CSI 2131 Final Exam — Version 1, April 15, 2003, Page 2 of 26

1 to 2 — Magnetic Disks — 4 points
Consider a disk drive with the following characteristics:

Number of bytes per sector = 512
Number of sectors per track = 100
Number of tracks per cylinder = 8
Number of cylinders = 100

and a file containing 8,000 records, each record having 256 bytes.

1 Disks - Part I
How many cylinders would be required to save this file on disk, assuming that the disk is
originally empty and an optimal use of space can be achieved?

15

20

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 3 of 26

3 Magnetic Tapes — 2 points
Given a magnetic tape with the following characteristics:

o density: 2000 bpi
o interbloc gap: 0.2 in
e speed = 100 ips
Assume that we want to store a file of 10,000,000 records, using a blocking factor of 1,000.
Each record has 100 bytes.
How much space will be necessary to store this file fully?
‘What is the nominal transmission rate of the tape?
Space: 700 inches; nominal transmission rate: 400,000 bytes/sec

Space: 5,020 inches; nominal transmission rate: 20,000,000 bytes/sec

Space:

Space:

#2 a0w >

Space:

502,000 inches; nominal transmission rate: 400,000 bytes/sec
50,200 inches; nominal transmission rate: 200,000 bytes/sec

502,000 inches; nominal transmission rate: 200,000 bytes/sec

mY 0w >

40

2

Disks - Part TT

4

Buffering — 2 points

Assume the same organization as in the previous question, and that records were written
sequentially into an empty disk in such a way that the tracks of each cylinder were filled
before moving to a new cylinder.

How many disk “seeks” are necessary to retrieve the 5th, 50th, 500th, 2500th, 2800th and
3000th record, in this order?

B9 0w »
-

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 4 of 26

5 Huffman Compression — 2 points

There are several valid Huffman trees for the same file, when we consider the arbitrary
choices of right and left subtrees. Each of these choices gives a different Huffman code.

Mark below the answer that DOES NOT correspond to a valid Huffman code for the file
containing characters: aabbbc

a:10, b:0, c:11

. a:00, b:1, c:01

A.
B
C. a:11, b:0, c:10
D. a:10, b:11, c:0
E.

- a:01, b:1, c:00

.. continued

Consider the buffering strategies seen in class.
‘Which one of the following statements is false?

A. Buffer pooling involves a pool of available buffers from which buffers are taken as
needed.

B. Move mode involves moving data between an Input/Output buffer and a program
buffer.

C. Locate mode eliminates the need for transferring data between an Input/Output
buffer and a program buffer.

D. When double buffering is used, two buffers are involved, and the system operates on
one buffer while the other is being loaded or emptied.

E. In both move mode and locate mode, a program is able to operate directly on data
in the Input/Output buffer.

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 5 of 26

6 Hashing: predicting record distribution — 2 points

Let 7 be the number of keys to be stored in a hash table with N addresses.
Let p(i) be the probability that a given address have i keys assigned to it.

The following table shows p(i) approximated by using the Poisson distribution for various
values of r/N:

r/N | 0.50 | 0.75 | 1.00 | 1.50
p(0) || 0.61 | 0.48 | 0.37 | 0.22

p(1) | 0.30 [0.35 | 0.37 | 0.33
p(2) [0.08 [0.13 [0.18 | 0.25
p(3) [0.01 [0.03 | 0.06 | 0.13
p(d) ~[0.01 [0.02 [0.07

Consider the following two scenarios:

(1) r=1000, N = 2000, no buckets

(2) r=1000, N = 1000, bucket size 2

Calculate the expected number of overflow records (expected number of records to be
stored away from their home addresses), for each of the two scenarios respectively:

-
®
S
S

H# O o= »
CECRCECIC
oo
S
IS
EEREEE
w
&
2

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 6 of 26

7 to 8 - Reclaiming Space in Files — 2 points

Consider the following file that stores information about presidents of Canadian universities;
e.g., Edwards is the president of UofO. The file is stored in variable-length format with a
byte count (length indicator) and 5 variable-length records:

LH ——> -1
Record#: 0 1 2 3 4

13Edwards |Uof0|11Bates|UofT|11Wills |UofA|16Masterianc |UofW|12Chavez|UofM|

Here, LH is a pointer to the head of the AVATL LIST. The value -1 is the end-of-list marker.
We use a vertical bar as field separator. Two bytes at the beginning of each record store
a length indicator; for example, record 0 has a length of 13 bytes, not counting the length
indicator itself. We count byte offsets starting with 0; for example, the letter "U” in record
1 has byte offset 23. We use a star (*) to mark deleted records and we organise the AVAIL
LIST as seen in class.

7 Reclaiming Space in Files - Part I

In the question below, periods show discarded characters; * is put in the first field of the
deleted record; and the byte offset of the next available record is put in the second field.

The following is our file after deletion of records number 1 (Bates) and 3 (Masteriano):

A.

LH ---> 41

0 1 2 3 4

13Edwards |Uof0|11%. 11Wills|UofA|16%. . . |12Chavez|UofM|

B.
LH ---> 3
0 1 2 3 4
13Edwards|Uof011x. |-1..11Wills|UofAl16%. 115. . |12Chavez|UofM|
c.
LE ---> 41
0 1 2 3 4
13Edwards |Uof0l11x. 115. . 11Wills |UofAl16x. |-1..112Chavez|UofM|
D.
LE ---> 15
0 1 2 3 4
13Edwards |Uof0|11%. |-1..11Wills |UofA|16%. 115. . |12Chavez |UofM|
E.
LE ---> -1
0 1 2 3 4
13Edwards |Uof0|11%. 141..11Wills |UofA|16%. 115. . |12Chavez |UofM|
... continued
CSI 2131 Final Exam — Version 1, April 15, 2003, Page 8 of 26

10 to 11 - Sorting Large Files — 4 points
Given

e a file with 1,000,000,000 records, each record having 1000 bytes,

* 500,000,000 bytes of available memory.
Assume that you would like to sort this file using a merging procedure that divides the file
into different runs and merges these runs co-sequentially.

10 Sorting Large Files — Part I

How many runs do you need to divide the file into?

. 20,000
2
. 10,000

200

=9 a® »

- 2,000

11 Sorting Large Files — Part II

How many records in total can be held simultaneously in memory during the merging part
of the algorithm?

. 50,000
. 500,000
. 500,000,000

. 1,000

H= O a = »

. None of the answers above is correct.

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 7 of 26

8 Reclaiming Space in Files - Part II
Assume the same file organization as in the previous question. Which one of the following
statements is false?
A. We cannot use Relative Record Numbers instead of byte offsets for accessing records
directly.

B. When inserting a new record, the first entry (the one LH is pointing to) in the avail list
must be used.

C. Worst Fit may lead to some amount of fragmentation.
D. We can use the Best Fit replacement strategy for the file.

E. We can use the Worst Fit replacement strategy.

9 Cosequential Processing — 2 points

How many key comparisons and write operations are required in order to match names
in the two following lists, assuming that input lists and the output list are to be kept in files
on disk:

Listl: Banana, Eliza, Finamo, Kant, Ludwig, Pietro, Zaraeu
List2: Anastasios, Balancius, Furlan, Zoro

A. number of key comparisons = 28 number of write operations = 10
B. number of key comparisons = 10 number of write operations = 11
C. number of key comparisons = 10 number of write operations = 0
D. number of key comparisons = 28 number of write operations = 7
E. number of key comparisons = 6 number of write operations = 0
continued
CSI 2131 Final Exam — Version 1, April 15, 2003, Page 9 of 26

12 B tree properties — 2 points

Consider an index file of 2,000,000 keys. What is the maximum number of levels that a
B-tree index of order 20 has?

7
8

2

100

B9 ow >

. None of the above

13 B+ tree properties — 2 points
‘Which one of the following assertions about B+ trees is false.

A B+ tree consists of an index set and a sequence set.
A B+ tree consists of an index set organised as a B-tree.

. A simple prefix B+ tree uses shortest separators.

Sow s

. Separators are derived from the keys of the records on either side of a block boundary
in the sequence set.

E. The index set of a simple prefix B+ tree is a tree over a set of separators.

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 10 of 26

14 B tree deletions — 2 points

Consider the following B tree of order 4:

Lo [a] [[T]

[aa] Taz] T3] 2] [22 [Tz [Tas[]

Consider the deletion of keys 9, 16, and 1 in this order.

Determine whether the following statements are TRUE or FALSE:

(1) After 9 is deleted, two nodes were merged.
(2) After 16 and 1 are deleted, the structure of the tree changes.

(3) After 9, 16, and 1 are deleted in this order, the tree still contains 3 levels.
‘Which of the statements above are TRUE?

. (1) only

. (2) only

. all of them are true

A
B
C. (1) and (2) only
D
E

. (1) and (3) only

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 12 of 26

Part C — 2 points Hashing: Chained Progressive Overflow
In this part, use chained progressive overflow with no buckets.

Part D 2 points Hashing: Scatter Tables
In this part, use a scatter table.

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 11 of 26

15 Hashing — 8 points

Consider the following pairs of key/hash values:

[Rey [A[D[B[E[GJH[F]
| hash value (home address) [7 [6 |7 [5 [4 [4 [4]

In the following four parts you are going to display the hash table resulting from the insertion
of the keys above in the given order.

Each hashtable has 8 addresses (the first address is 0 and the last address is 7).

In each part, a different hashing organization is requested.

‘We draw the table for you only in Part A.

Part A — 2 points Hashing: Progressive Overflow
In this part, use progressive overflow (linear probing) and no buckets:

W= o

~“ oo

Part B — 2 points Hashing: Progressive Overflow, Buckets
In this part, use progressive overflow (linear probing) and buckets of size 2.
The number of hash addresses is still 8 (the first address is 0 and the last address is 7).

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 13 of 26

16 Extendible Hashing: Insertions — 8 points

Perform the following insertions (in the order given below) to an originally empty extendible
hashing table:

key: k | h(k) | binary representation of h(k)
‘ (before bit reversion)
A 0 [0000
D 2 | 0010
B 1 0001
E 5 [0101
G 1 0001
H 1 0001
F 5 [0101
K 6 |[0110
L 2 |o0010

You must use bucket size 3.

You may use the back of the pages as draft.
Show below the extendible hashing structure after each sequence of 3 insertions, namely:
after B, after H and after L.

1) Extendible Hashing Structure after inserting A, D, B:

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 14 of 26

2) Extendible Hashing Structure after inserting E, G, H:

3) Extendible Hashing Structure after inserting F, K, L:

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 17 of 26

18 B Trees: Insertions — 8 points

Consider the following key sequence:

3, 19, 4, 20, 1, 13, 16, 6, 2, 23, 14, 7, 21, 18

Construct a B-tree of order 4, by successive insertion of the keys in the given order.

You may use the back of some pages as draft, and you only need to show below the following
intermediate steps:

e an insertion step (of your choice) that causes a simple split;

e an insertion step (of your choice) that causes a recursive split that causes the root to
split; and

o the final tree obtained.

1) Selected Simple Split Step:

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003,

Page 15 of 26

17 Extendible Hashing: Deletions — 8 points

Consider the following extendible hashing table:

000

001

010

011

100

101

110

111

You must use bucket size 2.

Draw the extendible hashing table after each of the following deletions:

A. Delete Z

B. Delete W

A

For each deletion, show only the final step as well as any intermediate step where
the directory size changes.

CSI 2131 Final Exam — Version 1, April 15, 2003,

continued

Page 18 of 26

2) Selected recursive split step, spliting the root:

3) Final B tree:

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 19 of 26

19 Simple Prefix B4 trees — 4 points

Consider the following simple prefix B+ tree structure, storing keys for (a portion of) students
of CSI at SITE.

The sequence set contains the keys in blocks of size 5. The B+ tree index set is of order 3.

ALLEN | | BOXTON | | DYNOS FURLANT |HORUS || MONTAN
AGELST | | grzwAR| | DYNOSA FURLANY | HURON || NURPY
AVARY || cyany | | EYRTON GEORGA | | HyATUS || NYONTA
AZAYR | | poNALD | | FOLART GORGAS | | MANDEL || URLUR
BORAR | | DYNLOP| | FURLAN HORTON | | monpio || zoroas

Fill in the values of the shortest separators that are not revealed, but are represented by
unknown symbols:

Xi=
Xo=
X3—
X4=

X5=

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 21 of 26

B+ tree after the deletion of BORLY:

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 20 of 26

20 B+ tree deletions — 8 points

Consider the simple prefix B+ tree given below with index set of order 3 and a sequence
set with block size of 4.

pleulpaneal\] [s[{ e |

%
ADAM| | BUTY | |DANFA| |MURA| | SODA | | YILON
BILL []CURLU™=MUL [7| NOUR [F|YIRLA | ZAN
BORLY| | DANF SADA ZOMB

In this question, you must always give priority to merging over redistribution.

Use the space below to show how the B+ tree changes after deleting
DANFA, SODA, MURA, NOUR, ZAN, ZOMB, BORLY, in this order.

You need only to show the tree right after the deletion of NOUR and BORLY.

B+ tree after the deletion of NOUR:

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 22 of 26

21 Secondary Indexes: Inverted Lists — 6 points
Suppose that we want to manage the following collection of student records:

2087743 Jenkins Francesca QOttawa

2251841 Duran Diana Toronto
2173098 McKone Ryan Toronto
2240890 Adelstein Katharine Quebec
2180384 Choi Maria Shawinigan
2231301 Hemmings Anne Montreal
2225639 Taylor Sarah Toronto

2225657 Jeppesen Abigale Ottawa

The fields in the datafile above contain: identification number (studId), last name, first
name, and city of origin, respectively.

Below are a primary index file, and secondary index file organized using inverted lists:

Primary Index Secondary Index Id List File
reference

primary key to datafile 0 | 2087743 7
0 | 2087743 0 secondary key ref to Id List 1| 2251841 2
12173098 3 0| Montreal 5 2| 2173098 6
2 | 2180384 4 1 Ottawa 0 3 | 2240890 -1
3 | 2225639 6 2 Quebec 3 4 | 2180384 -1
4 | 2225657 7 3 | Shawinigan 4 5 | 2231301 -1
5| 2231301 5 4 ‘Toronto 2 6 | 2225639 -1
6 | 2240890 3 7 | 2225657 -1
7| 2251841 2

Each entry in Secondary Index points to a list of its corresponding primary keys stored
in Id List File. Notice that each of these lists is sorted.

Show the content of the 3 files after inserting (in this order) the following 3 records into the
datafile:

2351741 Malik Anna Toronto
2246757 Jorg Derek Toronto
1987744 Laberge Jean Gatineau

continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 23 of 26

Contents of the 3 files after the 3 insertions above:

Primary Index Secondary Index Id List File
reference
primary key to datafile 0
(IJ secondary key ref to Id List ;
: 0 5
3 9 4
4 3 5
5 6
4 -
6 5 7
7 6 8
8 7 9
9 10
10 11
11
.. continued
CSI 2131 Final Exam — Version 1, April 15, 2003, Page 25 of 26

HEHHEREREEEERRRRRESEAES. PSEUDOCODE:
Global Variables and constants to be used:
HASHSIZE: number of hash addresses
"hashindex.txt": physical file containing HASHSIZE records
(RRNs from O to HASHSIZE-1)
RECSIZE: number of bytes used for each record of "hashindex.txt"
hashfile: logical name to be associated to "hashindex.txt"

int HashFunction(int key); // returns the hashing home address for the key

int HashSearch(int key); // returns the RRN of the position of the key in the
// hashfile, if the key is present, or -1, otherwise

procedure HashInsert(int newkey, int newreference)

Open hashfile in reading & writing mode, associating it to "hashindex.txt"

Close hashfile;

.. continued

CSI 2131 Final Exam — Version 1, April 15, 2003, Page 24 of 26

22 Hashing Insertion Pseudocode — 12 points

Write pseudocode for inserting in a hashing file using progressive overflow (or linear prob-
ing). The hashing file may contain tombstones, that is, a record which has been previously
occupied, but it is not occupied anymore.

You may use the following guidelines when writing your pseudocode:

e The hashing record contains two fields: key field (integer), reference field (integer).
The key field contains:

a positive integer, if it represents a real key;
0, if this position is free;
-1, if position contains a tombstone.

e Your pseudocode must give details about low level file manipulation operations. For
example:
Open logical file Y in reading mode associating it to physical file X;
Position the reading pointer for file Z at byte offset N;
Read (key,reference) from file W; (here we assume it is reading from current
reading position)
Position the writing pointer for file Z at byte offset N;
Write (key,reference) into file W; (here we assume it is writing into current
writing position)
etc, ete.

e The data to be inserted into the hashing file is (newkey, newreference).

A skeleton for your pseudocode is in the next page.

continued

CSI 2131 Final Exam - Version 1, April 15, 2003, Page 26 of 26

23 Lempel-Ziv Decompression Program — 12 points

Write a C++ program that, given a Lempel-Ziv compressed file, produces the decom-
pressed file. PLEASE, READ WELL: YOU MUST DECOMPRESS, not compress.

Recall that the compressed file (input) consists of a sequence of several (number letter) pairs.
You don’t need to program the details of how to read these pairs. Indeed, you should use
procedure ReadPairsFromFileToArrays which reads from the input file the pair into arrays
numbers and letters for you. Use the back of the page if you need more space.

#include <fstream>
#include <iostream>
using namespace std;
#define MAXSIZE 32512

void ReadPairsFromFileToArrays(istream & inputfile, int numbers[], char letters[]);

// assume this procedure is given (use it, no need to write it)

int main() {
istream input; ostream output; // input and output files
int numbers[MAXSIZE]; char letters[MAXSIZE]; // arrays with compressed info
input.open("compressed.txt",ios::inlios: :binary); // open compressed file
ReadPairsFromFileToArrays(input,numbers,letters); // read pairs from file

... End Of Final Exam — Version 1

