Heuristic Search

Lucia Moura

Winter 2009

Heuristic Search Lucia Moura

tic Search Intro trategies for Heuristic Algorithms

Heuristic Search Intro

Heuristic Search vs Exhaustive Search
Exhaustive Search
@ Backtracking (backtracking with bounding):
» Find all feasible solutions.

» Find one optimal solution.
» Find all optimal solutions.

@ Branch-and-Bound:
» Find one optimal solution.

Heuristic Search
Types of problem it can be applied to:
e Find 1 optimal solution (when optimum value is known)
e Find a “close to” optimal solution (the best solution we manage).

Heuristics methods we will study:

@ Hill-climbing, Simulated annealing, Tabu search, Genetic algorithms.

Heuristic Search Lucia Moura

Heuristic Search Intro
oe

Heuristic Search Intro

Characteristics of heuristic search

The state space is not fully explored.
Randomization is often employed.
There is a concept of neighbourhood search.

Heuristics are applied to explore the solutions.
The word “heuristics” means “serving or helping to find or discover”
or “proceeding by trial and error”.

Heuristic Search Lucia Moura

Heuristic Search Intro

[Jelelele}

A general framework for heuristic search

A general framework for heuristic search

Generic Optimization Problem (maximization):

Instance: A finite set X.

an objective function P: X — Z.

m feasibility functions g; : X — Z, 1 < j <m.
Find: the maximum value of P(X)

subject to X € X and g;(X) >0, for 1 < j <m.

Exercise: pick your favorite combinatorial optimization problem and write
it in this framework.

Heuristic Search Lucia Moura

Heuristic Search Intro Strategies for Heuristic Algorithms S Applied to Various Problems

00000

A general framework for heuristic sear:

A general framework for heuristic search (cont'd)

Designing a heuristic search:

@ Define a neighbourhood function N : X — 2%,
Eg N(X)={X1, X, X3, X4, X5}.
@ Design a neighbourhood search:
Algorithm that finds a feasible solution on the neighbourhood of a

feasible solution X.
There are two types of neghbourhood searches:

» Exhaustive (chooses best profit among neighbour points)
» Randomized (picks a random point among the neighbour points)

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e] le]e}

A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e] le]e}

A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e] le]e}

A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

@ In order to be useful, we would like to be able to get to X,,; from X
via a number of applications of N(-).

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e] le]e}

A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

@ In order to be useful, we would like to be able to get to X,,; from X
via a number of applications of N(-).

e L.E. the graph G with V(G) =X and E(G) ={{X,Y}:Y € N(X)}
should ideally be connected, or at least have one optimal solution in
each of its connected components.

Heuristic Search Lucia Moura

Heuristic Search Intro ies for Heuristic Algorithms [Applied to Various Problems

00800

A general framework for heuristic search

Defining a neighbourhood function

N:X — 2%,
So, N(X) is a subset of X.

@ N(X) should contain elements that are similar or “close to" X.
e N(X) may contain infeasible elements of X.

@ In order to be useful, we would like to be able to get to X,,; from X
via a number of applications of N(-).

e L.E. the graph G with V(G) =X and E(G) ={{X,Y}:Y € N(X)}
should ideally be connected, or at least have one optimal solution in
each of its connected components.

e Computing N(X) should be fast, and in particular |[N(X)| shouldn't
be too large.

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e]e] o}

A general framework for heuristic search

Examples of neighbourhood functions

First, define dist(X,Y) for X,Y € X.
Let dy be a constant positive integer.
We can define a neighbourhood function as follows:

Ny (X) ={Y € X : dist(X,Y) < dy}.

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e]ee] }

A general framework for heuristic search

Examples of neighbourhood functions based on distances

o X ={0,1}", set of all binary n-tuples.
Here dist is the Hamming distance.

Ny = 3 (7).

1=0

Heuristic Search Lucia Moura

Heuristic Search Intro

[e]e]ee] }

A general framework for heuristic search

Examples of neighbourhood functions based on distances

o X ={0,1}", set of all binary n-tuples.
Here dist is the Hamming distance.

Ny ()] = é (7).

o X = set of all permutations of {1,2,...,n}.
Let a = [avg,...,ap) and B = [(1,..., (] be two permutations.
Define distance as follows: dist(c, 3) = [{i : o; # i }].
Note that Ni(X) = {X} is not very useful; we need dy > 1.
No([1,2,3,4]) = {[1,2,3,4],[2,1,3,4], (3,2, 1, 4],
[4,2,3,1],[1,3,2,4],[1,4,3,2],[L,2,4,3]}
Na(X)] = 1+ (3).

Heuristic Search Lucia Moura

ic Search Intro Strategies for Heuristic Algorithms euris es ed to Various Problems

Designing a neighbourhood search algorithm

Designing a neighbourhood search algorithm
Input: X
Output: Y € N(X)\ {X} such that Y is feasible, or “fail”.
Possible Neighbourhood Search Strategies:
© Find a feasible Y € N(X) \ {X} such that P(Y') is maximized.
Return “fail” if there is no feasible solution in N(X) \ {X}.
@ Find a feasible Y € N(X) \ {X} such that P(Y)
if P(Y) > P(X) then return Y'; else return “fail”.
(steepest ascent method)
© Find any feasible Y € N(X) \ {X}.
Return “fail” if there is no feasible solution in N(X)\ {X}.
© Find any feasible Y € N(X) \ {X}.
if P(Y) > P(X) then return Y'; else return “fail”.
Strategies 1 and 2 may be exhaustive.
Strateges 3 and 4 are usually randomized.

is maximized.

Heuristic Search Intro

oe

Designing a neighbourhood search algorithm

A generic heuristic search algorithm
Given N, a neighbourhood function, the heuristic algorithm / either:
@ Perform one neighbourhood search (using one of the strategies)

@ Perform a sequence of j neighbourhood searches, where each one
takes us from X; to X;11: [X = X, Xq,...,X; =Y].

Algorithm GENERICHEURISTICSEARCH(Crnaz)

Select a feasible solution X € X;

Xpest < X; (stores best so far); ¢« 0;

while (¢ < ¢pae) do
Y — hy(X);
if (Y # “fail") then X «—Y;

if (P(X) > P(Xbest)) then Xpest — X;

[else ¢ < ¢maz + 1; (add this if hy is not randomized)]
c—c+1;

return Xpest;

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

@ ldea: Go up the hill continuously, stop when stuck.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

@ ldea: Go up the hill continuously, stop when stuck.

@ Problem: it can get stuck in a local optimum.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

@ ldea: Go up the hill continuously, stop when stuck.
@ Problem: it can get stuck in a local optimum.

@ Improvement: run the algorithm many times from different random
starting points X.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.

e For Hill-Climbing, hn(X) returns:

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.

e For Hill-Climbing, hn(X) returns:
» Y € N(X) such that Y is feasible and P(Y) > P(X),

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o0

Hill-Climbing

Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.
e For Hill-Climbing, hn(X) returns:

» Y € N(X) such that Y is feasible and P(Y) > P(X),
» or, otherwise, “fail”.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms
o]]

Hill-Climbing

Hill Climbing Algorithm

Algorithm GENERICHILLCLIMBING()
Select a feasible solution X € X.
Xpest — X; searching < true;
while (searching) do
Y — hn(X);
if (Y #£"fail") then
X «Y;
if (P(X) > P(Xpest)) then Xpesr — X;
else searching «— false;
return Xpest;

Hill-climbing can get trapped in a local optimum.
Other search strategies (simulated annealing,tabu search) try to escape
from local optima.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):
> Initally T« Tp;

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

@ Going uphill is always accepted.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.
» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):
> Initally T« Tp;
> later T« aT for a fixed 0 < o < 1.
@ Going uphill is always accepted.
@ Going downbhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

@ Going uphill is always accepted.

@ Going downbhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.

» Given Y = hy(X) with P(Y) < P(X),

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[]}

Simulated Annealing

Simulated Annealing

@ Analogy with a method of cooling metal: annealing.

» Temperature T" decreases at each iteration, according to a cooling
schedule (Tp, a):

> Initally T« Tp;

> later T« o for a fixed 0 < o < 1.

@ Going uphill is always accepted.

@ Going downbhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.

» Given Y = hy(X) with P(Y) < P(X),
> accept Y with probability

S(POY)=P(X))/T _ 1
(P(X)~P(Y))/T

(We get pickier as we progress, since T' decreases)

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

(o] J

Simulated Annealing

Simulated Annealing Algorithm

Algorithm GENERICSIMULATEDANNEALING(Cpaz, To, @)
c—0; T« Tp;
Select a feasible solution X € X; Xpeor — X;
while (¢ < ¢nae) do
Y «— hy(X); // this is usually a randomized choice
if (Y #"fail") then
if (P(Y) > P(X)) then
X «<Y;
if (P(X) > P(Xbest)) then Xpest — X;

else r < random(0,1);
. PY)—P(X)
if (r<e 7)then X <Y,
c—c+1,
T «— oT;

return Xpeqr:

Design Strategies for Heuristic Algorithms

[Jole]elele]

Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[Jole]elele]

Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[Jole]elele]

Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?
» Cycling.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[Jole]elele]

Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

» Cycling.
» When going downbhill from X to Y we may go back from X to Y.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[Jole]elele]

Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood

search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

» Cycling.
» When going downbhill from X to Y we may go back from X to Y.
» Cycling may also take several steps, suchas X - Y — 7 — X.

Heuristic Search Lucia Moura

Search Intro Design Strategies for Heuristic Algorithms [Applied to Various Problems

Tabu Search

Tabu Search

@ Neighbourhood search:
Choose Y € N(X) \ {X} such that Y is feasible and P(Y) is
maximum among all such elements (exhaustive neighbourhood
search).
It may happen that P(Y') < P(X) (we escape from a local optimum).

@ What may be the risk?

» Cycling.
» When going downbhill from X to Y we may go back from X to Y.
» Cycling may also take several steps, suchas X - Y — 7 — X.

@ Tabu-search uses a strategy for avoiding cycling: a tabu list.
After a move X — Y,
we forbit the application of CHANGE(Y, X) for L iterations
(L is the lifetime of the tabu list).

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

O@0000

Tabu Search

Tabu List

o After a move X — Y, we keep CHANGE(Y, X)) t the Tabu List for L
iterations.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

O@0000

Tabu Search

Tabu List

o After a move X — Y, we keep CHANGE(Y, X)) t the Tabu List for L
iterations.

o Example:
X ={0,1}", using N1(X) ={Y € X : dist(X,Y) = 1}.
X =[0100] and Y = [0101], we have that CHANGE(Y, X) =4 =
index of coordinate that was swapped.

Suppose L = 2.
sequence of points: | [0100] | [0101] | [1101] | [1001] | [1011]
tabu list: 4 4.1 1,2 2.3

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

O@0000

Tabu Search

Tabu List

o After a move X — Y, we keep CHANGE(Y, X)) t the Tabu List for L
iterations.

o Example:
X ={0,1}", using N1(X) ={Y € X : dist(X,Y) = 1}.
X =[0100] and Y = [0101], we have that CHANGE(Y, X) =4 =
index of coordinate that was swapped.

Suppose L = 2.
sequence of points: | [0100] | [0101] | [1101] | [1001] | [1011]
tabu list: 4 4.1 1,2 2.3

@ So any sequence that cycles X — ... — X has length at least 2L.
Choosing L = 10 is typical.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[e]e] lelele]

Tabu Search

TABULIST is defined below to be a list where TABULIST[c] = §, where §
is the designated forbidden (tabu) change at iteration c.

For tabu search, hy(X) =Y, where
e Y € N(X), Y is feasible;
@ CHANGE(X,Y) & { TaBUL1sT[d] : c — L <d < c—1};
e P(Y) is maximum among all such feasible elements.

In absolute no circumstance implement TABULIST as an array indexed by
the number of iterations! Instead, implement TABULIST as a queue of
length L. Note that the algorithm may mislead you to think you are using
such an array, given the notation defined above; careful!

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[e]e]e] lele]

Tabu Search

Tabu Search Algorithm: textbook version/typo correction

Algorithm GENERICTABUSEARCH(Cpaq, L)

c+—1;

Select a feasible solution X € X.

Kpest — X;

while (¢ < ¢pqs) do
N — N(X)\{F : cHANGE(X, F) € TaBuLIST[d],c — L <d <c—1};
for each (Y € N) do if (Y is infeasible) then N «— N\ {Y'};
if (N =0) then return Xpeg;
Find Y € N such that P(Y) is maximum; /* computes Y = hy(X) */
TABULIST[c] <—CHANGE(Y, X);
X «Y;
if (P(X) > P(Xbest)) then Xpest — X;
c—c+1;

return Xpest;

Design Strategies for Heuristic Algorithms

O000e0

Tabu Search

Tabu List Implementation

In absolute no circumstance implement TABULIST as an array indexed by
the number of iterations!
In the real implementation, TABULIST can be a queue of length L!!!
So, the operation
TABULIST[c] «<—CHANGE(Y, X);
must be implemented as:
TABULIST.insert(CHANGE(Y, X)); (only keeps last L elements)
and the line: N «— N(X)\{F:
CHANGE(X, F') €TaBuLIST[d],c — L <d < c¢—1}
should be understood as:
N «— N(X)\ {F : CHANGE(X, F) is in TABULIST};

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

O0000e

Tabu Search

Tabu Search Algorithm: with FIFO queue for TABULIST

Algorithm GENERICTABUSEARCH(Cpaq, L)

c+—1;

Select a feasible solution X € X.

Kpest — X;

while (¢ < ¢pqs) do
N — N(X)\ {F : CHANGE(X, F) is in TABULIST}
for each (Y € N) do if (Y is infeasible) then N « N\ {Y'};
if (N =0) then return Xpest;
Find Y € N such that P(Y') is maximum; /* computes Y = hy(X) */
TABULIST.insert(CHANGE(Y, X), L); /* only keeps last L entries */
X «Y;
if (P(X) > P(Xbest)) then Xpest — X;
c—c+1;

return Xpest;

Design Strategies for Heuristic Algorithms

Genetic Algorithms

Genetic Algorithms

Fix a number POPSIZE (population size).
One iteration works as follows:

O O O O = O O| PopSizeguys

Current Generation:

|_MUTATION _ |
Current generation: J ¢ l ¢ ¢ J

[00O00 ~00|[e ®e®e - @ e nwguys

Next Generation: PopSize guys

Iterate as many generations as you like.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

O@000

Genetic Algorithms

Mating Strategies (Recombination)
Producing children from parents.

Method 1: Crossover.

Let j be a crossover point.

Parents _ @
j i

2chiigren: [T

Example: 7 =3
Parents: [110/1101001] [100/1000101]
Children: [110]1000101] [100]1101001]

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

[e]e] lo]e}

Genetic Algorithms

Mating Strategies (Recombination), cont’d

Method 2: Partially matched crossover (for permutations)

Two crossover points: 1 < j<k<n
Example: =3 and k=6

a=[3,1,4,7,6,5,2,8]

p=1[864371,25]

swap a 15}

4—4)|[3,1,4,7,6,52,8] | [8,6,4,3,7,1,2,5]
7—3|][71,4,3,6,52,8] | [8,6,4,7,3,1,2,5]
6—711[6,1,4,3,7,52,8] | [8,7,4,6,3,1,2,5]
5<1]][6,54,3,7,1,2,8] | [8,7,4,6,3,5,2,1]

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

Genetic Algorithms

Mating Schemes

Kids may be infeasible: incorporate constraints as penalties.

Various methods are possible for mating schemes:

@ Random monogamy with 2 kids per couple: randomly partition
population into pairs, with two kids produced by each pair.

© Make better parents having more kids:
measure parent fitness by objective function; parents with higher
fitness produce more kids.

Heuristic Search Lucia Moura

Design Strategies for Heuristic Algorithms

Genetic Algorithms

Algorithm GENERICGENETICALGORITHM(PopSize, ¢imaz)
Select an initial population P with PopSize feasible solutions;
for each X € P do X «— hn(X); [mutation]

Xpest < element in P with maximum profit; ¢ « 1;
while (¢ < ¢gy) do
Q « P; Construct a pairing of the elements in P;
for each pair (W, X) in the pairing do
(Y,Z) —rec(W,X); [recombination/mating]
Y — hny(Y); Z — hny(Z); [mutations]
Q—Qu{Y,Z};
Set P to be the best PopSize members of O;
Let Y be the element in P with maximum profit;
if (P(Y) > P(Xpest)) then Xpest — Y;
c+—c+1;
return Xpegt;

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems
0000000000

Hill-climbing Algorithms

Steepest Ascent for Uniform Graph Partition

PROBLEM: UNIFORM GRAPH PARTITION
INSTANCE: A COMPLETE GRAPH ON 2n VERTICES,

cost : E — ZT U{0} (COST FUNCTION)
FIND: THE MINIMUM VALUE OF

C([XO7 Xl]) = ZUEX(),UEX]_ COSt(”? U)
SUBJECT TO V = XoU X1, |Xo| = | X1| =n.
Example: n = 4; cost(1,2) = 1,cost(1,3) = 2, cost(1,4) = 5, cost(2,3) =
0, cost(2,4) = 5, cost(3,4) = 1.
Only 3 feasible solutions (except for exchanging Xy and X7):
Xo={1,2}, X1 ={3,4}, C([Xo, X1]) =12
Xo = {1,3}, X1 = {2,4}, C([X(),Xl]) =7 (optimal)
Xo ={1,4}, X1=1{2,3}, C([Xo,X1]) =9

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems
0®00000000

Hill-climbing Algorithms

Uniform Graph Partition: Steepest Ascend Algorithm

Neighbourhood function: exchange x € Xy and y € X;.

Algorithm UGP(Chraz)
X = [Xo,X}] < SelectRandomPartition
c—1
while (¢ < Che) do
[Y0, 1] < Ascend(X)
if not fail then
{Xo «—Yo; X1 Y13}
else return
c—c+1

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems
00e0000000

Hill-climbing Algorithms

Ascend Algorithm

Algorithm Ascend([Xy, X1])
g0
for each 7 € Xy do
for each j € X; do
t «— Gx,,x,)(i,j) (gain obtained in exchange)
if (t>g) then {x —i; y« j; gt}
if (¢ > 0) then
Yo < (XoU{y}) \ {=}
Yo — (X1 U {z})\ {y}
fail < false
return [Yy, Y]]
else {fail < true; return [Xo, Xi|}

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems
0008000000

Hill-climbing Algorithms

SelectRandomPartition

Two possible algorithms:

@ Picking X as a random n-subset r of a 2n-set:
Get a random integer r € [0, (2:) — 1] and apply
kSubsetLexUnrank(r, n, 2n).

@ Randomly shufling elements in [0,2n — 1]:
Create array A[0,2n — 1] with randomly chosen numbers as elements.
Create array BJ0,2n — 1] initially with B[i] = i.
Sort A, doing same swaps on B.
Take X as the first half of B, and X as the second half.

Heuristic Search Lucia Moura

earch Intro Strategies for Heuristic Algorithms Heuristic Searches Applied to Various Problems

0000

Hill-climbing Algorithms

Hill-climbing for Steiner triple systems
Textbook, Section 5.4,

Definition
A Steiner triple system of order v, denoted ST'S(v), is a pair (V, B) where:
V ={1,2,...v} is a set of points,

B ={Bi,Bs,...,By} is a set of 3-sets, called blocks, such that any pair
of points in V is in a unique block B; € B.

Example: ST'S(9):
V= {1,2,3,4,56,7,89}
B= { {1,2,3},{1,4,7},{1,5,9},{1,6,8},{4,5,6},{2,5,8},
{2,6,7},{2,4,9},{7,8,9},{3,6,9},{3,4,8},{3,5,7}}

Heuristic Search Lucia Moura

Search Intro Strategies for Heuristic Algorithms i Searches Applied to Various Problems
[e]e]e]e]

Hill-climbing Algorithms

Replication number and number of blocks

Lemma

Let (V B) be an ST'S(v). Then, every point in V occurs in exactly
r =251 blocks and |B| = ”(” L

PROOF:

@ Any point z must appear in some block with each of all other (v — 1)
points. Point x occurs with 2 other points in each of the r, blocks it

appears. Therefore, r, = %

@ We count T, the number of points with their replications appearing
on B,intwoways: T=3xband T =v xXr. Thus, 3 xb=v X,
which implies b = @.

Heuristic Search Lucia Moura

Search Intro S ies for Heuristic Algorithms Heuristic Searches Applied to Various Problems

O00000e000

Hill-climbing Algorithms

Necessary and sufficient conditions for existence of ST'S(v)

Since r = %7 (point replication number) and b = % (number of

blocks) must be integer numbers, we need v = 1,3 (mod 6).
These necessary conditions have been proven to be sufficient:

Theorem
ASTS(v) < v=1,3 (mod 6) J

So, there exists an ST'S(v) for
v=1,3,7,9,13,15,19,21,25,17,31,33, . ..

A partial Steiner triple system consists of a set of triples B with each pair
of points appearing in at most one B; € 3. Then, we can formulate the

search problem as follows.

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems
0000000800

Hill-climbing Algorithms

Searching for Steiner Triple Systems

PROBLEM: CONSTRUCT A STEINER TRIPLE SYSTEM
INSTANCE: v SUCH THAT v = 1,3 (mod 6)
FIND: MAXIMIZE |B|
SUBJECT TO: ([1,v],B) 1S A
PARTIAL STEINER TRIPLE SYSTEM

The universe X is the set of all sets of blocks B, such that ([1,v],B) is a
partial Steiner triple system.

An optimal solution is any feasible solution with |B| = ”(“6_1).

Heuristic Search Lucia Moura

Search Intro ies for Heuristic Algorithms Heuristic Searches Applied to Various Problems

0000000080

Hill-climbing Algorithms

Stinson’s hill-climbing algorithm for STSs

Algorithm Stinson’s Algorithm(w)
Numblocks <« 0
V—{1,2,...0v}
B—10
While (Numblocks < @) do { SwITCH}
output (V,B)

To present SWITCH, we need:

Definition

A point z is said to be a live point in ([1,v], B) if r, < “3 .

A pair {z,y} is said to be a live pair in ([1,v], B) if there exists no B € B
with {z,y} C B

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems
000000000 e

Hill-climbing Algorithms

Stinson’s hill-climbing for STSs: Switch Algorithm

Algorithm SWITCH
Chosse a random live point x.
Choose random y,z such that
{z,y} and {z,z} are live pairs.
If ({y,z} is a live pair) then
B —BU{{z,y, 2}}
Numblocks < Numblocks 41
else
Let {w,y,z} € B be the block containing {y,z}

B—BU {{x,y, Z}} \ {{'LU,y, Z}}

See implementation details in the textbook.
Using appropriatte data structures, SWITCH is implemented in constant
time.

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

®00000

Two heuristics for the Knapsack Problem

Two heuristics for the Knapsack Problem

Knapsack (Optimization) Problem
Instance: Profits pg, p1,...,Pn-1
Weights wo, w1, ..., Wn—1
Knapsack capacity M
Universe: X = {0,1}" (set of all n-tuples)
an n—tuple [0, 21, ...,%n_1] is feasible if

Zz o Wik; < M.

Objective: maximize P(X) = Z?:_ol Di;.

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

O@0000

Two heuristics for the Knapsack Problem

Algorithm KNAPSACKSIMULATED ANNEALING (Crnaz, 1o, @)
c—0;, T« Ty X « [xg,21,...,2n-1] =[0,0,...,0];
CurW « 0; Xpest — X;;
while (¢ < ¢nae) do
j < randomint(0,n — 1); Y < X; y; < 1 — x;; (using N1(X))
if (y; =1) and (curW 4+ w; > M) then Y « fail;
if (Y # fail) then if (y;= 1) then
X «Y;
curW « curW + wj;
if P(X) > P(Xpeot) then Xpes — X
else r < random(0, 1);
if (r < e7Pi/T) then
X <Y, curW « curW — wyj;
c—c+1;T «— aT,
return (Xpest);

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

[e]e] le]ele]

Two heuristics for the Knapsack Problem

Knapsack Simulated Annealing Results

TABLE 5.3
Summary data for the knapsack simulated annealing algorithm.
a Crmaz profits found
minimum maximum average

0.999 1000 1441 1454 1446.8
0.999 5000 1448 1456 1452.1
0.999 | 20000 1448 1456 1450.9
0.9995 | 1000 1445 1455 1448.4
0.9995 | 5000 1450 1458 1454.6
0.9995 | 20000 1452 1458 1453.9
0.9999 | 1000 1445 1455 1449.6
0.9999 | 5000 1450 1458 1454.3
0.9999 | 20000 1453 1458 1456.1

Heuristic Search Lucia Moura

arch Intro trategies for Heuristic Algorithms arches Applied to Various Problems

Two heuristics for the Knapsack Problem

Tabu Search for Knapsack
We will use the same neighbourhood N (.).

Do exhaustive search on the neighbourhood in order to find the best way
to update the current solution.

Instead of Profit improvement only, we look for improvements based on
the ratio p; /w;:

@ Chose 7 with maximum p;/w; among the indexes j where z; =0, j is
not on TABULIST, and changing x; to 1 does not exceed M.

@ If there is no j as above, then choose i with minimum p; /w; among
the indexes j where z; = 1 and j is not on TABULIST.

This can be expressed by saying that we want to maximize

- Dj
—1)% =L,
() wj

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

0000 @0

Two heuristics for the Knapsack Problem

Algorithm KNAPSACKTABUSEARCH(¢pqz, L)
Select a random feasible X = [zg,x1,...,2z,—1] € {0,1}";
curW « Z?:—()l Tiwi; Xpest — X,
for (¢ — 1;¢ < Cpaz;c ¢+ 1) do
N —{0,1,...,n—1}\ {j: jisin TABULIST};
for each (i € N) do
if (x; =0) and (curW +w; > M) then N — N\ {i};
if (N = () then break for-loop;
Find i € N such that (—1)%p;/w; is maximum;
TABULIST.INSERT(4, L); (removing oldest, if has L + 1 items)
x; — 1 —x;; (swap i coordinate)
if (z; =1) then curW «— curW + w;;
else curW <« curW — w;;
if P(X) > P(Xpest) then Xpest — X;
return Xpest;

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

O0000e

Two heuristics for the Knapsack Problem

Summary data for the knapsack tabu search algorithm (24 items).

L profits found (in 25 runs) # optimal solutions found
minimum maximum average
1 | 13079298 13466838 13388643.5 0
2 | 13084476 13500943 134157475 0
L 3 | 13245597 13500943 13456205.2 0
4 | 13264009 13500943 13446933.8 0
5 | 13358351 13500943 13458145.8 0
6 | 13148978 13549094 13427333.6 1
7 | 13116665 13549094 13462902.4 4
8 | 13346220 13549094 134979322 7

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

9000000000

A Genetic Algorithm for TSP

A Genetic Algorithm for the TSP

Traveling Salesman Problem (TSP)

Instance: a complete graph K,
a cost functionc: V xV — R

Find: a Hamiltonian circuit [zg, z1,...,Z,—1] that minimizes
C(X) = c(zo,x1) + c(x1,22) + ... + c(Tp—1,%0)

Note that 2n permutations represent the same cycle.
Universe: X’ = set of all n! permutations.
Steps:

@ Selection of initial population.

@ Mutation: steepest ascent 2-opt.
@ Recombination using two methods: partially matched crossover and

another method.

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

O®@00000000

A Genetic Algorithm for TSP

Mutation
Steepest ascent algorithm based on the 2-opt heuristic:

x(i)

2 opt move x(i)

X(i+: X(i+1)

x(j+1) x(j+1)

x() xG)
Gain in applying a 2-opt move:

c(wi, wiy1) + (@), 2jq1) — c(@iy1, vjp1) — (@i, 75)

Heuristic Search

Lucia Moura

Heuristic Searches Applied to Various Problems

0O0@0000000

A Genetic Algorithm for TSP

N(X) = all Y € X that can be obtained from X by a 2-opt move.

Algorithm STEEPESTASCENTTWOOPT(X)
done — false;
while (not done) do
done «— true; go < 0;
fori < O0ton—1do
forj«—i+2ton—1do
9 G(X,4,j);
if (g > go) then
9o < g: o < Jo < J;
if (go > 0) then
X — Xig jo:
done «— false;

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

O00@000000

A Genetic Algorithm for TSP

Selecting the initial population

Randomly pick one and then mutate it:

Algorithm SELECT(popsize)
for i «— 0 to popsize — 1 do
r <~ RANDOMINTEGER(0, n! — 1);
P; —PERMLEXUNRANK(n, 7);
STEEPESTASCENTTWOOPT(F;);
return [Py, P, ..., Ppopsize—1];

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

0O000@00000

A Genetic Algorithm for TSP

Recombination algorithm 1: Partially Matched Crossover

Algorithm PMREC(A, B)

h < RANDOMINTEGER(10,7/2); (length of the substring)

j < RANDOMINTEGER(0,n — 1); (start of the substring)

(C, D) «— PARTIALLYMATCHEDCROSSOVER(A, B, j, (h + j)mod n)
STEEPESTASCENTTWOOPT(C);

STEEPESTASCENTTWOOPT(D);

return (C, D);

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

O0000e0000

A Genetic Algorithm for TSP

Recombination Algorithm 2

Algorithm MGKREC(A, B)

h < RANDOMINTEGER(10,7/2); (length of the substring)
j < RANDOMINTEGER(0,n — 1); (start of the substring)
T —
(pick subcycle of length h starting from pos j:)
fori«—0toh—1do

DJi] < Bl(i +j) mod n];

T «— T U{Dl[il};
Complete cycle with permutation in A using guys not already in D
in the order prescribed by A:
forj«<—0Oton—1do

if A[j] €T then {D[i] — A[j];i—1i+1;}
STEEPESTASCENTTWOOPT(D);
(Similarly build C' swapping A and B roles:)...

Heuristic Searches Applied to Various Problems

O00000e000

A Genetic Algorithm for TSP

(Algorithm continued)
(Similarly build C' swapping A and B roles:)...
j < RANDOMINTEGER(0,n — 1); (start of the substring)
T «— 0
fori < 0toh—1do
Cli] < Al(i +j) mod n];
T — TU{Cli]};
for j«—0ton—1do
if B[j] € T then {C[i] — B[j]; i —i+1; }
STEEPESTASCENTTWOOPT(C);
return (C, D);

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

0000000800

A Genetic Algorithm for TSP

Genetic Algorithm for TSP

Algorithm GENETICTSP (popsize, cmaz)
[Po, P, ..., Ppopsize—1] <—SELECT(popsize);
Sort Py, P1, ..., Pyopsize—1 in increasing order of cost.
Xpest — Py; BestCost «— C(P);
for (c — 1;¢ < ¢paz;c — c+ 1) do
for i < 0 to popsize/2 — 1 do
(Ppopsize—i—Qi, Ppopsize+2i+1) — REC (P2i7 P2i+1);
Sort Py, P1, ..., Papopsize—1 In increasing order of cost.
curCost — C(Pp);
if (curCost < BestCost) then
Xpest — Po;
BestCost « curCost;
return Xpeg;

Heuristic Search Lucia Moura

Heuristic Searches Applied to Various Problems

0000000080

A Genetic Algorithm for TSP

TABLE 5.7
GENETICTSP data with recombination operation PMREC.
cost found "
M n | Opt. Cost | popsize | Cpae | min max avg | No. Opt. toung
M50a | 50 185 8 50 192 214 200.50 T
100 | 191 219 20000 0
200 | 190 203 196.60 0
16 50 187 207 19320 0
100 | 187 206 19320 0
200 | 187 200 19370 0
32 50 189205 19470 0
100 | 186 199 190.70 0
200 | 188 200 19240 0
M50b | 50 158 8 50 163 184 17540 0
100 163 195 17370 0
200 | 160 191 17730 0
16 50 159 176 167.40 0
100 | 163 184 171.50 0
200 | 16l 189 17210 0
32 50 161 173 167.60 0
100 | 163 178 169.40 0
| 200 | 159 178 166.70 0
M30c | 50 155 8 50 162 181 169.40 0
| 100 | 159 186 169.50 0
200 | 159 187 16930
16 50 155 171 161.30 1
100 155 182 166.10 1
200 | 157 182 167.70 0
32 50 155 170 161.60 I
100 | 158 167 16140 0
200 [157 180 162.50 0

Heuristic Searches Applied to Various Problems

000000000 e

A Genetic Algorithm for TSP

TABLE 5.8
GENETICTSP with recombination operation MGKREC.

cost found

M n | Opt. Cost | popsize | Cuae | Min max avg | No. Opt. found
M50a | S0 185 8 50 186 196 191.70

¢ 100 | 186 199 190.30
200 | 186 194 189.20
16 50 186 192 189.20
i 100 | 185 192 187.00
p 200 | 185 192 187.60
32 50 186 192 [88.10
100 | 185 190 187.30
200 | I8 190 187.30
‘M50b | 50 158 g 50 160 171 165.30
| 100 | 159 166 161.60
/ 200 | 159 170 162.00

) 6 S0 158 164 161.20
¥ 100 | 158 162 159.80
- 200 | 159 163 160.70

5] S0 [16 165 160.70

100 | 159 163 160.30
200 | 158 160 158.90
[M50c | 50 155 8 50 156 168 160.50

PO == —ooo|——0—wo o oo

g 32 50 155 159 156.10
| 100 | 155 158 15540
200 | 155 156 155.10

100 | 155 167 160.70 2

200 | 155 162 15730 5

6T 50 [155 162 157.50 7

E 100 | 155 159 15630 5
E 200 | 155 159 15570 8
5

8

9

	Heuristic Search Intro
	Heuristic Search Intro
	A general framework for heuristic search
	Designing a neighbourhood search algorithm

	Design Strategies for Heuristic Algorithms
	Hill-Climbing
	Simulated Annealing
	Tabu Search
	Genetic Algorithms

	Heuristic Searches Applied to Various Problems
	Hill-climbing Algorithms
	Two heuristics for the Knapsack Problem
	A Genetic Algorithm for TSP

