CSI 4105 Fall 2002 Assignment #2: Solutions

1. Understanding the application
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2. Designing a greedy heuristic algorithm
Part A:

Greedy Heuristic

Algorithm GreedyIndSet(G = (V, F)):
1. Sort V in non-decreasing order of degree (number of neighbours)
2. Vi<V
3. T4
4. while V #10 do
5. 1+ vertex of smallest index in V'’
6. [—1U{}
7. V' V'\ i)
8. Remove from V' all neighbours of :
9. endwhile
10. return [/



Intuition Behind the Heuristic:

By selecting vertices of smaller degree first, we hope to allow for more vertices to be placed
in the independent set.

Polynomial Running Time:

Let n = |V] and m = |F].

Using adjacency lists for representing the graph, and linked lists to represent V' and I, the
time complexity for each step is as follows:

Step 1: O(nlogn) for sorting V

Step 2: O(n)

Step 3: O(1)

The loop is executed at most n times.

Total over all times step 5 is executed: O(n)

Total over all times step 6 is executed: O(n)

Total over all times steps 7 and 8 are executed: At most n elements are removed from V.
Each removal is done with a search on a list of size at most n, so the total time is O(n?).
The total running time is O(n?).

Part B:

The algorithm will always return I = {1,3,4,5}.
The maximum independent set is M = {2.3.4,5.6}.

3. Polytime decision implies polytime optimization for this problem



Algorithm ComputeMaxIndSet(G = (V, F)):
max «— n
while (DecisionIndSet((, maz) = 0) do
maz — max — 1
ViV
B — E
for each v e V do
V" v\ {o}
E" — E'"\ {e|v is incident to ¢}
Let G// — (‘///7 E//)
if (DecisionIndSet(G”, max) = 1) then
V/ — V//
E/ — E//
endif
endfor
return V'

Polynomial Running Time

Let n = |V].

e The first while loop will run for at most n iterations, thus taking O(n) steps.
e The for loop will run for n steps. Each step consists of:

1. the deletion of a vertex and its incident edges, which can be done in O(n?) steps

2. in some iterations, copying V" and E”. which can be done in O(m + n) steps

Thus, the for loop runs in O(n?) steps.
The total running time is therefore O(n?).

4. Polynomial-time algorithm for a special case
If every vertex in G has degree 2, then G consists of a collection of cycles.

Algorithm MaxIndSet(G = (V. F))
Input: GG, a graph that is a collection of cycles
I—10

Mark all vertices ¢

‘unvisited’’



(explore each cycle in turn)
while there are unvisited nodes do
Let v be an unvisited node
Mark v visited
I —TuU{v}
Let z, y, be the two neighbours of v
Mark x, y visited
prev «— v
do
Let next be the neighbour of z that is not prev
Mark next visited
if nexl # y then
I — I U{next}
prev «— x
T «— next
endif
until (next =y)
endwhile
return /

The above algorithm will explore cycle by cycle, placing alternating vertices of a cycle in the
set 1.

Note that if the cycle has even length, say 2k, then k vertices of the cycle are in the inde-
pendent set. If the cycle has odd length, say 2k + 1 for some k. then k vertices are placed in
the independent set.

Claim: For a cycle of length 2k. the maximum independent set has size k and for a cycle
of length 2k + 1, the maximum independent set has size k.

Proof: Let I be an independent set.
Since, for each edge. at most one of its incident vertices can be in I, if we count the number
of edges incident to some vertex of I, we have

S <m

vel
which is 2|7| < |E|. Therefore, |I| < “;J—' Since k = L'g—'J in either case we conclude |1| < k.
For each connected component (each cycle), the algorithm selects its maximum independent
set to be part of I. Therefore, the algorithm finds the maximum independent set for the
graph.



Running Time

o Let’s assume we use the adjacency list representation for the graph, and we use an
array indexed by vertices to record visited / unvisited information.

e Checking for who is the next unvisited node takes O(n) in total (where n = |V|), since
we can try the indices in order.

e Each time a vertex is visited, a constant number of steps are executed inside the while
loop. Each vertex is visited at most once, so the total number of steps executed over
all iterations of the while and do-until loops is O(n).

The algorithm runs in O(n) steps.
5. NP-Completeness Proof

1. HALFCLIQUE € NP

Certificate: A set of vertices S
Verification Algorithm: A(G,S)
Input: G =(V.E), S
if || < % then return 0
for each z,y €5, z#y, do
if {z,y} ¢ F then return 0
endfor
return 1

e This algorithm runs in O(n?), since |S| < n.

o If G € HALFCLIQUE, then there exists 5" which is a clique with at least 7 vertices, so
A(G,S") = 1.

o If G ¢ HALFCLIQUE, then for all S C V, S is not a clique with at least
A(G,S)=0.

vertices, so

N3

2. Select reduction problem

We will prove HALFCLIQUE is NP-Hard by showing CLIQUE <, HALFCLIQUE.



3. Reduction algorithm

Algorithm F
Input: G=(V.FE), k
Output: G' = (V' F')
n «— |V|
if k& > n then return an arbitrary G ¢ HALFCLIQUE (for example, ' =
(V',E'") with V' ={1,2,3} and E' =0)
if k> [5] then

L«—2k—n
add L new vertices zy.%9,...,27 to V:
Vi VU{z1,20,...,21}
E — F
else
L=n-2k
add [ new vertices xy,%y,....7x1 to V:

Vi VU{z1,20,...,21}
B BU{{ana) | 1Si<L xeV. )
endif

return G' = (V' F')

4. Show correctness

We show that (G, k) € CLIQUE < G’ € HALFCLIQUE.

Case 1: k > [3]

In this case, n' = |[V'| =n + 2k — n = 2k.

(G, k) € CLIQUE

& G has a clique of at least size k

& (' has a clique of size at least k, where n’ = |V'| = 2k
& (' € HALFCLIQUE

Case2: k <[]

In this case, n’ = |V'| = 2n — 2k. Note that the L vertices added to V will increase the size
of any clique by L vertices (since these L vertices are connected to every vertex in V').

(G, k) € CLIQUE

& (7 has a clique of size at least k

& (' has a clique of size at least k + L =n — k, where |V'| =n' =2n — 2k =2(n — k)

& G' € HALFCLIQUE



5. The reduction runs in polynomial time

o If the algorithm goes beyond the first step. it is because k& < n.

o If k > [%], then the algorithm only adds 2k — n isolated vertices to (¢. This can be
done in O(n?) if using adjacency matrices to represent the graphs or O(n) if using
adjacency lists.

o If £ < [%2], then the algorithm only adds n — 2k vertices and O(n?) edges. This
can be done in O(r?) in either graph representation (both for adjacency matrices and
adjacency lists).

Therefore, the overall running time of the algorithm is O(n?).



