Midterm Test – CSI 2131 Winter 2006 — Prof Lucia Moura
Student name: _______ SOLUTION in Blue !_________
Student number: _________________________________

Section: ________________

Closed Book, no calculator allowed.

Please, make sure your booklet has pages 1-11. The last page is blank and can be used as scrap paper or to write an answer.
	1 File Management Concepts
	/10

	2 Field and Record Design, and File Manipulation in C++
	/30

	3 Magnetic Disk, Tapes and CD-ROM
	/34

	4 Compression
	/26

	TOTAL
	/100

1. File Management Concepts — 10 points (3 (1,1,1), 7 (1,3,3))
A) File System: Name and explain three tasks that get fulfilled by the file system (part of the operating system) during the execution of instruction:
write(textfile, ‘P’, 1)

Errata: File system should be substituted by File Manager.
1. Consult the File Allocation Table (FAT) to determine which sector of the file is going to be written to.

2. Check in main memory whether there is a buffer that already contains the desired sector. If not, asks the I/O processor to read that sector into a buffer.

3. Add the byte to the appropriate buffer. After that, or perhaps before bringing the sector to the buffer, a buffer might have to be written to disk. To do this, the file manager passes control to the I/O processor to proceed with the process of writing the buffer to disk.

(This is a sample answer. Your answer doesn’t have to be identical to this one.)
---------------------------- the space above should be enough to answer ------------------------
B) I/O Buffer:
Consider the following pseudo-code segment, where each operation specifies a file, a string and the number of characters involved in the operation:
Pseudo-code:

 Read(textfile1, x,3)
 (1)
File contents:
1(
….

textfile1:
 Write(textfile2, ‘ABCDE’,5)
(2)
 1234567890
 Write(textfile3, ‘FGHIJK’,6)
(3)
textfile4:

 Read(textfile1, x,5)

(4)
 @#$%^&*()
 2(….

Write(textfile2,’LMN’, 3) (5)
 Write(textfile3,’OPQRS’,5) (6)
 Read(textfile4, x,3) (7)
3(
 Assume that the I/O Buffers are arranged in a Buffer pooling organization with three buffers of size 10 bytes and a Least Recently Used replacement policy.
Assume that the 3 buffers are originally empty and that any buffer can be used for input or output files. Show the contents of the buffers at each of the steps indicated on the code by a numbered arrow:
At point 1(
	1
	2
	3
	4
	5
	6
	7
	8
	9
	0

Buffer 1 (1) – textfile1
	
	
	
	
	
	
	
	
	
	

Buffer 2:

	
	
	
	
	
	
	
	
	
	

Buffer 3:

At point 2(

	1
	2
	3
	4
	5
	6
	7
	8
	9
	0

Buffer 1: (4) – textfile1
	A
	B
	C
	D
	E
	
	
	
	
	

Buffer 2: (2) – textfile2
	F
	G
	H
	I
	J
	K
	
	
	
	

Buffer 3: (3) – textfile3
At point 3(

	S
	
	
	
	
	
	
	
	
	

Buffer 1: (6)-cont’d textfile3
	@
	#
	$
	%
	^
	&
	*
	(
)
	

Buffer 2: (5) –textfile2; (7) textfile4
	F
	G
	H
	I
	J
	K
	O
	P
	Q
	R

Buffer 3: (6) – textfile3
2 Field and Record Design and File Manipulation in C++ — 30 Points (4, 6, 20)
Given a file containing information about 1,000 employees including:

· Last name

· First name

· Date of birth

· Salary

· Employee number

Here is an example of an employee record:

· Last name: Smith

· First name: John

· Date of birth: 30031975

· Salary: 42000

· Employee number: 16668004

1) Give an example of a primary key and a secondary key for this file. Explain why they are primary and secondary keys.

Primary key: employee number. It is a primary key because it uniquely identifies a record; no two employees have the same employee number.
Secondary key: any other single field. Name, date of birth or salary secondary keys because they are not unique to a record; several employees may have the same name, birthday or salary.
2) Assuming that records are organized with a fixed length record with:

A) a fixed field length for the date of birth (8 characters), salary (7 characters (digits)), and employee number (8 characters).
B) a fixed field length for the last name and first name fields considered together (30 characters altogether) but arranged in variable fields with a length-indicator for the last name (Note: the length indicator is in addition to the 30 characters)
Draw John Smith’s record following this organization:

*SmithJohn_____________________30031975004200016668004
| |--| |----------| |---------|-----------| length=54 bytes
| 30 bytes for name 8 bytes 7 bytes 8 bytes

1 byte (length indicator in binary) (birth) (salary) (employee#)
 Alternative: 2 digits in text to store length indicator (total length=55 bytes)
What are the advantages of this organization?
Fixed-length records allow easy access by RRN. Combining the variable length fields (last and first name) into a fixed length “compound” makes smarter use of the 30 bytes which can be freely divided between both fields (less chance of truncation than with 2 fixed-length fields adding up to 30).

3) Assume that the employees were added to the database chronologically as they were hired.

Write a C++ program that, given a number n entered by the user, retrieves the first name of the n-th hired employee in the database using direct access.
#include <fstream>

using namespace std;

int main() {

fstream infile;

int n;

unsigned char byte;

infile.open(“employee.txt”,ios::in);

cout<<”Enter a number”;

cin>>n;

// Prepare to read the n-th record by seeking to appropriate byte offset

long int offset;

offset = (n-1)*54; // number (54) to be the same as length used in part 2)

infile.seekg(offset,ios::beg);

// Read the length indicator and jump over last name

infile.get(byte); // because I’m using one (binary) byte for length indicator

 // this have to be compatible with design in 2)

long int jump = (long int) byte; // converting byte to long int

infile.seekg(jump,ios::cur);

 // The next lines read first name into array name[0..i-1]

char name[30];

int i=0;

infile.get(name[i]);

while ((name[i] !=’ ‘) && (i<30-jump)) {

i++;

infile.get(name[i]);

}

 // The next lines prints the contents of name[0..i-1]

// (alternatively, printing could be done in first loop, without saving in name[])

for (int j=0; j<i; i++)

cout << name[j];

infile.close();

return 0;

}

3 Magnetic Disks, Tapes and CD-ROMs—34 Points (12 (6,6), 10, 12 (6,6))

A) Disk

Consider a disk with the following characteristics:

400 bytes per sector

20 sectors per track

Average seek time: 5 msec

Average rotational delay: 2 msec

Transfer rate: 4 msec per track

Assume that you are interested in retrieving records at random (each record of size 100 bytes) from a file dispersed over a large number of cylinders randomly distributed over the disk.
1. If we assume that the smallest addressable units are sectors, in average what is the number of records that can be retrieved in 36 seconds?

average time to to read 1 record at random

= average time to read 1 sector at random

= (average seek time) + (average rotational delay) + (transfer time for 1 sector)
= 5 + 2 + 4/20 = 7.2 msec
#records read in 36 seconds = (36000 msec)/(7.2 msec per record)= 5,000 records
2. Same question if we assume that the smallest addressable units are clusters of ten sectors.
average time to to read 1 record at random

= average time to read 1 cluster at random

= (average seek time) + (average rotational delay) + (transfer time for 1 cluster)
= 5 + 2 + 4/2 = 9 msec

#records read in 36 seconds = (36000 msec)/(9 msec per record)= 4,000 records

B) Tapes

Consider a file containing 4,000 records of 100 bytes each.

Consider a tape with the following characteristics:

Tape density: 2000 bpi

Inter-block gap: 0.25in

Tape speed: 500 ips

Assume that a blocking factor of 20 is used.

How long will it take to retrieve the entire file?
#blocks = 4,000/20 = 200 blocks
size of a block in bytes = (blocking factor)x(record size in bytes)=20x100=2,000 bytes
size of a block in inches = (record size in bytes)/(tape density)

 = 2,000 bytes/2,000bpi = 1 in

size of the file in inches = (number of blocks)x(size of a block in inches + size of gap)

 = 200 x (1 + 0.25) = 250 inches

Retrieval time = (size of file in inches)/(tape speed in ips) = 250/500 = 0.5 seconds
C) CD-ROM
1) In CD-ROMs, bytes are represented in 14 rather than 8 bits, through EFM encoding. Please, explain why such a transformation is necessary.
It is not possible to represent certain sequence of bytes using the land-pit representation which encodes a 1 as a change pit-to-land or land-to-pit and a zero as an amount of space between 1’s. For instance, a string of bits cannot have 2 consecutive 1’s when represented on the CD-ROM. More specifically there must be at least two 0’s and at most ten 0’s between two ones.
The ETF (eight-to-fourteen) modulation converts a regular string with 8-bits into a 14-bit string that satisfies these properties.
2) Give 3 differences between CD-ROMs and Hard Disks. Make sure you cover different aspects (technological differences, track or sector organization, etc.)
CD-ROM

Hard disk

Technological:

Optical disk

Magnetic disk

Track organization:
single spiral track

many concentric tracks

Sectors:

sectors have the same

sectors have the same

 linear length

angular length

Writing density:
bytes written at maximum
information on outer sectors

 capacity for this media
 is less packed than inner sectors

Speed/access:

Much slower seek time
Faster seek time

Slower transfer rate

Faster transfer rate

Capacity:

Less absolute capacity

More absolute capacity

Versatility:

Easy to transport

Harder to transport (unless portable)

Etc.

4 Compression — 26 Points (10 (5,5), 16 (8,8))

Consider the following string:

ABCAACDDEAACCCDAECDE
A) Huffman Compression

a. Show each step of the Huffman Tree building process.

Character:

A
B
C
D
E
total
Frequency:

6
1
6
4
3
20

Code (from tree below):
10
010
11
00
011

I won’t use graphics, so draw the trees by yourself, using the information below.
1. Singleton trees at start:
B:1, E:3, D:4, A:6, C:6
2. Merge B+E:

D:4, (tree1 with B left and E right:4), A:6, C:6
3. Merge D+tree1:

A:6, C:6, (tree2 with D left and tree1 right: 8)
4. Merge A+C:

(tree2 with D left and tree1 right: 8) ,

(tree3 with A left and C right: 12)

5. Merge tree2+tree3

(tree4 with tree2 left and tree3 right)

Please, draw the trees described above and obtain the code from tree4, using 0 for left and 1 for right.
Note: left and right trees can be arbitrarily exchanged, so that the trees and codes described are not the only valid possibilities.
b. What is the average length of a codeword?
average codeword length = (bits used to encode the file)/(#characters of original file)

= B(T)/20 = sum(for each character c) f(c)x(codeword length for c)

= (6x2+1x3+6x2+4x2+3x3)/20

= 44/20 = 2.2

B) Lempel-Ziv Compression

a. Encode the given string (ABCAACDDEAACCCDAECDE) using Lempel-Ziv encoding. How many bits are there in the encoded file? Please, explain your answer.

Parsing the file we get 12 indexes:
A|B|C|AA|CD|D|E|AAC|CC|DA|EC|DE|
Indexes in encoded file:

 1 2 3 4 5 6 7 8 9 10 11 12

|0A|0B|0C|1A|3D|0D|0E|4C|3C|6A|7C|6E
number of bits for index:
 0 1 2 2 3 3 3 3 4 4 4 4
Number of bits to encode the file =

= (number of bits for 12 characters) + (number of bits for the first 12 indexes)

= (12x8) + (0 + 1 + 2 + 2 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 4) = 129
It is enough to show your work for “explanation”.
b. A DNA string has been encoded following Lempel-Ziv’s principle. Each base is represented with two bits instead of the usual 8 bits:

A (00

C (01

G (10

T (11

 The resulting bits on the encoded file are:

000100110001101011100010110100101

 Show the decoded string.

Indexes below (numbers in red, letters in blue)

 1 2 3 4 5 6 7 8

|00|010|0110|0011|01011|10001|01101|00101|
Converting for our human eyes:

 1 2 3 4 5 6 7 8

|0A |0G |1G |0T |2T | 4C |3C |1C|
Decoding: A G AG T GT TC AGC AC
Which gives: “AGAGTGTTCAGCAC”
PAGE
10

