CSI2131 FILE MANAGEMENT (PART II)

Prof. Lucia Moura

Winter 2003

LECTURE 15: HASHING I
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Lecture 14 is skipped since it is a review
lecture.

|Contents of today’s lecture:\

e Introduction to Hashing

o Hash functions.

e Distribution of records among addresses, synonyms and collisions.
e Collision resolution by progressive overflow or linear probing.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 11.1,11.2,11.3,11.5.

Hashing is a useful searching technique, which can be used for
implementing indexes. The main motivation for Hashing is
improving searching time.

Below we show how the search time for Hashing compares to the
one for other methods:

- Simple Indexes (using binary search): O(logy, N)

- B Trees and B+ trees (will see later): O(log;, N)
- Hashing: O(1)
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|What is Hashing ?|

The idea is to discover the location of a key by simply examining
the key. For that we need to design a hash function.

A Hash Function is a function h(k) that transforms a key into
an address.

An address space is chosen before hand. For example, we may
decide the file will have 1,000 available addresses.

If U is the set of all possible keys, the hash function is from U to
{0,1,...,999}, that is

h:U— {0,1,...,,999}

Example :
k ASCII product h(k) =
code product mod
for the 1,000
first 2
letters

BALL 66, 65 66 x 65 = 4,290 | 290
LOWELL | 76,79 | 76 x 79 = 6,004 | 004
TREE 84, 82 84 x 82 = 6,888 | 888

Lucia Moura

Lecture 15: Hashing T

149




CSI2131 - Winter 2003 Lecture 15: Hashing T

RRN FILE

000
001

004 |LOWELL

290 |BALL

888 | TREE

999

There is no obvious connection between the key and the location
(randormizing).

Two different keys may be sent to the same address generating a
Collision.

Can you give an example of collision for the hash function in the
previous example ?
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Answer:
LOWELL, LOCK, OLIVER, and any word with first two letters L
and O will be mapped to the same address:

R(LOWELL) = h(LOCK) = h(OLIVER) = 4.

These keys are called synonyms. The address “4” is said to be
the home address of any of these keys.

Avoiding collisions is extremely difficult (do you know the
birthday paradox?), so we need techniques for dealing with it.

Ways of reducing collisions:

1. Spread out the records by choosing a good hash function.

2. Use extra memory, i.e. increase the size of the address
space (Ex: reserve 5,000 available addresses rather than 1,000).

3. Put more than one record at a single address (use of
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|A Simple Hash F‘unction‘

To compute this hash function, apply 3 steps :

Step 1: transform the key into a number.

LOWELL = |L|lOIlWwWIlE/lLILI | | | | | |
ASCII code: 76 79 87 69 76 76 32 32 32 32 32 32

Step 2: fold and add (chop off pieces of the number and add
them together) and take the mod by a prime number

767918769|7676|323213232]3232]
7679+8769+7676+3232+3232+3232 = 33,820

33,820 mod 19937 = 13,883

Step 3: divide by the size of the address space (preferably a
prime number).

13,883 mod 101 = 46
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lDistribution of Records among Addresses|

There are 3 possibilities :

Uniform All synonyms Random
(no synonyms) synonyl (afew synonyms)
Key Address Key Address Key Address

OO0 w >
o O b~ W N B O
OO0 w >
\Y/
o O b~ W N B O
O 0w >

o> A wWN PO

Uniform distributions are extremely rare.

Random distributions are acceptable and more easily obtainable.
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Trying a better-than-random distribution, by preserving
natural ordering among the keys :

o Examine keys for patterns.

Ex: Numerical keys that are spread out naturally such as:
keys are years between 1970 and 2000.

f(year) = (year — 1970) mod(2000 — 1970 + 1)

F(1970) =0, £(1971) =1, - -, £(2000) = 30

o Fold parts of the key.

Folding means extracting digits from a key and adding the parts
together as in the previous example.

In some cases, this process may preserve the natural separation of
keys, if there is a natural separation.

e Use prime number when dividing the key.

Dividing by a number is good when there are sequences of
consecutive numbers.

If there are many different sequences of consecutive numbers,
dividing by a number that has many small factors may result in
lots of collisions. A prime number is a better choice.
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When there is no natural separation between keys, try
randomization.

You can using the following Hash functions:
e Square the key and take the middle:
Ex: key = 453 4532 = 205209

Extract the middle = 52.
This address is between 00 and 99.

¢ Radix transformation:

Transform the number into another base and then divide by the
maximum address.

Ex: Addresses from 0 to 99

key = 453 in base 11 : 382
hash address = 382 mod 99 = 85.
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ICollision Resolution:Progressive Overﬂow[

Progressive overflow/linear probing works as follows :

Insertion of key k:

- Go to the home address of k : h(k)

- If free, place the key there

- If occupied, try the next position until an empty position is found
(the ‘mext’ position for the last position is position 0, i.e. wrap
around)

Example : Complete Table:
0

key k |Home address - h(k)| 1

COLE 20 2

BATES 21 :

ADAMS 21 19

DEAN 22 20

EVANS 20 21
22

Table size = 23
Searching for key k:
- Go to the home address of k : h(k)
- If k is in home address, we are done.
- Otherwise try the next position until: key is found or empty
space is found or home address is reached (in the last 2 cases, the
key is not found)
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0 | DEAN
EVANS

19
20| COLE

21| BATES
22| ADAMS

Ex :
A search for ‘EVANS’ probes places : 20, 21, 22, 0, 1, finding the
record at position 1.

Search for ‘MOURA', if h((MOURA)=22, probes places 22, 0, 1, 2
where it concludes ‘MOURA’ in not in the table.

Search for ‘SMITH’, if h(SMITH)=19, probes 19, and concludes
‘SMITH’ in not in the table.

Advantage : Simplicity

Disadvantage : If there are lots of collisions, clusters of records
can form, as in the previous example.
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Search length

- Number of accesses required to retrieve a record.

average search length
= (sum of search lengths)/(numb.of records)

In the previous example :

DEAN
EVANS key Search Length
2 COLE
: : BATES
19 ADAMS
20 | COLE DEAN
21 | BATES EVANS
22 | ADAMS

Average search length = (1+1+2+2+5)/5 = 2.2.
Refer to figure 11.7 in page 489. It shows that a packing density

up to 60% gives an average search length of 2 probes, but higher
packing densities make search length to increase rapidly.
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|Contents of today’s lecture:‘

o Predicting record distribution; packing density.
o Hashing with Buckets
e Implementation issues.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 11.3,11.4,11.6

|Predicting Record Distribution|

Throughout this section we assume a random distribution for the

hash function.
Let N = number of available addresses, and

r = number of records to be stored.
Let p(x) be the probability that a given address will have
records assigned to it.
It is easy to see that
rl

B

For N and r large enough this can be approximated by:

r £ e—(r/N)
) 19

p(z) = (

r—z)lz!
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Example : N = 1,000, » = 1,000

10 -1
p(0) ~ —— = 0.368
1le !

p(1) ~ i = 0.368
12et
P2) ~ = 0184
1%t
PI3) ~ g = 0.061

For N addresses,
the expected number of addresses with z records is

N - p(z).

Complete the numbers below for the example above:

expected # of addresses with 0 records assigned to it =
expected # of addresses with 1 records assigned to it =
expected # of addresses with 2 records assigned to it =
expected # of addresses with 3 records assigned to it =

Lucia Moura
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|Reducing Collision by using more Addresses|

Now, we see how to reduce collisions by increasing the number of
available addresses.

DEFINITION: packing density =r/N

500 records to be spread over 1000 addresses result in packing
density = 500/1000 = 0.5 = 50%.

Some questions :

1. How many addresses go unused ? More precisely: What is the
expected number of addresses with no key mapped to it?

N - p(0) = 1000 - 0.607 = 607

2. How many addresses have no synonyms ? More precisely: What
is the expected number of address with only one key mapped
to it?

N - p(1) = 1000 - 0.303 = 303
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3. How many addresses contain 2 or more synonyms ? More
precisely: What is the expected number of addresses with two
or more keys mapped to it ?

N - (p(2)+p(3)+..) = N - (1 — (p(0) + p(1)) = 1000 - 0.09 = 90

4. Assuming that only one record can be assigned to an address,
how many overflow records are expected ?

L-N-p2)+2-N-p@3)+3-N-p() +..=
N [p(2)+2-p(3) +3-p(d) +..] ~ 107.

The justification for the above formula is that there is going to be
(i — 1) overflow records for all the table positions that have ¢
records mapped to it, which are expected to be as many as

N -p(i).

Now, there is a simpler formula derived by students from 2001:

expected # of overflow records =
= (#records) - (expected # of nonoverflow records)

=r—(N-p(1)+N-p2)+ N -p(3)+...)

=r—N-(1-p(0)) (since probabilities add up to 1)

= N p(0) = (N —7)

=(expect. # of empty posit. for random hash function
- (# of empty positions for perfect hash function)

Using this formula we get the same result as before:

N -p(0) — (N — 7) = 607 — 500 = 107
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5. What is the expected percentage of overflow records 7
107/500 = 0.214 = 21.4%

Note that using either formula, the percentage of overflow records
depend only on the packing density (PD = r/N), and not on the
individual values of N or r.
Indeed, using the formulas derived in 4., we get that the percentage of
overflow records is:

)
and the Poisson function that approximate p(0) is a function of /N
which is equal to PD (for hashing without buckets).
So, hashing with packing density PD = 50% always yield 21% of
records stored outside their home addresses.
Thus, we can compute the expected percentage of overflow records,
given the packing density:

packing density % | % overflow records
10% 4.8%
20% 9.4%
30% 13.6%
40% 17.6%
50% 21.4%
60% 24.8%
70% 28.1%
80% 31.2%
90% 34.1%
100% 36.8%
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|Hashing with Buckets|

This is a variation of hashed files in which more than one
record /key is stored per hash address.

bucket = block of records corresponding to one address in the hash
table.

The hash function gives the Bucket Address.

Example: for a bucket holding 3 records, insert the following keys:

0
key Home Address
LOYD 34
KING 33 :
LAND 33 33
MARX 33
NUTT 33
PLUM 34 34
REES 34
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[Effects of Buckets on Performance

We should slightly change some formulas:

packing density = bLN

We will compare the following two alternatives:

1. Storing 750 data records into a hashed file with 1,000 addresses,
each holding 1 record.

2. Storing 750 data records into a hashed file with 500 bucket
addresses, each bucket holding 2 records.

o In both cases the packing density is 0.75 or 75%.
o In the first case r/N=0.75.

In the second case r/N=1.50.

Estimating the probabilities as defined before:

p(0) | p(1) [P(2)  P(3) | P(4)
1) r/N=0.75 (b=1) | 0472 | 0.354 | 0.133] 0.033 | 0.006
2) r/N=1.50 (b=2) | 0.223 | 0.335| 0.251 | 0.126 | 0.047
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Calculating the number of overflow records in each case:

1. b=1 (r/N=0.75):

Number of overflow records =
N-1-p2)+2-p(3)+3-p(4)+..]
r—Np(1)+p(2)+p3)+...] (formula derived last class)
—r— N-(1-p(0)
=750 — 1000 - (1 — 0.472) = 750 — 528 = 222.

This is about 29.6% overflow.

2. b=2 (r/N=1.5):
Number of overflow records =
=N-[1-p(3)+2-p(4)+3-p(5)+..]
=r—N-p(1)=2-N-[p(2)+p3) +...] (formula for b=2)

r— N -[p(1) +2[1 — p(0) — p(1)]

—r = N-[2=2-p(0) - p(1)

=750 — 500 - [2 — 2+ (0.223) — 0.335] = 140.5 = 140,

This is about 18.7% overflow.

Indeed, the percentage of collisions for different bucket sizes is:

‘ Bucket Size
Packing Density % | 1 2 5 10 100
5% 29.6% 18.7% 8.6% 4.0% 0.0%

Refer to table 11.4 page 495 of the book to see the percentage of
collisions for different packing densities and different bucket sizes.
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|Implementation Issues: ‘

1. Bucket structure

A Bucket should contain a counter that keeps track of the
number of records stored in it. Empty slots in a bucket may be
marked ‘//.../".

Ex: Bucket of size 3 holding 2 records:

[2[ JONES [///1]1/]]--/]  ARNSWORTH

2. Initializing a file for hashing:

- Decide on the Logical Size (number of available addresses)
and on the number of buckets per address.

- Create a file of empty buckets before storing records. An
empty bucket will look like:

Vs aisn

3. Loading a hash file:

When inserting a key, remember to:
- Wrap around when searching for available bucket.
- Be careful with infinite loops when hash file is full.
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|Contents of today’s lecture:\

e Deletions in hashed files.
e Other collision resolution techniques:

— double hashing,
— chained progressive overflow,
— chaining with separate overflow area,

— scatter tables.

o Patterns of record access.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 11.7,11.8,11.9
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Making Deletions

Deletions in a hashed file have to be made with care.

Record ADAMS | JONES | MORRIS SMITH‘
Home Address 5 6 6 5 ‘

T
ADAMS

JONES
MORRIS
SMITH

Hashed File using Progressive Overflow:

RSN - NS RSO

Delete ‘MORRIS’
If ‘MORRIS’ is simply erased, a search for ‘SMITH’ would be
unsuccessful:

[[1111]11] | — empty slot
ADAMS
JONES

///1/]]]]] | < empty slot (WRONG: can’t find ‘SMITH’ I!!)
SMITH

BN RN N LI

Search for ‘SMITH’ would go to home address (position 5) and
when reached 7 it would conclude ‘SMITH’ is not in the file!
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IDEA: use TOMBSTONES,; i.e. replace deleted records with
a marker indicating that a record once lived there:

T
ADAMS

JONES
HAEHH | — tombstone (CORRECT: will find ‘SMITH’)
SMITH

00 1 O Ut e

A search must continue when it finds a tombstone, but can stop
whenever an empty slot is found. A search for ‘SMITH’ will
continue when if finds the tombstone in position 7 of the above
table.

Note: Only insert a tombstone when the next record is
occupied or is a tombstone. If the next record is an empty slot, we
may mark the deleted record as empty. Why ?

Insertions should be modified to work with tombstones: if either
an empty slot or a tombstone is reached, place the new record
there.
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[Effects of Deletions and Additions on Performance]

The presence of too many tombstones increases search length.

Solutions to the problem of deteriorating average search lengths:

1. Deletion algorithm may try to move records that follow a
tombstone backwards towards its home address.

2. Complete reorganization: re-hashing.

3. Use a different type of collision resolution technique.
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|Other Collision Resolution Techniques|

1) Double Hashing
e The first hash function determines the home address.

o If the home address is occupied, apply a second hash function to
get a number ¢ (c relatively prime to V).

e ¢ is added to the home address to produce an overflow addresses;
if occupied, proceed by adding ¢ to the overflow address, until an
empty spot is found.
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XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

WO 00 ~1T O U i W N~ O

—_
(==}

Suppose the above table is full, and that a key k has
hl(E) =6 and hz(E) =3.

Question: What would be the order in which the addresses would
be probed when trying to insert k?

Answer: 6,9, 1,4,7,10, 2,5, 8,0, 3.
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Example:
k (key) ADAMS | JONES | MORRIS | SMITH
hy(k) (home address) 5 6 6 5
ha(k) = ¢ 2 3 4 3
0
1
2
3
4
Hashed file using double hashing: 5 | ADAMS
6 | JONES
7
8 | SMITH
9
10 | MORRIS
Lucia Moura 174
CSI2131 - Winter 2003 Lecture 17: Hashing IIT

2) Chained Progressive Overflow

e Similar to progressive overflow, except that synonyms are linked
together with pointers.

o The objective is to reduce the search length for records within
clusters.

Example X: Search lengths:

Key Home Progressive Chained Progr.
Overflow Overflow

ADAMS 20 1 1

BATES 21 1 1

COLES 20 3 2

DEAN 21 3 2

EVANS 24 1 1

FLINT 20 6 3

Average Search Length : 2.5 1.7

Progressive Overflow Chained Progressive Overflow

data data |next
20 | ADAMS 20 | ADAMS | 22
21| BATES 21| BATES | 23
22 | COLES 22| COLES | 25
23| DEAN 23| DEAN | -1
24 | EVANS 24| EVANS | -1
25| FLINT 25| FLINT | -1
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PROBLEM: Suppose that ‘DEAN’ home address is 22. Since
‘COLES’ is there, we couldn’t have a link to ‘DEAN’ starting in its
home address!

Solution:

Two-pass loading:

- First pass: only load records that fit into their home addresses.
- Second pass: load all overflow records.

Care should be taken when deletions are done.

key home address
ADAMS 20
BATES 21
COLES 20
DEAN 22
EVANS 24
FLINT 20

table after first pass: table after second pass:

20 | ADAMS  |-1 20 |ADAMS |23
21| BATES |-1 21 | BATES -1
22| DEAN -1 22 | DEAN -1
23 23 |COLES |25
24| EVANS  |-1 24 | EVANS -1
25 25| FLINT -1
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3) Chaining with a Separate Overflow Area
Move overflow records to a Separate Overflow Area.

A linked list of synonyms start at their home address in the
Primary data area, continuing in the separate overflow area.

Example X, with separate overflow area:

primary data area  overflow area

aas 0 o[coLEs |2
2 1| DEAN -1
23 2 |FLINT -1
24 EVANS |-1 3

25

When the packing density is higher than 1 an overflow area is
required.
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4) Scatter Tables: Indexing Revisited

Similar to chaining with separate overflow, but the hashed file
contains no records, but only pointers to data records. The scatter

Example X organized as scatter table:

index (hashed) datafile (entry-sequenced, sorted, etc.)

data next
0| ADAMS 2
1| BATES 3
2 | COLES 5
3| DEAN -1
4 | EVANS -1
5| FLINT -1

Note that the data file can be organized in many different ways:
sorted file, entry sequenced file, etc.
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[Patterns of Record Access]

Twenty percent of the students send 80 percent of the
e-mails. L. M.

Using knowledge of pattern of record access to improve
performance ...

Suppose you know that 80% of the searches occur in 20% of the
items.

How to use this info to try to reduce search length in a hashed file ?

o Keep track of record access for a period of time (say 1 month).
o Sort the file in descending order of access.

o Re-hash using this order.

Records more frequently searched are more likely to be at or
close to their home addresses.
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|Contents of today’s lecture:\

e What is extendible hashing.
o Insertions in extendible hashing.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 12.1,12.2,12.3(overview only).

[What is extendible hashing ?]

e [t is an approach that tries to make hashing dynamic, i.e. to
allow insertions and deletions to occur without resulting in poor
performance after many of these operations.

Why this is not the case for ordinary hashing?

o Extendible hashing combines two ingredients:
hashing and tries.
(tries are digital trees like the one used in Lempel-Ziv)

o Keys are placed into buckets, which are independent parts of a file
in disk.
Keys having a hashing address with the same prefix share the
same bucket.
A trie is used for fast access to the buckets. It uses a prefix of the
hashing address in order to locate the desired bucket.
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Tries and buckets

Consider the following grouping of keys into buckets, depending on
the prefix of their hash addresses:

bucket: this bucket contains keys with hash address with prefix:
A 0

B 10

C 11

Drawing of the trie that provides and index to buckets:

o +
Kommmmmmm—m—o > A
0 o +
*
d————— +
1 0 k——-—-—- > B |
tm—————— +
*
tm—————— +
1 4m—mme- > ¢ |
Hm————— +

Note: You need to connect the parents to the children in the
drawing of the trie above.
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lDirectory structure and buckets|

Representing the trie as a tree would take too much space.
Instead, do the following:

1) Extend the tree to a complete binary tree:

0 *————+
+==> mmm—mmm +
* [ S
o) +==> +——————— +
1 k————+
*
R +
1 0 *—————-- >| B
o +
*
o +
1 kmm—mm—o > ¢Cc |
B +

00 | |====-- > A |
P
01 | |-==+
10 | |====-- > B |
11 | |-+
|
+-———> ¢ |
B +
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|How to search in extendible hashing ?|

Searching for a key:

o Calculate the hash address of the key
(note that no table size is specified, so we don’t take “mod”).

o Check how many bits are used in the directory (2 bits in the
previous example). Call ¢ this number of bits.

o Take the least significative ¢ bits of the hash address (in reverse
order). This gives an index of the directory.

e Using this index, go to the directory and find the bucket address
where the record might be.

[What makes it extendible?]

So far we have not discussed how this approach can be dynamic,
making the table expand or shrink as records are added or deleted.
The dynamic aspects are handled by two mechanisms:

o Insertions and bucket splitting.

e Deletions and bucket combination.
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|Bucket splitting to handle overflow]|

Extendible hashing solves bucket overflow by splitting the bucket
into two and if necessary increasing the directory size.

When the directory size increases it doubles its size a certain
number of times.

Example:

To simplify matters, let us assume the keys are numbers and the
hash function returns the number itself.

For instance, h(20) = 20.

Bucket size: 2

numbers 1 2 3 5 6 7
binary representation: | 0001 0010 0011 0101 0110 0111
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00 | | === >l 2, 6|
P
01 | |-——+
10 | | === >l 1, 5|
11 1 |-=+
|
+-==>| 3, 7|
o +

Insert key 4 into the above structure:

o Since 4 has binary representation 0100, it must go into the first
bucket. Since it is full, it will get split.

o The splitting will separate 4 from 2,6 since the last two bits of 4
in reverse order are 00 and the ones of 2,6 are 01.

e the directory is prepared to accommodate the splitting, so no
doubling is needed.

00 | |==—-=- >l 2, 6|
.
01 | |-——+
10 | |—==——- > 1, 5|
11 | |-+
|
+-==>| 3, 7|
o +
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|Bucket splitting with increase in directory size

00 | |------ >l 2,6 |
—
01 | | ===+
10 | |-=——- > 1,5 |
11 | |-—+
|
+===> 3, 7|
e +

Insert key 9 into the above structure:

o Since 9 has binary representation 1001, it must go into the bucket
indexed by 10. Since it is full, it will get split.

o The splitting will separate 1,9 from 5 since the last two bits of
1,9 in reverse order are 100 and the ones of 5 are 101.

e The directory is not prepared to accommodate the splitting, so
doubling is needed. The doubling in the directory size will add an
extra bit to the directory index.
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+m—————— +
+===> 4 |
|
00 | |-—+ B +
B ] + +-->| 2, 6 |
o1 | |-—+ e +
10 | | === > 1, 5|
11 | ==+
|
+=-=>| 3, 7|
+m—m +
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Result of the addition of key 9 as described above:

- +
000 | [--—+
+ £ =>4 +
001 | [-==——- >l 2,61
+ + A==+ +
010 | [-==1
+————= + |
011 | [-==+ 4= +
+————= + +>| 1, 9 |
100 | R A +
101 | [-—-——- >l 5 |
110 | [-===—- SH-———mm—— +
e +  +==>| 3,7 |
111 | [ T +
- +
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‘ Insertion Algorithm ‘

e Calculate the hash function for the key and the key address in the
current directory.

o Follow the directory address to find the bucket that should receive
the key.

o Insert into the bucket, splitting it if necessary.

o If splitting took place, calculate i: the number of bits necessary to
differentiate keys within this bucket. Double the directory as
many times as needed to create a directory indexed by @ bits.

Note: This algorithm does not work if such an ¢ does not exist.
That is, if there are too many keys with the same hash address
(“too many” here meaning more than the size of a bucket).

Why?

Which are possible fixes?
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Practice exercise

Insert the following keys, into an empty extendible hashing
structure:

2,10.7,3,5,16,15,9

Show the structure after each insertion.
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All the intermediate steps will be performed in lecture.
Final solution for your checking only:

000 and 001 point to bucket with key 16
010 and 011 point to bucket with keys 2,10
100 and 101 point to bucket with key 5,9
110 points to bucket with key 3

111 points to bucket with keys 7,15
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|Contents of today’s lecture:\

o Insertions: a closer look at bucket splitting.
o Deletions in extendible hashing.
o Extendible hashing performance.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 12.4,12.5.
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|Insertions: bucket splitting re—visited|

In some cases, several splits are necessary in order to accommodate
a new key to be inserted. Let us consider one such case.
Consider the following example:

- +
000 | [-==+
: IR .
001 | [-—-——- >| 2,6 | bucket A
+ £ >+ +
010 | [-==1
+————= + |
011 | |===4  Am—————— +
e + +>1 1,9 |
100 | [-—=—+ 4 +
101 | [==--—- > 5 |
110 | [-————- S4-—m——m— +
== +  +==>| 3,7 |
111 | [-—=+ 4 +
- +

Insert key 10

Bucket A must split.

Note that A has depth 1, since one digit (namely 0) determines
whether a key should be placed in A.
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The first split will create a new bucket A1, so that A and Al have
now depth 2.

With depth 2, two digits will be examined to determine whether a
key goes to A (00% ) or A1 (01%).

After redistribution, the structure becomes:

000 | |-===-- >| (empty) | bucket A
+ b >4 ‘

001 | |-+

010 | |====== >| 2,6 | bucket Al
+ + +——>+4 +

011 | ===+ - +
+————— +* +>| 1, 9 |

100 | |-—==+ - +

101 | [--———- >l 5 |

110 | | -————- St-—m—mm— +
oo +  +-=>| 3,7 |

111 | |-——+ - +
+m——— +

A becomes empty and A1 get both keys.

After this split, the bucket pointed by 010, namely A1, is still full.
So, we must split Al.

Bucket A1 has depth 2. Tt will split into buckets A1 and A2, both
with depth 3.
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After redistribution, the structure becomes:

000 | [====== >| (empty) |
+ + A==+ +
001 | [--+ e +
oo + +-->| 2 | bucket Al
| |-——+ - +
010 | | Fomm——— +
+o———— + +-->| 6 | bucket A2
011 | [-==+ 4 +
100 | [------ >l 1,9 |
- + = +
101 | [+ 4= +
B + == 5 |
110 | e +
+ + ==+ "
111 | [====== > 3,7 |

Now the hucket pointed by 010 is not full, so that we can insert
key 10 there.
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After inserting key 10, the structure becomes:
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| Insertion Algorithm|

Insert (key) {

indexKey = index in the directory where key
should be placed
Let A = bucket pointed by indexKey

if (bucket A is mnot full) then
Insert key into bucket A
else { // bucket is full so must split
if (bucket depth is equal to directory depth) then
{ double directory size,
re-adjusting bucket pointers;
}
split bucket A;
Insert (key); // recursive call to itself

}

000 | | -————- >| (empty) |
+ +  +——=D>4 +
001 | |-+ Fmm————— +
o + +-->| 2,10 | bucket Al
| | -——+ e +
010 | | oo +
o + +-->| 6 | bucket A2
011 | | ===+  A=—————— +
100 | [—--——- > 1,9 |
101 | |-—=+ - +
tm———= +  +==>| 5 |
110 | |-—=+ - +
+ + =>4 +
111 | [-————- >l 3,7 |
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|Deletions in Extendible Hashing|

When we delete a key we may be able to combine buckets.

After the bucket combination, the directory may or may not be
collapsed.

Combination and collapsing is a recursive process.
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[Bucket combination]

A bucket may have a buddy bucket, that is a bucket that may
be combined to it.

In the following example, which of the following buckets is such
that when deleting a key from it, the bucket can be combined to
another bucket?

bucket size = 2 records

R +
000 | | => bucket 1 (1 record)
P +
001 | | => bucket 2 (2 records)
P +
010 | [--+
4o + +-—> bucket 3 (1 record)
011 | [-—+
4o +
100 | | => bucket 4 (1 record)
R +
101 | | => bucket 5 (2 record)
R +
110 | | => bucket 6 (2 record)
R +
111 | | => bucket 7 (2 record)
R +

Answer: buckets 1&2, buckets 4&5
Why not buckets 3, 6, 7 7
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Buddy buckets

One bucket can only be combined with its buddy bucket.

A bucket and its buddy bucket must be distinct buckets pointed to
by sibling nodes in the directory trie.

The index of the buddy bucket is obtained by switching the last
bit of the bucket’s index.

How to test if the bucket pointed out by index i has a buddy
bucket?

i =101

swap the last bit of i: iSwap = 100

if (directory[i] != directory[iSwap]) then
bucket pointed by direct[iSwap]
is the buddy bucket

else there is no buddy bucket.
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[Directory collapsing]

We can collapse a directory if every pair of “sibling” indexes point
to the same bucket.

Check if we can collapse a directory as follows:

canColapse = false;
if (directory size is larger than 1) then {
canColapse = true;
for i=0 to (size/2 -1) do
if (directory[2*i] != directory[2*i+1]
then { canColapse = false;
exit for;
}
}

If canColapse is true then we can collapse the directory in the
following way:

e Create a new directory with half the size

e Copy the pointers from positions 0 to 0, 2 to 1, ..., (size-2) to
(size/2 -1).
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|Deletion Algorithml

Delete (key):
1. Search for key.
2. If key not found, stop.
3. If key was found then remove key from its bucket b , in the
following way:
o physically remove key from bucket b

e run tryCombine (b) in order to try to combine buckets and
shrink directory.

Description of tryCombine (b):

if (b has a buddy bucket c) then
if ( b.numkeys + c.numkeys) <= maxkeys {
combine buckets b and ¢ into bucket b.
try to collapse the directory;
if (directory was collapsed) then
tryCombine(b) ;
}
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Deletion Example

Delete 5 from the following structure:

- +
000 | [---+
+—=>+4
001 | [-=——— >l 2, 6|
+ + +—=>+4
010 | [-==1
- + |
011 | |—==+  +-———— +
Hm——— + +>| 1, 9 |
100 | R +
101 | [-=---- > 5 |
110 | [-===-- S4mmmmmmm +
o +  +==>| (empty) |
111 | [-==+ 4 +
- +
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Search for 5 and physically remove it from its bucket b:

+-———— +
000 | [-—-+
+ + +==D>+ +
001 | [------ >l 2,86
+ + +==>+ +
010 | [l
+o———— + |
011 | e +
+o———— + +->| 1, 9 | <<<<< buddy bucket c
100 | |-+ 4= +
101 | | ————- >| (empty) | <<<< bucket b
110 | |-———- S +
PR +  +-—>| (empty) |
111 | ==+ 4= +
Fm———— +

Run tryCombine (b).

Since b contains 0 keys and buddy bucket ¢ contains 2 keys,
buckets b and ¢ can be combined...
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After combining ¢ and b we get:

- +
000 | [---+
+ + +==>+ +
001 | [-=---- > 2,61
+ + =>4 +
010 | [-==1
+————= + |
011 | [---+
- +
100 | [-————- S4-—m——m— +
B + | 1, 9 | b = buckets b,c combined
101 | [-————- S4-—m——m— +
- +
110 | [-————- S4-—m——m— +
e +  +-=>| (empty) |
111 | [+ 4= +
———— +

The directory can be collapsed...
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The collapsed directory:

00 | |-—=+-->| 2, 6 |
+ + | + +
01 | |———+
10 | | -==——- >l 1, 9 | bucket b
11 | | -===—- D +
o + | (empty) | buddy bucket c
O +

The recursive call to tryCombine (b) now combines b and its
buddy bucket c:

00 | |===+==>| 2, 6 |
+ + | + +

01 | |——-+

10 | |-==+-=>| 1, 9 | b = buckets b, c combined
+ + | + +

11 | |-—-+
PR +

The directory can be collapsed again...
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The collapsed directory:

|-==+-->] 2, 6 | buddy bucket c

+———— + +--->| 1, 9 | bucket b

The next recursive call to tryCombine (b) would detect that b
cannot be combined with its buddy bucket c.

The deletion operation has been completed.
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|Extendible Hashing Performance|

Time Performance (Worst Case):

operation | directory kept in main memory | directory kept in disk

search 1 disk access 2 disk accesses

insertion
d=  dir O(log d) disk accesses O(d) disk accesses
size after
insertion
deletion
d=  dir O(log d) disk accesses O(d) disk accesses
size before
deletion

The great advantage of extended hashing is that its search time is
truly O(1), independently from the file size.

In ordinary hashing, this complexity depends on the packing
density, which could change after many insertions.
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Space Performance:

1. Space Utilization for Buckets

Here we describe results found by Fagin, Nievergelt, Pippinger
and Strong (1979).

Experiments and algorithm analysis by these authors have
shown that the packing density for extendible hashing (space
utilization for buckets) fluctuates between 0.53 and 0.93.

They have also shown that, if:

r = number of records
b = block size
N = average number of buckets

Then,
r

Nr ——.
b-In2

Therefore,

packing density = ;% ~ In2 = 0.69.

So, we expect the average bucket utilization to be 69%.
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2. Space Utilization for the Directory

Given r keys spread over some buckets, what is the expected
size of the directory, assuming random keys are inserted into the
table?

Flajolet (1983) addressed this problem by doing a careful
analysis, in order to estimate the directory size.

The following table shows his findings:

b 5 10 20 ... 200
r

103 150K 030K 010K 0.00 K
104 2560 K 480K 1.70K 0.00 K
105 42410 K 6820 K 16.80 K 1.00 K

10¢ 690M 1.02M 026 M 810K
107 11211 M 1264M 225 M 0.13 M

1K =10% 1M = 10%. (From Flajolet 1983)
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|Contents of today’s lecture:\

e Introduction to multilevel indexing and B-trees.
o Insertions in B trees.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 9.1-9.6.

]Introduction to Multilevel Indexing and B—'ﬁees|

Problems with simple indexes that are kept in disk:

1. Seeking the index is still slow (binary searching):

We don’t want more than 3 or 4 seeks for a search.
So, here loga(N+1) is still slow:

N log,(N+1)

15 keys 4
1,000 ~10
100,000 ~17

1,000,000 ~20

2. Insertions and deletions should be as fast as searches:
In simple indexes, insertion or deletion take O(n) disk accesses
(since index should be kept sorted)
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|Indexing with Binary Search Trees‘

We could use balanced binary search trees:

e AVL Trees
Worst-case search is 1.44 logy(N+2)
1,000,000 keys — 29 levels
Still prohibitive...

e Paged Binary Trees
Place subtrees of size K in a single page
Worst-case search is loggy1(N+1)

K=511, N=134,217,727

Binary trees: 27 seeks
Paged binary tree: 3 seeks

This is good but there are lots of difficulties in maintaining (doing
insertions and deletions in) a paged binary tree.
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[Multilevel Indexing]

Consider our 8,000,000 example with keysize = 10 bytes.

Index file size = 80 MB

Each record in the index will contain 100 pairs (key, reference)
A simple index would contain: 80,000 records. Too expensive to
search (still ~ 16 seeks)

Multilevel Index
Build an index of an index file:

How:

o Build a simple index for the file, sorting keys using the method for
external sorting previously studied.

o Build an index for this index.
o Build another index for the previous index, and so on.

<- 100 keys->

Index File
(Level 1)

Index File
(Level 2)

Index File
(Level 3)

Index File
(Level 4)

Note: That the index of an index stores the largest key in the record
it is pointing to.
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|B-Trees - Working Bottom-Up|

e Again an index record may contain 100 keys.

e An index record may be half full (each index record may have
from 50 to 100 keys).
e When insertion in an index record causes it to overfull:
- Split record in two
- “Promote” the largest key in one of the records to the upper
level

Example for order = 4 (instead of 100).

/\T\ 21T 1]
Node 1 \

Ll R Ts 7] [ Iul [wl Jv[]z]
Node 2 Node 3
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Inserting X

X is between T and Z: insertion in node 3 splits it and generates a
promotion of node X.

Spliting :
N 5 I 2 O
Node 3.1 Node 3.2

Promoting largest of Node 3.1.

voer [T X ]z ] ]
\
I I I I
Node 3.2
CIvl Wl IxI T ]
Node 3.1
[e[ [rR[ [s[ ]7]

Node 2

Important: If Node 1 was full, this would generate a new
split-promotion of Node 1. This could be propagated up to the root.
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|An example showing insertions:|

Inserting keys: order = 4

C,S,D, T,A,M,P, I, B,W,N,G U R K EHO,L JY, Q7Z
F. X,V

Inserting A: Split and promotion

o FIoTTT T ] "pies
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But inserting “I” Splits and promotes “P”.

o

e Ie T ]
N

There is room for one more node at level 2. After that the root may
get split!

Complete the above example as an exercise.

Important: At each level, no more than 2 nodes are affected. We
got search and updates with cost equal to the height of the tree !!!
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|N0te regarding insertions in B—trees|

Special case of larger key:

e

]
L fol Tel Tu T 0 i I
Node 2 Node 3

Inserting Z

Z is larger than P but P is larger in Node 1, so the place for Z is Node
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B-Tree Properties
Properties of a B-tree of order m:
1. Every node has a maximum of m children.

2. Every node, except for the root and the leaves, has at least
[m/2] children.

3. The root has at least two children (unless it is a leaf).
4. All the leafs appear on the same level.

5. The leaf level forms a complete index of the associated data file.
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|Worst-case search depth]

The worst-case depth occurs when every node has the minimum
number of children.

Level | Minimum number of keys
(children)
2

—_

(root)

2 2-[m/2]

3 |2 [m/2]-[m/2] = 2- [m/2]*
4 2-[m/2]?

d 2 [m/2]%!

If we have N keys in the leaves:

N >2-[m/2]¢!
So, d <1+ log,,»(N/2)
For N = 1,000,000 and order m = 512, we have

d < 1+ 10ggg 500, 000
d <337

There is at most 3 levels in a B-tree of order 512 holding 1, 000, 000
keys.
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|Contents of today’s lecture:|

o Outline of Search and Insert algorihtms
o Deletions in B trees.

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 9.8, 9.9, 9.10, 9.11, 9.12

|Outline of Search and Insert algorithms|

Search (keytype key)

1) Find leaf: find the leaf that could contain key, loading all the
nodes in the path from root to leaf into an array in main memory.

2) Search for key in the leaf which was loaded in main memory.
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Insert (keytype key, int datarec_address)
1) Find leaf (as above).

2) Handle special case of new largest key in tree: update largest key
in all nodes that have been loaded into main memory and save
them to disk.

3) Insertion, overflow detection and splitting on the update path:
currentnode = leaf found in step 1)
recaddress = datarec_address

3.1) Insert the pair (keys, recaddress) into currentnode.
3.2) If it caused overflow
- Create newnode
- Split contents between newnode, currentnode
- Store newnode, currentnode in disk
- If no parent node (root), go to step 4)
- currentnode becomes parent node
- recaddress = address in disk of newnode
- key = largest key in new node
- Go back to 3.1)
4) Creation of a new root if the current root was split.

Create root node pointing to newnode and currentnode. Save
new root to disk.
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[Deletions in B-Trees|

The rules for deleting a key K from a node n in a B-tree:

1. If n has more than the minimum number of keys and K is not
the largest key in n, simply delete K from n.

2. If n has more than the minimum number of keys and K is the
largest key in m, delete K from n and modify the higher level
indexes to reflect the new largest key in n.

3. If n has exactly the minimum number of keys and one of the
siblings has “few enough keys”, merge n with its sibling and
delete a key from the parent node.

4. If n has exactly the minimum number of keys and one of the
siblings has extra keys, redistribute by moving some keys from
a sibling to n, and modify higher levels to reflect the new largest
keys in the affected nodes.
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Consider the following example of a B-tree of order 5 (minimum
allowed in node is 3 keys)

Nt [ T[N Jul [z ] ]
I T 2 O i
i Node 5
[P IR s IT] ]v]
Node 4
N R T A
Node 3
(Al Tl Jel T 1]
Node 2

We consider the following 5 alternative modifications on the previous
tree:

o Deleting “T” falls into case 1)

e Deleting “U” falls into case 2)
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noer [T [N Jul ]z ] ]

I 0 T I
Node 5
[P IR Is I7] ]v]
Node 4
I 5 N I 2 I
Node 3
[l el Jel T ["T]
Node 2

e Deleting “C” falls into case 3) merging with sibling:

INIJu Iz T 1]

Node 1

CIal Jel Tk Im[ IN]  nNotes noces
Node 2 merged with 3
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Nt [T N Jul 2] |
IVIAw[ 2] 1]
i Node 5
[P IR IsP 7] ]u]
Node 4
N R T I
Node 3
(Al Tl Jel T 1]
Node 2

neter [ JELOIN T T2 ] ]

Node 2

e Deleting “M” allows for two possibilities: case 3) or 4)
- Merge Node 3 with Node 2; or
- Redistribute keys between Node 3 and Node 4

Note that “sibling” here refers only to nodes that have the same
parent and are next to each other.
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|Contents of today’s lecture:‘

o Maintaining a sequence set.
o A simple prefix B+ tree.

Reference : FOLK, ZOELLICK AND RICCARDI, File
Structures, 1998. Sections 10.1 - 10.5
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Some applications require two views of a file :

Indexed view : Sequential view :
Records are indexed by a key | Records can be sequentially

accessed in order by key

Direct, indexed access Sequential ~ access  (physically

contiguous records)

Interactive, random access | Batch processing (Ex:
co-sequential processing)

[Example of applications|

e Student record system in a university :

— Indexed view : access to individual records

— Sequential view : batch processing when posting grades or
when fees are paid

o Credit card system :

— Indexed view : interactive check of accounts

— Sequential view : batch processing of payment slips
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We will look at the following two aspects of the problem :

1. Maintaining a sequence set : keeping records in sequential
order

2. Adding an index set to the sequence set

Maintaining a Sequence Set|

Sorting and re-organizing after insertions and deletions is out of
question.
We organize the sequence set in the following way:

® Records are grouped in blocks
e Blocks should be at least half full.

e Link fields are used to point to the preceding block and the
following block (similarly to doubly linked lists)

o Changes (insertion/deletion) are localized into blocks by
performing :

— Block Splitting when insertion causes overflow

— Block Merging or Redistribution when deletion causes
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Example:
Block size = 4

key : Last Name

—  Forward Pointer
———+% Backward Pointer

e Insertion with overflow:

underflow
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¢ Deletion with merging:

Blockl —{ADAMS.. [BAIRD..  [BIXBY..  |BOONE.. |«
Block2 »{BYNUM.. [CARSON.. [CARTER.. | H
Block 3 DENVER.. [ELLIS.. [ [ H
Block4 |§{cole..  [pAvis.. | [ k!

Delete"DAVIS..." (Merging)

Block 1 ADAMS.. [BAIRD..  [BIXBY.. |BOONE.. |+
Block 2 BYNUM.. [CARSON.. |CARTER.. | L—J
Bloc | | | |
Block 4 COLE .. [DENVER.. [ELLIS.. [ LJ

Block 3isavailable for re-use

Delete ‘BYNUM”:

Just remove it from Block 2

Then, delete ‘CARTER’ :

We can either merge Block 2 and 4 or redistribute records among
Blocks 1 and 2.

e Deletion with redistribution:

Block 1 ADAMS..  [BAIRD.. [BIXBY .. [ -,

|
Block 2 BOONE..  |CARSON.. | [ =
Block 4 COLE .. [DENVER... [ELLIS.. [ F-

When previous and next blocks are full then redistribution is the only
option.
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Block 1 [ADAMS..  [BIXBY .. [CARSON.. [COLE.. |
Insert "BAIRD ..."
Block 1 ADAMS..  [BAIRD.. [BIXBY ... [ e
|
Block 2 CARSON.. [COLE.. [ [ J-!
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|Advantages and disadvantages of the scheme described|

Advantages:

® No need to re-organize the whole file after insertions/deletions.
Disadvantages:

o File takes more space than unblocked files (since blocks may be

half full).

e The order of the records is not necessarily physically sequential
(we only guarantee physical sequentiality within a block).

|Choosing Block Size]

Consider :
e Main memory constraints (must hold at least 2 blocks)

e Avoid seeking within a block (Ex: in sector formatted disks
choose block size equal to cluster size).
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‘Adding an Index Set to the Sequential Set|

Index will Contain Separators Instead of Keys

Choose the Shortest Separator (a prefix)

Block Range of Keys Separator
1 ADAMS - BERNE
BO
2 BOLEN - CAGE
CAM
3 CAMP - DUTTON
E
4 EMBRY - EVANS
F
5 FABER - FOLK
FOLKS
6 FOLKS - GADDIS

How can we find a separator for keyl= “CAGE” and
key2 =“CAMP”?

Find the smallest prefix of key2 that is not a prefix of key1.
In this example, the separator is “CAM”.
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|The Simple Prefix B+ Tree]

The simple prefix B+ tree consists of :

e sequence set (as previously seen).

e index set: similar to a B-tree index, but storing the shortest

separators (prefixes) for the sequence set.

Note : If a node contains N separators, it will contain N+1 children.
Using separators slightly modifies the operations in the B-tree index.
Example :
Order of the index set is 3 (i.e. maximum of 2 separators and 3
children). Note: The order is usually much larger, but we made it
small for this example.

o TE]

Node 1 [Bo] [cam | noe2 [, [F] \[Foks | \]

///\\

‘ADAMSBERNE | BoLeNn-cace HCAMFLDUTTON F» Evry-Evans || FaseRFoLK  [of FoLksGa

pIS

1 4 5 6

Search in a simple prefix B+ tree: Search for “EMBRY":
e Retrieve Node 0 (root).
e “EMBRY” > “E”
e Since “EMBRY” < “F” go left, and retrieve block number 4.
e Look for the record with key “EMBRY” in block number 4.

, 80 go right, and retrieve Node 2.
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|Contents of today’s lecture:|

o Simple Prefix B+ Tree Maintenance: Insertions and Deletions

Reference : FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 10.6 - 10.7 (overview 10.8 - 10.11).

[From B trees to B+ trees|

A clarification regarding the book’s treatment of B-trees and B+
trees: the transition from understanding B trees to understanding the
index set of the simple prefix B+ tree may be facilitated by the
following interpretation.

- Look at the B + tree index set as a B-tree in which the smallest
element in a child is stored at the parent node in order:

keyl, pointerl, key2, pointer2, ..., keyN, pointerN.
- Then, remember that each key is a separator. And remove key1l
from the node’s representation. It may help if you think that “key1”

is still there, but is “invisible” for understanding purposes.

With this in mind, it should become clear that the updates on the B
+ tree index set are the same as in regular B-trees.
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|Simple Prefix B+ Tree Maintenance

Example:
e Sequence set has blocking factor 4

o Index set is a B tree of order 3

e vws A TR 0] )]

Sequence Set [AcEc [ HILN [ oQs

Block 1 Block 2 Block 3

Note that “A” is not really there.

1. Changes which are local to single blocks in the sequence set

Insert “U”:
o Go to the root
o Go to the right of “O”

o [nsert “U” to block 3:
The only modification is

0,Q S U

Block 3

o There is no change in the index set
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Delete “O”:
e Go to the root
e Go to the right of “O”

o Delete “O” from block 3:
The only modification is

Block 3

There is no change in the index set: “O” is still a perfect
separator for blocks 2 and 3.
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2. Changes involving multiple blocks in the sequence set.
Delete “S” and “U”:

Now block 3 becomes less than 1/2 full (underflow)

[ o ]

Block 3

Since block 2 is full, the only option is re-distribution bringing
a key from block 2 to block 3:

We must update the separator “O” to “N”.

The new tree becomes:

was (AL W] TN
[AcEc P HaL | NQ

Block 1 Block 2 Block 3
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[AcEc P HiIL P NQ

Block 1 Block 2 Block 3

Insert “B”:
o Go to the root
e Go to the left of “H” to block 1
e Block 1 would have to hold A,B,C,E,G
e Block 1 is split:

[ ABc P Ec |

Block 1 Block 4 (New)

Promote new separator “E” together with pointer to new block 4

Block 4

We wished to have:

noer {A [ [E[ [H] | [N] ]

v

Block1 Block4 Block2  Block 3

But the order of the index set is 3 (3 pointers, 2 keys).
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So this causes node to split:

Node 1 JA“‘E“‘ Node 2 JH“‘N“‘

Block 1 Block 4 Block2  Block 3
Create a new root to point to both nodes:
—
MSAFHF
Node 1 Node 2

The new tree is:

[ aBc P EG - HaL P>l N, Q |

Block 1 Block 4 Block 2 Block 3

Remember that “A” is not really present in nodes 1 an 3 and
that “H” is not really present in node 2.
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Insert “F”

e Go to root

o Go to left of “H”

e Go to right of “E” in Node 1
o Insert “F” in block 4

e Block 4 becomes:

Block 4
o Index set remains unchanged

Delete “J” and “L”
Block 2 would become:

L+ ]

Block 2
But this is an underflow.
One may get tempted to redistribute among blocks 4 and 2: E, F,
G and H would become E, F and G, H.
Why this is not possible 7
Block 4 and block 2 are not siblings! They are cousins.
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The only sibling of block 2 is block 3.
Redistribution in not possible between H and N,Q, so the only
possibility is merging blocks 2 and 3 :

[ rno ]

Block 2

o Send block 3 to AVAIL LIST
o Remove the following from node 2

Block 3

o This causes an underflow in Node 2

I H

Block 2

e The only possibility is a merge with its sibling (Node 1):
nes (A [E] R ]
Block1  Block4  Block 2

e In our interpretation “H” becomes “visible”; In the textbook’s
interpretation “H” is brought down from the root.

e Send node 2 to AVAIL LIST
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e Now remove
I

Node 2

from the root (Node 3). This causes underflow on the root:

mﬂﬂ?

Node 1

o Underflow on the root causes removal of the root (Node 3)
and Node 1 becomes the new root :

nees (AL [EL [H[/]

[ aBc || EFrG ][ HNQ

Block 1 Block 4 Block 2

Blocks were reunited as a big happy family again !!

Compare it with the original tree.

Note : Remember that a B+ tree may be taller, so that splittings or
mergings of nodes may propagate for several levels up to the root.
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[Advanced Observations for Meditation]

1. Usually a node for the index set has the same physical size (in
bytes) than a block in the sequence set. In this case, we say
“index set, block” for a node.

2. Usually sequence set blocks and index set blocks are mingled
inside the same file.

3. The fact that we use separators of variables length suggests the
use of B trees of variable order. The concepts of underflow and
overflow become more complex in this case.

4. Index set blocks may have a complex internal structure in order
to store variable length separators and allow for binary search on
them (see Figure 10.12 on page 442).

. Building a B+ tree from an existing file already containing many
records can be done more efficiently than doing a sequence of
insertions into an initially empty B+ tree. This is discussed in
Section 10.9 (Building a Simple Prefix B+ Tree).

ot

6. Simple prefix B+ trees or regular B+ trees are very similar. The
difference is that the latter stores actual keys rather than shortest
separators or prefixes.
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|F‘undamental file processing operations‘

e open, close, read, write, seek (file as a stream of bytes)

ISecondary Storage Devices and System Software‘

e how different secondary storage devices work (tapes, magnetic
disks, CD-ROM)

o the role of different basic software and hardware in 1/0
(operating system (file manager), 1/O processor, disk controller)

o buffering at the level of the system 1/O buffers.

|L0gical view of files and file 0rganization|

o file as a collection of records (concepts of records, fields, keys)
o record and field structures

o sequential access; direct access (RRN, byte offset).

’Organizing files for performancel

e data compression
e reclaiming space in files: handling deletions, AVAIL LIST, etc.

e sorting and searching: internal sorting, binary searching,
keysorting.
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|Cosequential processing

e main characteristics: sequential access to input and output
files, and co-ordinated access of input files.

e main types of processing: matching (intersection) and merging
(union).

e main types of application: the merging step in an external sorting
method; posting of transactions to a master file.
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e Primary and secondary key indexes.

e Maintenance of indexed files; different index organizations.
o Inverted lists for secondary indexes.

e Alternative ways of organizing an index:

— Simple index
keeping index sorted by key (additions and deletions are
expensive: about O(n) disk accesses)

— B trees and B+ trees
improvement in time: searches, insertions and deletions in
about O(log;, n) disk accesses, where k is the order of the tree
and n is the number of records for B trees or the number of
blocks of records for B+ trees.

— Hashed index: searches, insertions and deletions in constant
expected time, i.e. expected time O(1), provided that the hash
function disperses the keys well (approximately random).

&
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[B trees and B+ trees]

e We started from the problem of maintenance of simple indexes.

o B trees: multi-level index that work from bottom up and
guarantees searches and updates in about O(log; n) disk accesses.
More precisely, the worst case search time, insertion time and
deletion time (in number of disk accesses) is in the worst-case
proportional to the height of the B-tree. The maximum B tree
height is 1+ logyy, /21 /2, where n is the number of keys and k is
the order of the B tree.

o Then, we discussed the problem of having both an indexed and a
sequential view of the file: B+ trees.

e B+ tree = sequence set + index set
The index set is a B tree; the sequence set is like a doubly linked
list of blocks of records.

e simple prefix B+ trees: B+ trees in which we store separators
(short prefixes) rather than keys, in the index set.

o We learned B trees and B+ trees maintenance and operations.
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|Hashing and Extedible Hashing|

o We have discussed static hashing techniques: expected time for
access is O(1) when when hash function is good and file doesn't
change too much (not many deletions/additions).

o We have discussed: hash functions, record distribution and search
length, the use of buckets, collision resolution techniques
(progressive overflow, chained progressive overflow, chaining with
a separate overflow area, scatter tables, patterns of record access).

e We have discussed extendible hashing. In extendible hashing,
hashing is modified to become self-adjusting, allowing for the
desired expected O(1) access even when the file grows a lot; the
address space changes after a lot of insertions or deletions. A good
hash function is still required.

o If you cannot predict which one could be a good hash function for
a dataset, it is preferable to use a B tree or B+ tree (e.g. general
purpose data base management systems). If the hash function is
not good, hashing may lead to an O(n) performance (e.g.
assignment 3), which is prohibitive, while B trees and B+ trees
have a guaranteed worst case performance which is quite good.
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What’s next: Database Management Systems CSI3317

Database management systems
Different layers: File systems
Physical storage devices

Each layer hides details of the lower level.

This course focused in file processing. In order to do file
processing efficiently we studied some key issues concerning physical
storage devices.

(CSI13317 will focus on database management systems.

As the number of users and applications in an organization grows, file
processing evolves into database processing.

A database management system is a large software that
maintains the data of an organization and mediates between the data
and the application programs.

Each application program asks the DBMS for data, the DBMS figures
out the best way to locate the data.

The applications are coded without knowing the physical organization
of the data.

File processing is done by the DBMS rather than the application
program.

The application program describes the database at a high-level,
conceptual view; this high-level description is called a data model.
One of the most popular data models is the relational data model;
SQL is a commercially used, standard relational-database language.
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Difficulties and issues handled by a DBMS:

e data independence: changes in file organization should not require
changes in the application programs; example of common changes:
add new fields to records of a file, add an index to a file, add and
remove secondary indexes.

e data sharing: care must be taken when several users may be
reading and modifying the data.

o data integrity: ensuring consistency of data (when data is
updated, related data must be updated)

You you learn a lot about this in CSI 3317 ...
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