Hexagonal systems with h = 11 and h = 4 hexagons

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Application to generation of hexagonal systems

Canonical augmentation for generating hexagonal systems
We will look at two algorithms for the problem of enumerating hexagonal
systems, where canonical augmentation led to a breakthrough:

BEC algorithm: Weak canonical augmentation using Boundary Edge
Code representation of hexagonal systems.
G. Caporossi and P. Hansen. Enumeration of polyhex
hydrocarbons to h = 21. J. Chem. Inf. Comput. Sci. 38 (1998),
610–619.

LID Algorithm: Canonical augmentation using Labeled Inner Dual
graph representation of fusenes (a class of objects that includes
hexagonal systems).
G. Brinkmann, G. Caporossi and P. Hansen. A constructive
enumeration of fusenes and benzenoids. J. Algorithms 45 (2002),
155–166.

See also survey by Moura and Stojmenovic (2007).
Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Application to generation of hexagonal systems

Status of isomorph-free Generation and Enumeration of hexagonal systems

h N(h) Alg GE year
1 1 - -
2 1 - -
3 3 - -
4 7 - -
5 22 - -
6 81 - -
7 331 - -
8 1453 - -
9 6505 - - 1965

10 30086 BC G 1983
11 141229 BC G 1986
12 669584 BC G 1988
13 3198256 DAST G 1989
14 15367577 DAST G 1990
15 74207910 DAST G 1990
16 359863778 DAST G 1990
17 1751594643 CAGE E 1995
18 8553649747 BEC G
19 41892642772 BEC G
20 205714411986 BEC G
21 1012565172403 BEC G 1998
22 4994807695197 LID G
23 24687124900540 LID G
24 122238208783203 LID G 2002

h N(h) Alg GE year
25 606269126076178 FLM E
26 3011552839015720 FLM E
27 14980723113884739 FLM E
28 74618806326026588 FLM E
29 372132473810066270 FLM E
30 1857997219686165624 FLM E
31 9286641168851598974 FLM E
32 46463218416521777176 FLM E
33 232686119925419595108 FLM E
34 1166321030843201656301 FLM E
35 5851000265625801806530 FLM E 2002

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Application to generation of hexagonal systems

BEC algorithm: BEC code

The BEC algorithm is based on the Boundary Edge Code (BEC code):
Select an arbitrary external vertex of degree 3, and follow the boundary of
the HS recording the number of boundary edges of each hexagon it
traverses. Then, apply circular shifts and/or a reversal, in order to obtain a
lexicographically maximum code.
Note that each hexagon can appear 1, 2 or 3 times as digits in the BEC
code.

15115315
51153151
11531515
15315151
53151511
31515115
15151153
51511531

51351151
15135115
51513511
15151351
11515135
51151513
35115151
13511515

a
b c

d e

fg

a
b
c
d
e
f
g
h

−+

−

+

h

Isomorph-free exhaustive generation [Ch.4, Kaski & Österg̊ard] Lucia Moura
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Application to generation of hexagonal systems

Definition of canonical parent w(X)
Rule for obtaining w(X): the parent of an HS is the one obtained by
removing its first hexagon. (This may disconnect the HS, but not for h ≤ 28)

Example: 5351 below has 6 kids, but it is the canonical parent of only 3.

55

5351 5252 444

533511 531531 515151 522522 532521 52441 4343

6
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Describing Augmentation

There are three ways in which an hexagon can be added to an HS:

1 A digit x ≥ 3 in the BEC code corresponding to edges of an hexagon
such that one of the edges belong only to this hexagon can be
replaced by a5b where a+ b+ 1 = x and a ≥ 1 and b ≥ 1.

2 A sequence xy in the BEC code with x ≥ 2 and y ≥ 2 can be
replaced by (x− 1)4(y − 1).

3 A sequence x1y with x ≥ 2 and y ≥ 2 in the BEC code can be
replaced by (x− 1)3(y − 1).

In each of the above cases, we must make sure that the addition of the
hexagon does not produce holes.
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Three types of augmentation and check for forming holes
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added hexagon

no hexagon in this position
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BEC Algorithm: Generating valid kids

Procedure GenerateKids generates, from an HS P with j hexagons, its
children in the search with j + 1 hexagons as follows:

1 Addition of hexagons: Any attempt to add a hexagon in the steps
below is preceded by a test that guarantees that no holes are created.

I Add a 5 in every possible way to the BEC code of P .
I If the BEC code of P does not begin with a 5 then add a 4 in every

possible way to the BEC code of P ; otherwise, only consider the
addition of a 4 adjacent to the initial 5.

I If the BEC code of P has no 5 and at most two 4’s, consider the
addition of a 3.

2 Parenthood validation:
For each HS generated in the previous step, verify that its BEC code
can begin on the new hexagon. Reject the ones that cannot.
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BEC algorithm by weak canonical augmentation

procedure BECGeneration(P, Pcode, j)
if (j = h) then output P
else S=GenerateKids(P, Pcode)

Remove isomorph copies from S
for all (P ′, P code′) ∈ S do

BECGeneration(P ′, P code′, j + 1)
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LID Algorithm and Labeled Inner Duals of fusenes
Fusenes are generalizations of HSs that allow for irregular hexagons.
This algorithm by Brinkmann, Caporossi and Hansen (2002)
constructs fusenes and filters them for HSs.
(Checking weather a fusene fits the hexagonal lattice is not difficult.)

Define the inner dual graph of a fusene as the graph with one vertex
for each hexagon, and two vertices are connected if their
corresponding hexagons share an edge.
This graph does not uniquely describe a fusene, but using an
appropriate labeling it does (labeled inner dual).

1

3

2

2
(5)

(5) (5)

(5)
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Characterization of inner dual graphs

Brinkmann et al.(2002) characterize the graphs that are inner duals of
fusenes, which they call id-fusenes. They show that a planar embedded
graph G is an id-fusene if and only if

1 G is connected,

2 all bounded faces of G are triangles,

3 all vertices not on the boundary have degree 6, and

4 for all vertices, the total degree, that is the degree plus the number of
times it occurs in the boundary cycle of the outer face, is at most 6.
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LID algorithm: main steps
1 Generate all non-isomorphic inner dual graphs of fusenes (id-fusenes):

algorithm IDFGeneration uses canonical augmentation.
2 Generate all non-isomorphic labels of inner duals. We have to assign

labels, in every possible way, to the vertices that occur more than
once on the boundary, so that the sum of the labels plus the degrees
of each vertex equals 6. In this process, we must make sure that we
do not construct isomorphic labeled inner dual graphs, which can be
accomplished by using some isomorphism testing method.

This two step method is very efficient, because...
For two labeled inner dual graphs to be isomorphic, we need that their
inner dual graphs be isomorphic. So isomorphic labeled inner dual graphs
can only result from automorphisms of the same inner dual graph obtained
in step one. Also, very often the inner dual graph has trivial automorphism
group (99.9994% of cases for n = 26), and so no isomorphism test for its
labelings. We focus on the first step!
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IDF augmentation
A boundary segment of an id-fusene is a set of l − 1 consecutive edges of
the boundary cycle. The vertices of the boundary segment are the end
vertices of its edges (there are l of them). For convenience, a single vertex
in the boundary cycle is a boundary segment with l = 1.
A boundary segment is said to be augmenting if the following properties
hold: l ≤ 3, its first and last vertices have total degree at most 5, if l = 1
its only vertex has total degree at most 4, and if l = 3 and the middle
occurs only once in the boundary, it has total degree 6.
The following shows property AA2 for the canonical augmentation
algorithm:

Lemma

All id-fusenes can be constructed from the inner dual of a single hexagon
(a single vertex graph) by adding vertices and connecting them to each
vertex of an augmenting boundary segment.
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Examples of valid augmentations
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Definition of canonical parent m(X)

McKay (1998) describes a general way of determining parenthood in
Algorithm Canaug-Traverse based on a canonical choice function f .
When applied to our case, f is chosen to be a function that takes each
id-fusene G to an orbit of vertices under the automorphism group of G
that satisfy:

1 f(G) consists of boundary vertices that occur only once in the
boundary cycle and have degree at most 3;

2 f(G) is independent on the vertex numbering of G, that is, if Φ is an
isomorphism from G to G′, then Φ(f(G)) = f(G′).

Now, as described by McKay, graph G is defined to be the parent of graph
G ∪ {v} if and only if v ∈ f(G ∪ {v}).
The specific f used by Brinkmann, Caporossi and Hansen is a bit technical
and omitted here.
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IDF Algorithm: Generating valid kids

Procedure GenerateKidsIDF generates, from an id-fusene G with v
hexagons, its children in the search tree with v + 1 hexagons, as follows.

1 Addition of hexagons:
I Compute the orbit of the set of vertices of each augmenting boundary

segment of G.
I Connect the new vertex n+ 1 to the vertices in one representative of

each orbit, creating a new potential child graph G′ per orbit.

2 Parenthood validation:
For each G′ created in the previous step, if n+ 1 ∈ f(G′) then add
G′ to S, the set of children of G.
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IDF algorithm by canonical augmentation

procedure IDFGeneration(G,n)
if (n = h) then output G
else S=GenerateKidsIDF(G,n)

for all G′ ∈ S do
IDFGeneration(G′, n+ 1)

Recall that unlike weak canonical augmentation, no further isomorphism
tests are needed between elements of S.
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Distributing the computation

For all these algorithms, since canonical augmentation requires no past
memory, the computation can be distributed across independent
computers as follows:

Each computer builds the generation tree up to certain level L and then
process the generation starting on a node at that level.

For example: if there are p computers, we can ask each computer
i, 0 ≤ i ≤ p− 1 to handle all nodes k, 1 ≤ k ≤ L with i = k mod p.
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