CSI2131 FILE MANAGEMENT

Prof. Lucia Moura

Winter 2003

LECTURE 1: INTRODUCTION TO FILE
MANAGEMENT

CS12131 - Winter 2003 Lecture 1: Introduction to File Management

|Contents of today’s lecture:‘

e Introduction to file structures
o History of file structure design

o Course contents and organization

References :

e FOLK, ZOELLICK AND RICCARDI, File Structures, 1998.
Sections 1.1 and 1.2.

o Course description handout (for course contents and organization)

Lucia Moura 2

CSI2131 - Winter 2003 Lecture 1: Introduction to File Management

[Introduction to File Structures]

e Data processing from a computer science perspective:

— Storage of data

— Organization of data
— Access to data

— Processing of data

This will be built on your knowledge of Data Structures.
e Data Structures vs File Structures
Both involve :

Representation of Data
+
Operations for accessing data

Difference :
Data Structures deal with data in main memory.

File Structures deal with data in secondary storage (Files)

Lucia Moura 3

CSI2131 - Winter 2003 Lecture 1: Introduction to File Management CSI2131 - Winter 2003 Lecture 1: Introduction to File Management

Computer Architecture Main Memory
DIFERENCES o Fast (since electronic)
) e Small (since expensive
_DT‘:;W Main Memory (P)
e ¢ ram o e Volatile (information is lost when power failure occurs)
RAM (Random Access Memory) Expensive
Semiconductors Volatile
DataTransfer Secondary Storage
f:;"e e Slow (since electronic and mechanical)
. Cheap .
Dat e Large (since chea;
m,eda,ze Secondary Storage Steble ge (p)
bisk e Stable, persistent (information is preserved longer)

Disk, Tape, CD-ROM

Goal of the file structure and what we will study in

How fast is main memory in comparison to secondary this course:

storage 7
e Minimize number of trips to the disk in order to get desired
Typical time for getting info from: information. Ideally get what we need in one disk access or get it
with as few disk accesses as possible.

main memory: ~ 120 nanoseconds = 120 x 10~ secs

L e o Grouping related information so that we are likely to get
magnetics disks: ~ 30 milliseconds = 30 x 1073 secs

everything we need with only one trip to the disk (e.g. name,

address, phone number, account balance).
An analogy keeping same time proportion as above:

Looking at the index of a book: 20 secs
versus
Going to the library: 58 days

Lucia Moura 4 Lucia Moura 5

CSI2131 - Winter 2003 Lecture 1: Introduction to File Management CSI2131 - Winter 2003 Lecture 1: Introduction to File Management

4. A tree structure suitable for files was invented : B trees (1979)

[History of File Structure Design] and B+ trees
Good for accessing millions of records with 3 or 4 disk accesses.

1. In the beginning ... it was the tape

e Sequential access 5. What about getting info with a single request 7
e Access cost proportional to size of file ¢ Hashing Tables (Theory developed over 60’s and 70’s but
[Analogy to sequential access to array data structure] still a research topic)

Good when files do not change to much in time.
2. Disks became more common
¢ Extendible, dynamic hashing (late 70’s and 80s)

e Direct access [Analogy to access to position in array -
One or two disk accesses even if file grows dramatically

binary search in sorted arrays|
e Indexes were invented
- list of keys and pointers stored in small file
- allows direct access to a large primary file
Great if index fits into main memory.
As a file grows we have the same problem we had with a
large primary file.

3. Tree structures emerged for main memory (1960’s)

- Binary search trees (BST’s)
- Balanced, self adjusting BST’s : e.g. AVL trees (1963)

Lucia Moura 6 Lucia Moura 7

CSI2131 - Winter 2003 Lecture 1: Introduction to File Management

|Course Contents and Organization|

e Introduction to file management. Fundamental file processing
operations. (Chapters 1 and 2)
Managing files of records. Sequential and direct access. (Chapters
4 and 5)

e Secondary storage, physical storage devices: disks, tapes and
CD-ROM. (Chapter 3)
System software: I/O system, file system, buffering. (Chapter 3)

o File compression: Huffman and Lempel-Ziv codes. Reclaiming
space in files. Internal sorting, binary searching, keysorting.
(Chapter 6)

o File Structures:
— Indexing. (Chapter 7)
— Co-sequential processing and external sorting. (Chapter 8)
— Multilevel indexing and B trees. (Chapter 9)
— Indexed sequential files and B+ trees. (Chapter 10)
— Hashing. (Chapter 11)
— Extendible hashing. (Chapter 12)

Chapters above refer to the textbook:
FOLK, ZOELLICK AND RICCARDI, File Structures, 1998.

Refer to the “course description handout” for course organization.

Lucia Moura 8

LECTURE 2: FUNDAMENTAL FILE
PROCESSING OPERATIONS

CS12131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

|Contents of today’s lecture:‘

e Sample programs for file manipulation

o Physical files and logical files

e Opening and closing files

o Reading from files and writing into files

e How these operations are done in C and C++

o Standard input/output and redirection
References :

e FOLK, ZOELLICK AND RICCARDI, File Structures, 1998.
Chapter 2

Lucia Moura 10

CSI2131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

ISample programs for file manipulation|

A program to display the contents of a file on the screen:

e Open file for input (reading)

e While there are characters to read from the input file :
Read a character from the file

Write the character to the screen

o Close the input file

A C program (which is also a valid C++ program) for doing this
task:

// listc.cpp

#include <stdio.h>

main() {
char ch;
FILE * infile;

infile = fopen("A.txt","r");
while (fread(&ch,1,1,infile) != 0)

furite(&ch,1,1,stdout);
fclose(infile);

Lucia Moura u

CSI2131 - Winter 2003 Lecture 2: Fund 1 File Processing O;

A C++ program for doing the same task:

// listcpp.cpp
#include <fstream.h>

main() {
char ch;
fstream infile;

infile.open("A.txt",ios:in);
infile.unsetf (ios: :skipws);
// set flag so it doesn’t skip white space

infile >> ch;

while (! infile.fail()) {
cout << ch ;
infile >> ch ;

CSI2131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

[Physical Files and Logical Files|

physical file: a collection of bytes stored on a disk or tape

logical file: a “channel” (like a telephone line) that connects the
program to a physical file

- The program (application) sends (or receives) bytes to (from) a
file through the logical file. The program knows nothing about
where the bytes go (came from).

- The operating system is responsible for associating a logical file in
a program to a physical file in disk or tape. Writing to or reading
from a file in a program is done through the operating system.

Note that from the program point of view, input devices
(keyboard) and output devices (console, printer, etc) are treated as
files - places where bytes come from or are sent to.

There may be thousands of physical files on a disk, but a program
only have about 20 logical files open at the same time.

The physical file has a name, for instance myfile.txt
The logical file has a logical name used for referring to the file

inside the program. This logical name is a variable inside the
program, for instance outfile

Lucia Moura 13

infile.close();
Lucia Moura 12
CSI2131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

In C programming language, this variable is declared as follows:
FILE * outfile;

In C++ the logical name is the name of an object of the class
fstream:

fstream outfile;

In both languages, the logical name outfile will be associated to
the physical file myfile.txt at the time of opening the file as
we will see next.

Lucia Moura 1

CSI2131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

Opening Files

Opening a file makes it ready for use by the program.
Two options for opening a file :

e open an existing file
e create a new file

When we open a file we are positioned at the beginning of the file.

How to do it in C:

FILE * outfile;
outfile = fopen("myfile.txt", "w");

The first argument indicates the physical name of the file.

The second one determines the “mode”, i.e. the way, the file is
opened.

The mode can be:

e "r'": open an existing file for input (reading);

e "w": create a new file, or truncate existing one, for output;
e "a": open a new file, or append an existing one, for ouput;
e "r+": open an existing file for input and output;

e "w+": create a new file, or truncate an existing one, for input and
output;

e "a+": create a new file, or append an existing one, for input and
output.

Lucia Moura 15

CSI2131 - Winter 2003 Lecture 2: Fund 1 File Processing O;

How to do it in C++:

fstream outfile;
outfile.open("myfile.txt",ios::out);

The second argument is an integer indicating the mode.
Its value is set as a “bitwise or” (operator |) of constants defined
in the class ios:

e ios::in open for input;

e ios::out open for output;

e ios::app seek to the end of file before each write;

e ios::trunc always create a new file;

e ios::nocreate fail if file doesn’t exist;

e ios::noreplace create a new file, but fail if it already exists;

e ios::binary open in binary mode (rather than text mode).

Exercise: Open a physical file "myfile.txt" associating it to
the logical file "afile" and with the following capabilities:

1. input and output (appending mode):
afile.open("myfile.txt", ios::inlios::app);

2. create a new file, or truncate existing one, for output:

3. open an existing file for input and output, no creation allowed:

Lucia Moura 16

CSI2131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

This is like “hanging up” the line connected to a file.

After closing a file, the logical name is free to be associated to
another physical file.

Closing a file used for output guarantees that everything has been

written to the physical file.

We will see later that bytes are not sent directly to the physical file
one by one; they are first stored in a buffer to be written later as a
block of data. When the file is closed the leftover from the buffer is
flushed to the file.

Files are usually closed automatically by the operating system at
the end of program’s execution.

It’s better to close the file to prevent data loss in case the program
does not terminate normally.

InC:
fclose(outfile);
In C++:

outfile.close();

Lucia Moura 7

CS12131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

Read data from a file and place it in a variable inside the program.

A generic Read function (not specific to any programming
language):

Read(Source_file, Destination_addr, Size)

Source file: logical name of a file which has been opened
Destination addr: first address of the memory block were data
should be stored

Size: number of bytes to be read

In C (or in C++ using C streams):

char c; // a character
char a[100]; // an array with 100 characters
FILE * infile;

infile = fopen("myfile.txt","r");
fread(&c,1,1,infile); /* reads one character */
fread(a,1,10,infile); /* reads 10 characters */
fread:
1st argument: destination address (address of variable c)
2nd argument: element size in bytes (a char occupies 1 byte)
3rd argument: number of elements
4th argument: logical file name

Lucia Moura 18

CSI2131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

In C, read and write operations to files are supported by various
functions: fread, fget, fwrite, fput, fscanf, fprinf.

In C++:

char c;
char a[100];
fstream infile;
infile.open("myfile.txt",ios::in);
infile >> c; // reads one character
infile.read(&c,1);

// alternative way of reading one character
infile.read(a,10); // reads 10 bytes

Note that in the C++ version, the operator >> communicates the
same info at a higher level. Since c is a char variable, it’s implicit
that only 1 byte is to be transferred.

C++ fstream also provide the read method, corresponding to
freadin C.

Lucia Moura 9

CSI2131 - Winter 2003 Lecture 2: Fund 1 File Processing O;

Writing

Write data from a variable inside the program into the file.
A generic Write function :

Write (Destination_File, Source_addr, Size)

Destination file: logical file name of a file which has been
opened

Source_addr: first address of the memory block where data is
stored

Size: number of bytes to be written

In C (or in C++ using C streams) :
char c; char a[100];
FILE * outfile;
outfile = fopen("mynew.txt","w");
/* omitted initialization of ¢ and a */
furite(&c,1,1,outfile);
fwrite(a,1,10,outfile);

In C4++:
char c; char a[100];
fstream outfile;
outfile.open("mynew.txt",ios: :out);
/* omitted initialization of ¢ and a */
outfile << c;
outfile.write(&c,1);
outfile.write(a,10);

Lucia Moura 20

CS12131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

[Detecting End-of-File |

When we try to read and the file has ended, the read was
unsuccessful. We can test whether this happened in the following
ways :

In C : Check whether fread returned value 0.
int i;
i = fread(&c,1,1,infile); // attempted to read
if (i==0) // true if file has ended

in C++: Check whether infile.fail() returns true.

infile >> c; // attempted to read
if (infile.fail()) // true if file has ended

Alternatively, check whether infile.eof () returns true.
Note that fail indicates that an operation has been unsuccessful,
80 it is more general than just checking for end of file.

Lucia Moura 2

CS12131 - Winter 2003 Lecture 2: Fundamental File Processing Operations

Logical file names associated to standard I/O
devices and re-direction

purpose default meaning | logical name
in C in C++
Standard Output | Console/Screen stdout | cout
Standard Input | Keyboard stdin |cin
Standard Error | Console/Screen stderr | cerr

These streams don’t need to be open or closed in the program.

Note that some operating systems allow this default meanings to
be changed via a mechanism called redirection.

In UNIX and DOS :

Suppose that prog.exe is the executable program.
Input redirection (standard input becomes file in.txt):
prog.exe < in.txt

Output redirection (standard output becomes file out . txt. Note
that standard error remains being console):

prog.exe > out.txt

You can also do:
prog.exe < in.txt > out.txt

Lucia Moura 22

LECTURE 3: MANAGING FILES OF
RECORDS

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

|Contents of today’s lecture:\

o Field and record organization (textbook: Section 4.1)
o Sequential search and direct access (textbook: Section 5.1)
o Seeking (textbook: Section 2.5)

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 4.1, 5.1, 2.5.

Lucia Moura 24

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

|Files as Streams of Bytes|

So far we have looked at a file as a stream of bytes.

Consider the program seen in the last lecture :

// listcpp.cpp
#include <fstream.h>
main() {
char ch;
fstream infile;
infile.open("A.txt",ios:in);
infile.unsetf (ios: :skipws);
// set flag so it doesn’t skip white space
infile >> ch;
while (! infile.fail()) {
cout << ch;
infile >> ch;

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

(above we are representing the invisible newline character by <nl1>)

Every stream has an associated file position.

e When we do infile.open("A.txt",ios::in) the file
position is set at the beginning.

e The first infile >> ch; will read 8 into ch and increment the
file position.

e The next infile >> ch; will read 7 into ch and increment
the file position.

e The 38th infile >> ch; will read the newline character
(referred to as *\n’ in C++) into ch and increment the file
position.

e The 39th infile >> ch; will read 0 into ch and increment
the file position, and so on.

A file can been seen as
1. a stream of bytes (as we have seen above); or

2. a collection of records with fields (as we will discuss next ...).

Lucia Moura 26

}
infile.close();
}
Consider the file example: A.txt
87358CARROLLALICE IN WONDERLAND <nl>
03818FOLK FILE STRUCTURES <nl>
79733KNUTH THE ART OF COMPUTER PROGR<nl>
86683KNUTH SURREAL NUMBERS <nl>
18395TOLKIENTHE HOBITT <nl>
Lucia Moura 25
CSI2131 - Winter 2003 Lecture 3: Managing Files of Records
|Field and Record Organization
Definitions :
Record = a collection of related fields.
Field = the smallest logically meaningful unit of information
in a file.
Key = a subset of the fields in a record used to identify

(uniquely, usually) the record.

In our sample file “A.txt” containing information about books:
Each line of the file (corresponding to a book) is a record.
Fields in each record: ISBN Number, Author Name and Book
Title.

Primary Key: a key that uniquely identifies a record.
Example of primary key in the book file:

Secondary Keys: other keys that may be used for search
Example of secondary keys in the book file:

Note that in general not every field is a key (keys correspond to
fields, or combination of fields, that may be used in a search).

Lucia Moura 2

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

Field Structures

1. Fixed-length fields:
Like in our file of books (field lengths are 5, 7, and 25).
87358CARROLLALICE IN WONDERLAND
03818FOLK FILE STRUCTURES
79733KNUTH THE ART OF COMPUTER PROGR

2. Field beginning with length indicator:
058735907CARROLL19ALICE IN WONDERLAND
050381804FOLK15FILE STRUCTURES

3. Place delimiter at the end of fields:

87359 | CARROLL |ALICE IN WONDERLAND |
03818 |FOLK|FILE STRUCTURES|

4. Store field as keyword = value (self-describing fields):

ISBN=87359 | AU=CARROLL | TI=ALICE IN WONDERLANDI|
ISBN=03818| AU=FOLK | TI=FILE STRUCTURES |

Although the delimiter may not always be necessary here, it is
convenient, for separating a key value from the next keyword.

Lucia Moura 28

CSI2131 - Winter 2003

|Field structures: advantages and disadvantages

Type Advantages Disadvantages

Fixed Easy to Read/Store | Waste space with
padding

with Easy to jump ahead | Long fields require

length to the end of the field | more than 1 byte to
indicator store length (when
maximum size is >
256)

Delimited | May waste less space | Have to check every
Fields than with length- | byte of field against
based the delimiter
Keyword |Fields are self | Waste space with
describing, allows for | keywords

missing fields.

Lucia Moura

Lecture 3: Managing Files of Records

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

Record Structures

1. Fixed-length records.
It can be used with fixed-length fields, but can also be combined
with any of the other variable length field structures, in which
case we use padding to reach the specified length.

Examples:

Fixed-length records combined with fixed-length fields:

87358CARROLLALICE IN WONDERLAND
03818FOLK FILE STRUCTURES
79733KNUTH THE ART OF COMPUTER PROGR

Fixed-length records combined with variable-length fields:

delimited fields:

87359 | CARROLL|ALICE IN WONDERLAND
03818 |FOLK|FILE STRUCTURES

79733 |KNUTH|THE ART OF COMPUTER PROGR

fields with length indicator:
058735907CARROLL19ALICE IN WONDERLAND
050381804F0LK15FILE STRUCTURES

Lucia Moura 30

CSI2131 - Winter 2003

2. Records with fixed number of fields (variable-length)

It can be combined with any of the variable-length field
structure.

Examples: Number of fields per record = 3.

with delimited fields:

(87359 |CARROLL [ALICE IN WONDERLAND|03818|FOLK]---
with fields with length indicator:
[058735907CARROLL19ALICE IN WONDERLANDO503818: --

In the situations above, how would the program detect that a
record has ended ?

3. Record beginning with length indicator.

Example:

with delimited field:
3387359 | CARROLL |ALICE IN WONDERLAND

2603818|FOLK|FILE STRUCTURES

Can this method be combined with fields having length
indicator or fields having keywords?

Lucia Moura

Lecture 3: Managing Files of Records

31

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

4, Use an index to keep track of addresses
The index keeps the byte offset for each record; this allows us to
search the index (which have fixed length records) in order to
discover the beginning of the record.
datafile:
(87359 |CARROLL [ALICE IN WONDERLAND|03818|FOLK]--

Complete information on the index file:

indexfile: | |

. Place a delimiter at the end of the record.
The end-of-line character is a common delimiter, since it makes
the file readable at our console.

t

87358 | CARROLL|ALICE IN WONDERLAND|<nl>
03818 |FOLK|FILE STRUCTURES|<nl>
79733 |KNUTH|THE ART OF COMPUTER PROGR|<nl>

Summary :
Type Advantages | Disadvantages
Fixed Length | Easy to jump to | Waste space
Record the i-th record | with padding
Variable Length | Saves space | Cannot jump to
Record when record | the i-th record,

sizes are diverse |unless through
an index file

Lucia Moura 32

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

\Sequential Search and Direct Access|

Search for a record matching a given key.

e Sequential Search
Look at records sequentially until matching record is found.
Time is in O(n) for n records.

Example when appropriate :
Pattern matching, file with few records.
e Direct Access
Being able to seek directly to the beginning of the record.
Time is in O(1) for n records.

Possible when we know the Relative Record Number (RRN):
First record has RRN 0, the next has RRN 1, etc.

Direct Access by RRN
Requires records of fixed length.
RRN =30 (31st record)

record length = 101 bytes
So, byte offset =

CS12131 - Winter 2003 Lecture 3: Managing Files of Records

Generic seek function :
Seek(Source_File, Offset)
Example :
Seek(infile, 3030)
Moves to byte 3030 in file.

In C style :

Function prototype:
int fseek(FILE *stream, long int offset, int origin);

origin: 0 = fseek from the beginning of file
1 = fseek from the current position
2 = fseek from the end of file

Examples of usage:

fseek(infile,0L,0); // moves to the beginning
//of the file

fseek(infile,0L,2); // moves to the end of the file

fseek(infile,-10L,1); // moves back 10 bytes from
// the current position

Lucia Moura 34

Now, how to go directly to byte in a file 7

By seeking ...

Lucia Moura 33

CSI2131 - Winter 2003 Lecture 3: Managing Files of Records
In C4++:

Object of class fstream has two file pointers :
e seekg = moves the get pointer.

e seekp = moves the put pointer.

General use:

file.seekg(byte_offset,origin);
file.seekp(byte_offset,origin);

Constants defined in class ios:

origin: ios:beg = fseek from the beginning of file
ios::cur = fseek from the current position
ios::end = fseek from the end of file

The previous examples, shown in C style, become in C++ style:

infile.seekg(0,ios: :beg);
infile.seekg(0,ios::end);

infile.seekg(-10,i0s::cur);

Lucia Moura 35

CSI2131 - Winter 2003 Lecture 3: Managing Files of Recor

Consider the following sample program:

#include <fstream.h>

int main() {
fstream myfile;
myfile.open("test.txt",ios::in|ios::outlios: :trunc

|ios: :binary);

myfile<<"Hello,world.\nHello, again.";
myfile.seekp(12,i0s: :beg);
myfile<<’X’<<’X’;
myfile.seekp(3,ios::cur);
myfile<<’Y’;
myfile.seekp(-2,ios::end);
myfile<<’Z’;
myfile.close();
return 0;

}

Show "test.txt" after the program is executed:

Remove ios: :binary from the specification of the opening mode.
Show test.txt after the programn is executed under DOS:

Lucia Moura

ds

36

LECTURE 4: SECONDARY STORAGE
DEVICES - MAGNETIC DISKS

CSI2131 - Winter 2003

|Contents of today’s lecture:‘

e Secondary storage devices
o Organization of disks

o Organizing tracks by sector
o Organizing tracks by blocks
o Nondata overhead

e The cost of a disk access

o Disk as a bottleneck

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 3.1.

Lucia Moura

Lecture 4: Secondary Storage Devices - Magnetic Disks

38

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

ISecondary Storage Devices|

Since secondary storage is different from main memory we have to
understand how it works in order to do good file designs.

Two major types of storage devices:

e Direct Access Storage Devices (DASDs)
- Magnetic Disks
Hard Disks (high capacity, low cost per bit)
Floppy Disks (low capacity, slow, cheap)
- Optical Disks
CD-ROM = Compact Disc, read-only memory
(Read-only/write once, holds a lot of data, cheap reproduction)
o Serial Devices

- Magnetic tapes (very fast sequential access)

Lucia Moura 39

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

|Organization of Disks|

From now on we will use “disks” to refer to hard disks.
How disk drivers work

Surface —
suface —+

Spi;dle \ Boom

Read/Write Heads

Figure 1: Disk drive with 4 platters and 8 surfaces

Looking at a surface:

e Disk contains concentric tracks
e Tracks are divided into sectors
e A sector is the smallest addressable unit in a disk

Lucia Moura 0

CSI2131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

When a program reads a byte from the disk, the operating system
locates the surface, track and sector containing that byte, and
reads the entire sector into a special area in main memory called
buffer.

The bottleneck of a disk access is moving the read/write arm. So,
it makes sense to store a file in tracks that are below/above each
other in different surfaces, rather than in several tracks in the same
surface.

Cylinder = the set of tracks on a disk that are directly
above/below each other.

A cylinder

All the information on a cylinder can be accessed without
moving the read/write arm (Seeking).

number of cylinders = number of tracks in a surface

track capacity = number of sector per track x bytes per sector
cylinder capacity = number of surfaces x track capacity

drive capacity = number of cylinders x cylinder capacity

Lucia Moura 4

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

Solve the following problem:
File characteristics:

- Fixed-length records
- Number of records = 50,000 records
- Size of a record = 256 bytes

Disk characteristics:

- Number of bytes per sector = 512

- Number of sectors per track = 63

- Number of tracks per cylinder = 16
- Number of cylinders = 4092

Q: How many cylinders are needed?

A:

2 records per sector

2 X 63 records per track

16 x 126 = 2,016 records per cylinder

number of cylinders = %% ~ 24.8 cylinders

Note: A disk might not have this many physically contiguous
cylinders available. This file may be spread over hundreds of
cylinders.

Lucia Moura 42

CSI2131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

|Organizing Tracks by Sectorl

The Physical Placement of Sectors

Physicaly Sectorswith 3:1
Adjacent Sectors Interleaving

Figure 2: Interleaving
o Files are often stored in adjacent sectors, but “logically adjacent”
does not necessarily mean “physically adjacent”

e For some disks : when it reads a sector, it takes some time to
get ready to read the next sector. Solution: interleaving

Example: Suppose we need to read consecutively the sectors of a
track in order: sector 1, sector 2, sector 3, ..., sector 11. Suppose
the disk cannot read consecutive sectors.

e Without interleaving (Figure -A):
How many revolutions to read the disk?

e With 3:1 interleaving (Figure -B):
How many revolutions to read the disk?

(Now most disk controllers are fast and need no interleaving)

Lucia Moura 43

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

|Clusters, Extents and Fragmentation

The file manager is the part of the operating system responsible
for managing files. The file manager maps the logical parts of
the file into their physical location.

A cluster is a fixed number of contiguous sectors (if there is
interleaving these sectors are not physically contiguous).

The file manager allocates an integer number of clusters to a
file.

Ex: Sector size: 512 bytes, Cluster size: 2 sectors

If a file contains 10 bytes, a cluster is allocated (1024 bytes). There
may be unused space in the last cluster of a file. This unused space
contributes to internal fragmentation.

Clusters are good since they improve sequential access: reading
bytes sequentially from a cluster can be done in one revolution,
seeking only once.

The file manager maintains a file allocation table (FAT) containing
for each cluster in the file its location in disk.

An extent is a group of contiguous clusters. If a file is stored in a
single extent then seeking (movement of read/write head) is done
only once. If there is not enough contiguous clusters to hold a file,
the file is divided into 2 or more extents.

Lucia Moura a4

CSI2131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

Fragmentation

1) Due to records not fitting exactly in a sector

Ex: Record size = 200 bytes, Sector size = 512 bytes

To avoid that a record span 2 sectors we can only store 2 records
in this sector (112 bytes go unused per section). This extra
unused space contributes to fragmentation.

The alternative is to let a record span two sectors, but then two
sectors must be read when we need to access this record.

2) Due to the use of clusters

If the file size is not a multiple of the cluster size, then the last
cluster will be partially used.

Choice of cluster size: some operating systems allow the
system administrator to choose cluster size.

When to use large cluster size?
When disk contain large files likely to be processed sequentially.
Ex: Updates in a master file of bank accounts (in batch mode)

What about small cluster size?

When disks contain small files and/or files likely to be accessed
randomly

Ex: Online updates for airline reservation.

Lucia Moura 15

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

|Organizing Tracks by Blocks|

o Disk tracks may be divided into user-defined blocks rather than
into sectors.
(Note: Here, “block” is not used as a synonym of sector or group
of sectors)

e The amount transferred in a single I/0 operation can vary
depending on the needs of the software designer (not hardware)

o A block is usually organized to contain an integral number of
logical records.

Blocking Factor = number of records stored in each block in a
file.

No internal fragmentation, no record spanning two blocks.

A block typically contains subblocks:
e Count subblock: contains the number of bytes in a block.

e Key subblock (optional): contains the key for the last record in
the data subblock (the disk controller can search for key without
loading it in main memory)

e Data subblock: contains the records in this block.

Lucia Moura 6

CSI2131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

[Nondata Overhead|

Amount of space used for extra stuff other than data.

Sector-Addressable Disks = At the beginning of each sector
some info is stored, such as sector address, track address, condition
(if sector is defective); there is some gap between sectors.

Block-Organized Disks subblocks and interblock gaps is part
of the extra stuff; more nondata overhead than with
sector-addressing.

Example:

Disk characteristics:

- Block-addressable disk drive

- Size of track = 20,000 bytes

- Nondata overhead per block = 300 bytes
File characteristics:

- Record size = 100 bytes

Q: How many records can be stored per track for the
following blocking factors?

(1) Blocking factor = 10

(2) Blocking factor = 60

Lucia Moura a

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

Solution for example:

Disk characteristics:

- Block-addressable disk drive

- Size of track = 20,000 bytes

- Nondata overhead per block = 300 bytes

File characteristics:
- Record size = 100 bytes

(1) Blocking factor = 10

Size of data subblock = 1,000

Nondata overhead = 300

of blocks that can fit in a track = Lzloatz]%oj = [15.38] = 15 blocks
of records per track = 150 records

(2) Blocking factor = 60

Size of data subblock = 6,000

Nondata overhead = 300

of blocks that can fit in a track = L%ﬁ%] = 3 blocks
of records per track = 180 records

Lucia Moura 8

CSI2131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

[The Cost of a Disk Access|

The time to access a sector in a track on a surface is divided into:

Time Action
Component
Seek time Time to move the read/write arm to the

correct cylinder

Rotational delay | Time it takes for the disk to rotate so that the
(or latency) desired sector is under the read/write head
Transfer time Once the read/write head is positioned over
the data, this is the time it takes for
transferring data

Example: Disk Characteristics:

- Average seek time = 8 msec

- Average rotational delay = 3 msec

- Maximum rotational delay = 6 msecs

- Spindle speed = 10,000 rpm

- Sectors per track = 170 sectors

- Sector size = 512 bytes

What is the average time to read one sector ?
Transfer time = revolution time/# sectors per track =
(1/10,000)min/170 = (1/10,000 x 60)/170 secs = 6/170,000 secs =
6/170 msecs = 0.035 msecs

Average total time = average seek + average rotational delay +
transfer time = 8 + 3 + 0.035 = 11.035 msecs.

Lucia Moura 49

CS12131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

|Comparing sequential access to random access

Same disk as before:

- Average seek time = 8 msec

- Average rotational delay = 3 msec

- Maximum rotational delay = 6 msecs
- Spindle speed = 10,000 rpm

- Sectors per track = 170 sectors

- Sector size = 512 bytes

File characteristics:

- Number of records = 34,000

- Record size = 256 bytes

- File occupies 100 tracks dispersed randomly

a) Reading File Sequentially

- Average seek time = 8 msecs

- Average rotational delay = 3 msecs

- Average transfer time for 1 track = 60/10,000 = 6 msecs
- Average total time per track = 8 + 3 + 6 = 17 msecs

- Total time for file = 17 msecs x 100 = 1.7 secs

b) Reading a file accessing randomly each record
Average total time to read all records = Number of records x

average time to read a sector = 34,000 x 11.035 msecs ~ 371.1 secs

Note: typo in page 63 of the book in a similar calculation.

Lucia Moura 50

CSI2131 - Winter 2003 Lecture 4: Secondary Storage Devices - Magnetic Disks

[Disk as a bottleneck]

Processes are often disk-bound, i.e. network and CPU have to
wait a long time for the disk to transmit data.

Various techniques to solve this problem

1. Multiprocessing (CPU works on other jobs while waiting for
the digk)

2. Disk Striping
Putting different blocks of the file in different drives.
Independent processes accessing the same file may not interfere
with each other (parallelism).

3. RAID (Redundant array of independent disks)
Ex: in an eight-drive RAID the controller breaks each block into
8 pieces and place one in each disk drive (at the same position
in each drive).

4. RAM Disk (memory disk)
Piece of main memory used to simulate a disk (difference: speed
and volatility). Used to simulate floppy disks.

. Disk Cache
Large block of memory configured to contain pages of data from
a disk (typical size = 256 KB). When data is requested from
disk, check cache first. If data is not there go to the disk and
replace some page already in cache with page from disk
containing the data.

(2]

Lucia Moura 51

LECTURE 5: SECONDARY STORAGE
DEVICES - MAGNETIC TAPES AND
CD-ROM

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

\Contents of today’s lecture:|

e Magnetic Tapes
— Characteristics of magnetic tapes
— Data organization on 9-track tapes
— Estimating tape length requirements
— Estimating data transmission times
— Disk versus tape

e CD-ROM

— Physical Organization of CD-ROM
— CD-ROM Strengths and Weaknesses

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Section 3.2, 3.5 and 3.6.

Lucia Moura 53

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

ICharacteristics of Magnetic Tapes|

e No direct access, but very fast sequential access.
o Resistant to different environmental conditions.
e Fasy to transport, store, cheaper than disk.

o Before, it was widely used to store application data; nowadays,
it’s mostly used for backups or archives (tertiary storage).

Lucia Moura 54

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

|Data Organization on Nine-Track Tapes|

In a tape, the logical position of a byte within a file is the same
as its physical position in the file (sequential access).

Nine-track tape:

______ 10 0l [0l 10 Ol ______
______ 10 0l [1] 10 Ol ______
______ 10 0l [1] 10 Ol ______
______ |0 0l [0] |0 Ol_____
______ |0 0l [1] |0 Ol____
______ |0 0l [0l |0 (0] P
______ 10 0l [0l 10 Ol ______
______ |0 0l [1] |0 (0] P
______ 10 0l [1] 10 0l

|<-Gap->| <-- Data Block --> [<-Gap—>|

- Data blocks are separated by interblock GAPS.

- 9 parallel tracks (each is a sequence of bits)

- A frame is a 1-bit slice of the tape corresponding to 9 bits (one
in each track) which correspond to 1 byte plus a parity bit.

In the example above, the byte stored in the frame that is shown
is: 01101001. The parity bit is 1, since we are using odd parity,
i.e., the total number of bits is odd.

Lucia Moura 55

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

Complete the parity bit in the examples below:

11111111
00000000

00100000

Since 000000000 cannot, correspond to a valid byte, this is used to
mark the interblock gap.

So, if we say that this tape has 6,250 bits per inch (bpi) per

track, indeed it stores 6,250 bytes per inch when we take into
account the 9 tracks.

Lucia Moura 56

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

|Estimating Tape Length Requirements|

Performance of tape drives can be measured in terms of 3
quantities:

- Tape density = 6250 bpi (bits per inch per track)

- Tape speed = 200 inches per second (ips)

- Size of interblock gap = 0.3 inch

File characteristics:
- Number of records = 1,000,000
- Size of record = 100 bytes

How much tape is needed?

It depends on the blocking factor (how many records per data
block). Let us compute the space requirement in two cases:
A) Blocking factor = 1

B) Blocking factor = 50

Space requirement (s)

b = length of data block (in inches)

g = length of interblock gap (in inches)
n = number of data blocks

CSI2131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM
A) Blocking factor = 1

b = block size/tape density = 100 bytes/6250 bpi= 0.016 inch

n = 1,000,000 (recall blocking factor is 1)

s = 1,000,000 x (0.016 + 0.3) inch = 316,000 inches ~ 26,333 feet
(Absurd to have the length of the data block smaller than the
interblock gap!)

B) Blocking factor = 50

b = 50 x 100 bytes/6,250 bpi = 0.8 inch

n = 1,000,000 records/50 records per block = 20,000 blocks
8 = 20,000 x (0.8 + 0.3) inch = 22,000 inches = 1,833 feet

An enormous saving by just choosing a higher blocking factor.

‘Eﬂective Recording Density (ERD)|

ERD = number of bytes per block / number of inches to store a
block

In previous example :

A) Blocking factor =1: E.R.D. = 100/0.316 ~ 316.4 bpi
B) Blocking factor =50: E.R.D. = 5,000/1.1 ~ 4,545.4 bpi

The Nominal Density was 6,250 bpi!

Lucia Moura 58

s=nx(b+g)
Lucia Moura .
CSI2131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

|Estimating Data Transmission Times|

Nominal Rate = tape density (bpi) x tape speed (ips)

In a 6,250 - bpi , 200 - ips tape :
Nominal Rate = 6,250 bytes/inch x 200 inches/second =
= 1,250,000 bytes/sec ~ 1,250 KB/sec

Effective Transmission Rate = E.R.D. x tape speed

In the previous example:

A) E.-T.R. = 316.4 bytes/inch x 200 inches/sec = 63,280 bytes/sec
~ 63.3 KB/sec

B) E.T.R. = 4,545.4 bytes/inch x 200 inches/sec = 909,080
bytes/sec ~ 909 KB/sec

Note : There is a tradeoff between increasing blocking factor for
increasing speed & space utilization and decreasing it for
reducing the size of the I/O buffer.

Disk versus Tape

In the past : Disks and Tapes were used for secondary storage:
disks preferred for random access and tapes for sequential access.
Now :

Disks have taken over most of secondary storage (lower cost of disk
and lower cost of RAM which allows large I/O buffer). Tapes are
mostly used for tertiary storage.

Lucia Moura 59

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

[Physical Organization of CD-ROM]|

Compact Disc - read only memory (write once)
o Data is encoded and read optically with a laser
o Can store around 600 MB data

Digital data is represented as a series of Pits and Lands.

Pit = a little depression, forming a lower level in the track
Land = the flat part between pits, or the upper levels in the track

Reading a CD is done by shining a laser at the disc and detecting
changing reflections patterns.

1 = change in height (land to pit or pit to land)
0 = a “fixed” amount of time between 1’s

LAND PIT LAND PIT LAND

.00000010010000001000100 ...

Changes in height in the track are detected as changes of intensity
of the reflected light.
Note: We cannot have two 1’s in a row!

Lucia Moura 60

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

Indeed, because of other limitations there must be at least two and
at most ten 0’s between two 1’s.

Therefore, each of the 256 bytes must be encoded into a sequence
of bits that has every pair of 1's separated by at least two zeros.
There are exactly 267 binary words of length 14 that satisfy this
property; 256 of them were chosen to represent every possible byte
in the so-called eight to fourteen modulation. We could not encode
bytes using 13 bits since there are only 188 words of length 13
having the desired property.

Eight to fourteen modulation (EFM) encoding table:

Decimal Original Translated
Value Bits Bits

0 00000000 01001000100000
1 00000001 10000100000000
2 00000010 10010000100000
3 00000011 10001000100000
4 00000100 01000100000000
5 00000101 00000100010000
6 00000110 00010000100000
7 00000111 00100100000000
8 00001000 01001001000000

Note that: Since 0’s are represented by the length of time
between transitions, we must travel at constant linear
velocity on the tracks.

Lucia Moura 61

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

|Comparing CD-ROM with magnetic disks|

CD-ROM Magnetic Disks

CLV = Constant Linear | CAV = Constant
Velocity Angular Velocity
Sectors organized along a | Sectors ~ organized in
spiral concentric track

Sectors have same linear | Sectors ~ have same
length (data packed | angular length (data
at its maximum density | written less densely in

permitted) the outer tracks)
Advantage: takes | Advantage: operates on
advantage of all storage | constant speed, timing
space available marks to delimit tracks

Disadvantage: has to | Disadvantage: it doesn’t
change rotational speed |use up all storage
when seeking (slower | available

towards the outside)

Lucia Moura 62

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

|CD—ROM addressing and poor Seek performancel

Addressing

1 second of play time is divided up into 75 sectors.
Each sector holds 2KB.

60 Min CD :
60 min x 60 sec/min x 75 sectors/sec = 270,000 sectors = 540,000
KB ~ 540 MB

A sector is addressed by :
Minute : Second : Sector
16:22:34

16 min, 22 sec, 34th sector

Difficulty in Seeking
e To read address of a sector it must be at the correct speed

e But knowing the correct speed depends on the ability to read the
address info!

The drive control mechanism solves this problem by
trial-and-error.
This slows down the performance!

Lucia Moura 63

CS12131 - Winter 2003 Lecture 5: Secondary Storage Devices - Magnetic Tapes and CD-ROM

|CD—ROM Strength and Weaknesses|

e Seek performance (~ 500 msecs) - Slow

Our old analogy :

20 secs (RAM)

58 days (Magnetic Disks)
2.5 years (CD-ROM)

o Data transfer rate - 150 KB/sec - Slow (while ~ 3,000 KB/sec for
magnetic disks), but 5 times faster than floppy disks.

e Storage capacity is ~ 600 MB; good for storing texts.

o Read-only access (publishing medium). File structure designer
can take advantage of that.

Things changed nowadays :
e Most drives use CAV or combination of CAV and CLV

o Other types of compact discs :
- CD-R = compact disc-recordable
- CD-RW = compact disc-rewritable
They use different technologies which simulates the effect of Pits
and Lands.

Lucia Moura 64

LECTURE 6: A JOURNEY OF A BYTE AND
BUFFERING

CS12131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

|Contents of today’s lecture:‘

e A Journey of a Byte

o Buffer Management

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Section 3.8 and 3.9.

Complementary reading: Section 3.10 “I/O in Unix”, if
interested.

|A Journey of a Byte‘

Suppose in our program we wrote :
outfile << c;

This causes a call to the file manager, the part of the operating
system responsible for input/output operations.

The O/S (File Manager) makes sure the byte is written to the disk.

Lucia Moura 66

CS12131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

Pieces of software/hardware involved in I/O operations :

e Application program
- requests the I/O operation (outfile << c;)

Operating system/file manager

- keeps tables for all opened files (types of accesses allowed, FAT
with each file’s corresponding clusters, etc)

- brings appropriate sector to buffer

- writes byte to buffer

- gives instruction to I/O processor to write data from this buffer
into correct place in disk.

Note: the operating system is a program running in CPU and
working on RAM (it copied the content of variable ¢ into the
appropriate buffer). The buffer is an exact image of a cluster in
disk.

I/0 Processor (a separate chip in the computer; it runs
independently of CPU so that it frees up CPU to other tasks -
I/0 and internal computing can overlap)

- Finds a time when drive is available to receive data, and puts
data in proper format for the disk.

- Sends data to the disk controller

Disk Controller (a separate chip on the disk circuit board)

- Controller instructs the drive to move the read /write head to the
proper track, waits for proper sector to come under the read/write
head, then sends the byte to be deposited on the surface of the
disk.

Refer to Figure 3.21 at page 90 of the texthook.

Lucia Moura 67

CS12131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

|Buffer Management

Buffering means working with large chunks of data in main
memory so that the number of accesses to secondary storage is
reduced.

Today we will discuss the System 1/O Buffers.

Note that the application program may have its own “buffer” - i.e.
a place in memory (variable, object) that accumulates large chunks
of data to be later written to disk as a chunk.

Recommended Reading :

Chapter 4.2 - using classes to manipulate buffers. This has nothing
to do with the system /O buffer which is beyond the control of
the program and is manipulated by the operating system.

Lucia Moura 68

CS12131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

‘System 1/0 Buffers‘

Buffer Bottlenecks What if the O/S used only one I/O buffer ?

Consider a piece of program that reads from a file and writes into
another, character by character:

while(1) {
(1) infile >> ch;
(2) if (infile.fail()) break;
(3) outfile << ch;

¥

Suppose that the next character to be read from infile is
physically stored in sector X of the disk. Suppose that the place to
write the next character to outfile is sector Y.

With a single buffer :

e When line (1) is executed, sector X is brought to the buffer and ch
receives the correct character.

e When line (3) is executed, sector Y must be brought to the buffer.
Sector Y is brought and ch is deposited to the right position.

e Now line (1) is executed again. Suppose we did not reach the end
of sector X yet. Then, sector X must be brought again to the
buffer, so the current content of the buffer must be written to
sector Y before this is done.

CS12131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

This could be solved if there were more buffers available!

Most operating systems have an input buffer and an output buffer.
One buffer could be used for infile and one for outfile.

A new trip to get a sector of infile would only be done after all
the bytes in the previous sector had been read.

Similarly, the buffer for output would be written to the file only
when full (or when file was closed).

Question : If the sector size is 512 bytes. How many extra trips

to the disk we have to do if we have only 1 buffer in comparison to
two or more, in our previous program 7

Lucia Moura 70

And so on.
Lucia Moura 69
CSI2131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

IBuffering Strategies|

1. Multiple Buffering
Double buffering: Two buffers + I/O-CPU overlapping
1/0 Buffer 1 To Disk
Program Data Area 1/O Buffer 2

Program Data Area 1/0 Buffer 1

1/0 Buffer 2 To Disk

Several buffers may be employed in this way (multiple buffering).

Some operating systems use a buffering scheme called buffer
pooling :

o There is a pool of buffers.

e When a request for a sector is received by the O/S, it first looks
to see if that sector is in some of the buffers.

o If not there, then it brings the sector to some free buffer. If no
free buffer exists then it must choose an occupied buffer, write its
current contents to the digk, and then bring the requested sector
to this buffer.

Various schemes may be used to decide which buffer to choose
from the buffer pool. One effective strategy is the Least
Recently Used (LRU) Strategy: when there are no free
buffers, the least recently used buffer is chosen.

Lucia Moura n

CS12131 - Winter 2003 Lecture 6: A Journey of a Byte and Buffering

2. Move Mode and Locate Mode

Move Mode
Situation in which data must be always moved from system buffer
to program buffer (and vice-versa).

Locate Mode

This refers to one of the following two techniques, in order to avoid
ULILECESSary MOves.

The file manager uses system buffers to perform all I/O, but
provides its location to the program, using a pointer variable.

The file manager performs I/O directly between the disk and the
program’s data area.

3. Scatter/Gather I/O

We may want to have data separated into more than one buffer
(for example: a block consisting of header followed by data).

Scatter Input: a single read call identifies a collection of buffers
into which data should be scattered.

Similarly, we may want to have several buffers gathered for output.

Gather Output: a single write call gathers data from several
buffers and writes it to output.

Lucia Moura 2

LECTURE 7: DATA COMPRESSION I

CS12131 - Winter 2003 Lecture 7: Data Compression T

|Contents of today’s lecture:‘

e Introduction to Data Compression
e Techniques for Data Compression

— Compact Notation
— Run-length Encoding
— Variable-length codes: Huffman Code

References:

FOLK, ZOELLICK AND RICCARDI, File Structures, 1998. Section
6.2 (Data Compression).

CORMEN, LEISERSON, RIVEST AND STEIN, Introduction to
Algorithms, 2001, 2nd ed. Section 16.3 (Huffman codes).

Data Compression = Encoding the information in a file in
such a way that it takes less space.

Lucia Moura 74

CSI2131 - Winter 2003 Lecture 7: Data Compression T

|Using Compact Notation]

Ex: File with fields: lastname, province, postal code, etc.
Province field uses 2 bytes (e.g. ‘ON’, ‘BC’) but there are only 13
provinces and territories which could be encoded by using only 4
bits (compact notation).

16 bits are encoded by 4 bits (12 bits were redundant, i.e. added
no extra information)

Disadvantages:

e The field “province” becomes unreadable by humans.

e Time is spent encoding (‘ON’ — 0001) and
decoding (0001 — ‘ON).

o It increases the complexity of software.

Lucia Moura 75

CSI2131 - Winter 2003 Lecture 7: Data Compression T

|Run—length Encoding‘

Good for files in which sequences of the same byte may be frequent.

Example: Figure 6.1 in page 205 of the textbook: image of the sky.
o A pixel is represented by 8 bits.

o Background is represented by the pixel value 0.

The idea is to avoid repeating, say, 200 bytes equal to 0 and
represent it by (0, 200).

If the same value occurs more than once in succession, substitute
by 3 bytes:

e a special character - run length code indicator (use 1111 1111 or
FF in hexadecimal notation)

o the pixel value that is repeated (FF is not a valid pixel anymore)
o the number of times the value is repeated (up to 256 times)
Encode the following sequence of Hexadecimal bytes:

22 23 24 24 24 24 24 24 24 25
26 26 26 26 26 26 25 24

Run-length encoding:
22 23 FF 24 07 25 FF 26 06 25 24
18 bytes reduced to 11.

Lucia Moura 6

CSI2131 - Winter 2003 Lecture 7: Data Compression T

|Variable—Length Codes and Huffman Code|

Example of a variable-length code:

Morse Code (two symbols associated to each letter)

A
B

Since E and T are the most frequent letters, they are associated to
the shortest codes (. and - respectively)

Lucia Moura 77

CS12131 - Winter 2003 Lecture 7: Data Compression T

Huffman Code

Huffman Code is a variable length code, but unlike Morse Code
the encoding depends on the frequency of letters occurring in the
data set.

Example of Huffman Code:
Suppose the file content is:

(L] [AIM] [s[A[M[M]Y]

Total: 10 characters

Letter A 1 M [S |Y |/b
Frequency |2 1 3 1 1 2
Code 00 |1010/11 |1011|100 |01

Huffman Code is a prefix code: no codeword is a prefix of
any other.
(we are representing the space as “/b”)

Encoded message:

1010010011011011001111100

25 bits rather than 80 bits (10 bytes)!

Lucia Moura 78

CSI2131 - Winter 2003 Lecture 7: Data Compression T

Huffman Tree (for easy decoding)

Consider the encoded message:
101001001101. ..
o Interpret the 0's as “go left” and the 1's as “go right”.

e A codeword for a character corresponds to the path from the
root of the Huffman tree to the leaf containing the character.

Following the labeled edges in the Huffman tree we decode the
above message.

1010 leads us to I

01 leads us to /b
00 leads us to A
11 leads us to M
01 leads us to /b
etc.

Lucia Moura w

CSI2131 - Winter 2003 Lecture 7: Data Compression T

|Properties of Huffman Tree]

o Every internal node has 2 children;
e Smaller frequencies are further away from the root;
e The 2 smallest frequencies are siblings;
e The number of bits required to encode the file is minimized:
B(T)= % f(o)-dr(c),
(ceC)
where:
B(T) = number of bits needed to encode the file using tree T,
f(e) = frequency of character c,
dr(c) = length of the codeword for character c.

In our example:
B(T)=2x2+1x4+3x24+1x4+1x3+2x2=25
What is the average number of bits per encoded letter ?

Average number of bits per letter =
= B(T)/total number of characters = 25/10 = 2.5

The way Huffman Tree is constructed guarantees that
B(T) is as small as possible!

Lucia Moura 80

CSI2131 - Winter 2003 Lecture 7: Data Compression T

[How is the Huffman Tree constructed ?]

The weight of a node is the total frequency of characters under the
subtree rooted at the node.

Originally, form subtrees which represent each character with their
frequencies as weights.

The algorithm employs a Greedy Method that always merges

the subtrees of smallest weights forming a new subtree whose root
has the sum of the weight of its children.

The algorithm in action

Using the letters and frequencies from the previous example:

soees [11 [st [v | [a2 |[m2 |[w3]

Merge the two subtrees of smallest weight (break ties arbitrarily) ...

Lucia Moura 81

CS12131 - Winter 2003 Lecture 7: Data Compression T

Subtrees:

Subtrees:

Subtrees:

Subtrees:

Lucia Moura 82

CSI2131 - Winter 2003 Lecture 7: Data Compression T

Final Tree:

Lucia Moura &

CSI2131 - Winter 2003

Pseudo-Code for Huffman Algorithm:

A priority queue Q is used to identify the smallest-weight
subtrees to merge. A priority queue provides the following
operations:

e §.insert(x): insert x to Q

e Q.minimum(): returns element of smallest key

e Q.extract-min(): removes and returns the element with
smallest key

Possible implementations of a priority queue:
Linked lists: Each of the three operations can be done in O(n)
Heaps: Each of the three operations can be done in O(log n)

Pseudo-Code: Huffman

Input: characters and their frequencies

(c1, flc1l), (c2, flc2D), ., (cn, flcnl)
Output: returns the Huffman Tree

Make priority queue Q using cl, c2, ..., cn;
for i = 1 to n-1 do {

allocate new node;

Q.extract-min();

Q.extract-min();

left = 1;

.right = r;

flz] = fr] + £[1];

Q.insert(z);

z

N N R H
L[}

}

return Q.extract-min();

Lucia Moura

Lecture 7: Data Compression T

84

CS12131 - Winter 2003 Lecture 7: Data Compression 1

What is the running time of this algorithm if the priority queue is
implemented as a ...

1. Linked List ?
e Make priority queue takes O(n).

e extract-min and insert takes O(n).

e Loop iterates n — 1 times.

Total time: O(n?)

2. Heap (Array Heap) ?
e Make priority queue takes O(n -logn) or O(n).
e extract-min and insert takes O(logn).
e Loop iterates n — 1 times.

Total time: O(n - logn).

e Pack and unpack commands in Unix use Huffman Codes
byte-by-byte.

e They achieve 25 - 40% reduction on text files, but is not so good
for binary files that have more uniform distribution of values.

Lucia Moura 85

LECTURE 8 DATA COMPRESSION II

CSI2131 - Winter 2003 Lecture 8: Data Compression 1T

|Contents of today’s lecture:|

o Techniques for Data Compression

— Lempel-Ziv codes.

Reference: This notes.

Lempel-Ziv Codes

There are several variations of Lempel-Ziv Codes. We will look at
LZ78.

Ex: Commands zip and unzip and Unix compress and
uncompress use Lempel-Ziv codes.

Lucia Moura 87

CSI2131 - Winter 2003 Lecture 8: Data Compression IT
Let us look at an example for an alphabet having only two letters:
aaababbbaaabaaaaaaabaabb
Rule : Separate this stream of characters into pieces of text, so
that each piece is the shortest string of characters that we have not
seen yet.
alaalblablbblaaalbalaaaalaablaabb

. We see "a".

. "a" has been seen, we now see "aa".

. We see "b".

- W N =

. "a" has been seen, we now see "ab" .

. "b" has been seen, we now see "bb" .

ot

. "aa" has been seen, we now see "aaa".

6

7. "b" has been seen, we now see "ba".

8. "aaa" has been seen, we now see "aaaa".
9

. "aa" has been seen, we now see "aab" .

10."aab" has been seen, we now see "aabb" .

Note that this is a dynamic method!

Lucia Moura 88

CSI2131 - Winter 2003 Lecture 8: Data Compression IT

Index the pieces from 1 to n. In the previous example:
Index : 012 34 5 6 7 8 9 10
Olalaalblab|bb|aaalbalaaaalaablaabb
0 = Null string

Encoding :
Index : 1 2 3 4 5 6 7 8 9 10
Oal1alObl1b|3b|2a|3a|6a|2b|9b
Since each piece is the concatenation of a piece already seen with a
new character, the message can be encoded by a previous index
plus a new character.
Indeed a digital tree can be built when encoding:

a b
[e] [o]
a b
L]

When a node is inserted the code for the current piece becomes the
parent node combined with the new character.

Note that this tree is not binary in general. Here, it is binary
because the alphabet has only 2 letters.

Lucia Moura 8

CSI2131 - Winter 2003 Lecture 8: Data Compression 1T

Practice Exercises

Encode (using Lempel-Ziv) the file containing the following
characters, drawing the corresponding digital tree:

"aaabbcbcdddeab"

"I AM SAM. SAM I AM."

Lucia Moura 90

CSI2131 - Winter 2003 Lecture 8: Data Compression 1T

|Bit Representation of Coded Information

How many bits are necessary to represent each integer with index
n 7 The integer is at most n — 1, so the answer is: at most the
number of bits to represent the number n — 1.

1 2 3 45 6 7 8 9 10
Oal1al0bl1bl|3bl2al3al6al2b|9b

Index 1: no bit (always start with zero)

Index 2: at most 1, since previous index can be only 0 or 1.
Index 3: at most 2, since previous index is between 0-2.
Index 4: at most 2, since previous index is between 0-3.
Index 5-8: at most 3, since previous index is between 0-7
Index 9-16: at most 4, since previous index is between 0-15

Each letter is represented by 8 bits. Each index is represented
using the largest number of bits possibly required for that position.
For the previous example, this representation would be as follows:

<a>1<a>0001011010<a>011<a>110<a>00101001

Note that <a> and above should be replaced by the ASCII
code for a and b, which uses 8 bits. We didn’t replace them for
clarity and conciseness.

Total number of bits in the encoded example :
(10x 8)+(0+1+2x2+4x3+2x4) =105 bits

The original message was represented using 24 x 8 = 192 bits.

Lucia Moura 91

CSI2131 - Winter 2003 Lecture 8: Data Compression IT

Decompressing

1 2 3 4 5 6 7 8 9 10
0alla|Obl1b|3bl2a|3al6al2b|9b

| |previous |added |
| |pointer |character|

[0 | - | - |
1 | 0 | a |
[2 | 1 | a |
3	0	b
4	1	b
5	3	b
6	2	a
7	3	a
8	6	a
9	2	b
10	9	b

As the table is constructed line by line, we are able to decode the
message by following the pointers to previous indexes which are
given by the table. Try it, and you will get:

a aa b ab bb aaa aaa ba aaaa aab aabb

Lucia Moura 92

CSI2131 - Winter 2003 Lecture 8: Data Compression IT

Decode the following Lempel-Ziv encoded file:

IOMIOA|OK|OE|O |OL|2K|4 |OF|7E|

decoded message:

number of bits in original message:

number of bits in encoded message:

Lucia Moura 9

CSI2131 - Winter 2003 Lecture 8: Data Compression 1T

Decode the following Lempel-Ziv encoded file:

|OTIOH|OAI1 |0SI3M[O I0I|7AIOM|O, |1H|3TI4S|6 |8 |6!]

decoded message:

number of bits in original message:

number of bits in encoded message:

Lucia Moura 94

CSI2131 - Winter 2003 Lecture 8: Data Compression 1T

llrreversible Compression

All previous techniques : we preserve all information in the original
data.

Irreversible compression is used when some information can be
sacrificed.

Example :
Shrinking an image from 400-by-400 pixels to 100-by-100 pixels.

1 pixel in the new image for each 16 pixels in the original message.

Tt is less common than reversible compression.

In UNIX:
- pack and unpack use Huffman codes byte-by-byte.
25-40% for text files, much less for binary files (more uniform

distribution)

- compress and uncompress use Lempel-Ziv.

Lucia Moura 95

LECTURE 9: RECLAIMING SPACE IN
FILES

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

\Contents of today’s lecture:|

Reclaiming space in files
Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Section 6.2

Let us consider a file of records (fixed length or variable length).

We know how to create a file, add records to a file and modify the
content of a record. These actions can be performed physically by
using the various basic file operations we have seen (open a file for
writing or appending, going to a position of a file using “seek” and
writing the new information there).

What happens if records need to be deleted ?
There is no basic operation that allows us to “remove part of a

file”. Record deletion should be taken care by the program
responsible for file organization.

Lucia Moura 9

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

|Strategies for record deletion‘

How to delete records and reuse the unused space ?

1) Record Deletion and Storage Compaction

Deletion can be done by “marking” a record as deleted.

Ex.: - Place ‘*’ at the beginning of the record; or

- Have a special field that indicates one of two states: “deleted” or
“not deleted”.

Note that the space for the record is not released, but the program
that manipulates the file must include logic that checks if record is

deleted or not.

After a lot of records have been deleted, a special program is used
to squeeze the file - this is called Storage Compaction.

Lucia Moura 9%

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

2) Deleting Fixed-Length Records and Reclaiming
Space Dynamically

How to use the space of deleted records for storing records that are
added later 7

Use an “AVAIL LIST”, a linked list of available records.

e a header record (at the beginning of the file) stores the beginning
of the AVAIL LIST (-1 can represent the null pointer).

e when a record is deleted, it is marked as deleted and inserted into
the AVAIL LIST. The record space is in the same position as
before, but it is logically placed into AVAIL LIST.

Ex.: After deletions the file may look like :

List head — 4

[Edward{ Williamgd *1 [Smith [*2 [Sethi |
0 1 2 3 4 5

If we add a record, it can go to the first available spot in the AVAIL
LIST (RRN=4).

Lucia Moura 9

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

3) Deleting Variable Length Records

Use an AVAIL LIST as before, but take care of the variable-length
difficulties.

The records in AVAIL LIST must store its size as a field.
RRN can not be used, but exact byte offset must be used.

List head — 33
Edwards|M| Wu|F| *-1]10] Smith|M| *15|30]

0 1 2 3 4
10 bytes 5 10 bytes 8 bytes 30 bytes
bytes

Addition of records must find a large enough record in AVAIL LIST.

Lucia Moura 100

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

\Placement Strategies for New Records|

There are several strategies for selecting a record from AVAIL LIST
when adding a new record:
1. First-Fit Strategy
® AVAIL LIST is not sorted by size.
o First record large enough to hold new record is chosen.

Example:

AvVAIL LIST: size=10, size=50, size=22, size=60

record to be added: size=20

Which record from AVAIL LIST is used for the new record 7

2. Best-Fit Strategy
® AVAIL LIST is sorted by size.
e Smallest record large enough to hold new record is chosen.

Example:

AVAIL LIST: size=10, size=22, size=50, size=60

record to be added: size=20

Which record from AVAIL LIST is used for the new record 7

Lucia Moura 101

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

3. Worst-Fit Strategy

® AVAIL LIST is sorted by decreasing order of size.
o Largest record is used for holding new record; unused space
is placed again in AVAIL LIST.
Example:
AVAIL LIST: size=60, size=50, size=22, size=10
record to be added: size=20
Which record from AVAIL LiST is used for the new record ?

When choosing between strategies we must consider two types of
fragmentation within a file:

Internal Fragmentation: wasted space within a record.
External Fragmentation: space is available at AVAIL LIST,
but it is so small that cannot be reused.

For each of the following approaches, which type of fragmentation
arises, and which placement strategy is more suitable?
When the added record is smaller than the item taken from AVAIL
LisT:
o leave the space unused within the record

type of fragmentation:

suitable placement strategy:
e return the unused space as a new available record to AVAIL LIST

type of fragmentation:
suitable placement strategy:

Lucia Moura 102

CSI2131 - Winter 2003 Lecture 9: Reclaiming Space in Files

Ways of combating external fragmentation:

e Coalescing the holes : if two records in AVAIL LIST are
adjacent, combine them into a larger record.

e Minimize fragmentation by using one of the previously mentioned
placement strategies (for example: worst-fit strategy is better
than best-fit strategy in terms of external fragmentation when
unused space is returned to AVAIL LiST).

Lucia Moura 103

LECTURE 10: BINARY SEARCHING,
KEYSORTING AND INDEXING

CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing

\Contents of today’s lecture:|

e Binary Searching (Chapter 6.3.1 - 6.3.3),
o Keysorting (Chapter 6.4)
o Introduction to Indexing (Chapter 7.1-7.3)

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 6.3.1-6.3.3,6.4,7.1-7.3

Binary Searching

Let us consider fixed-length records that must be searched by a
key value.

If we knew the RRN of the record identified by this key value, we
could jump directly to the record (using “seek”).

In practice, we do not have this information and we must search
for the record containing this key value.

If the file is not sorted by the key value we may have to look at
every possible record before we find the desired record.

An alternative to this is to maintain the file sorted by key
value and use binary searching.

Lucia Moura 105

CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing

A binary search! algorithm in C++ :

class FixedRecordFile{
public:
int NumRecs();
int ReadByRRN(RecType & record, int RRN);

};
class KeyType {
public:
int operator==(KeyType &) ;
int operator>(KeyType &) ;
};
class RecType {

public:
KeyType key();
int BinarySearch(FixedRecordFile & file, RecType & obj,
KeyType & key) {
int low=0; int high=file.NumRecs() -1;
while (low <= high) {
int guess = (high + low)/2;
file.ReadByRRN(obj,guess) ;
if (obj.key() == key) return 1;
if (obj.key() > key) high = guess - 1;
else low = guess + 1;
}
return 0; //did not find key
}

'this algorithm corrects some mistakes found in the textbook.

Lucia Moura 106

(CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing
Binary Search versus Sequential Search :

Binary Search : O(logon)
Sequential Search : O(n)

If file size is doubled, sequential search time is doubled, while
binary search time increases by 1.

Keysorting

Suppose a file needs to be sorted, but it is too big to fit into main
memory.

To sort the file, we only need the keys. Suppose that all the keys
fit into main memory.

Idea:

e Bring the keys to main memory plus corresponding RRN

e Do internal sorting of keys

o Rewrite the file in sorted order

Lucia Moura 107

CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing

CSI12131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing
How much effort we must do (in terms of disk
accesses) ?

e Read file sequentially once
e Go through each record in random order (seek)

o Write each record once (sequentially)

Why bother to write the file back?
Use keynode array to create an index file instead.

index file records
BELL 3 HARRISON | 387 Eastern...
HARRIS 2 KELLOG | 17 Maple...
HARRISON 0 HARRIS | 4343 West...
KELLOG 1 BELL | 8912 Hill...

Leave file unchanged

This is called INDEXING !!

Pinned Records

Remember that in order to support deletions we used AVAIL
LIST, a list of available records.

The AVAIL LIST contains info on the physical information of

records. In such a file a record is said to be pinned.

If we use an index file for sorting, the AVAIL LIST and positions
of records remain unchanged. This is convenient.

Lucia Moura 109

keynodes array records
key RRN
HARRISON 0 | ——» |HARRISON | 387 Eastern...
KELLOG 1 | ——» |KELLOG |17 Maple...
HARRIS 2 | —» |HARRIS|4343 West...
BELL 3 | ——» |BELL |8912Hill...
Main Memory Disk
keynodes array records
key RRN
BELL 3 HARRISON | 387 Eastern...
HARRIS 2 KELLOG | 17 Maple...
HARRISON 0 HARRIS | 4343 West...
KELLOG 1 BELL | 8912 Hill...
Internal sorting No change in Disk
in main memory
keynodes array records
BELL 3 BELL | 8912 Hill...
HARRIS 2 HARRIS | 4343 West...
HARRISON 0 HARRISON | 387 Eastern...
KELLOG 1 KELLOG |17 Maple...
create new sorted file to
replace previous
Lucia Moura 108
CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing

|Introduction to Indexing|

e Simple indexes use simple arrays.

o An index lets us impose order on a file without rearranging
the file.

o Indexes provide multiple access paths to a file - multiple
indexes (library catalog providing search for author, book and
title).

o An index can provide keyed access to variable-length record files.

Lucia Moura 110

CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing

A Simple Index for Entry-Sequenced File

Records (Variable Length)

17 [LON|2312 | Symphony N.S]| ... |

62 |RCA|2626|Quartetin Csharp]| .. |
117 |WAR|23699 | Adagio| ... [

152 | ANG | 3795 Violin Concerto] .. |

Address of
Record

Primary key = company label + record ID (LABEL ID).

Index :

Reference
key field
ANG3795 152
LON2312 17
RCA2626 62
WAR23699 117

e Index is sorted (main memory).

e Records appear in file in the order they entered.

How to search for a recording with given LABEL ID ?
“Retrieve recording” operation :

e Binary search (in main memory) in the index : find LABEL ID,
which leads us to the reference field.

e Seek for record in position given by the reference field.

Lucia Moura 111

CSI2131 - Winter 2003 Lecture 10: Binary Searching, Keysorting and Indexing

Two issues to be addressed :

e How to make a persistent index (i.e. how to store the index into a
file when it is not in main memory).

o How to guarantee that the index is an accurate reflection of the
contents of the file. (This is tricky when there are lots of
additions, deletions and updates.)

Lucia Moura 112

LECTURE 11: INDEXING

CSI2131 - Winter 2003 Lecture 11: Indexing

|Contents of today’s lecture:‘

o Indexing

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 7.4 - 7.6, 7.7 - 7.10

Operations in order to Maintain an Indexed File

1. Create the original empty index and data files.

2. Load the index file into memory before using it.

3. Rewrite the index file from memory after using it.
4. Add data records to the data file.

5. Delete records from the data file.

6. Update records in the data file.

7. Update the index to reflect changes in the data file.

We will take a closer look at operations 3-7.

Lucia Moura 114

CSI2131 - Winter 2003 Lecture 11: Indexing

|Rewrite the Index File from Memory|

When the data file is closed, the index in memory needs to be
written to the index file.

An important issue to consider is what happens if the rewriting
does not take place (power failures, turning the machine off, etc.)

Two important safeguards:

e Keep an status flag stored in the header of the index file. The
status flag is “on” whenever the index file is not up-to-date.
When changes are performed in the index in main memory the
status flag in the file is turned on. Whenever the file is rewritten
from main memory the status flag is turned off.

o If the program detects the index is out-of-date it calls a procedure
that reconstruct the index from the data file.

Lucia Moura 115

CSI2131 - Winter 2003 Lecture 11: Indexing

Record Addition

This consists of appending the data file and inserting a new record
in the index. The rearrangement of the index consists of “sliding
down” the records with keys larger than the inserted key and then
placing the new record in the opened space.

Note: This rearrangement is done in main memory.
Record Deletion

This should use the techniques for reclaiming space in files
(Chapter 6.2) when deleting from the data file. We must delete the
corresponding entry from the index:

o Shift all records with keys larger than the key of the deleted
record to the previous position (in main memory); or

o Mark the index entry as deleted.

Record Updating

There are two cases to consider:

o The update changes the value of the key field:
Treat this as a deletion followed by an insertion

e The update does not affect the key field:
If record size is unchanged, just modify the data record. If record
size changes treat this as a delete/insert sequence.

Lucia Moura 116

CSI2131 - Winter 2003 Lecture 11: Indexing

[Indexes too Large to Fit into Main Memory]|

The indexes that we have considered before could fit into main
memory. If this is not the case, we have the following problems:

o Binary searching of the index file is done on disk, involving several
“seeks”.

o Index rearrangement (record addition or deletion) requires
shifting on disk.

Two main alternatives:
o Hashed organization (Chapter 11) (When speed is a top priority)

o Tree-structured (multilevel) index such as B-trees and B+ trees
(Chapter 9,10) (It allows keyed and ordered sequential access).

But a simple index is still useful, even in secondary storage:

o [t allows binary search to obtain a keyed access to a record in a
variable-length record file.

o Sorting and maintaining an index is less costly than sorting and
maintaining the data file, since the index is smaller.

e We can rearrange keys, without moving the data records when
there are pinned records.

Lucia Moura 17

CSI2131 - Winter 2003 Lecture 11: Indexing

|Indexing to Provide Access by Multiple Keys|

In our recording file example, we built an index for LABEL ID key.
This is the primary key.
There may be secondary keys: title, composer and artist.

We can build secondary key indexes.

Composer index:

Secondary | Primary
key key
Beethoven | ANG3795
Beethoven | DG139201
Beethoven | DG18807
Beethoven | RCA2626
Corea WAR23699
Dvorak COL31809
Prokofiev LON2312

Note that in the above index the secondary key reference is to the
primary key rather than to the byte offset.

This means that the primary key index must be searched to find

the byte offset, but there are many advantages in postponing the
binding of a secondary key to an specific address.

Lucia Moura 118

CSI2131 - Winter 2003 Lecture 11: Indexing

Record Addition

When adding a record, an entry must also be added to the
secondary key index.

Store the field in Canonical Form (say capital letters, with
pre-specified maximum length).

There may be duplicates in secondary keys. Keep duplicates in
sorted order of primary key.

Record Deletion

Deleting a record implies removing all the references to the record
in the primary index and in all the secondary indexes. This is too
much rearrangement, specially if indexes cannot fit into main
memory.

Alternative:

o Delete the record from the data file and the primary index file
reference to it. Do not modify the secondary index files.

o When accessing the file through a secondary key, the primary
index file will be checked and a deleted record can be identified.

This results in a lot of saving when there are many secondary keys.
The deleted record still occupy space in the secondary key indexes.

If a lot of deletions occur, we can periodically cleanup these
deleted records from the secondary key indexes.

Lucia Moura 19

CSI2131 - Winter 2003 Lecture 11: Indexing

Record Updating

There are three types of updates :

e Update changes the secondary key :

‘We have to rearrange the secondary key index to stay in sorted
order.

e Update changes the primary key :

Update and reorder the primary key index; update the references
to primary key index in the secondary key indexes (it may involve
some re-ordering of secondary indexes if secondary key occurs
repeated in the file).

e Update confined to other fields :

This won't affect secondary key indexes. The primary key index
may be affected if the location of record changes in data file.

Lucia Moura 120

CSI2131 - Winter 2003 Lecture 11: Indexing

|Retrieving Rec’s using Combinations of Secondary Keys\

Secondary key indexes are useful in allowing the following kinds of
queries :

e Find all recording with composer “BEETHOVEN".
e Find all recording with title “Violin Concerto”.

o Find all recording with composer “BEETHOVEN" and title
“Symphony No.9”.

This is done as follows :

Matches Matches | Matched

from from title |list
composer |index (logical
index “and”)

ANG3795 ANG3795 | ANG3795
DG139201 COL31809 | DG18807
DG18807 DG18807
RCA2626

Use the matched list and primary key index to retrieve the two
recordings from the file.

Lucia Moura 121

CSI2131 - Winter 2003 Lecture 11: Indexing

|Improving the Secondary Index Structure: Inverted Lists

Two difficulties found in the proposed secondary index structures :

o We have to rearrange the secondary index file even if the new
record to be added in for an existing secondary key.

o If there are duplicates of secondary keys then the key field is
repeated for each entry, wasting space.

Solution 1

Make the secondary key index record consist of secondary key +
array of references to records with secondary key.

Problems :

e The array will take a maximum length and we may have more
records.

e We may have lots of unused spaces in some of the arrays (wasting
space in internal fragmentation).

Lucia Moura 122

CSI2131 - Winter 2003 Lecture 11: Indexing

Solution 2 : Inverted Lists

Organize the secondary key index as an index containing one entry
for each key and a pointer to a linked list of references.

Secondary Key Index File LABEL ID List File

0| LON2312 -1
1| RCA2626 -1
0 | Beethoven 3 2 | WAR23699 |-1
1| Corea 2 3| ANG3795
2 | Dvorak 5 4| DG18807 1
3 | Prokofiev 7 5| COL31809 |-1
6 | DG139201 4
7| ANG36193 0

Beethoven is a secondary key that appears in records identified by
the LABEL IDs: ANG3795, DG139201, DG18807 and RCA2626
(check this by following the links in the linked list).

Lucia Moura 123

CSI2131 - Winter 2003 Lecture 11: Indexing

Advantages:

o Rearrangement of the secondary key index file is only done when
a new composer’s name is added or an existing composer’s name
is changed. Deleting or adding recordings for a composer only
affects the LABEL ID list file. Deleting all recordings by a
composer can be done by placing a “-1” in the reference field in
the secondary index file.

e Rearrangement of the secondary index file is quicker since it is
smaller.

o Smaller need for rearrangement causes a smaller penalty
associated with keeping the secondary index file in disk.

e The LABEL ID list file never needs to be sorted since it is
entry sequenced.

e We can easily reuse space from deleted records from the LABEL
ID list file since its records have fixed-length.

Disadvantages :

o Lost of “locality” : labels of recordings with same secondary key
are not contiguous in the LABEL ID list file (seeking). To
improve this, keep the LABEL ID list file in main memory, or,
if too big, use paging mechanisins.

Lucia Moura 124

CSI2131 - Winter 2003 Lecture 11: Indexing

Selective Indexes
We can build selective indexes, such as :
Recordings released prior to 1970, recordings since 1970.

This may be useful in queries involving boolean “and” operations :
“Retrieve all the recordings by Beethoven released since 1970”.

Lucia Moura 125

CSI2131 - Winter 2003 Lecture 11: Indexing

In our example of indexes, when does the binding of the index to
the physical location of the record happens ?

For the primary index, binding is at the time the file is
constructed. For the secondary index, it is at the time the
secondary index is used.

Advantages of postponing binding (as in our example):

o We need small amount of reorganization when records are

added/deleted.

o [t is a safer approach : important changes are done in one place
rather than in many places.

Disadvantages :

o It results in slower access times (binary search in secondary index
plus binary search in primary index).
When to use a tight binding ?

o When data file is nearly static (little or no adding, deleting or
updating of records).

e When rapid retrieval performance is essential. Example : Data
stored in CD-ROM should use tight binding.

When to use the bind-at-retrieval system?

e When record additions, deletions and updates occur more often.

Lucia Moura 126

LECTURE 12: COSEQUENTIAL
PROCESSING

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

|Contents of today’s lecture:\

o Cosequential processing (Section 8.1),
o Application: a general ledger program (Section 8.2)

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Section 8.1-8.2.

Lucia Moura 128

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

|Cosequential Processing

Cosequential processing involves the coordinated processing
of two or more sequential lists to produce a single output
list.

The two main types of resulting output lists are :
e Matching (intersection) of the items of the lists.

e Merging (union) of the items of the lists.

Examples of applications :

1. Matching :
Master file - bank account info (account number, person name,
account balance) - sorted by account number
Transaction file - updates on accounts (account number,

credit/debit info).

2. Merging :
Merging two class lists keeping alphabetic order.
Sorting large files (break into small pieces, sort each piece and
then merge them).

Lucia Moura 129

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

|Matching the Names in Two Listsl

List 1(Sorted) List 2 (Sorted) '(V‘Ss:f:de;ﬁ List
ADAMS ADAMS ADAMS
CARTER BECH CARTER
DAVIS

CHIN BURNS
DAVIS CARTER
MILLER DAVIS
RESTON PETERS
End of list ROSEWALD
Detected SCHIMT

WILLIS

Synchronization :
item(i) = current item from list i

if item(1) < item(2) then
get next item from list 1
if item(1) > item(2) then
get next item from list 2
if item(1) = item(2) then
output the item to output list
get next item from list 1 and list 2

Handling End-of-File/End-of-List Condition
Halt when we get to the end of either list 1 or list 2.

Lucia Moura 130

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

Merging the Names from Two Lists (Elimin. Repetit.)‘

List 1(Sorted) List 2 (Sorted) ?’;?:;L'a
ADAMS ADAMS ADAMS
CARTER BECH BECH
BURNS
CHIN BURNS CARTER
DAVIS CARTER CHIN
DAVIS
MILLER DAVIS MILLER
RESTON PETERS PETERS
RESTON

<HIGH VALUE> ROSEWALD ROSEWALD

w SCHIMT
wiLLIS
WILLIS

<HIGH VALUE>

Modify the synchronization slightly :

if item(1) < item(2) then
output item(1) to output list
get next item from list 1
if item(1) > item(2) then
output item(2) to output list
get next item from list 2
if item(1) = item(2) then
output the item to output list
get next item from list 1 and list 2

Lucia Moura 131

CSI2131 - Winter 2003

Lecture 12: Cosequential Processing

Handling End-of-File/End-of-List Condition

1. Using a <HIGH VALE> as in the previous example:

By storing <HIGH VALUE> in the current item for the list that

finished, we make sure the contents of the other list is flushed to
the output list.
The stopping criteria is changed to :

Halt when we get to the end of both list 1 and list 2.

2. Reducing the number of comparisons:

We can perform a similar algorithm with less comparisons
without using a <HIGH VALUE> as described above.

The stopping criteria becomes:
When we get to the end of either list 1 or list 2, we halt the

program.

Finalization: flush the unfinished list to the output list.

while (list 1 did not finish)
output item(1) to output list
get next item from list 1

while (list 2 did not finish)
output item(2) to output list
get next item from list 2

Lucia Moura

132

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

|Cosequential Processing: A General Ledger Program|

Ledger = A book containing accounts to which debits and credits
are posted from books of original entry.

Problem: design a general ledger posting program as part of an
accounting system.

Two files are involved in this process:
Master File: ledger file
- monthly summary of account balance for each of the

book-keeping accounts.

Transaction File: journal file
- contains the monthly transactions to be posted to the ledger.

Once the journal file is complete for a given month, the journal
must be posted to the ledger.

Posting involves associating each transaction with its account in
the ledger.

Lucia Moura 133

CSI2131 - Winter 2003

Sample Ledger Fragment

Lecture 12: Cosequential Processing

Account | Account Jan Feb| Mar|Apr

Number | Title

101 checking 1032.00 | 2114.00 | 5219.00

account #1
102 checking 543.00 | 3094.17 | 1321.20
account #2

510 auto expense 195.00 | 307.00 | 501.00

540 office expense 57.00| 105.25| 138.37

550 rent 500.00 | 1000.00 | 1500.00
Sample Journal Entry
Account | Check | Date Description | Debit/Credit
Number | Num-

ber

101 1271 April 2,01 | Auto expense -79.00
510 1271 April 2,01 | Tune-up 79.00
101 1272 April 3, 01 | Rent - 500.00
550 1272 April 3,01 | Rent for April 500.00
102 670 April 4, 01 | Office expense - 32.00
540 670 April 4, 01 | Printer cartridge 32.00
101 1273 April 5,01 | Auto expense - 31.00
510 1273 April 5,01 | Oil change 31.00

Lucia Moura

134

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

Sample Ledger Printout

101 Checking account #1

1271 | April 2, 01 | Auto expense - 79.00
1272 | April 3, 01 | Rent - 500.00
1273 | April 5, 01 | Auto expense - 31.00
Prev. Bal.: 5,219.00 New Bal.: 4,609.00

102 Checking account #2

510 Auto expense

540 Office expense

550 Rent

Lucia Moura 135

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

How to implement the Posting Process?

o Use account number as a key to relate journal transactions to
ledger records.

® Sort the journal file.

® Process ledger and sorted journal co-sequentially.

Tasks to be performed:

e Update ledger file with the current balance for each account.

e Produce printout as in the example.

From the point of view of ledger account :
Merging (unmatched accounts go to printout)

From the point of view of journal account:
Matching (unmatched accounts in journal constitute an error)

The posting method is a combined merging/matching.

Lucia Moura 136

CSI2131 - Winter 2003 Lecture 12: Cosequential Processing

Ledger Algorithm

Item(1): always stores the current master record
Item(2): always stores the current transactions record

- Read first master record
- Print title line for first account
- Read first transactions record
While (there are more masters
or there are more transactions) {
if item(1) < item(2) then {
Finish this master record:
- Print account balances, update master record
- Read next master record
- If read successful, then print title line for
new account }
if item(1) = item(2) {
Transaction matches master:
- Add transaction amount to the account balance
for new month
- Print description of tramnsaction
- Read next tramsaction record 1}
if item(1) > item(2) {
Transaction with no master:
- Print error message
- Read next transaction record 1}

LECTURE 13: COSEQUENTIAL
PROCESSING - SORTING LARGE FILES

Lucia Moura 137
CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

|Contents of today’s lecture:|

o Cosequential Processing and Multiway Merge,
o Sorting Large Files (external sorting)

Reference : FOLK, ZOELLICK AND RICCARDI, File
Structures, 1998. Sections 8.3, 8.5 (up to 8.5.3).

|Cosequential processing and Multiway Merging]

K-way merge algorithm : merge K sorted input lists to create a
single sorted output list.

We will adapt our 2-way merge algorithm :

o Instead of List1 and List2 keep an array of lists : List[1],
List[2], ..., List[K].

o Instead of item(1) and item(2) keep an array of items :
item[1], item[2], ..., item[K].

Lucia Moura 139

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

[Merging Eliminating Repetitions

We modify our synchronization step :

if item(1) < item(2) them ...
if item(1) > item(2) then ...
if item(1) = item(2) then ...
As follows :

(1) minitem = index of minimum item in item[1],
item[2],..., item[K]

(2) output item[minitem] to output list

(3) for i=1 to K do

(4) if item[i]l=item[minitem] then

(5) get next item from List[i]

If there are no repeated items among different lists, lines (3)-(5)
can be simplified to :

get next item from List[minitem]

Lucia Moura 140

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

Different ways of implementing the method :

Solution 1 : when the number of lists is small (say K < 8).

e Line (1) does a sequential search on item[1], item[2], ...,
item[K].
Running time : O(K)

o Line(5) just replaces item[i] with newly read item.
Running time : O(1)

Solution 2 : when the number of lists is large.
Store current items item[1], item[2], ...,item[K] into
priority queue (say, an array heap).
e Line (1) does a min operation on the array-heap.
Running time : O(1)
e Line(5) performs a extract-min operation on the array-heap :
Running time : O(log K)
and an insert on the array-heap
Running time : O(log K)

Lucia Moura 141

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

The detailed analysis of both algorithm is somewhat involved.

Let N = Number of items in output list
M = Number of items summing up all input lists
(Note N < M because of possible repetitions.)

Solution 1

Line(1): K - N steps

Line(5), counting all executions: M -1 steps
Total time: O(K - N + M) C O(K - M)

Solution 2

Line(1) : 1- N steps

Line(5), counting all executions : M - 2 -log K steps
Total time : O(N + M - log K) = O((log K) - M)

Lucia Moura 142

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

|Merging as a Way of Sorting Large Files‘

e Characteristics of the file to be sorted:
8,000,000 records
Size of a record = 100 bytes
Size of the key = 10 bytes
® Memory available as a work area : 10 MB (Not counting memory
used to hold program, operating system, I/O buffers, etc.)
- Total file size = 800 MB
- Total number of bytes for all the keys = 80 MB
So, we cannot do internal sorting nor keysorting.

Idea :

1. Forming runs: bring as many records as possible to main
memory, do internal sorting and save it into a small file.
Repeat this procedure until we have read all the records from
the original file.

2. Do a multiway merge of the sorted files.
In our example, what could be the size of a run 7
Available memory = 10 MB = 10,000,000 bytes
Record size = 100 bytes
Number of records that can fit into available memory = 100,000
records
Number of runs = 80 runs

Lucia Moura 143

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

8,000,000 unsorted records (800 MB)

wi ¥ ¥ ¥ T
80 Internal Sorts
Step3
Step4

8,000,000 records in sorted order

I/O operations are performed in the following times:

1. Reading each record into main memory for sorting and forming
the runs.

2. Writing sorted runs to disk.

The two steps above are done as follows:
Read a chunk of 10 MEGS; Write a chunk of 10 MEGS
(Repeat this 80 times)

In terms of basic disk operations, we spend :
For reading : 80 seeks? + transfer time for 800 MB
Same for writing.

2Each chunk is read right after we wrote the previeus run, so there is an initial seeking.

Lucia Moura 144

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

3. Reading sorted runs into memory for merging. In order to
minimize “seeks” read one chunk of each run, so 80 chunks.
Since the memory available is 10 MB each chunk can have
10,000,000/80 bytes = 125,000 bytes = 1,250 records

How many chunks to be read for each run?
size of a run/ size of a chunk = 10,000,000 / 125,000 = 80

Total number of basic “seeks” = Total number of chunks
(counting all the runs) is 80 runs x 80 chunks/run = 80? chunks.

Reading each chunk involves basic seeking.

4. When writing a sorted file to disk, the number of basic seeks
depends on the size of the output buffer: bytes in file/ bytes in
output buffer.

For example, if the output buffer contains 200 K, the number of
basic seeks is : 200,000,000 / 200,000 = 4,000.

From steps 1-4 as the number of records (N) grows, step 3
dominates the running time.

Lucia Moura 145

CSI2131 - Winter 2003 Lecture 13: Cosequential Processing - sorting large files

There are ways of reducing the time for the bottleneck step (step
3):

o Allocate more hardware (e.g disk drives, memory)

o Perform the merge in more than one step - this reduces the order
of each merge and increases the run sizes.

o Algorithmically increase the length of each run.
e Find ways to overlap I/O operations.

For details in the above steps see sections : 8.5.4 - 8.5.11.

Lucia Moura 146

