

Introduction to Combinatorial Algorithms

What are:

- Combinatorial Structures?
- Combinatorial Algorithms?
- Combinatorial Problems?

|Combinatorial Structures|

Combinatorial structures are collections of k-subsets/K-tuple/permutations from a parent set (finite).

Examples:

• Undirected Graphs:

Collections of 2-subsets (edges) of a parent set (vertices).

$$V = \{1, 2, 3, 4\}$$
 $E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\}\}$

• Directed Graphs:

Collections of 2-tuples (directed edges) of a parent set (vertices).

$$V = \{1, 2, 3, 4\}$$
 $E = \{(2, 1), (3, 1), (1, 4), (3, 4)\}$

• Hypergraphs or Set Systems:

Similar to graphs, but (hyper) edges may be sets with more than two elements.

$$V = \{1, 2, 3, 4\}$$
 $E = \{\{1, 3\}, \{1, 2, 4\}, \{3, 4\}\}$

Building blocks: finite sets, finite lists (tuples)

• Finite Sets

$$X = \{1, 2, 3, 5\}$$

- undordered structure, no repeats $\{1, 2, 3, 5\} = \{2, 1, 5, 3\} = \{2, 1, 1, 5, 3\}$
- cardinality (size) = number of elements |X| = 4.

A <u>k-subset</u> of a finite set X is a set $S \subseteq X$, |S| = k. For example: $\{1, 2\}$ is a 2-subset of X.

• Finite Lists (or Tuples)

$$L = [1, 5, 2, 1, 3]$$

- ordered structure, repeats allowed $[1, 5, 2, 1, 3] \neq [1, 1, 2, 3, 5] \neq [1, 2, 3, 5]$
- length = number of items, length of L is 5.

An n-tuple is a list of length n.

A <u>permutation</u> of an n-set X is a list of length n such that every element of X occurs exactly once.

$$X = \{1, 2, 3\}, \quad \pi_1 = [2, 1, 3] \quad \pi_2 = [3, 1, 2]$$

Graphs

DEFINITION. A graph is a pair (V, E) where:

V is a finite set (of <u>vertices</u>).

E is a finite set of 2-subsets (called edges) of V.

Example: G_1 : $V = \{0, 1, 2, 3, 4, 5, 6, 7\}$ $E = \{\{0, 4\}, \{0, 1\}, \{0, 2\}, \{2, 3\}, \{2, 6\}, \{1, 3\}, \{1, 5\}, \{3, 7\}, \{4, 5\}, \{4, 6\}, \{4, 7\}, \{5, 6\}, \{5, 7\}, \{6, 7\}\}$

Complete graphs: graphs with all possile edges.

Examples:

Substructures of a graph:

1. A <u>hamiltonian circuit</u> (hamiltonian cycle) is a closed path that passes through each vertex once.

The following list describes a hamiltonian cycle in G_1 : [0, 1, 5, 4, 6, 7, 3, 2] (different lists may describe the same cycle).

CSI5165 - Fall 2005

Traveling Salesman Problem: given a weight/cost function $w: E \to R$ on the edges of G, find a smallest weight hamiltonian cycle in G.

2. A <u>clique</u> in a graph G = V, E) is a subset $C \subseteq V$ such that $\{x, y\} \in E$, for all $x, y \in C$ with $x \neq y$. (Or equivalently: the subgraph induced by C is complete).

Example:

 G_2 :

Some cliques of G_2 :

Maximum cliques of G_2 :

Famous problems involving cliques:

- Maximum clique problem: find a maximum clique in a graph.
- All cliques problem: find all cliques in a graph without repetition.

Set systems/Hypergraphs

DEFINITION. A set system (or hypergraph) is a pair (X, \mathcal{B}) where:

X is a finite set (of points).

 \mathcal{B} is a finite set of subsets of X (blocks).

Examples:

- Graph: A graph is a set system with every block with cardinality 2.
- Partition of a finite set:

A partition is a set system (X, \mathcal{B}) such that $B_1 \cap B_2 = \emptyset$ for all $B_1, B_2 \in \mathcal{B}, B_1 \neq B_2$, and

$$\bigcup_{B\in\mathcal{B}} B = X.$$

• Steiner triple system (a type of combinatorial designs): \mathcal{B} is a set of 3-subsets of X such that for each $x, y \in X, x \neq y$, there exists eactly one block $B \in \mathcal{B}$ with $\{x, y\} \subseteq B$.

Example:

$$X = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathcal{B} = \{\{0, 1, 2\}, \{0, 3, 4\}, \{0, 5, 6\}, \{1, 3, 5\}, \{1, 4, 6\}, \{2, 3, 6\}, \{2, 4, 5\}\}\}$$

Combinatorial Algorithms

Algorithms for investigating combinatorial structures. Three types:

• Generation

Construct all combinatorial structures of a particular type.

- Generate all subsets/permutations/partitions of a set.
- Generate all cliques of a graph.
- Generate all maximum cliques of a graph.
- Generate all Steiner triple systems of a finite set.

• Enumeration

Compute the number of different structures of a particular type.

- Compute the number of subsets/permutat./partitions of a set.
- Compute the number of cliques of a graph.
- Compute the number of maximum cliques of a graph.
- Compute the number of Steiner triple systems of a finite set.

• Search

<u>Find at least one</u> example of a combinatorial structures of a particular type (if one exists).

Optimization problems can be seen as a type of search problem.

- Find a Steiner triple system on a finite set. (feasibility)
- Find a maximum clique of a graph. (optimization)
- Find a hamiltonian cycle in a graph. (feasibility)
- Find a smallest weight hamiltonian cycle in a graph. (optimization)

Hardness of Search and Optimization

Many search and optimization problems are <u>NP-hard</u>, which means that

unless P = NP (an important unsolved complexity question)

no polytomial-time algorithm to solve the problem would exist. Approaches for dealing with NP-hard problems:

- Exhaustive Search
 - exponential-time algorithms.
 - solves the problem exactly

(Backtracking and Branch-and-Bound)

- Heuristic Search
 - algorithms that explore a search space to find a feasible solution that is "close to" optimal, within a time limit
 - approximates a solution to the problem

(Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algorithms)

- Approximation Algorithms
 - polynomial time algorithm
 - we have a provable guarantee that the solution found is "close to" optimal.

(not covered in this course)

Types of Search Problems

1) **Decision Problem**:

A yes/no problem

Problem 1:

Clique (decision) Instance: graph G = (V, E), target size k

Question:

Does there exist a clique C of G with |C| = k?

3) Optimal Value:

Find the largest target size.

Problem 3:

Clique (optimal value) Instance: graph G = (V, E),

Find:

the maximum value of |C|, where C is a clique

2) Search Problem:

Find the guy.

Problem 2:

Clique (search) Instance: graph G = (V, E), target size k

Find:

a clique C of Gwith |C| = k, if one exists.

4) **Optimization**:

Find an optimal guy.

Problem 4:

Clique (optimization) Instance: graph G = (V, E),

Find:

a clique C such that |C| is maximize (max. clique)

Plan for the Course

1. Generating elementary combinatorial objects

Sequential generation (successor), rank, unrank.

Algorithms for subsets, k-subsets, permutations.

Reference: textbook chapter 2.

[2 weeks]

2. Exhaustive Generation and Exhaustive Search

Backtracking algorithms

(exhaustive generation, exhaustive search, optimization)

Brach-and-bound

(exhaustive search, optimization)

Reference: textbook chapter 4.

[3 weeks]

3. Heuristic Search

Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

Applications of these techniques to various problems.

Reference: textbook chapter 5.

[3 weeks]

4. Computing Isomorphism and Isomorph-free Exhaustive Generation

Graph isomorphism, isomorphism of other structures.

Computing invariants.

Computing certificates.

Isomorph-free exhaustive generation.

Example: Generate all trees on n vertices, without isomorphic copies.

Reference: textbook chapter 7, papers.

[3 weeks]