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Heuristic Search Intro

Heuristic Search vs Exhaustive Search
Exhaustive Search

Backtracking (backtracking with bounding):
I Find all feasible solutions.
I Find one optimal solution.
I Find all optimal solutions.

Branch-and-Bound:
I Find one optimal solution.

Heuristic Search
Types of problem it can be applied to:

Find 1 optimal solution (when optimum value is known)

Find a “close to” optimal solution (the best solution we manage).

Heuristics methods we will study:

Hill-climbing, Simulated annealing, Tabu search, Genetic algorithms.
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Heuristic Search Intro

Characteristics of heuristic search

The state space is not fully explored.

Randomization is often employed.

There is a concept of neighbourhood search.

Heuristics are applied to explore the solutions.
The word “heuristics” means “serving or helping to find or discover”
or “proceeding by trial and error”.
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A general framework for heuristic search

A general framework for heuristic search

Generic Optimization Problem (maximization):

Instance: A finite set X .
an objective function P : X → Z.
m feasibility functions gj : X → Z, 1 ≤ j ≤ m.

Find: the maximum value of P (X)
subject to X ∈ X and gj(X) ≥ 0, for 1 ≤ j ≤ m.

Exercise: pick your favorite combinatorial optimization problem and write
it in this framework.
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A general framework for heuristic search

A general framework for heuristic search (cont’d)

Designing a heuristic search:

1 Define a neighbourhood function N : X → 2X .
E.g. N(X) = {X1, X2, X3, X4, X5}.

2 Design a neighbourhood search:
Algorithm that finds a feasible solution on the neighbourhood of a
feasible solution X.
There are two types of neghbourhood searches:

I Exhaustive (chooses best profit among neighbour points)
I Randomized (picks a random point among the neighbour points)
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A general framework for heuristic search

Defining a neighbourhood function

N : X → 2X .

So, N(X) is a subset of X .

N(X) should contain elements that are similar or “close to” X.

N(X) may contain infeasible elements of X .

In order to be useful, we would like to be able to get to Xopt from X0

via a number of applications of N(·).

I.E. the graph G with V (G) = X and E(G) = {{X,Y } : Y ∈ N(X)}
should ideally be connected, or at least have one optimal solution in
each of its connected components.

Computing N(X) should be fast, and in particular |N(X)| shouldn’t
be too large.
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A general framework for heuristic search

Examples of neighbourhood functions

First, define dist(X,Y ) for X,Y ∈ X .
Let d0 be a constant positive integer.
We can define a neighbourhood function as follows:

Nd0(X) = {Y ∈ X : dist(X,Y ) ≤ d0}.
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A general framework for heuristic search

Examples of neighbourhood functions based on distances

X = {0, 1}n, set of all binary n-tuples.
Here dist is the Hamming distance.
N1([010]) = {[000], [110], [011], [010]}.

|Nd0(X)| =
d0∑
i=0

(
n

i

)
.

X = set of all permutations of {1, 2, . . . , n}.
Let α = [α1, . . . , αn] and β = [β1, . . . , βn] be two permutations.
Define distance as follows: dist(α, β) = |{i : αi 6= βi}|.
Note that N1(X) = {X} is not very useful; we need d0 > 1.
N2([1, 2, 3, 4]) = {[1, 2, 3, 4], [2, 1, 3, 4], [3, 2, 1, 4],

[4, 2, 3, 1], [1, 3, 2, 4], [1, 4, 3, 2], [1, 2, 4, 3]}
|N2(X)| = 1 +

(
n
2

)
.
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Designing a neighbourhood search algorithm

Designing a neighbourhood search algorithm
Input: X
Output: Y ∈ N(X) \ {X} such that Y is feasible, or “fail”.
Possible Neighbourhood Search Strategies:

1 Find a feasible Y ∈ N(X) \ {X} such that P (Y ) is maximized.
Return “fail” if there is no feasible solution in N(X) \ {X}.

2 Find a feasible Y ∈ N(X) \ {X} such that P (Y ) is maximized.
if P (Y ) > P (X) then return Y ; else return “fail”.
(steepest ascent method)

3 Find any feasible Y ∈ N(X) \ {X}.
Return “fail” if there is no feasible solution in N(X) \ {X}.

4 Find any feasible Y ∈ N(X) \ {X}.
if P (Y ) > P (X) then return Y ; else return “fail”.

Strategies 1 and 2 may be exhaustive.
Strateges 3 and 4 are usually randomized.
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Designing a neighbourhood search algorithm

A generic heuristic search algorithm
Given N , a neighbourhood function, the heuristic algorithm hN either:

Perform one neighbourhood search (using one of the strategies)
Perform a sequence of j neighbourhood searches, where each one
takes us from Xi to Xi+1: [X = X0, X1, . . . , Xj = Y ].

Algorithm GenericHeuristicSearch(cmax)
Select a feasible solution X ∈ X ;
Xbest ← X; (stores best so far); c← 0;
while (c ≤ cmax) do

Y ← hN (X);
if (Y 6= “fail”) then X ← Y ;

if (P (X) > P (Xbest)) then Xbest ← X;
[else c← cmax + 1; (add this if hN is not randomized)]
c← c+ 1;

return Xbest;
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Hill-Climbing

Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from different random
starting points X.

For Hill-Climbing, hN (X) returns:

I Y ∈ N(X) such that Y is feasible and P (Y ) > P (X),
I or, otherwise, “fail”.
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Hill-Climbing

Hill Climbing Algorithm

Algorithm GenericHillClimbing()
Select a feasible solution X ∈ X .
Xbest ← X; searching ← true;
while (searching) do

Y ← hN (X);
if (Y 6=“fail”) then
X ← Y ;
if (P (X) > P (Xbest)) then Xbest ← X;

else searching ← false;
return Xbest;

Hill-climbing can get trapped in a local optimum.
Other search strategies (simulated annealing,tabu search) try to escape
from local optima.
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Simulated Annealing

Simulated Annealing

Analogy with a method of cooling metal: annealing.

I Temperature T decreases at each iteration, according to a cooling
schedule (T0, α):

I Initally T ← T0;
I later T ← αT for a fixed 0 < α < 1.

Going uphill is always accepted.

Going downhill is sometimes accepted with a probability based on
how much downhill we go and on the current temperature.

I Given Y = hN (X) with P (Y ) ≤ P (X),
I accept Y with probability

e(P (Y )−P (X))/T =
1

e(P (X)−P (Y ))/T

(We get pickier as we progress, since T decreases)
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Simulated Annealing

Simulated Annealing Algorithm

Algorithm GenericSimulatedAnnealing(cmax, T0, α)
c← 0; T ← T0;
Select a feasible solution X ∈ X ; Xbest ← X;
while (c ≤ cmax) do

Y ← hN (X); // this is usually a randomized choice
if (Y 6=“fail”) then

if (P (Y ) > P (X)) then
X ← Y ;
if (P (X) > P (Xbest)) then Xbest ← X;

else r ← random(0, 1);

if (r < e
P (Y )−P (X)

T ) then X ← Y ;
c← c+ 1;
T ← αT ;

return Xbest;
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Tabu Search

Tabu Search

Neighbourhood search:
Choose Y ∈ N(X) \ {X} such that Y is feasible and P (Y ) is
maximum among all such elements (exhaustive neighbourhood
search).
It may happen that P (Y ) < P (X) (we escape from a local optimum).

What may be the risk?

I Cycling.
I When going downhill from X to Y we may go back from X to Y .
I Cycling may also take several steps, such as X → Y → Z → X.

Tabu-search uses a strategy for avoiding cycling: a tabu list.
After a move X → Y ,
we forbit the application of change(Y,X) for L iterations
(L is the lifetime of the tabu list).
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Tabu Search

Tabu List

After a move X → Y , we keep change(Y,X) t the Tabu List for L
iterations.

Example:
X = {0, 1}n, using N1(X) = {Y ∈ X : dist(X,Y ) = 1}.
X = [0100] and Y = [0101], we have that change(Y,X) = 4 =
index of coordinate that was swapped.
Suppose L = 2.

sequence of points: [0100] [0101] [1101] [1001] [1011]
tabu list: 4 4,1 1,2 2,3

So any sequence that cycles X → . . .→ X has length at least 2L.
Choosing L = 10 is typical.
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Tabu Search

TabuList is defined below to be a list where TabuList[c] = δ, where δ
is the designated forbidden (tabu) change at iteration c.

For tabu search, hN (X) = Y , where

Y ∈ N(X), Y is feasible;

change(X,Y ) 6∈ { TabuList[d] : c− L ≤ d ≤ c− 1};
P (Y ) is maximum among all such feasible elements.

In absolute no circumstance implement TabuList as an array indexed by
the number of iterations! Instead, implement TabuList as a queue of
length L. Note that the algorithm may mislead you to think you are using
such an array, given the notation defined above; careful!
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Tabu Search

Tabu Search Algorithm: textbook version/typo correction

Algorithm GenericTabuSearch(cmax, L)
c← 1;
Select a feasible solution X ∈ X .
Xbest ← X;
while (c ≤ cmax) do
N ← N(X) \ {F : change(X,F ) ∈ Tabulist[d],c− L ≤ d ≤ c− 1}; (typo corrected)
for each (Y ∈ N) do if (Y is infeasible) then N ← N \ {Y };
if (N = ∅) then return Xbest;
Find Y ∈ N such that P (Y ) is maximum; /* computes Y = hN (X) */
Tabulist[c]←change(Y,X);
X ← Y ;
if (P (X) > P (Xbest)) then Xbest ← X;
c← c+ 1;

return Xbest;
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Tabu Search

Tabu List Implementation

In absolute no circumstance implement TabuList as an array indexed by
the number of iterations!
In the real implementation, Tabulist can be a queue of length L!!!
So, the operation
Tabulist[c]←change(Y,X);
must be implemented as:
Tabulist.insert(change(Y,X)); (only keeps last L elements)

and the line: N ← N(X) \ {F :
change(X,F ) ∈Tabulist[d], c− L ≤ d ≤ c− 1}
should be understood as:
N ← N(X) \ {F : change(X,F ) is in Tabulist};
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Tabu Search

Tabu Search Algorithm: with FIFO queue for Tabulist

Algorithm GenericTabuSearch(cmax, L)
c← 1;
Select a feasible solution X ∈ X .
Xbest ← X;
while (c ≤ cmax) do
N ← N(X) \ {F : change(X,F ) is in Tabulist}
for each (Y ∈ N) do if (Y is infeasible) then N ← N \ {Y };
if (N = ∅) then return Xbest;
Find Y ∈ N such that P (Y ) is maximum; /* computes Y = hN (X) */
Tabulist.insert(change(Y,X), L); /* only keeps last L entries */
X ← Y ;
if (P (X) > P (Xbest)) then Xbest ← X;
c← c+ 1;

return Xbest;
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Genetic Algorithms

Genetic Algorithms
Fix a number PopSize (population size).
One iteration works as follows:

...

MATING (pairs are recombined)

...

...

MUTATION
...

...
...

... new guys...

... PopSize guys

Select Best Guys up to PopSize

Current Generation:

Next Generation: PopSize guys

Current generation:

Iterate as many generations as you like.
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Genetic Algorithms

Mating Strategies (Recombination)

Producing children from parents.

Method 1: Crossover.

Let j be a crossover point.

��������������

����������������

jj

Parents:

2 Children:

Example: j = 3
Parents: [110|1101001] [100|1000101]
Children: [110|1000101] [100|1101001]
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Genetic Algorithms

Mating Strategies (Recombination), cont’d

Method 2: Partially matched crossover (for permutations)

Two crossover points: 1 ≤ j < k ≤ n
Example: j = 3 and k = 6
α = [3, 1, 4, 7, 6, 5, 2, 8] β = [8, 6, 4, 3, 7, 1, 2, 5]

swap α β

4↔ 4 [3, 1, 4, 7, 6, 5, 2, 8] [8, 6, 4, 3, 7, 1, 2, 5]
7↔ 3 [7, 1, 4, 3, 6, 5, 2, 8] [8, 6, 4, 7, 3, 1, 2, 5]
6↔ 7 [6, 1, 4, 3, 7, 5, 2, 8] [8, 7, 4, 6, 3, 1, 2, 5]
5↔ 1 [6, 5, 4, 3, 7, 1, 2, 8] [8, 7, 4, 6, 3, 5, 2, 1]
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Genetic Algorithms

Mating Schemes

Kids may be infeasible: incorporate constraints as penalties.

Various methods are possible for mating schemes:

1 Random monogamy with 2 kids per couple: randomly partition
population into pairs, with two kids produced by each pair.

2 Make better parents having more kids:
measure parent fitness by objective function; parents with higher
fitness produce more kids.

Heuristic Search Lucia Moura



Heuristic Search Intro Design Strategies for Heuristic Algorithms Heuristic Searches Applied to Various Problems

Genetic Algorithms

Algorithm GenericGeneticAlgorithm(PopSize, cmax)
Select an initial population P with PopSize feasible solutions;
for each X ∈ P do X ← hN (X); [mutation]
Xbest ← element in P with maximum profit; c← 1;
while (c ≤ cmax) do

Q ← P; Construct a pairing of the elements in P;
for each pair (W,X) in the pairing do

(Y,Z)← rec(W,X); [recombination/mating]
Y ← hN (Y ); Z ← hN (Z); [mutations]
Q ← Q∪ {Y,Z};

Set P to be the best PopSize members of Q;
Let Y be the element in P with maximum profit;
if (P (Y ) > P (Xbest)) then Xbest ← Y ;
c← c+ 1;

return Xbest;
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Hill-climbing Algorithms

Steepest Ascent for Uniform Graph Partition

Problem: Uniform Graph Partition
Instance: A complete graph on 2n vertices,

cost : E → Z+ ∪ {0} (cost function)
Find: the minimum value of

C([X0, X1]) =
∑

u∈X0,v∈X1
cost(u, v)

subject to V = X0 ∪X1, |X0| = |X1| = n.

Example: n = 4; cost(1, 2) = 1, cost(1, 3) = 2, cost(1, 4) = 5, cost(2, 3) =
0, cost(2, 4) = 5, cost(3, 4) = 1.
Only 3 feasible solutions (except for exchanging X0 and X1):

X0 = {1, 2}, X1 = {3, 4}, C([X0, X1]) = 12
X0 = {1, 3}, X1 = {2, 4}, C([X0, X1]) = 7 (optimal)
X0 = {1, 4}, X1 = {2, 3}, C([X0, X1]) = 9
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Hill-climbing Algorithms

Uniform Graph Partition: Steepest Ascend Algorithm

Neighbourhood function: exchange x ∈ X0 and y ∈ X1.

Algorithm UGP(Cmax)
X = [X0, X1]← SelectRandomPartition
c← 1
while (c ≤ Cmax) do

[Y0, Y1]← Ascend(X)
if not fail then

{X0 ← Y0; X1 ← Y1; }
else return
c← c+ 1
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Hill-climbing Algorithms

Ascend Algorithm

Algorithm Ascend([X0, X1])
g ← 0
for each i ∈ X0 do

for each j ∈ X1 do
t← G[X0,X1](i, j) (gain obtained in exchange)
if (t > g) then {x← i; y ← j; g ← t}

if (g > 0) then
Y0 ← (X0 ∪ {y}) \ {x}
Y0 ← (X1 ∪ {x}) \ {y}
fail ← false
return [Y0, Y1]

else {fail ← true; return [X0, X1]}
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Hill-climbing Algorithms

SelectRandomPartition

Two possible algorithms:

1 Picking X0 as a random n-subset r of a 2n-set:
Get a random integer r ∈ [0,

(
2n
n

)
− 1] and apply

kSubsetLexUnrank(r, n, 2n).

2 Randomly shufling elements in [0, 2n− 1]:
Create array A[0, 2n− 1] with randomly chosen numbers as elements.
Create array B[0, 2n− 1] initially with B[i] = i.
Sort A, doing same swaps on B.
Take X0 as the first half of B, and X1 as the second half.
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Hill-climbing Algorithms

Hill-climbing for Steiner triple systems
Textbook, Section 5.4.

Definition

A Steiner triple system of order v, denoted STS(v), is a pair (V,B) where:
V = {1, 2, . . . v} is a set of points,
B = {B1, B2, . . . , Bb} is a set of 3-sets, called blocks, such that any pair
of points in V is in a unique block Bi ∈ B.

Example: STS(9):

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = { {1, 2, 3}, {1, 4, 7}, {1, 5, 9}, {1, 6, 8}, {4, 5, 6}, {2, 5, 8},

{2, 6, 7}, {2, 4, 9}, {7, 8, 9}, {3, 6, 9}, {3, 4, 8}, {3, 5, 7}}
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Hill-climbing Algorithms

Replication number and number of blocks

Lemma

Let (V,B) be an STS(v). Then, every point in V occurs in exactly

r = v−1
2 blocks and |B| = v(v−1)

6 .

Proof:

1 Any point x must appear in some block with each of all other (v − 1)
points. Point x occurs with 2 other points in each of the rx blocks it
appears. Therefore, rx = v−1

2 .

2 We count T , the number of points with their replications appearing
on B, in two ways: T = 3× b and T = v × r. Thus, 3× b = v × r,
which implies b = v(v−1)

6 .
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Hill-climbing Algorithms

Necessary and sufficient conditions for existence of STS(v)

Since r = v−1
2 (point replication number) and b = v(v−1)

6 (number of
blocks) must be integer numbers, we need v ≡ 1, 3 (mod 6).
These necessary conditions have been proven to be sufficient:

Theorem

∃STS(v) ⇐⇒ v ≡ 1, 3 (mod 6)

So, there exists an STS(v) for
v = 1, 3, 7, 9, 13, 15, 19, 21, 25, 17, 31, 33, . . .

A partial Steiner triple system consists of a set of triples B with each pair
of points appearing in at most one Bi ∈ B. Then, we can formulate the
search problem as follows.
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Hill-climbing Algorithms

Searching for Steiner Triple Systems

Problem: Construct a Steiner Triple System
Instance: v such that v ≡ 1, 3 (mod 6)
Find: Maximize |B|

subject to: ([1, v],B) is a
partial Steiner triple system

The universe X is the set of all sets of blocks B, such that ([1, v],B) is a
partial Steiner triple system.

An optimal solution is any feasible solution with |B| = v(v−1)
6 .
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Hill-climbing Algorithms

Stinson’s hill-climbing algorithm for STSs

Algorithm Stinson’s Algorithm(v)
Numblocks ← 0
V ← {1, 2, . . . v}
B ← ∅
While (Numblocks < v(v−1)

2 ) do { Switch}
output (V,B)

To present Switch, we need:

Definition

A point x is said to be a live point in ([1, v],B) if rx <
v−1
2 .

A pair {x, y} is said to be a live pair in ([1, v],B) if there exists no B ∈ B
with {x, y} ⊆ B
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Hill-climbing Algorithms

Stinson’s hill-climbing for STSs: Switch Algorithm

Algorithm Switch
Chosse a random live point x.
Choose random y, z such that
{x, y} and {x, z} are live pairs.

If ({y, z} is a live pair) then
B ← B ∪ {{x, y, z}}
Numblocks ← Numblocks +1

else
Let {w, y, z} ∈ B be the block containing {y, z}
B ← B ∪ {{x, y, z}} \ {{w, y, z}}

See implementation details in the textbook.
Using appropriatte data structures, Switch is implemented in constant
time.
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Two heuristics for the Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits p0, p1, . . . , pn−1

Weights w0, w1, . . . , wn−1

Knapsack capacity M

Universe: X = {0, 1}n (set of all n-tuples)
an n-tuple [x0, x1, . . . , xn−1] is feasible if∑n−1

i=0 wixi ≤M .

Objective: maximize P (X) =
∑n−1

i=0 pixi.
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Two heuristics for the Knapsack Problem

Algorithm KnapsackSimulatedAnnealing(cmax, T0, α)
c← 0; T ← T0; X ← [x0, x1, . . . , xn−1] = [0, 0, . . . , 0];
CurW ← 0; Xbest ← X;
while (c ≤ cmax) do
j ← randomInt(0, n− 1); Y ← X; yj ← 1− xj ; (using N1(X))
if (yj = 1) and (curW + wj > M) then Y ← fail;
if (Y 6= fail) then if (yj= 1) then

X ← Y ;
curW ← curW + wj ;
if P (X) > P (Xbest) then Xbest ← X;

else r ← random(0, 1);

if (r < e−pj/T ) then
X ← Y ; curW ← curW − wj ;

c← c+ 1; T ← αT ;
return (Xbest);
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Two heuristics for the Knapsack Problem

Knapsack Simulated Annealing Results
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Two heuristics for the Knapsack Problem

Tabu Search for Knapsack
We will use the same neighbourhood N1(.).
Do exhaustive search on the neighbourhood in order to find the best way
to update the current solution.
Instead of Profit improvement only, we look for improvements based on
the ratio pi/wi:

1 Chose i with maximum pi/wi among the indexes j where xj = 0, j is
not on Tabulist, and changing xj to 1 does not exceed M .

2 If there is no j as above, then choose i with minimum pi/wi among
the indexes j where xj = 1 and j is not on Tabulist.

This can be expressed by saying that we want to maximize

(−1)xj
pj

wj
.
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Two heuristics for the Knapsack Problem

Algorithm KnapsackTabuSearch(cmax, L)
Select a random feasible X = [x0, x1, . . . , xn−1] ∈ {0, 1}n;

curW ←
∑n−1

i=0 xiwi; Xbest ← X;
for (c← 1; c ≤ cmax; c← c+ 1) do

N ← {0, 1, . . . , n− 1} \ {j : j is in Tabulist};
for each (i ∈ N) do

if (xi = 0) and (curW + wi > M) then N ← N \ {i};
if (N = ∅) then break for-loop;
Find i ∈ N such that (−1)xipi/wi is maximum;
Tabulist.insert(i, L); (removing oldest, if has L+ 1 items)
xi ← 1− xi; (swap i coordinate)
if (xi = 1) then curW ← curW + wi;

else curW ← curW − wi;
if P (X) > P (Xbest) then Xbest ← X;

return Xbest;
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Two heuristics for the Knapsack Problem
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A Genetic Algorithm for the TSP

Traveling Salesman Problem (TSP)

Instance: a complete graph Kn

a cost function c : V × V → R
Find: a Hamiltonian circuit [x0, x1, . . . , xn−1] that minimizes

C(X) = c(x0, x1) + c(x1, x2) + . . .+ c(xn−1, x0)

Note that 2n permutations represent the same cycle.
Universe: X = set of all n! permutations.
Steps:

Selection of initial population.

Mutation: steepest ascent 2-opt.

Recombination using two methods: partially matched crossover and
another method.
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A Genetic Algorithm for TSP

Mutation

Steepest ascent algorithm based on the 2-opt heuristic:

x(i)

x(i+1)

x(j)

x(j+1)

x(i)

x(i+1)

x(j)

x(j+1)

2 opt move

Gain in applying a 2-opt move:

G(X, i, j) = C(X)− C(Xij)
= c(xi, xi+1) + c(xj , xj+1)− c(xi+1, xj+1)− c(xi, xj)
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A Genetic Algorithm for TSP

N(X) = all Y ∈ X that can be obtained from X by a 2-opt move.

Algorithm SteepestAscentTwoOpt(X)
done← false;
while (not done) do

done← true; g0 ← 0;
for i← 0 to n− 1 do

for j ← i+ 2 to n− 1 do
g ← G(X, i, j);
if (g > g0) then
g0 ← g; i0 ← i; j0 ← j;

if (g0 > 0) then
X ← Xi0,j0 ;
done← false;
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A Genetic Algorithm for TSP

Selecting the initial population

Randomly pick one and then mutate it:

Algorithm Select(popsize)
for i← 0 to popsize− 1 do

r ←RandomInteger(0, n!− 1);
Pi ←PermLexUnrank(n, r);
SteepestAscentTwoOpt(Pi);

return [P0, P1, . . . , Ppopsize−1];

Heuristic Search Lucia Moura



Heuristic Search Intro Design Strategies for Heuristic Algorithms Heuristic Searches Applied to Various Problems

A Genetic Algorithm for TSP

Recombination algorithm 1: Partially Matched Crossover

Algorithm PMRec(A,B)
h← RandomInteger(10, n/2); (length of the substring)
j ← RandomInteger(0, n− 1); (start of the substring)
(C,D)← PartiallyMatchedCrossover(A,B, j, (h+ j)mod n)
SteepestAscentTwoOpt(C);
SteepestAscentTwoOpt(D);
return (C,D);
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A Genetic Algorithm for TSP

Recombination Algorithm 2

Algorithm MGKRec(A,B)
h← RandomInteger(10, n/2); (length of the substring)
j ← RandomInteger(0, n− 1); (start of the substring)
T ← ∅;
(pick subcycle of length h starting from pos j:)
for i← 0 to h− 1 do

D[i]← B[(i+ j) mod n];
T ← T ∪ {D[i]};

Complete cycle with permutation in A using guys not already in D
in the order prescribed by A:
for j ← 0 to n− 1 do

if A[j] 6∈ T then {D[i]← A[j]; i← i+ 1; }
SteepestAscentTwoOpt(D);
(Similarly build C swapping A and B roles:)...
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A Genetic Algorithm for TSP

(Algorithm continued)
(Similarly build C swapping A and B roles:)...
j ← RandomInteger(0, n− 1); (start of the substring)
T ← ∅;
for i← 0 to h− 1 do

C[i]← A[(i+ j) mod n];
T ← T ∪ {C[i]};

for j ← 0 to n− 1 do
if B[j] 6∈ T then {C[i]← B[j]; i← i+ 1; }

SteepestAscentTwoOpt(C);
return (C,D);
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Genetic Algorithm for TSP

Algorithm GeneticTSP(popsize, cmax)
[P0, P1, . . . , Ppopsize−1]←Select(popsize);
Sort P0, P1, . . . , Ppopsize−1 in increasing order of cost.
Xbest ← P0; BestCost← C(P0);
for (c← 1; c ≤ cmax; c← c+ 1) do

for i← 0 to popsize/2− 1 do
(Ppopsize+2i, Ppopsize+2i+1)← Rec (P2i, P2i+1);

Sort P0, P1, . . . , P2popsize−1 in increasing order of cost.
curCost← C(P0);
if (curCost < BestCost) then
Xbest ← P0;
BestCost← curCost;

return Xbest;

Note: Rec represents either of the two recombination algorithms.
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