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Heuristic Search Intro

Heuristic Search vs Exhaustive Search
Exhaustive Search
@ Backtracking (backtracking with bounding):
» Find all feasible solutions.

» Find one optimal solution.
» Find all optimal solutions.

@ Branch-and-Bound:
» Find one optimal solution.

Heuristic Search
Types of problem it can be applied to:
e Find 1 optimal solution (when optimum value is known)
e Find a “close to” optimal solution (the best solution we manage).

Heuristics methods we will study:

@ Hill-climbing, Simulated annealing, Tabu search, Genetic algorithms.
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Heuristic Search Intro

Characteristics of heuristic search

The state space is not fully explored.
Randomization is often employed.
There is a concept of neighbourhood search.

Heuristics are applied to explore the solutions.
The word “heuristics” means “serving or helping to find or discover”
or “proceeding by trial and error”.
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A general framework for heuristic search

A general framework for heuristic search

Generic Optimization Problem (maximization):

Instance: A finite set X.

an objective function P: X — Z.

m feasibility functions g; : X — Z, 1 < j <m.
Find: the maximum value of P(X)

subject to X € X and g;(X) >0, for 1 < j <m.

Exercise: pick your favorite combinatorial optimization problem and write
it in this framework.
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A general framework for heuristic sear:

A general framework for heuristic search (cont'd)

Designing a heuristic search:

@ Define a neighbourhood function N : X — 2%,
Eg N(X)={X1, X, X3, X4, X5}.
@ Design a neighbourhood search:
Algorithm that finds a feasible solution on the neighbourhood of a

feasible solution X.
There are two types of neghbourhood searches:

» Exhaustive (chooses best profit among neighbour points)
» Randomized (picks a random point among the neighbour points)
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A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.

Heuristic Search Lucia Moura



Heuristic Search Intro

[e]e] le]e}

A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.
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A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

@ In order to be useful, we would like to be able to get to X,,; from X
via a number of applications of N(-).
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A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

@ In order to be useful, we would like to be able to get to X,,; from X
via a number of applications of N(-).

e L.E. the graph G with V(G) =X and E(G) ={{X,Y}:Y € N(X)}
should ideally be connected, or at least have one optimal solution in
each of its connected components.
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A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

@ In order to be useful, we would like to be able to get to X,,; from X
via a number of applications of N(-).

e L.E. the graph G with V(G) =X and E(G) ={{X,Y}:Y € N(X)}
should ideally be connected, or at least have one optimal solution in
each of its connected components.

e Computing N(X) should be fast, and in particular |[N(X)| shouldn't
be too large.
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A general framework for heuristic search

Examples of neighbourhood functions

First, define dist(X,Y) for X,Y € X.
Let dy be a constant positive integer.
We can define a neighbourhood function as follows:

Ny (X) ={Y € X : dist(X,Y) < dy}.
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A general framework for heuristic search

Examples of neighbourhood functions based on distances

o X ={0,1}", set of all binary n-tuples.
Here dist is the Hamming distance.

Ny = 3 (7).

1=0
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A general framework for heuristic search

Examples of neighbourhood functions based on distances

o X ={0,1}", set of all binary n-tuples.
Here dist is the Hamming distance.

Ny ()] = é (7).

o X = set of all permutations of {1,2,...,n}.
Let a = [avg,...,ap) and B = [(1,..., (] be two permutations.
Define distance as follows: dist(c, 3) = [{i : o; # i }].
Note that Ni(X) = {X} is not very useful; we need dy > 1.
No([1,2,3,4]) = {[1,2,3,4],[2,1,3,4], (3,2, 1, 4],
[4,2,3,1],[1,3,2,4],[1,4,3,2],[L,2,4,3]}
Na(X)] = 1+ (3).
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Designing a neighbourhood search algorithm

Designing a neighbourhood search algorithm
Input: X
Output: Y € N(X)\ {X} such that Y is feasible, or “fail”.
Possible Neighbourhood Search Strategies:
© Find a feasible Y € N(X) \ {X} such that P(Y') is maximized.
Return “fail” if there is no feasible solution in N(X) \ {X}.
@ Find a feasible Y € N(X) \ {X} such that P(Y)
if P(Y) > P(X) then return Y'; else return “fail”.
(steepest ascent method)
© Find any feasible Y € N(X) \ {X}.
Return “fail” if there is no feasible solution in N(X)\ {X}.
© Find any feasible Y € N(X) \ {X}.
if P(Y) > P(X) then return Y'; else return “fail”.
Strategies 1 and 2 may be exhaustive.
Strateges 3 and 4 are usually randomized.

is maximized.
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Designing a neighbourhood search algorithm

A generic heuristic search algorithm
Given N, a neighbourhood function, the heuristic algorithm / either:
@ Perform one neighbourhood search (using one of the strategies)

@ Perform a sequence of j neighbourhood searches, where each one
takes us from X; to X;11: [X = X, Xq,...,X; =Y].

Algorithm GENERICHEURISTICSEARCH(Crnaz)

Select a feasible solution X € X;

Xpest < X; (stores best so far); ¢« 0;

while (¢ < ¢pae) do
Y — hy(X);
if (Y # “fail") then X «—Y;

if (P(X) > P(Xbest)) then Xpest — X;

[else ¢ < ¢maz + 1; (add this if hy is not randomized)]
c—c+1;

return Xpest;
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Hill-Climbing

@ ldea: Go up the hill continuously, stop when stuck.
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Hill-Climbing

@ ldea: Go up the hill continuously, stop when stuck.

@ Problem: it can get stuck in a local optimum.
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Hill-Climbing

@ ldea: Go up the hill continuously, stop when stuck.
@ Problem: it can get stuck in a local optimum.

@ Improvement: run the algorithm many times from different random
starting points X.
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Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.

e For Hill-Climbing, hn(X) returns:

Heuristic Search Lucia Moura



Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.

e For Hill-Climbing, hn(X) returns:
» Y € N(X) such that Y is feasible and P(Y) > P(X),
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Hill-Climbing

Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.
e For Hill-Climbing, hn(X) returns:

» Y € N(X) such that Y is feasible and P(Y) > P(X),
» or, otherwise, “fail”.
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Hill Climbing Algorithm

Algorithm GENERICHILLCLIMBING()
Select a feasible solution X € X.
Xpest — X; searching < true;
while (searching) do
Y — hn(X);
if (Y #£"fail") then
X «Y;
if (P(X) > P(Xpest)) then Xpesr — X;
else searching «— false;
return Xpest;

Hill-climbing can get trapped in a local optimum.
Other search strategies (simulated annealing,tabu search) try to escape
from local optima.
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Simulated Annealing

@ Analogy with a method of cooling metal: annealing.
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Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):
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Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):
> Initally T« Tp;
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Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.
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Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

@ Going uphill is always accepted.
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Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.
» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):
> Initally T« Tp;
> later T« aT for a fixed 0 < o < 1.
@ Going uphill is always accepted.
@ Going downbhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.
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Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

@ Going uphill is always accepted.

@ Going downbhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.

» Given Y = hy(X) with P(Y) < P(X),
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Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

@ Going uphill is always accepted.

@ Going downbhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.

» Given Y = hy(X) with P(Y) < P(X),
> accept Y with probability

S(POY)=P(X))/T _ 1
(P(X)~P(Y))/T

(We get pickier as we progress, since T' decreases)
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Simulated Annealing Algorithm

Algorithm GENERICSIMULATEDANNEALING(Cpaz, To, @)
c—0; T« Tp;
Select a feasible solution X € X; Xpeor — X;
while (¢ < ¢nae) do
Y «— hy(X); // this is usually a randomized choice
if (Y #"fail") then
if (P(Y) > P(X)) then
X «<Y;
if (P(X) > P(Xbest)) then Xpest — X;

else r < random(0,1);
. PY)—P(X)
if (r<e 7 )then X <Y,
c—c+1,
T «— oT;

return Xpeqr:
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Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).
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Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?
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Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?
» Cycling.
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Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

» Cycling.
» When going downbhill from X to Y we may go back from X to Y.
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Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

» Cycling.
» When going downbhill from X to Y we may go back from X to Y.
» Cycling may also take several steps, suchas X - Y — 7 — X.
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Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood
search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

» Cycling.
» When going downbhill from X to Y we may go back from X to Y.
» Cycling may also take several steps, suchas X - Y — 7 — X.

@ Tabu-search uses a strategy for avoiding cycling: a tabu list.
After a move X — Y,
we forbit the application of CHANGE(Y, X) for L iterations
(L is the lifetime of the tabu list).
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Tabu Search

Tabu List

o After a move X — Y, we keep CHANGE(Y, X)) t the Tabu List for L
iterations.
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Tabu Search

Tabu List

o After a move X — Y, we keep CHANGE(Y, X)) t the Tabu List for L
iterations.

o Example:
X ={0,1}", using N1(X) ={Y € X : dist(X,Y) = 1}.
X =[0100] and Y = [0101], we have that CHANGE(Y, X) =4 =
index of coordinate that was swapped.

Suppose L = 2.
sequence of points: | [0100] | [0101] | [1101] | [1001] | [1011]
tabu list: 4 4.1 1,2 2.3
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Tabu Search

Tabu List

o After a move X — Y, we keep CHANGE(Y, X)) t the Tabu List for L
iterations.

o Example:
X ={0,1}", using N1(X) ={Y € X : dist(X,Y) = 1}.
X =[0100] and Y = [0101], we have that CHANGE(Y, X) =4 =
index of coordinate that was swapped.

Suppose L = 2.
sequence of points: | [0100] | [0101] | [1101] | [1001] | [1011]
tabu list: 4 4.1 1,2 2.3

@ So any sequence that cycles X — ... — X has length at least 2L.
Choosing L = 10 is typical.
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Tabu Search

TABULIST is defined below to be a list where TABULIST[c] = §, where §
is the designated forbidden (tabu) change at iteration c.

For tabu search, hy(X) =Y, where
e Y € N(X), Y is feasible;
@ CHANGE(X,Y) & { TaBUL1sT[d] : c — L <d < c—1};
e P(Y) is maximum among all such feasible elements.

In absolute no circumstance implement TABULIST as an array indexed by
the number of iterations! Instead, implement TABULIST as a queue of
length L. Note that the algorithm may mislead you to think you are using
such an array, given the notation defined above; careful!
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Tabu Search

Tabu Search Algorithm: textbook version/typo correction

Algorithm GENERICTABUSEARCH(Cpaq, L)

c+—1;

Select a feasible solution X € X.

Kpest — X;

while (¢ < ¢pqs) do
N — N(X)\{F : cHANGE(X, F) € TaBuLIST[d],c — L <d <c—1};
for each (Y € N) do if (Y is infeasible) then N «— N\ {Y'};
if (N =0) then return Xpeg;
Find Y € N such that P(Y) is maximum; /* computes Y = hy(X) */
TABULIST[c] <—CHANGE(Y, X);
X «Y;
if (P(X) > P(Xbest)) then Xpest — X;
c—c+1;

return Xpest;
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Tabu Search

Tabu List Implementation

In absolute no circumstance implement TABULIST as an array indexed by
the number of iterations!
In the real implementation, TABULIST can be a queue of length L!!!
So, the operation
TABULIST[c] «<—CHANGE(Y, X);
must be implemented as:
TABULIST.insert(CHANGE(Y, X)); (only keeps last L elements)
and the line: N «— N(X)\{F:
CHANGE(X, F') €TaBuLIST[d],c — L <d < c¢—1}
should be understood as:
N «— N(X)\ {F : CHANGE(X, F) is in TABULIST};
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Tabu Search

Tabu Search Algorithm: with FIFO queue for TABULIST

Algorithm GENERICTABUSEARCH(Cpaq, L)

c+—1;

Select a feasible solution X € X.

Kpest — X;

while (¢ < ¢pqs) do
N — N(X)\ {F : CHANGE(X, F) is in TABULIST}
for each (Y € N) do if (Y is infeasible) then N « N\ {Y'};
if (N =0) then return Xpest;
Find Y € N such that P(Y') is maximum; /* computes Y = hy(X) */
TABULIST.insert(CHANGE(Y, X), L); /* only keeps last L entries */
X «Y;
if (P(X) > P(Xbest)) then Xpest — X;
c—c+1;

return Xpest;
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Genetic Algorithms

Fix a number POPSIZE (population size).
One iteration works as follows:

O O O O = O O| PopSizeguys

Current Generation:

|_MUTATION _ |
Current generation: J ¢ l ¢ ¢ J

[00O00 ~00|[e ®e®e - @ e nwguys

Next Generation: PopSize guys

Iterate as many generations as you like.
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Genetic Algorithms

Mating Strategies (Recombination)
Producing children from parents.

Method 1: Crossover.

Let j be a crossover point.

Parents _ @
j i

2chiigren: [T

Example: 7 =3
Parents:  [110/1101001] [100/1000101]
Children:  [110]1000101] [100]1101001]
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Genetic Algorithms

Mating Strategies (Recombination), cont’d

Method 2: Partially matched crossover (for permutations)

Two crossover points: 1 < j<k<n
Example: =3 and k=6

a=[3,1,4,7,6,5,2,8]

p=1[864371,25]

swap a 15}

4—4)|[3,1,4,7,6,52,8] | [8,6,4,3,7,1,2,5]
7—3|][71,4,3,6,52,8] | [8,6,4,7,3,1,2,5]
6—711[6,1,4,3,7,52,8] | [8,7,4,6,3,1,2,5]
5<1]][6,54,3,7,1,2,8] | [8,7,4,6,3,5,2,1]
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Genetic Algorithms

Mating Schemes

Kids may be infeasible: incorporate constraints as penalties.

Various methods are possible for mating schemes:

@ Random monogamy with 2 kids per couple: randomly partition
population into pairs, with two kids produced by each pair.

© Make better parents having more kids:
measure parent fitness by objective function; parents with higher
fitness produce more kids.
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Genetic Algorithms

Algorithm GENERICGENETICALGORITHM(PopSize, ¢imaz)
Select an initial population P with PopSize feasible solutions;
for each X € P do X «— hn(X); [mutation]

Xpest < element in P with maximum profit; ¢ « 1;
while (¢ < ¢gy) do
Q « P; Construct a pairing of the elements in P;
for each pair (W, X) in the pairing do
(Y,Z) —rec(W,X); [recombination/mating]
Y — hny(Y); Z — hny(Z); [mutations]
Q—Qu{Y,Z};
Set P to be the best PopSize members of O;
Let Y be the element in P with maximum profit;
if (P(Y) > P(Xpest)) then Xpest — Y;
c+—c+1;
return Xpegt;
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Hill-climbing Algorithms

Steepest Ascent for Uniform Graph Partition

PROBLEM: UNIFORM GRAPH PARTITION
INSTANCE: A COMPLETE GRAPH ON 2n VERTICES,

cost : E — ZT U{0} (COST FUNCTION)
FIND: THE MINIMUM VALUE OF

C([XO7 Xl]) = ZUEX(),UEX]_ COSt(”? U)
SUBJECT TO V = XoU X1, |Xo| = | X1| =n.
Example: n = 4; cost(1,2) = 1,cost(1,3) = 2, cost(1,4) = 5, cost(2,3) =
0, cost(2,4) = 5, cost(3,4) = 1.
Only 3 feasible solutions (except for exchanging Xy and X7):
Xo={1,2}, X1 ={3,4}, C([Xo, X1]) =12
Xo = {1,3}, X1 = {2,4}, C([X(),Xl]) =7 (optimal)
Xo ={1,4}, X1=1{2,3}, C([Xo,X1]) =9

Heuristic Search Lucia Moura



Heuristic Searches Applied to Various Problems
0®00000000

Hill-climbing Algorithms

Uniform Graph Partition: Steepest Ascend Algorithm

Neighbourhood function: exchange x € Xy and y € X;.

Algorithm UGP(Chraz)
X = [Xo,X}] < SelectRandomPartition
c—1
while (¢ < Che) do
[Y0, 1] < Ascend(X)
if not fail then
{Xo «—Yo; X1 Y13}
else return
c—c+1

Heuristic Search Lucia Moura



Heuristic Searches Applied to Various Problems
00e0000000

Hill-climbing Algorithms

Ascend Algorithm

Algorithm Ascend([Xy, X1])
g0
for each 7 € Xy do
for each j € X; do
t «— Gx,,x,)(i,j) (gain obtained in exchange)
if (t>g) then {x —i; y« j; gt}
if (¢ > 0) then
Yo < (XoU{y}) \ {=}
Yo — (X1 U {z})\ {y}
fail < false
return [Yy, Y]]
else {fail < true; return [Xo, Xi|}

Heuristic Search Lucia Moura



Heuristic Searches Applied to Various Problems
0008000000

Hill-climbing Algorithms

SelectRandomPartition

Two possible algorithms:

@ Picking X as a random n-subset r of a 2n-set:
Get a random integer r € [0, (2:) — 1] and apply
kSubsetLexUnrank(r, n, 2n).

@ Randomly shufling elements in [0,2n — 1]:
Create array A[0,2n — 1] with randomly chosen numbers as elements.
Create array BJ0,2n — 1] initially with B[i] = i.
Sort A, doing same swaps on B.
Take X as the first half of B, and X as the second half.
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Hill-climbing Algorithms

Hill-climbing for Steiner triple systems
Textbook, Section 5.4,

Definition
A Steiner triple system of order v, denoted ST'S(v), is a pair (V, B) where:
V ={1,2,...v} is a set of points,

B ={Bi,Bs,...,By} is a set of 3-sets, called blocks, such that any pair
of points in V is in a unique block B; € B.

Example: ST'S(9):
V= {1,2,3,4,56,7,89}
B= { {1,2,3},{1,4,7},{1,5,9},{1,6,8},{4,5,6},{2,5,8},
{2,6,7},{2,4,9},{7,8,9},{3,6,9},{3,4,8},{3,5,7}}
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Hill-climbing Algorithms

Replication number and number of blocks

Lemma

Let (V B) be an ST'S(v). Then, every point in V occurs in exactly
r =251 blocks and |B| = ”(” L

PROOF:

@ Any point z must appear in some block with each of all other (v — 1)
points. Point x occurs with 2 other points in each of the r, blocks it

appears. Therefore, r, = %

@ We count T, the number of points with their replications appearing
on B,intwoways: T=3xband T =v xXr. Thus, 3 xb=v X,
which implies b = @.
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Hill-climbing Algorithms

Necessary and sufficient conditions for existence of ST'S(v)

Since r = %7 (point replication number) and b = % (number of

blocks) must be integer numbers, we need v = 1,3 (mod 6).
These necessary conditions have been proven to be sufficient:

Theorem
ASTS(v) < v=1,3 (mod 6) J

So, there exists an ST'S(v) for
v=1,3,7,9,13,15,19,21,25,17,31,33, . ..

A partial Steiner triple system consists of a set of triples B with each pair
of points appearing in at most one B; € 3. Then, we can formulate the

search problem as follows.
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Hill-climbing Algorithms

Searching for Steiner Triple Systems

PROBLEM: CONSTRUCT A STEINER TRIPLE SYSTEM
INSTANCE: v SUCH THAT v = 1,3 (mod 6)
FIND: MAXIMIZE |B|
SUBJECT TO: ([1,v],B) 1S A
PARTIAL STEINER TRIPLE SYSTEM

The universe X is the set of all sets of blocks B, such that ([1,v],B) is a
partial Steiner triple system.

An optimal solution is any feasible solution with |B| = ”(“6_1).
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Hill-climbing Algorithms

Stinson’s hill-climbing algorithm for STSs

Algorithm Stinson’s Algorithm(w)
Numblocks <« 0
V—{1,2,...0v}
B—10
While (Numblocks < @) do { SwITCH}
output (V,B)

To present SWITCH, we need:

Definition

A point z is said to be a live point in ([1,v], B) if r, < “3 .

A pair {z,y} is said to be a live pair in ([1,v], B) if there exists no B € B
with {z,y} C B
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Hill-climbing Algorithms

Stinson’s hill-climbing for STSs: Switch Algorithm

Algorithm SWITCH
Chosse a random live point x.
Choose random y,z such that
{z,y} and {z,z} are live pairs.
If ({y,z} is a live pair) then
B —BU{{z,y, 2}}
Numblocks < Numblocks 41
else
Let {w,y,z} € B be the block containing {y,z}

B—BU {{x,y, Z}} \ {{'LU,y, Z}}

See implementation details in the textbook.
Using appropriatte data structures, SWITCH is implemented in constant
time.
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Two heuristics for the Knapsack Problem

Knapsack (Optimization) Problem
Instance: Profits pg, p1,...,Pn-1
Weights wo, w1, ..., Wn—1
Knapsack capacity M
Universe: X = {0,1}" (set of all n-tuples)
an n—tuple [0, 21, ...,%n_1] is feasible if

Zz o Wik; < M.

Objective: maximize P(X) = Z?:_ol Di;.
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Two heuristics for the Knapsack Problem

Algorithm KNAPSACKSIMULATED ANNEALING (Crnaz, 1o, @)
c—0;, T« Ty X « [xg,21,...,2n-1] =[0,0,...,0];
CurW « 0; Xpest — X;;
while (¢ < ¢nae) do
j < randomint(0,n — 1); Y < X; y; < 1 — x;; (using N1(X))
if (y; =1) and (curW 4+ w; > M) then Y « fail;
if (Y # fail) then if (y;= 1) then
X «Y;
curW « curW + wj;
if P(X) > P(Xpeot) then Xpes — X
else r < random(0, 1);
if (r < e7Pi/T) then
X <Y, curW « curW — wyj;
c—c+1;T «— aT,
return (Xpest);
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Two heuristics for the Knapsack Problem

Knapsack Simulated Annealing Results

TABLE 5.3
Summary data for the knapsack simulated annealing algorithm.
a Crmaz profits found
minimum  maximum  average

0.999 1000 1441 1454 1446.8
0.999 5000 1448 1456 1452.1
0.999 | 20000 1448 1456 1450.9
0.9995 | 1000 1445 1455 1448.4
0.9995 | 5000 1450 1458 1454.6
0.9995 | 20000 1452 1458 1453.9
0.9999 | 1000 1445 1455 1449.6
0.9999 | 5000 1450 1458 1454.3
0.9999 | 20000 1453 1458 1456.1
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Two heuristics for the Knapsack Problem

Tabu Search for Knapsack
We will use the same neighbourhood N (.).

Do exhaustive search on the neighbourhood in order to find the best way
to update the current solution.

Instead of Profit improvement only, we look for improvements based on
the ratio p; /w;:

@ Chose 7 with maximum p;/w; among the indexes j where z; =0, j is
not on TABULIST, and changing x; to 1 does not exceed M.

@ If there is no j as above, then choose i with minimum p; /w; among
the indexes j where z; = 1 and j is not on TABULIST.

This can be expressed by saying that we want to maximize

- Dj
—1)% =L,
( ) wj
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Two heuristics for the Knapsack Problem

Algorithm KNAPSACKTABUSEARCH(¢pqz, L)
Select a random feasible X = [zg,x1,...,2z,—1] € {0,1}";
curW « Z?:—()l Tiwi; Xpest — X,
for (¢ — 1;¢ < Cpaz;c ¢+ 1) do
N —{0,1,...,n—1}\ {j: jisin TABULIST};
for each (i € N) do
if (x; =0) and (curW +w; > M) then N — N\ {i};
if (N = () then break for-loop;
Find i € N such that (—1)%p;/w; is maximum;
TABULIST.INSERT(4, L); (removing oldest, if has L + 1 items)
x; — 1 —x;; (swap i coordinate)
if (z; =1) then curW «— curW + w;;
else curW <« curW — w;;
if P(X) > P(Xpest) then Xpest — X;
return Xpest;
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Two heuristics for the Knapsack Problem

Summary data for the knapsack tabu search algorithm (24 items).

L profits found (in 25 runs) # optimal solutions found
minimum  maximum average
1 | 13079298 13466838  13388643.5 0
2 | 13084476 13500943 134157475 0
L 3 | 13245597 13500943  13456205.2 0
4 | 13264009 13500943  13446933.8 0
5 | 13358351 13500943  13458145.8 0
6 | 13148978 13549094  13427333.6 1
7 | 13116665 13549094  13462902.4 4
8 | 13346220 13549094 134979322 7
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A Genetic Algorithm for TSP

A Genetic Algorithm for the TSP

Traveling Salesman Problem (TSP)

Instance: a complete graph K,
a cost functionc: V xV — R

Find: a Hamiltonian circuit [zg, z1,...,Z,—1] that minimizes
C(X) = c(zo,x1) + c(x1,22) + ... + c(Tp—1,%0)

Note that 2n permutations represent the same cycle.
Universe: X’ = set of all n! permutations.
Steps:

@ Selection of initial population.

@ Mutation: steepest ascent 2-opt.
@ Recombination using two methods: partially matched crossover and

another method.
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A Genetic Algorithm for TSP

Mutation
Steepest ascent algorithm based on the 2-opt heuristic:

x(i)

2 opt move x(i)

X(i+: X(i+1)

x(j+1) x(j+1)

x() xG)
Gain in applying a 2-opt move:

c(wi, wiy1) + (@), 2jq1) — c(@iy1, vjp1) — (@i, 75)

Heuristic Search
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A Genetic Algorithm for TSP

N(X) = all Y € X that can be obtained from X by a 2-opt move.

Algorithm STEEPESTASCENTTWOOPT(X)
done — false;
while (not done) do
done «— true; go < 0;
fori < O0ton—1do
forj«—i+2ton—1do
9 G(X,4,j);
if (g > go) then
9o < g: o < Jo < J;
if (go > 0) then
X — Xig jo:
done «— false;
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A Genetic Algorithm for TSP

Selecting the initial population

Randomly pick one and then mutate it:

Algorithm SELECT(popsize)
for i «— 0 to popsize — 1 do
r <~ RANDOMINTEGER(0, n! — 1);
P; —PERMLEXUNRANK(n, 7);
STEEPESTASCENTTWOOPT(F;);
return [Py, P, ..., Ppopsize—1];
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A Genetic Algorithm for TSP

Recombination algorithm 1: Partially Matched Crossover

Algorithm PMREC(A, B)

h < RANDOMINTEGER(10,7/2); (length of the substring)

j < RANDOMINTEGER(0,n — 1); (start of the substring)

(C, D) «— PARTIALLYMATCHEDCROSSOVER(A, B, j, (h + j)mod n)
STEEPESTASCENTTWOOPT(C);

STEEPESTASCENTTWOOPT(D);

return (C, D);
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A Genetic Algorithm for TSP

Recombination Algorithm 2

Algorithm MGKREC(A, B)

h < RANDOMINTEGER(10,7/2); (length of the substring)
j < RANDOMINTEGER(0,n — 1); (start of the substring)
T —
(pick subcycle of length h starting from pos j:)
fori«—0toh—1do

DJi] < Bl(i +j) mod n];

T «— T U{Dl[il};
Complete cycle with permutation in A using guys not already in D
in the order prescribed by A:
forj«<—0Oton—1do

if A[j] €T then {D[i] — A[j];i—1i+1;}
STEEPESTASCENTTWOOPT(D);
(Similarly build C' swapping A and B roles:)...
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A Genetic Algorithm for TSP

(Algorithm continued)
(Similarly build C' swapping A and B roles:)...
j < RANDOMINTEGER(0,n — 1); (start of the substring)
T «— 0
fori < 0toh—1do
Cli] < Al(i +j) mod n];
T — TU{Cli]};
for j«—0ton—1do
if B[j] € T then {C[i] — B[j]; i —i+1; }
STEEPESTASCENTTWOOPT(C);
return (C, D);
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A Genetic Algorithm for TSP

Genetic Algorithm for TSP

Algorithm GENETICTSP (popsize, cmaz)
[Po, P, ..., Ppopsize—1] <—SELECT(popsize);
Sort Py, P1, ..., Pyopsize—1 in increasing order of cost.
Xpest — Py;  BestCost «— C(P);
for (c — 1;¢ < ¢paz;c — c+ 1) do
for i < 0 to popsize/2 — 1 do
(Ppopsize—i—Qi, Ppopsize+2i+1) — REC (P2i7 P2i+1);
Sort Py, P1, ..., Papopsize—1 In increasing order of cost.
curCost — C(Pp);
if (curCost < BestCost) then
Xpest — Po;
BestCost « curCost;
return Xpeg;
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A Genetic Algorithm for TSP

TABLE 5.7
GENETICTSP data with recombination operation PMREC.
cost found "
M n | Opt. Cost | popsize | Cpae | min  max avg | No. Opt. toung
M50a | 50 185 8 50 192 214 200.50 T
100 | 191 219 20000 0
200 | 190 203 196.60 0
16 50 187 207 19320 0
100 | 187 206 19320 0
200 | 187 200 19370 0
32 50 189205 19470 0
100 | 186 199 190.70 0
200 | 188 200 19240 0
M50b | 50 158 8 50 163 184 17540 0
100 163 195 17370 0
200 | 160 191 17730 0
16 50 159 176 167.40 0
100 | 163 184  171.50 0
200 | 16l 189 17210 0
32 50 161 173 167.60 0
100 | 163 178 169.40 0
| 200 | 159 178 166.70 0
M30c | 50 155 8 50 162 181 169.40 0
| 100 | 159 186 169.50 0
200 | 159 187 16930
16 50 155 171 161.30 1
100 155 182 166.10 1
200 | 157 182 167.70 0
32 50 155 170 161.60 I
100 | 158 167 16140 0
200 [ 157 180 162.50 0
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A Genetic Algorithm for TSP

TABLE 5.8
GENETICTSP with recombination operation MGKREC.

cost found

M n | Opt. Cost | popsize | Cuae | Min max avg | No. Opt. found
M50a | S0 185 8 50 186 196 191.70

¢ 100 | 186 199 190.30
200 | 186 194 189.20
16 50 186 192 189.20
i 100 | 185 192 187.00
p 200 | 185 192 187.60
32 50 186 192 [88.10
100 | 185 190 187.30
200 | I8 190 187.30
‘M50b | 50 158 g 50 160 171 165.30
| 100 | 159 166  161.60
/ 200 | 159 170 162.00

) 6 S0 158 164 161.20
¥ 100 | 158 162 159.80
- 200 | 159 163 160.70

5] S0 [ 16 165 160.70

100 | 159 163 160.30
200 | 158 160 158.90
[M50c | 50 155 8 50 156 168  160.50

PO == —ooo|——0—wo o oo

g 32 50 155 159 156.10
| 100 | 155 158 15540
200 | 155 156 155.10

100 | 155 167 160.70 2

200 | 155 162 15730 5

6T 50 [ 155 162 157.50 7

E 100 | 155 159 15630 5
E 200 | 155 159 15570 8
5

8

9
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