| CSI 4105. | DESIGN AND ANALYSIS OF ALGORITHMS II (3 hs of lecture
per week,
3 credits).  Theory of NP-completeness, methods for dealing with NP-complete problems. Selected topics in such areas as combinatorial optimization, computational geometry, cryptography, parallel algorithms. Prerequisite: CSI 3105  | 
    
| WEB PAGE: | http://www.site.uottawa.ca/~lucia/courses/4105-14/ | ||||||||||||||||||||||||||||
| PROFESSOR: | Lucia Moura  tel: 562-5800 ext. 6678 email: lucia@eecs.uottawa.ca  | 
    ||||||||||||||||||||||||||||
| OFFICE HOURS: | Office: SITE 5-027   Tuesdays 9:30AM-10:30AM Wednesdays 9:30AM-10:30AM  | 
    ||||||||||||||||||||||||||||
| LECTURES: | 
 Lecture 1: Wednesday 1:00-2:30 FSS 10003 Lecture 2: Friday 11:30-1:00 STE C0136.  | 
    ||||||||||||||||||||||||||||
| 
       | 
    |||||||||||||||||||||||||||||
| TEXTBOOK: | Kleinberg and Tardos, Algorithm
Design, Addison Wesley, 2005. ISBN
0-321-29535-8. (Chapters 8-13) Textbook will be available at Agora bookstore. The textbook is required!  | 
    ||||||||||||||||||||||||||||
| OTHER  REFERENCES:  | 
      Cormen, Leiserson and Rivest, Introduction to Algorithms,
McGraw-Hill,
2nd ed., 2001. 
(Chapter 34 NP-completeness)
       Kreher and Stinson, Combinatorial algorithms: generation, enumeration and search, CRC Press, 1998 (Chapter 3 Backtracking, Chapter 4: Heuristic searches). Garey and Johnson, Computers and Intractability,
Freeman, 1979.   | 
    ||||||||||||||||||||||||||||
| COURSE  OBJECTIVES:  | 
        | 
    ||||||||||||||||||||||||||||
| COURSE OUTLINE: | Part I: Introduction to the theory of NP-completeness  References: Textbook Chapters 8 and 9. Introduction to the course. Polynomial time reductions. Polynomial time and the complexity class P. Polynomial verification and the complexity class NP. NP-completeness and reducibility. NP-completeness proofs. NP-completeness of various problems. The complexity class PSPACE. Part II: Methods for dealing with NP-complete problems References: Texbook Chapters 10,11,12 and 13, and backtracking from other resources. Algorithms from the following topics will be covered: 
  | 
    ||||||||||||||||||||||||||||
| 
       | 
    |||||||||||||||||||||||||||||
| MARKING SCHEME: | 25% Midterm Exam 1 (M1)  25% Midterm Exam 2 (M2) 25% Assignments average (A) = 3 assignments (submit via blackboard learn) 25% Project (P) = 2% project proposal (PP), 5% project talk (PT), 18% project report (PR) Final Grade (G):   | 
    ||||||||||||||||||||||||||||
| 
       | 
    |||||||||||||||||||||||||||||
| IMPORTANT  DATES:  | 
      
 First lecture: January 8 Study break: February 19-21 Last lecture: April 4 (Friday)  | ||||||||||||||||||||||||||||