
INTRODUCTION TO THE THEORY OF
NP-COMPLETENESS

Lucia Moura

University of Ottawa

Fall 2001

Introduction to NP-completeness

This notes/slides are intended as an introduction to the theory of

NP-completeness, as a supplementary material to the first sections

of:

Cormen, Leiserson and Rivest, Introduction to

Algorithms, 1990, Chapter 36: NP-completeness.

Other references for these notes:

Garey and Johnson, Computers and Intractability, 1979.

Sipser, Introduction to the Theory of Computation, 1996.

Papadimitriou, Computational Complexity, 1994.

Lucia Moura 1

A GENERAL INTRODUCTION TO
NP-COMPLETENESS

Introduction to NP-completeness A general introduction

A practical application

Suppose your boss asks you to write an efficient algorithm to solve

an extremely important problem for your company.

After hours of hair-splitting, you can only come up with some

“brute-force” approach that, since you took CSI3501, you are able

to analyse and conclude that it takes exponential time!

You may find yourself in the following embarrassing situation:

/—— PICTURE —–/

(from Garey and Johnson page2)

“I can’t find an efficient algorithm, I guess I’m just too

dumb.”

Lucia Moura 3

Introduction to NP-completeness A general introduction

You wish you could say to your boss:

/—— PICTURE —–/

(from Garey and Johnson page2)

“I can’t find an efficient algorithm, because no such algorithm

is possible!”

For most problems, it is very hard to prove their intractability,

because most practical problems belong to a class of well-studied

problems called NP.

The “hardest” problems in NP are the NP-complete

problems: if you prove that one NP-complete problem can be

solved by a polynomial-time algorithm, then it follows that all the

problems in NP can be solved by a polynomial-time algorithm.

Conversely, if you show that one particular problem in NP is

intractable, then all NP-complete problems would be intractable.

• NP-complete problems seem intractable.

• Nobody has been able to prove that NP-complete problems are

intractable.

Lucia Moura 4

Introduction to NP-completeness A general introduction

By taking this course and mastering the basics of the theory of

NP-completeness, you may be able to prove that the problem

given by your boss is NP-complete.

In this case, you can say to your boss:

/—— PICTURE —–/

(from Garey and Johnson page3)

“I can’t find an efficient algorithm, but neither can all these

famous people.”

or alternatively:

“If I were able to design an efficient algorithm for this

problem, I wouldn’t be working for you! I would have claimed

a prize of $1 million from the Clay Mathematics Institute.”

Lucia Moura 5

Introduction to NP-completeness A general introduction

After the second argument, your boss will probably give up on the

search for an efficient algorithm for the problem.

But the need for a solution does not disappear like that...

Indeed, after proving that your problem is NP-complete, you will

probably have learned a lot about it, and now you can change

your strategy:

1) Forget about finding a polynomial-time algorithm for the

general problem.

2) Try one of the following main approaches:

• Search for an efficient algorithm for a different related problem

(relax some constraints, solve various special cases of the general

problem or accept approximations in the place of optimal

solutions)

• Use the best algorithm you can design for the general problem,

even if it may take time that is exponential on the input size.

(This may be enough to solve the instances of the problem that

your boss needs, but performance is expected to deteriorate

rapidly as the instance input size grows.)

Lucia Moura 6

Introduction to NP-completeness A general introduction

Two Examples

Let G be a directed graph.

Path problem: Is there a path in G from s to t ?

/—PICTURE: graph example—/

I claim that a polynomial-time algorithm exists for solving Path.

Exercise: Give a polynomial time algorithm for deciding whether

there exists a path from s to t.

One possible algorithm: Breadth-first search for solving Path:

1. mark node s

2. repeat until no more additional nodes are marked:

for each edge (a,b) of G do

if (node a is marked and node b is unmarked)

then mark node b

3. if t is marked then return "yes"

else return "no".

Thus, Path is in the class P, the class of problems that can be

solved by a polynomial-time algorithm.

Lucia Moura 7

Introduction to NP-completeness A general introduction

Consider a slightly different problem:

Hampath problem: Is there a hamiltonian path in G from s

to t ?

(Def: A path is called hamiltonian if it goes through every node

exactly once.)

/—PICTURE:graph example 2 —/

Exercise: Give a polynomial-time algorithm to solve Hampath.

(If you find a solution to this problem, talk to me.)

Exercise: Give any algorithm to solve Hampath.

Lucia Moura 8

Introduction to NP-completeness A general introduction

One possible algorithm: Brute-force algorithm for Hampath:

IDEA: Let V be the vertices in G and let n = |V |. Check all

possible lists of n vertices without repetitions (all permutations of

V) to see if any of them forms a hamiltonian path.

1. for each permutation

p=(v(i(1)),v(i(2)),...,v(i(n))) of V do:

if (p forms a hamiltonian path)

then return "yes"

2. return "no"

What has to be checked in order to see that p forms a hamiltonian

path?

Why does this algorithm run in exponential time ?

Lucia Moura 9

Introduction to NP-completeness A general introduction

Nobody knows of an algorithm that solves Hampath in

polynomial time.

Can we check a solution in polynomial time?

Suppose someone says that our graph has a hamiltonian path, and

provides us with a certificate: a hamiltonian path.

Can an algorithm verify this answer in polynomial time?

The answer is yes. Exercise: Give such an algorithm.

NP is defined as the class of problems that can be verified in

polynomial time, in order words, the problems for which there

exists a certificate that can be checked by a polynomial-time

algorithm.

Therefore, Hampath is in the class NP.

The name NP stands for “Nondeterministic Polynomial-time”

(this will be more clear later).

It does NOT stand for “NonPolynomial” !!!!!!

Indeed, later on, you will be able to easily prove that P ⊆ NP.

(Intuitively, it seems reasonable that if a problem can be solved by

an algorithm in polynomial time, then a certificate for the

problem can be checked in polynomial time.)

Lucia Moura 10

Introduction to NP-completeness A general introduction

NP-completeness

Let us concentrate on decision problems, that is, problems whose

solution is “yes” or “no”, like the versions of Path and

Hampath seen before.

In summary:

P is the class of decision problems that can be decided by a

polynomial-time algorithm.

NP is the class of decision problems such that there exists a

certificate for the yes-answer that can be verified by a

polynomial-time algorithm.

Also,

P ⊆ NP

One of the most important unsolved problems in computer science

is the question of whether P = NP or P 6= NP.

See: http://www.claymath.org/prizeproblems/index.htm

for details on how to get a $1 million prize for the solution of this

question.

Lucia Moura 11

Introduction to NP-completeness A general introduction

How one would try to solve this question ?

To show that P 6= NP:

Show that a problem X is in the class NP but is not in the class

P.

Exercise: What would have to be shown about X ?

To show that P = NP:

Show that every every problem in NP can be solved in

polynomial time, so that NP ⊆ P.

Given the theory of NP-completeness, we don’t need to work that

hard. We could show that P = NP by finding a polynomial-time

algorithm for a single problem such as Hampath. This is not

obvious at all!!!

Before understanding NP-completeness, we need to understand

the concept of polynomial-time reducibility among problems.

Lucia Moura 12

Introduction to NP-completeness A general introduction

Intuitively, a problem Q1 is polynomial-time reducible to a

problem Q2 if any instance of Q1 can be “easily rephrased” as an

instance of Q2.

We write:

Q1 ≤P Q2

A polynomial-time algorithm that solves Q2 can be used as a

subroutine in an algorithm that can thus solve Q1 in

polynomial-time.

A problem Q is said to be NP-complete if:

1. Q is in the class NP.

2. Q′ ≤P Q, for every Q′ in the class NP

(every problem in NP is polynomial-time reducible to Q)

It is known that the problem Hampath is NP-complete.

The following theorem will be proven later in the course:

Theorem. If some NP-complete problem is polynomial-time

solvable, then P = NP. If some problem in NP is not

polynomial-time solvable, then P 6= NP and all NP-complete

problems are not polynomial-time solvable.

/– PICTURE: Veen diagrams depicting both possibilities.–/

Lucia Moura 13

Introduction to NP-completeness A general introduction

Formalizing NP-completeness

In order to be able to use the NP-completeness machinery and to

understand without ambiguity the concepts discussed before, we

need precise definitions of:

• Problem

• Algorithm

It will take us several classes in order to define the required

concepts appropriately and to formally present the theory of

NP-completeness.

After that, you will learn how to show that several problems are

NP-complete.

The second part of the course will be devoted to two main

approaches for dealing with NP-complete problems:

• approximation algorithms, and

• specific exponential-time algorithms (backtracking and

branch-and-bound).

Homework: Try to find a precise and general definition of

“algorithm”.

Lucia Moura 14

DEFINING PROBLEMS AND ALGORITHMS

Introduction to NP-completeness Defining Problems and Algorithms

Abstract decision problems

An abstract problem Q is a binary relation on a set I of

problem instances and a set S of problems solutions.

(Recall: each element in the relation is an ordered pair (i, s) with

i ∈ I and s ∈ S.)

The Shortest-Path problem statement is: “Given an

undirected graph G = (V,E) and two vertices u, v ∈ V , find the

shortest path between u and v.”

Each instance is a triple < G, u, v > and the corresponding

solution is the shortest path (v1, v2, . . . , vn).

A decision problem is a problem with yes/no solutions. An

abstract decision problem is a function that maps the

instance set to the solution set {0, 1}.

The decision problem version of Shortest-path can be written

as follows.

The Path problem statement is: “Given an undirected graph

G = (V,E), two vertices u, v ∈ V , and a non-negative integer k,

is there a path between u and v with length at most k?”

Note that the problem Path here is different from the one

given last class; last class the graph was directed and the

decision problem was different.

Lucia Moura 16

Introduction to NP-completeness Defining Problems and Algorithms

The abstract decision problem is represented by the function:

Path: I → {0, 1}
If i =< G, u, v, k > ∈ I then

Path(i) =


1, if there exists a path between u and v

with length at most k

0, otherwise

An optimization problem is a problem in which something

has to be maximized or minimized.

Every optimization problem can be transformed into a decision

problem.

minimization Find the shortest path... Is there a path of length

problem at most k?

maximization Find the longest path... Is there a path of length

problem at least k?

The theory of NP-completeness is restricted to decision problems.

This restriction is not so serious:

If an optimization problem can be solved efficiently, then the

corresponding decision problem can be solved efficiently.

Why? How Path can be solved using the solution for

Shortest-Path?

The same statement can be re-written as follows:If a decision

problem is hard then the optimization problem is hard.

Lucia Moura 17

Introduction to NP-completeness Defining Problems and Algorithms

Concrete decision problems

In order to solve a problem by computer, instances must be

represented in a way the computer understands.

An encoding of a set I of abstract objects is a mapping e from I

to a set of strings over an alphabet Σ (Σ has to have at least 2

symbols).

Example: For I = {0, 1, 2, 3, . . .} and Σ = {0, 1} we can use the

standard binary encoding e : I → Σ∗, given by:

e(0) = 0, e(1) = 1, e(2) = 10, e(3) = 11, e(4) = 100, etc.

A problem whose instance set is the set of strings over Σ is a

concrete problem. We can use encodings to map an abstract

problem to a concrete problem (strings that have no

corresponding instances can be mapped to the solution 0)

For an instance i ∈ I , the length of i, denoted by |i|, is the

number of symbols in e(i). Using the binary encoding above,

|0| = 1, |1| = 1, |2| = 2, |3| = 2, |4| = 3, etc.

Later, we are going to measure running time as a function of the

input length. But the length of an instance of the concrete

problem depends heavily on the encoding used. Some encodings

are polynomially related, so the polynomial-time solvability for

problems using one encoding extends to the other. There are some

possible “expensive” encodings, but we will rule them out.

Lucia Moura 18

Introduction to NP-completeness Defining Problems and Algorithms

Example: Encodings of k ∈ {0, 1, 2, . . .}
encoding example length of k using

name given encoding

unary encoding e1(7) = 1111111 |k|e1 = k

binary encoding (base 2) e2(7) = 111 |k|e2 = blog2 kc + 1

ternary encoding (base 3) e3(7) = 21 |k|e3 = blog3 kc + 1

base b encoding (base b) e(b) |k|eb = blogb kc + 1

Except for the unary encoding, all the other encodings for natural

numbers have lengths that are polynomially related, since

logb1 k =
logb2 k

logb2 b1
= c · logb2 k

with c = 1/(logb2 b1) constant.

The unary encoding has length exponential on the size of any of

the other encodings, since |k|e1 = k = blogb k ≈ b|k|eb , for any b ≥ 2.

If we assume that we only use “reasonable” encodings, and not

expensive ones (like the unary encoding for natural numbers), then

the length of an instance does not depend much on the encoding.

Usually we will not specify the individual encoding, and you may

think of the binary encoding as the standard one. But keep in

mind that results for the binary encoding extends to most natural

encodings (like the decimal, hexadecimal, etc.), except for

expensive encodings (like the unary one).

So, |k| ∈ O(log k) for all reasonable encodings.

Lucia Moura 19

Introduction to NP-completeness Defining Problems and Algorithms

Formal-language framework

The formal-language framework allows us to define algorithms for

concrete decision problems as “machines” that operate on

languages.

Example:

Consider the concrete problem corresponding to the problem of

deciding whether a natural number is prime. Using binary

encoding, Σ = {0, 1}, this concrete problem is a function:

Prime: {0, 1}∗ → {0, 1} with

Prime(10) = Prime(11) = Prime(101) = Prime(111) =

Prime(1011) = . . . = 1,

Prime(0) = Prime(1) = Prime(100) = Prime(110) =

Prime(1000) = Prime(1001) = . . . = 0

We can associate with Prime a language LPrime corresponding to

all strings s over {0, 1} with Prime(s) = 1:

LPrime = {10, 11, 101, 111, 1011, 1101, . . .}

This correspond to the set of prime numbers {2, 3, 5, 7, 11, 13, . . .}.

Sometimes it’s convenient to use the same name for the concrete

problem and its associated language:

Prime = {10, 11, 101, 111, 1011, 1101, . . .}

Lucia Moura 20

Introduction to NP-completeness Defining Problems and Algorithms

Definitions

An alphabet Σ is any finite set of symbols.

A language L over Σ is any set of strings made up of symbols

from Σ.

We denote the empty string by ε, and the empty language by ∅.
The language of all strings over Σ is denoted by Σ∗. So, if

Σ = {0, 1}, then

Σ∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}

is the set of all binary strings.

Every language L over Σ is a subset of Σ∗.

Operations on Languages:

operation: meaning:

union of L1 and L1 L1 ∪ L2

intersection of L1 and L2 L1 ∩ L2

complement of L L = Σ∗ − L
concatenation of L1 and L2 L1L2 = {x1x2 : x1 ∈ L1 and x2 ∈ L2}
Kleene star of L L∗ = {ε} ∪ L ∪ L2 ∪ L3 ∪ . . .

where Lk = LL . . . L, k times.

Lucia Moura 21

Introduction to NP-completeness Defining Problems and Algorithms

Algorithms and Turing Machines

We have already formalized the notion of problem by associating

a formal language with it.

Now, we need to formalize the notion of algorithm.

In order to solve a problem, represented by its associated

language, an algorithm amounts to simply checking if the input

string belongs to the language.

You may have studied some computational model that

operates on strings and accepts a language.

Examples of such models are finite state automata and

pushdown automata.

These models are good for recognizing certain languages, but

there are many languages that are not recognizable by them. For

example:

The language L = {0n1n : n ≥ 0} cannot be accepted

(recognized) by any finite state automaton.

The language L = {0n1n2n : n ≥ 0} cannot be accepted

(recognized) by any pushdown automaton.

A Turing Machine is a very simple model, similar to a finite

state automaton, that can simulate “arbitrary algorithms”.

Lucia Moura 22

Introduction to NP-completeness Defining Problems and Algorithms

The description of a Turing machine

The Turing machine contains:

• an infinite tape (representing unlimited memory);

• a tape head capable of reading and writing symbols and of

moving around the tape;

• a control implementing a transition function: given the current

machine configuration (its machine state, tape contents and head

position) the control changes the machine to another

configuration using a “single step”.

Initially, the tape contains only the input and is blank everywhere

else; the head of the machine is on the leftmost position.

Information can be stored by writing it on the tape. The machine

keeps “computing” (moving from configuration to configuration)

until it decides to produce an output. The outputs are either

accept or reject. It could possibly go on forever.

/—Picture: Turing Machine—/

Lucia Moura 23

Introduction to NP-completeness Defining Problems and Algorithms

Example

Describe a Turing Machine that recognizes the language

A = {02n : n ≥ 0} = {0, 00, 0000, 00000000, . . .}.

On input string w do:

1. Sweep left to right across the tape,

crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the taped contained more than a

single 0 and the number of zeros was odd, reject.

4. Return the head to the left-hand end of the tape.

5. Go to stage 1.

A sample run of the above machine on input 0000.

The tape is initially: (the thick line shows the head position)

0 0 0 0 t t t· · ·
The first zero is erased in order to “mark” the beginning of the

tape:

t 0 0 0 t t t· · ·
At the end of the first run of stage 1, the tape is:

t x 0 x t t t· · ·
At the end of the second run of stage 1, the tape is:

t x x x t t· · ·
At the end of the third run of stage 1, the tape is:

t x x x t t t· · ·
The machine accepts since the first blank represents a 0 in the

tape.

Lucia Moura 24

Introduction to NP-completeness Defining Problems and Algorithms

Formal definition of Turing machine

A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q1, qaccept, qreject),

where Q, Σ, Γ are all finite sets and

1. Q is a set of states,

2. Σ is the input alphabet not containing the special blank

symbol t,

3. Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ −→ Q× Γ× {L,R} is the transition function,

5. q1 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state,

7. qreject ∈ Q is the reject state, where qreject 6= qaccept.

A configuration of the Turing machine consists of the current

state, the current head position and the current tape contents.

We can compactly represent a configuration, by writing the state

exactly where the tape is.

For the previous machine, Σ = {0, 1}, Γ = {0, 1,t, x}, and the

first few configurations are:

q10000 tq2000 txq300 tx0q40 · · ·

Also,

δ(q1, 0) = (q2,t, R), δ(q2, 0) = (q3, x, R), δ(q3, 0) = (q4, 0, R).

Lucia Moura 25

Introduction to NP-completeness Defining Problems and Algorithms

We say that · · · aqib · · · yields · · · acqj · · ·, if δ(qi, b) = (qj, c, R).

Similarly, · · · aqib · · · yields · · · qjac · · ·, if δ(qi, b) = (qj, c, L).

A Turing machine M accepts input w if a sequence of

configurations C1, C2, . . . , Ck exists where:

1. C1 is the start configuration q1w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration (a configuration with state

being qaccept).

The collection of strings that M accepts is the language of M ,

denoted by L(M).

A rejecting configuration is a configuration whose state is qreject.

Three outcomes are possible when we start a Turing machine on

an input: the machine may accept, reject or loop (not halt).

So, for w 6∈ L(M), M can fail to accept w by either entering the

state qreject, or by looping.

Turing machines that halt in all inputs are called deciders. A

decider that recognizes some language is said to decide that

language.

Lucia Moura 26

Introduction to NP-completeness Defining Problems and Algorithms

A decider for A = {02n : n ≥ 0}

/–Picture: state diagram and sample run –/

(from Sipser, page 132)

Lucia Moura 27

Introduction to NP-completeness Defining Problems and Algorithms

Algorithms are Turing machines

Algorithms have been used for centuries, for example: the division

algorithm learned in school, Euclid’s algorithm for calculating the

greatest common divisor of two integer numbers.

Informally, an algorithm is a collection of simple instructions for

carrying out some task.

In 1900, Hilbert posed a problem (Hilbert’s tenth problem) that

asked for an algorithm, although this word was not used but:

“a process according to which it [the solution to the problem] can

be determined by a finite number of operations.”

The formal definition came in 1936. Alan Turing used Turing

machines to define algorithms. Independently, Alonzo Church

used a notational system called λ-calculus in his definition of

algorithms. These two definitions were shown to be equivalent.

The connection between the informal notion of algorithm and the

precise definition is called the Church-Turing thesis.

Turing showed that Hilbert’s tenth problem is undecidable,

that is, that there exists no Turing machine that decides it, no

algorithm that halts in all inputs that solves the problem. The

halting problem was also shown to be undecidable.

Lucia Moura 28

Introduction to NP-completeness Defining Problems and Algorithms

There are several models of computation that can be used to

describe algorithms:

• Turing machines,

• multitape Turing machines,

• random access machine (RAM) programs,

• non-deterministic Turing machines, etc.

(Programs using the RAM model (random access machine)

are quite similar to programs in real computers)

They all share the following characteristics:

• If a language is decidable in one model, it is also decidable in the

other models.

This means they are equivalent with respect to computability

theory.

• If a language can be decided in a polynomial number of basic

steps in one of the first 3 models, it can also be decided in a

polynomial number of basic steps in the other models.

This means that the first 3 models are equivalent in terms of

complexity theory.

So, for studying NP-completeness, it is reasonable to define:

Problems are languages over a finite alphabet.

Algorithms are Turing machines.

Coming up next: time complexity classes for Turing

machines; other models of computation.

Lucia Moura 29

ANALYSIS OF ALGORITHMS AND
COMPLEXITY CLASSES

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Analysis of Algorithms

The number of steps that an algorithm takes on an input depends

on the particular input.

Example: How many comparisons are done in bubblesort in the

following cases:

• Sorted array with 10 elements:

• Array with 10 elements in reverse order:

For simplicity, we prefer to measure the running time as a function

of the size of the input. For this reason, we use worst-case

analysis in which the running time for inputs of a given size is

taken to be the longest running time among all inputs of that size.

• Using worst-case analysis for bubblesort, we would say

that the running time (measured here in number of comparisons)

on arrays with 10 elements is:

In average-case analysis the running time is measured as the

average of all the running times of inputs of a particular length.

Example: The worst-case running time for quicksort is

proportional to n2, while its average-case running-time is

proportional to n log n, for arrays of size n.

Lucia Moura 31

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Analyzing Turing machine algorithms

We have identified problems with formal languages and

algorithms with Turing machines.

We must define running time for this model of computation:

Definition 1 Let M be a deterministic Turing machine that

halts on all inputs. The worst-case running time or time

complexity of M is the function T : N → N , where T (n) is the

maximum number of steps that M uses on any input of length n.

If T (n) is the worst-case running time of M , we say that M runs

in time T (n) and that M is an T (n) time Turing machine.

The running time of an algorithm is often a complex expression,

so we usually just estimate it using asymptotic analysis.

For example, if the worst-case running time of a Turing machine

M is

T (n) = 7n3 + 10n2 + 3n + 100

we just look at the highest order term 7n3 and disregard the

constant saying that

T (n) is of the order of n3

or that

n3 is an asymptotic upper bound on T(n).

Lucia Moura 32

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Review of Big-O, small-o, Ω and Θ notation

We formalize the previous notion using big-O notation.

Given a function g(n) we denote by O(g(n)) the set of functions:

O(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

When f (n) ∈ O(g(n)), often written as f (n) = O(g(n)), we say

that f (n) is in big-Oh of g(n) and that g(n) is an asymptotic

upper bound for f (n).

Using this notation, we can say that

T (n) = 7n3 + 10n2 + 3n + 100 ∈ O(n3).

Why?

Give c and n0 such that 7n3 + 10n2 + 3n + 100 ≤ cn3 for all

n ≥ n0. There are many possible values.

c = n0 =

Proof:

Lucia Moura 33

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

The Ω notation provides an asymptotic lower bound on a

function. Given a function g(n) we denote by Ω(g(n)) the set of

functions:

Ω(g(n)) = {f (n) : there exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

Using this notation, we can say that

T (n) = 7n3 + 10n2 + 3n + 100 ∈ Ω(n3).

The Θ notation provides an asymptotic tight bound on a

function. Given a function g(n) we denote by Θ(g(n)) the set of

functions:

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

Let T (n) = 7n3 + 10n2 + 3n + 100.

Since T (n) ∈ O(n3) and T (n) ∈ Ω(n3) then T (n) ∈ Θ(n3).

The asymptotic upper bound given by the O-notation may or may

not be asymptotically tight:

• the bound 2n2 ∈ O(n2) is asymptotically tight,

• the bound 2n ∈ O(n2) is not asymptotically tight.

The little-oh notation is used to define an upper bound that is not

asymptotically tight. Given a function g(n) we denote by o(g(n))

(little-oh of g(n)) the set of functions:

o(g(n)) = {f (n) : for any constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ f (n) < cg(n) for all n ≥ n0}

Thus, 2n ∈ o(n2) but 2n2 6∈ o(n2)

Lucia Moura 34

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

To review the previous concepts, refer to Chapter 2 of the

textbook by Cormen, Leiserson and Rivest.

Solve the following exercise for next class.

Write yes or no on the cells of the table, depending on whether

the function in a given row is in the set given in the column.

Give a proof of your answer for the cells marked with *.

Is f (n) ∈... ? o(n) O(n) Θ(n) O(n2) Θ(n2) O(2n) Ω(2n)

10 log n ∗

n log n

5n

1000n2 ∗

2log2 n ∗

2n+1

nn ∗ ∗

Lucia Moura 35

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Analysing a Turing machine algorithm

Let us analyse an algorithm for deciding A = {0k1k : k ≥ 0}.

M1="On input string w do:

1. Scan across the tape and reject if a 0 is found

to the right of a 1.

2. Repeat the following if both 0s and 1s remain on

the tape:

3. Scan across the tape, crossing off a single 0

and a single 1.

4. If 0s still remain after 1s have been crossed off,

or if 1s still remain after all the 0s have been

crossed off, reject. Otherwise, if neither 0s nor

1s remain on the tape, accept."

The scan in stage 1. plus the re-positioning of the head at

the beginning takes O(n) steps.

In stages 2. and 3. the machine repeatedly double-scans the

tape, once to check the condition in 2. and once to cross off a

0 and a 1. Since each scan crosses off 2 symbols, at most n/2

double-scans will occur. Since each double-scan takes O(n)

steps, the total time for stages 2. and 3. is O(n2) steps.

In stage 4. a last scan is done on the tape, taking O(n) steps.

So, the worst-case running time for M, denoted by T (n), is in

O(n) + O(n2) + O(n) = O(n2).

Homework: draw a state diagram for M for handing in next class,

various different implementations are possible.

Lucia Moura 36

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Analysing another Turing machine algorithm

Recall the Turing machine M2 that decides A = {02l : l ≥ 0}.

M2="On input string w do:

1. Sweep left to right across the tape,

crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than a

single 0 and the number of zeros was odd, reject.

4. Return the head to the left-hand end of the tape.

5. Go to stage 1."

We will show an asymptotic upper bound on T (n), the worst-case

running time of M1 on an input of size n.

Recall that we are measuring basic steps of the machine.

One execution of 1. takes O(n) steps.

The conditions verified in 2. and 3. are implemented as a single

transition from q2 to qaccept and from q4 to qreject, respectively.

So, 2. and 3. run in O(1) steps.

The algorithm halves the number of zeros on the tape at each

execution of 1. The tape contains n 0’s at the beginning.

Let k be such that 2k−1 < n ≤ 2k, or equivalently k = dlog2ne.
After j executions of 1., the number of zeroes is at most 2k

2j
, so if

the algorithm has not halted before, in at most k executions of 1.

there will be a single 0 on the tape and it will halt in 2.

So, 1.-3. are executed at most O(log n) times, and therefore

T (n) ∈ O(n log n).

Lucia Moura 37

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Time complexity classes

The following notation is used for classifying languages according

to their time requirement:

Let t : N → N be a function. Define the time complexity

class, TIME(t(n)), to be

TIME(t(n)) = {L : L is a language decided by an O(t(n)) time

Turing machine}

Turing machine M1, which decides A = {0k1k : k ≥ 0}, runs in

time O(n2).

Therefore, A ∈ TIME(n2).

Let us consider a language L for which we can construct:

• an O(n3) Turing machine M1

• an O(n log n) Turing machine M2

Is L ∈ TIME(n log n)? why?

Is L ∈ TIME(n3)? why?

Is L ∈ TIME(n2)? why?

Lucia Moura 38

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Multitape Turing Machines

A multitape Turing machine is like an ordinary Turing

machine but it has several tapes.

Each tape has its own reading/writing head.

Initially the input appears on tape 1 and all other tapes start

blank.

The transition function is changed in order to allow manipulation

of all tapes simultaneously. Note that the transition still goes from

one state to another.

Let k be the number of tapes on the machine, then the transition

function is defined as

δ : Q× Γk → Q× Γk × {L,R}k

Let us consider a 3-tape Turing Machine (k = 3). Then,

δ(q2, a, b, d) = (q3, b, a, a, R, R, L)

means that if the machine is in state q2, head 1 is reading symbol

a, head 2 is reading symbol b and head 3 is reading symbol d,

then the machine goes to state q3, writes symbol b on tape 1,

writes symbol a on tapes 2 and 3 and moves head 1 and 2 to the

right and head 3 to the left.

Lucia Moura 39

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

A two-tape Turing Machine

Let A = {0k1k : k ≥ 0}. We have shown that this language can

be decided by a O(n2) single-tape Turing machine.

Give an O(n) two-tape Turing machine for deciding A.

Simulating this two-tape Turing machine for string 000111:

Simulating this two-tape Turing machine for string 0001111:

Simulating this two-tape Turing machine for string 0000111:

Lucia Moura 40

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

A linear time two-tape machine for A = {0k1k : k ≥ 0}

M3= "On input string w:

1. Scan across tape 1 and if a 0 is found to the

right of a 1, then reject.

2. Scan across the 0s on tape 1, simultaneously

copying each onto tape 2, until the first 1

appears on tape 1.

3. Scan across the 1s on tape 1, simultaneously

crossing off each 0 on tape 2 for each 1 on

tape 1. If all 0s in tape 2 are crossed off

before all the 1s are read from tape 1, reject.

4. If all the 0s have now been crossed off, accept.

Otherwise, reject."

Analysing the the time complexity of M3:

Stage 1. runs in O(n) steps.

Stages 2., 3. and 4. combined take O(n) steps.

Therefore, M3 is an O(n) two-tape Turing machine.

Obs: if the second statement about stages 2., 3. and 4. is

not clear, try to write the state diagram for this machine, to

be convinced that the 3 steps can be accomplished with a single

pass.

Lucia Moura 41

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Complexity relationships among models

Now we examine how the number of tapes in a Turing machine

can affect the time complexity of languages.

Theorem 1 Let t(n) be a function, where t(n) ≥ n. Then, every

t(n) time multitape Turing machine has an equivalent O(t2(n))

time single-tape Turing machine.

Proof idea:

The main idea is to simulate a k-tape Turing machine on a

single-tape one, using the following tricks:

• Keep track of the contents of the k tapes in a single tape with a

special character, say #, as a delimiter.

• Keep track of the position of the k heads, by using a new special

symbol for each symbol on the tape alphabet of the multitape

machine. For instance a and a both correspond to symbol a, but

a indicates the head of a tape is over this symbol.

• If at any point the original machine moves its head on the unread

portion of some tape, the single-tape machine will write a blank

on top of the corresponding # and shift all the tape contents until

the last # one position to the right. Then, continue simulating as

before.

Lucia Moura 42

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Proof:

Let M be a k-tape Turing machine that runs in time t(n). We

construct a single tape Turing machine S to simulate M in the

way described before.

For each step of machine M , machine S does various steps:

• One scan to know the contents of the symbols under all the tape

heads in order to determine the next move.

• One second pass to update tape contents and head positions.

• At most k right shifts of the tape contents.

Each of these operations will take time proportional to the active

part of S’s tape, so we need to estimate an upper bound on this.

For each step of M at most one extra position becames active on

each tape (write on the blank portion of the tape). Since there are

k tapes, and originally n+ k positions were active, after t(n) steps

at most n + k + kt(n) positions are active, which is in O(t(n)).

All the stages of the simulation of one of M ’s steps takes time

proportional to the size of the active part of S’s tape, yielding

2O(t(n)) + kO(t(n)) = O(t(n)) steps in order to simulate each

single step of M . Since the total number of steps is O(t(n)), then

the total time for S is O(t(n))O(t(n)) = O(t2(n)).

Lucia Moura 43

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Random Access Machines (RAM model)

A random access machine, or RAM, is a computing device

containing an infinite array of registers, each able to hold an

arbitrarily large integer. Register i, i ≥ 0, is denoted ri.

The input of a RAM program is a finite sequence of integers

I = (i1, i2, . . . , in).

A RAM program Π = (π1, π2, . . . , πm) is a finite sequence of

instructions, where each instruction πi is one of:

Instruction Operand Semantics

READ j r0 := ij
READ ↑ j r0 := irj
STORE j rj := r0

STORE ↑ j rrj := r0

LOAD x r0 := x

ADD x r0 := r0 + x

SUB x r0 := r0 − x
HALF r0 := br02 c
JUMP j κ := j

JPOS j if r0 > 0 then κ := j

JZERO j if r0 = 0 then κ := j

JNEG j if r0 < 0 then κ := j

HALT κ := 0

x can be: “j” (rj), “↑ j” (rrj) or “= j” (integer j);

r0 is the accumulator where all operations take place;

κ is the “program counter”.

Lucia Moura 44

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Unless specified otherwise, at the end of the execution of an

instruction the program counter is automatically updated:

κ := κ + 1.

When the program halts, the output is the content of r0.

If we focus on decision problems, then the output is either 1

(accept) or 0 (reject).

A configuration of a RAM is a pair C = (κ,R), where

κ is the instruction to be executed, and

R = {(j1, rj1), (j2, rj2), . . . , (jk, rjk)} is a finite set of

register-value pairs (all other registers are zero).

Let D be a set of finite sequences of integers and let

φ : D → {0, 1} be the function to be computed by a RAM

program Π.

The initial configuration is (1, ∅) and for an input I ∈ D, the final

configuration is (0, R) where (0, φ(I)) ∈ R.

Input size is measured as the number of bits required to store

the input sequence. For an integer i let b(i) be its binary

representation with no redundant leading 0s, and with a minus in

front, if negative. If I = (i1, . . . , ik) is a sequence of integers, its

length is defined as l(I) =
∑k
j=1 |b(ij)|.

Each RAM operation is counted as a single step, even though it

operates on arbitrarily large integers.

Let f : N → N be a function, and suppose that for any I ∈ D
the RAM program computes φ in k steps where k ≤ f (l(I)).

Then, we say that Π computes φ in time f (n).

Lucia Moura 45

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

The RAM model seems much more powerful than Turing machine

models, since in a single step we can operate on arbitrarily large

integers.

We will show the expected fact that any Turing machine can be

simulated by a RAM program with no loss of efficiency.

We will also show the rather surprising fact that any RAM

program can be simulated by a Turing machine with only a

polynomial loss of efficiency!!!

We have to adjust the parameters of the Turing machine to

correspond to the ones of a RAM program.

Suppose that Σ = {σ1, σ2, . . . , σk} is the alphabet of a Turing

machine. Then, let

DΣ = {(i1, i2, . . . , in, 0) : n ≥ 0, 1 ≤ ij ≤ k, j = 1, . . . , n}.
If L is a language over Σ, define φL : DΣ → {0, 1} with

φL(i1, i2, . . . , in, 0) = 1, if σi1σi2 . . . σin ∈ L,

0, otherwise.

(Computing φL in the RAM model is the same as deciding L in

the Turing machine model).

Note that the last 0 in the input helps the RAM program “sense”

the end of the Turing machine’s input.

Lucia Moura 46

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

RAM program simulating a Turing machine

Theorem 2 Let L be a language in TIME(f (n)). Then there

exists a RAM program which computes function φL in time

O(f (n)).

Proof:

Let M = (Q,Σ,Γ, δ, q1, qaccept, qreject) be the Turing machine that

decides L in time f (n).

Our RAM program copies the input string to registers

2, 3, . . . , n + 1. Register 1 will point to the currently scanned

symbol, so initially r1 := 2.

From now on, the program simulates the steps of the Turing

machine one by one.

Lucia Moura 47

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Let Σ = {σ1, σ2, . . . , σk}. A set of instructions simulates each

state q ∈ Q; their instruction numbers are:
Nq,σ1, Nq,σ1 + 1, . . . , Nq,σ1 + 9

Nq,σ2, Nq,σ2 + 1, . . . , Nq,σ2 + 9
...

Nq,σk, Nq,σk + 1, . . . , Nq,σk + 9

So, if δ(q, σj) = (p, σl, dir), then the instructions corresponding to

this transition are:

Nq,σj . LOAD ↑ 1 (fetch symbol under the head)

Nq,σj + 1. SUB = j (j is the symbol index)

Nq,σj + 2. JZERO Nq,σj + 4 (if symbol=σj we have what to do)

Nq,σj + 3. JUMP Nq,σj+1 (otherwise try next symbol)

Nq,σj + 4. LOAD = l (σl is the symbol to be write)

Nq,σj + 5. STORE ↑ 1 (write σl)

Nq,σj + 6. LOAD 1 (the head position)

Nq,σj + 7. ADD = d (d is 1 if dir = R and −1 if dir = L)

Nq,σj + 8. STORE 1 (update head position)

Nq,σj + 9. JUMP Np,σ1 (start simulation of state p)

The states qaccept and qreject are simulated as:
Nqaccept. LOAD = 1 (r0 := 1)

Nqaccept + 1. HALT

Nqreject. LOAD = 0 (r0 := 0)

Nqreject + 1. HALT

The time needed to execute the instructions simulating a single

step of the Turing machine is a constant. Thus, the RAM pogram

needs to execute only O(f (n)) instructions. 2

Lucia Moura 48

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Turing machine simulating a RAM program

Let φ : D → {0, 1} be a function. Then, define Lφ to be a

language over a finite alphabet, say Σ = {0, 1,#,−}, such that

b(i1)#b(i2)# · · ·#b(il) ∈ L if and only if φ((i1, i2, · · · , il)) = 1.

Theorem 3 Let Π be a RAM program that computes φ in time

f (n) ≥ n. Then, there exists a 7-tape Turing machine which

decides Lφ in time O(f 3(n)).

Proof:

The Turing machine M will simulate Π using 7 tapes. The tape

contents are as follows:

tape 1: the input string

tape 2: the representation of R the register contents

(it is a sequence of strings of the form b(i) : b(ri),

separated by ; and possibly blanks, with an endmarker)

tape 3: value of κ, the program counter

tape 4: current register address

tape 5: holds one of the operand for an arithmetic operation

tape 6: holds the other operand for an arithmetic operation

tape 7: holds the result of an arithmetic operation

Note that every time a register is updated, we may have to shift

the contents of other registers to the right to accommodate the

new value. This can be done in time proportional to the length of

tape 2.

Lucia Moura 49

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

The states of M are subdivided into m groups, where m is the

number of instructions in Π. Each group implements one

instruction of Π.

We will show the following claim:

“After the tth step of a RAM program computation on input I ,

the contents of any register have length at most t + l(I) + l(B),

where B is the largest integer referred to in an instruction of Π.”

Assume this claim is correct.

We only need to show that simulating an instruction of Π by M

takes O(f 2(n)). Decoding Π’s current instruction takes constant

time. Fetching the value of registers, involved in an instruction,

takes O(f 2(n)) time, since tape 2 contains O(f (n)) pairs, each

has length O(f (n)) (by the claim) and searching can be done in

linear time on the size of the tape. The computation of the result

itself involves simple arithmetic functions (ADD, SUB, HALF) on

integers of length O(f (n)), which can be done in O(f (n)).

Since each of Π’s instructions can be simulated in O(f 2(n)), all

f (n) instructions can be simulated in time O(f 3(n)) by the

Turing machine.

2

Note that we still have to prove the claim above...

Lucia Moura 50

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

CLAIM: “After the tth step of a RAM program computation on

input I , the contents of any register have length at most

t + l(I) + l(B), where B is the largest integer referred to in an

instruction of Π.”

Proof:

The proof is by induction on t. The claim is true before the first

step. Suppose the claim is true up to step t− 1.

We show it remains true after step t. We will check several cases

of instructions.

If the instruction is a “jump” or HALT, then there is no change on

the contents of the registers.

If it is a LOAD or STORE that modifies a register, its contents

was at another register at a previous step, so the claim holds.

If it was a READ then l(I) guarantees the claim.

Finally, if it is an arithmetic operation, say ADD, it involves the

addition of two integers, i and j. Each is either contained in a

register of last step, or it is a constant mentioned in Π, and so its

size is not bigger than l(B). The length of the result is at most

one plus the length of the longest operand which, by induction, is

at most t− 1 + l(I) + l(B). The situation with SUB is identical

and with HALF is easier.

2

Note that t + l(I) + l(B) ∈ O(f (n)), since t ≤ f (n),

l(I) = n ∈ f (n) and l(B) ∈ O(1).

Lucia Moura 51

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

The complexity class P

Summary of polynomial equivalences between models

Suppose the algorithm to be simulated in one of the models takes

f (n) steps on an input of size n.

The following table shows the running time taken by the simulator

machine.

↓ simulates → single-tape multitape

Turing machine Turing machine RAM program

single tape

Turing machine - O(f 2(n)) O(f 6(n))

multitape

Turing machine O(f (n)) - O(f 3(n))

RAM program O(f (n)) O(f (n)) -

We can now define the complexity class P as the set of

concrete problems that are solvable in polynomial time by any of

the above models.

Using the single-tape Turing machine model:

P = ∪∞k=0TIME(nk)

Using the RAM model:

P = {L : L can be decided by a polynomial time RAM algorithm}

Note that the first one was the original definition, and the second

one is the one used in most of the textbook by Cormen et al.

Lucia Moura 52

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Definition of the complexity class P

For the purpose of the theory of NP-completeness, we can take

our algorithms to be defined in any of the following

computation models: single tape Turing machines, multitape

Turing machines or random access machines. The set of

languages that can be decided in polynomial time is

the same, regardless of which of the above models we

use for defining algorithms. The analysis of the algorithms

in the textbook are based on the RAM model.

We will concentrate on the binary alphabet, although other

alphabets could be used (remember that the length of strings

representing integers in binary, ternary or decimal alphabets are

all polynomial-time related).

Recall that an algorithm A accepts a string x ∈ {0, 1}∗ if given

input x, the algorithm outputs A(x) = 1. The language

accepted by an algorithm A is L = {x ∈ {0, 1}∗ : A(x) = 1}.
An algorithm A rejects input x if A(x) = 0. Even if a language

L is accepted by an algorithm A, the algorithm will not

necessarily reject a string x 6∈ L (A may loop forever). A language

L is said to be decided by an algorithm A if A(x) = 1 for all

x ∈ L and A(x) = 0 for all x ∈ {0, 1}∗ − L.

Thus, we can precisely define the complexity class P as:

P = {L ⊆ {0, 1}∗ : there exists an algorithm A

that decides L in polynomial time}

Lucia Moura 53

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Accepting versus Deciding in polytime

The complexity class P was defined as the set of languages that

can be decided in polynomial time.

We ask ourselves: is there a language that can be accepted by a

polynomial time algorithm, but cannot be decided by a

polynomial time algorithm?

The following theorem shows the answer to this question is “no”:

Theorem 4

Let P ′ = {L ⊆ {0, 1}∗ : there exists an algorithm A

that accepts L in polynomial time}.

Then, P = P ′.

Proof:

There are 2 sides to prove: P ⊆ P ′ and P ′ ⊆ P.

By the definition of a language being accepted and decided by an

algorithm, we can easily see that P ⊆ P ′. It remains to prove that

P ′ ⊆ P, that is, we must show that for any language L accepted

by a polynomial-time algorithm, there exists a polynomial time

algorithm that decides L.

Let L be a language such that there exists a polynomial-time

algorithm A′ that accepts L. Thus, A′ accepts L in time O(nk)

for some constant k, which implies that there exists a constant c

such that A′ accepts L in time at most T (n) = cnk.

(Exercise: give a detailed proof of the last statement)

Lucia Moura 54

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

(proof, continued)

We define an algorithm A that decides L in the following way:

1. On an input x of size n, A simulates A′ for the first T (n) = cnk

or until A′ halts on x, whichever comes first.

2. if A′ reached an accepting configuration, then A outputs 1.

Otherwise, if A′ rejected L or after cnk steps it did not halt,

then ouput a 0.

First, note that A really decides L. Indeed, if x ∈ L then A′ will

accept it in at most cnk steps, so an accepting configuration will

be reached withing the number of steps A′ was allowed to run,

and A will output a 1. Moreover, if x 6∈ L, then the simulation of

A′ can either halt and reject or not halt up to step cnk, in which

cases, A will output a zero.

The second thing to verify is that A runs in polynomial time.

This is clear, since in the first stage, A executes cnk steps, for

fixed constants c and k, and the second stage can be executed in a

constant number of steps.

2

Exercise: Describe how A would simulate A′ for T steps, both

in the Turing machine model and in the RAM model.

Lucia Moura 55

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

The Hamiltonian-Cycle Problem

Let G = (V,E) be an undirected graph with vertex-set V and

edge-set E.

A hamiltonian cycle of G is a simple cycle (i.e. one with no

repeated vertices) that contains each vertex in V .

A graph that contains a hamiltonian cycle is said to be a

hamiltonian graph.

Example of a hamiltonian and a nonhamiltonian graph:

(PICTURE: textbook section “Polynomial-time verification”)

The problem of finding a hamiltonian cycle in an undirected graph

has been studied for more than 100 years. Up to now, nobody was

able to come up with a polynomial-time algorithm for this

problem.

The formal language associated with the hamiltonian-cycle

problem is defined as

Ham-Cycle = {< G >: G is a hamiltonian graph }

Note that < G > is a binary encoding of G, which uses either the

adjacency matrix or the adjacency list representation.

Note: these representations are polynomial-time related. Why?

Lucia Moura 56

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

A polynomial-time verification algorithm

Even though we do not know any polynomial-time algorithm that

accepts Ham-Cycle, if somebody with psychic powers handed us

a hamiltonian cycle, we could design a polynomial-time algorithm

to verify whether the object handed to us was a valid hamiltonian

cycle. This is the intuition behind verification algorithms.

We define a verification algorithm as a two-argument

algorithm A, where one argument is an input string x and the

other is a binary string y called a certificate. A two argument

algorithm A verifies an input string x if there exists a certificate

y such that A(x, y) = 1. The language verified by a

verification algorithm A is

L = {x ∈ {0, 1}∗ : there exists y ∈ {0, 1}∗ such that A(x, y) = 1}

In other words, an algorithm A verifies a language L if for any

x ∈ L there exists y ∈ {0, 1}∗ such that A(x, y) = 1 and for any

x 6∈ L there exists no y ∈ {0, 1}∗ such that A(x, y) = 1.

Let A be an algorithm that verifies a language L. We say that A

verifies L in polynomial time, if there exists constants

c1, k1, c2, k2 such that for any x ∈ L of length n there exists a

certificate y with |y| ≤ c1n
k1, such that A(x, y) = 1 and A runs in

at most c2n
k2 steps on arguments (x, y).

More intuitively: A is a polynomial-time algorithm and for each

x ∈ L, there is a short certificate that allows A to verify (x, y) in

polynomial time.

Lucia Moura 57

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

A poly-time verification algorithm for Ham-Cycle

Let G be an undirected graph such that < G > ∈ Ham-Cycle.

We wish to find a short certificate y for G and a verification

algorithm that runs in polynomial-time on the length of < G >.

What is the approximate length of a graph < G >?

Let v be the number of vertices and e be the number of edges in G.

If we use the adjacency-matrix representation, | < G > | ∈ O(v2),

and if we use the adjacency-list representation,

| < G > | ∈ O(v · e · log v). Both representations are polynomially

related since v2 ≤ (v · e · log v)2 and v · e · log v ≤ v4, since e ≤ v2.

Give a short certificate for G and a polytime verification

algorithm:

Let h = (xi1, xi2, . . . , xiv) be a hamiltonian cycle in G (this exists

since < G >∈Ham-Cycle). Let y =< h > be a binary encoding

of h. Note that |y| ∈ O(vlogv) which is polynomial on | < G > |.
The verification algorithm A(< G >,< h >) is as follows:

xiv+1 := xi1;

for k from 1 to v do //check that h is a cycle

if ({xik, xik+1} is not an edge) then output 0;

else mark xik as visited;

for k from 1 to v do //check that every vertex appeared

if (xk was not visited) then output 0;

output 1;

For the adjacency-matrix representation, A runs in in O(v) steps.

Exercise: analyse A for the adjacency-list representation.

Lucia Moura 58

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Verification algorithms and the complexity class NP

Now, we are ready to define the complexity class NP. Intuitively,

the complexity class NP is the class of languages that can be

verified by a polynomial time algorithm.

More precisely,

NP = { L ∈ {0, 1}∗ : there exists a two argument algorithm A

that verifies L in polynomial time }.

Note: do not forget that the definition of an algorithm that

“verifies a language in polynomial time” requires the existence of a

short certificate.

By our previous discussion, Ham-Cycle ∈ NP.

Prove that P ⊆ NP:

Proof:

Let L ∈ P. Thus, there exists a polynomial-time algorithm A′

that decides L. Build a two-argument algorithm A such that for

all x, y ∈ {0, 1}∗, A(x, y) simply returns A′(x).

It is clear that for any x ∈ L there exists a short certificate y (any

short string will do) such that A(x, y) = A′(x) = 1. Moreover,

since A′ runs in polynomial time then so does A.

Therefore, A verifies L in polynomial time, and thus L ∈ NP.

Lucia Moura 59

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Nondeterministic Turing machines (NTMs)

The name NP comes from nondeterministic polynomial

time, and is derived from an alternative characterization of NP

which uses nondeterministic polynomial time Turing machines.

Let us first define nondeterministic Turing machines.

You may recall the difference between a nondeterministic finite

state automaton (NFSA) and a deterministic one (DFSA). The

NFSA may have several possible valid transitions when it reads a

symbol, and a string is said to be accepted by the NFSA if there

exists a sequence of valid transitions that ends up in a final state.

A similar comparison can be done between nondeterministic

Turing machines and deterministic ones.

A nondeterministic Turing machine is similar to a deterministic

one, but at any point in a computation, the machine may proceed

according to several possibilities. The transition function for a

nondeterministic Turing machine has the form:

δ : Q× Γ→ P(Q× Γ× {L,R})

The computation of a NTM is a tree whose branches correspond

to different possibilities for the machine. We say that the machine

accepts an in input if for some branch of the computation leads

to the accept state.

Lucia Moura 60

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Example of a nondeterministic Turing machine

– Picture a NTM with 6 states –

The nondeterminism can be seen in q1 and q2:

δ(q1, 0) = {{q2, 0, R}, {q3, 0, R}}
δ(q2, 1) = {{qreject, 1, R}, {q4, 1, R}}

1 is rejected by N . The computation tree for 1 is:
q11

1q2

1tqreject
01 is accepted by N . The computation tree for 01 is:

q101

0q21 0q31

01q4 01tqreject 01q3

01tqaccept 01tqreject

Lucia Moura 61

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

Measuring nondeterministic time

Definition 2 Let N be a nondeterministic Turing machine that

is a decider. The running time of N is a function T (n), were

T (n) is the maximum number of steps that N uses on any branch

of its computation on any input of length n.

– Picture: running time as

the height of the computation tree –

A NTM N runs in polynomial time if there exists a constant k

such that its running time is in O(nk).

Lucia Moura 62

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

A polynomial-time NTM for Ham-Cycle

N = ‘‘ On input < G >, where G is an undirected

graph:

1. Write a list of v numbers p1, p2, . . . , pv, where v is

the number of vertices in G. Each number in the

list is nondeterministically selected to be

between 1 and v.

2. Check for repetitions in the list. If any are

found, reject.

3. For each k between 1 and v − 1, check whether

{pk, pk+1} is an edge of G. Check also if {pv, p0}
is an edge. If any are not, reject. Otherwise,

accept.’’

This algorithm runs in nondeterministic polynomial time, since the

nondeterministic selection in stage 1 runs in polynomial time and

one can easily check that the other steps run in polynomial time.

You probably noticed the similarity between verification

algorithms and nondeterministic Turing machines: the

nondeterministic choice of the latter model is related to the

certificate of the former one.

Lucia Moura 63

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

The polytime equivalence between verifiers and NTMs

Theorem 5 A language is in NP if and only if it can be decided

by some nondeterministic polynomial-time Turing machine.

Proof:

→ side:

Let L ∈ NP, we must show that L can be decided by some

polynomial time NTM. Let V be the polynomial time verification

algorithm for L, which exists by the definition of NP. Let c and k

be appropriate constants such that V can verify an input of size n

in time cnk, and construct a NTM as follows:

N = ‘‘On input w of length n do

1. Nondeterministically select a string y of length

cnk.

2. Simulate V on input < w, y > for at most cnk

steps.

3. If V accepted the input, then accept; otherwise

reject.

Note that a certificate that allows the verification of w by V under

the given time bounds cannot exceed the size cnk, so the above

nondeterministic selection finds at least one such certificate for

any w.

Lucia Moura 64

Introduction to NP-completeness Analysis of Algorithms and Complexity Classes

← side:

Let L be a language decided by a polynomial-time NTM N . We

must construct a polynomial-time verification algorithm for L:

V = ‘‘On input < w, y > where w and y are strings:

1. Simulate N on input w, treating each symbol of y

as a description of the nondeterministic choice

to make at each step.

2. If this branch of N’s computation accepts, then

output 1; otherwise, output 0.’’

Let w ∈ L. Note that since there exists a path on the

computation tree of N that accepts w, then there exists y such

that V (w, y) = 1. Moreover, since N runs in polynomial-time,

then |y| has polynomial size. Thus, V is a polynomial-time

verification algorithm.

Lucia Moura 65

