CSI 4105 Design and Analysis of Algorithms 11 Winter 2011
Computer Science University of Ottawa

Homework Assignment #2 (100 points, weight 5%)
Due: Friday March 18, by 3:30 p.m. (drop under my office door)

1. (25 points) Chapter 8 - Exercise 22 page 517 (on independent set).

suppose that someone gives you a black-box algorithm A that takes an
undirected graph G = (V, E), and a number k, and behaves as follows.

» If G is not connected, it simply returns “G is not connected.”

» If G is connected and has an independent set of size at least k, it
returns “yes.”

» If G is connected and does not have an independent set of size at
least k, it returns “no.”
“uppose that the algorithm A runs in time polynomial in the size of G
amd k.
Show how, using calls to A, you could then solve the Independent Set
“wublem in polynomial time: Given an arbitrary undirected graph G, and
» mumber k, does G contain an independent set of size at least k?

2. (25 points) Chapter 10, exercise 3, page 596 (Solving Hamiltonian Path Problem in
time O(2"p(n))).

3. Suppose we are given a directed graph G = (V,E), with V = {v;,v5, ..+
and we want to decide whether G has a Hamiltonian path from = =
(That is, is there a path in G that goes from v, to v,,, passing through
other vertex exactly once?)

Since the Hamiltonian Path Problem is NP-complete, we do nor o
pect that there is a polynomial-time solution for this problem. Howessg
this does not mean that all nonpolynomial-time algorithms are egual
“bad.” For example, here’s the simplest brute-force approach: For =«
permutation of the vertices, see if it forms a Hamiltonian path from
to v,. This takes time roughly proportional to n!, which is about 3 « ==
when n = 20.

Show that the Hamiltonian Path Problem can in fact be solved in =
O(2™ - p(n)), where p(n) is a polynomial function of n. This is a much beti
algorithm for moderate values of n; for example, 2" is only about a mi’
when n = 20.



3. (50 points) Backtracking for Latin squares

(a) A Latin square is an n x n array with entries in {1,2,...,n} such that every
symbol occurs exactly once in each row and in each column. The next example
shows Latin squares of order 3:

1123 1123
31112 2131
2131 31112

Write a backtracking algorithm to generate all Latin squares of order n. For
larger values of n, please do not output the Latin squares, but simply how many
are there. Check online at the encyclopedia of integer sequences for the correct
number for verification: check http://oeis.org/ and search for “latin squares”.
Compute the number of Latin squares for n = 1,2,3,4,5,..., until a value of n
that it is still computationally reasonable to solve the problem.

(b) Use Knuth’s method for estimating the size of a backtracking tree, but use the
variation in which you assign weights to the nodes. Assign weights accordingly
and show how to estimate the number of Latin squares for the next value of n by
applying Knuth’s method on a sufficient number of probes. Please, show how the
estimation progresses as the number of probes grow.

Note: this assignment does not include questions on PSPACE, but the next midterm test
will.



