CSI 4105 Design and Analysis of Algorithms 11
Computer Science

Winter 2011
University of Ottawa

Homework Assignment #3 (50 points, weight 3%)
Note: this is a half assignment; Adjusted weights: A1 6%, A2 6%, A3 3% = total 15%)
Due: Friday April 8, by 3:30 p.m. (drop under my office door)

1. (25 points) Chapter 12 - Exercise 2 page 703.

2. Recall that for a problem in which the goal is to maximize some under-

lying quantity, gradient descent has a natural “upside-down” analogue,
in which one repeatedly moves from the current solution to a solution
of strictly greater value. Naturally, we could call this a gradient ascent
algorithm. (Often in the literature you’ll also see such methods referred
to as hill-climbing algorithms.)

By straight symmetry, the observations we’ve made in this chapter
about gradient descent carry over to gradient ascent: For many problems
you can easily end up with a local optimum that is not very good. But
sometimes one encounters problems—as we saw, for example, with
the Maximum-Cut and Labeling Problems—for which a local search
algorithm comes with a very strong guarantee: Every local optimum is
close in value to the global optimum. We now consider the Bipartite
Matching Problem and find that the same phenomenon happens here as
well.

Thus, consider the following Gradient Ascent Algorithm for finding
a matching in a bipartite graph.

As long as there is an edge whose endpoints are unmatched, add it to
the current matching. When there is no longer such an edge, terminate
with a locally optimal matching.

(a) Give an example of a bipartite graph G for which this gradient ascent
algorithm does not return the maximum matching.

(b) Let M and M’ be matchings in a bipartite graph G. Suppose that
|M’'| > 2|M|. Show that there is an edge e’ € M’ such that M U {¢} is
a matching in G.

(¢) Use (b) to conclude that any locally optimal matching returned by
the gradient ascent algorithm in a bipartite graph G is at least half
as large as a maximum matching in G.

2. (25 points) Chapter 13 - Exercise 1 page 782.

1

3-Coloring is a yes/no question, but we can phrase it as an optimization

problem as follows.

Suppose we are given a graph G = (V, E), and we want to color each
node with one of three colors, even if we aren’t necessarily able to give
different colors to every pair of adjacent nodes. Rather, we say that an

edge (u,v) is satisfied if the colors assigned to u and v are different.

Consider a 3-coloring that maximizes the number of satisfied edges,
and let c* denote this number. Give a polynomial-time algorithm that
produces a 3-coloring that satisfies at least %c* edges. If you want, your
algorithm can be randomized; in this case, the expected number of edges

it satisfies should be at least $c*.

