BINARY SEARCHING, KEYSORTING AND
INDEXING




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

Contents of today’s lecture:

e Binary Searching (Chapter 6.3.1 - 6.3.3),
e Keysorting (Chapter 6.4)
e [ntroduction to Indexing (Chapter 7.1-7.3)

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 6.3.1-6.3.3,6.4,7.1-7.3

Binary Searching

Let us consider fixed-length records that must be searched by a
key value.

If we knew the RRN of the record identified by this key value, we
could jump directly to the record (using “seek”).

In practice, we do not have this information and we must search
for the record containing this key value.

If the file is not sorted by the key value we may have to look at
every possible record before we find the desired record.

An alternative to this is to maintain the file sorted by key
value and use binary searching.

Lucia Moura 105




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

A binary search! algorithm in C++4 :

class FixedRecordFile{
public:
int NumRecs();
int ReadByRRN(RecType & record, int RRN);
¥
class KeyType {
public:
int operator==(KeyType &) ;
int operator<(KeyType &) ;
¥
class RecType {
public:
KeyType key();
¥
int BinarySearch(FixedRecordFile & file, RecType & obj,
KeyType & key) {
int low=0; int high=file.NumRecs() -1;
while (low <= high) {
int guess = (high + low)/2;
file.ReadByRRN(obj,guess);
if (obj.key() == key) return 1;
if (obj.key() > key) high = guess - 1;
else low = guess + 1;
}
return O0; //did not find key
+

1this algorithm corrects some mistakes found in the textbook.

Lucia Moura 106




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

Binary Search versus Sequential Search :

Binary Search : O(logon)
Sequential Search : O(n)

If file size is doubled, sequential search time is doubled, while
binary search time increases by 1.

Keysorting

Suppose a file needs to be sorted, but it is too big to fit into main
Iemory.

To sort the file, we only need the keys. Suppose that all the keys
fit into main memory.

Idea:

e Bring the keys to main memory plus corresponding RRN
e Do internal sorting of keys

o Rewrite the file in sorted order

Lucia Moura 107




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

keynodes array records
key RRN
HARRISON 0 | ——» | HARRISON | 387 Eastern...
KELLOG 1 | —» | KELLOG |17 Maple...
HARRIS 2 | ——» |HARRIS| 4343 West...
BELL 3 | ——» | BELL | 8912Hill...
Main Memory Disk
keynodes array records
key RRN
BELL 3 HARRISON | 387 Eastern...
HARRIS 2 KELLOG |17 Maple...
HARRISON 0 HARRIS | 4343 West...
KELLOG 1 BELL | 8912 Hill...
Internal sorting No change in Disk
in main memory
keynodes array records
BELL 3 BELL | 8912 Hill...
HARRIS 2 HARRIS | 4343 West...
HARRISON 0 HARRISON | 387 Eastern...
KELLOG 1 KELLOG |17 Maple...

create new sorted fileto
replace previous

Lucia Moura 108




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing
How much effort we must do (in terms of disk
accesses) 7
o Read file sequentially once
e Go through each record in random order (seek)

e Write each record once (sequentially)

Why bother to write the file back?
Use keynode array to create an index file instead.

index file records
BELL 3 HARRISON | 387 Eastern...
HARRIS 2 KELLOG | 17 Maple...
HARRISON 0 HARRIS | 4343 West...
KELLOG 1 BELL | 8912 Hill...

Leave file unchanged

This is called INDEXING !!

Pinned Records

Remember that in order to support deletions we used AVAIL
LIST, a list of available records.

The AVAIL LIST contains info on the physical information of
records. In such a file a record 1s said to be pinned.

If we use an index file for sorting, the AVAIL LIST and positions
of records remain unchanged. This is convenient.

Lucia Moura 109




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

Introduction to Indexing

e Simple indexes use simple arrays.

e An index lets us impose order on a file without rearranging

the file.

e Indexes provide multiple access paths to a file - multiple

indexes (library catalog providing search for author, book and
title).

e An index can provide keyed access to variable-length record files.

Lucia Moura 110




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

A Simple Index for Entry-Sequenced File

Records (Variable Length)

17 LON | 2312 | Symphony N.S | ...
62 RCA | 2626 | Quartet in C sharp | ...
117 | WAR | 23699 | Adagio | ...

152 | ANG | 3795 | Violin Concerto | ...

Address of
Record

Primary key = company label + record ID (LABEL ID).

Index :

Reference
key field
ANG3795 152
LON2312 17
RCA2626 62
WAR23699 117

e Index is sorted (main memory).

e Records appear in file in the order they entered.

How to search for a recording with given LABEL ID 7
“Retrieve recording” operation :

e Binary search (in main memory) in the index : find LABEL ID,
which leads us to the reference field.

e Scck for record in position given by the reference field.

Lucia Moura 111




CSI2131 - Winter 2002 Binary Searching, Keysorting and Indexing

Two 1ssues to be addressed :

e How to make a persistent index (i.e. how to store the index into a

file when it is not in main memory).

e How to guarantee that the index is an accurate reflection of the
contents of the file. (This is tricky when there are lots of
additions, deletions and updates.)

Lucia Moura

112




INDEXING




CSI2131 - Winter 2002 Indexing

Contents of today’s lecture:

e Indexing

Reference: FOLK, ZOELLICK AND RICCARDI, File Structures,
1998. Sections 7.4 - 7.6, 7.7 - 7.10

Indexing

Operations in order to Maintain an Indexed File

1. Create the original empty index and data files.

2. Load the index file into memory before using it.

3. Rewrite the index file from memory after using it.

4. Add data records to the data file.

5. Delete records from the data file.

6. Update records in the data file.

7. Update the index to reflect changes in the data file.

We will take a closer look at operations 3-7.

Lucia Moura 114




CSI2131 - Winter 2002 Indexing

Rewrite the Index File from Memory

When the data file is closed, the index in memory needs to be
written to the index file.

An important issue to consider is what happens if the rewriting
does not take place (power failures, turning the machine off, etc.)

Two important safeguards:

e Keep an status flag stored in the header of the index file. The
status flag is “on” whenever the index file is not up-to-date.
When changes are performed in the index in main memory the
status flag in the file is turned on. Whenever the file is rewritten
from main memory the status flag is turned off.

e If the program detects the index is out-of-date it calls a procedure
that reconstruct the index from the data file.

Lucia Moura 115




CSI2131 - Winter 2002 Indexing

Record Addition

This consists of appending the data file and inserting a new record
in the index. The rearrangement of the index consists of “sliding
down” the records with keys larger than the inserted key and then
placing the new record in the opened space.

Note: This rearrangement is done in main memory.

Record Deletion

This should use the techniques for reclaiming space in files
(Chapter 6.2) when deleting from the data file. We must delete the
corresponding entry from the index:

e Shift all records with keys larger than the key of the deleted
record to the previous position (in main memory); or

o Mark the index entry as deleted.

Record Updating

There are two cases to consider:

e The update changes the value of the key field:
Treat this as a deletion followed by an insertion

e The update does not affect the key field:
If record size is unchanged, just modify the data record. If record
size changes treat this as a delete/insert sequence.

Lucia Moura 116




CSI2131 - Winter 2002 Indexing

Indexes too Large to Fit into Main Memory

The indexes that we have considered before could fit into main
memory. If this is not the case, we have the following problems:

e Binary searching of the index file is done on disk, involving several
“seeks”.

e Index rearrangement (record addition or deletion) requires
shifting on disk.

Two main alternatives:
e Hashed organization (Chapter 11) (When speed is a top priority)

o 'Tree-structured (multilevel) index such as B-trees and B+ trees
(Chapter 9,10) (It allows keyed and ordered sequential access).

But a simple index is still useful, even in secondary storage:

e It allows binary search to obtain a keyed access to a record in a
variable-length record file.

e Sorting and maintaining an index is less costly than sorting and
maintaining the data file, since the index is smaller.

e We can rearrange keys, without moving the data records when
there are pinned records.

Lucia Moura 117




CSI2131 - Winter 2002 Indexing

Indexing to Provide Access by Multiple Keys

In our recording file example, we built an index for LABEL ID key.
This is the primary key.
There may be secondary keys: title, composer and artist.

We can build secondary key indexes.

Composer index:

Secondary | Primary
key key
Beethoven | ANG3795
Beethoven | DG139201
Beethoven | DG18807
Beethoven | RCA2626
Corea WAR23699
Dvorak COL31809
Prokofiev LON2312

Note that in the above index the secondary key reference is to the
primary key rather than to the byte offset.

This means that the primary key index must be searched to find

the byte offset, but there are many advantages in postponing the
binding of a secondary key to an specific address.

Lucia Moura 118




CSI2131 - Winter 2002 Indexing

Record Addition

When adding a record, an entry must also be added to the
secondary key index.

Store the field in Canonical Form (say capital letters, with
pre-specified maximum length).

There may be duplicates in secondary keys. Keep duplicates in
sorted order of primary key.

Record Deletion

Deleting a record implies removing all the references to the record
in the primary index and in all the secondary indexes. This is too
much rearrangement, specially if indexes cannot fit into main
Iemory.

Alternative:

e Delete the record from the data file and the primary index file
reference to it. Do not modify the secondary index files.

e When accessing the file through a secondary key, the primary
index file will be checked and a deleted record can be identified.

This results in a lot of saving when there are many secondary keys.
The deleted record still occupy space in the secondary key indexes.

If a lot of deletions occur, we can periodically cleanup these
deleted records from the secondary key indexes.

Lucia Moura 119




CSI2131 - Winter 2002 Indexing

Record Updating

There are three types of updates :

e Update changes the secondary key :

We have to rearrange the secondary key index to stay in sorted
order.

e Update changes the primary key :

Update and reorder the primary key index; update the references
to primary key index in the secondary key indexes (it may involve
some re-ordering of secondary indexes if secondary key occurs
repeated in the file).

e Update confined to other fields :

This won't affect secondary key indexes. The primary key index
may be affected if the location of record changes in data file.

Lucia Moura 120




CSI2131 - Winter 2002

Indexing

Retrieving Rec’s using Combinations of Secondary Keys

Secondary key indexes are useful in allowing the following kinds of
queries :

e I'ind all recording with composer “BEETHOVEN".
e I'ind all recording with title “Violin Concerto”.

e I'ind all recording with composer “BEETHOVEN" and title
“Symphony No.9”.

This is done as follows :

Matches Matches | Matched
from from title | list
composer |index (logical
index “and”)
ANG3795 ANG3795 | ANG3795
DG139201 | COL31809 | DG18807
DG18807 DG18807

RCA2626

Use the matched list and primary key index to retrieve the two

recordings from the file.

Lucia Moura




CSI2131 - Winter 2002 Indexing

Improving the Secondary Index Structure: Inverted Lists

Two difficulties found in the proposed secondary index structures :

e We have to rearrange the secondary index file even if the new
record to be added in for an existing secondary key.

o If there are duplicates of secondary keys then the key field is
repeated for each entry, wasting space.

Solution 1

Make the secondary key index record consist of secondary key +
array of references to records with secondary key.

Problems :

e The array will take a maximum length and we may have more
records.

e We may have lots of unused spaces in some of the arrays (wasting
space in internal fragmentation).

Lucia Moura 122




CSI2131 - Winter 2002 Indexing

Solution 2 : Inverted Lists

Organize the secondary key index as an index containing one entry
for each key and a pointer to a linked list of references.

Secondary Key Index File LABEL ID List File

0| LON2312 -1
1| RCA2626 -1
0 | Beethoven 3 2 | WAR23699 |-1
1 | Corea 2 31 ANG3795
2 | Dvorak 5 4 | DG18807 1
3 | Prokofiev 7 5|1 COL31809 |-1
6 | DG139201 4
71 ANG36193 | 0

Beethoven is a secondary key that appears in records identified by

the LABEL IDs: ANG3795, DG139201, DG18807 and RCA2626
(check this by following the links in the linked list).

Lucia Moura 123




CSI2131 - Winter 2002 Indexing

Advantages:

e Rearrangement of the secondary key index file is only done when
a new composer’s name is added or an existing composer’s name
is changed. Deleting or adding recordings for a composer only

affects the LABEL ID list file. Deleting all recordings by a

44 7z

composer can be done by placing a in the reference field in

the secondary index file.

e Rearrangement of the secondary index file is quicker since it is
smaller.

e Smaller need for rearrangement causes a smaller penalty
associated with keeping the secondary index file in disk.

e The LABEL ID list file never needs to be sorted since it is

entry sequenced.

o We can easily reuse space from deleted records from the LABEL
ID list file since its records have fixed-length.

Disadvantages :

e Lost of “locality” : labels of recordings with same secondary key
are not contiguous in the LABEL ID list file (seeking). To
improve this, keep the LABEL ID list file in main memory, or,
if too big, use paging mechanisms.

Lucia Moura 124




CSI2131 - Winter 2002 Indexing

Selective Indexes
We can build selective indexes, such as :
Recordings released prior to 1970, recordings since 1970.

This may be useful in queries involving boolean “and” operations :
“Retrieve all the recordings by Beethoven released since 19707,

Lucia Moura 125




CSI2131 - Winter 2002 Indexing

Binding

In our example of indexes, when does the binding of the index to
the physical location of the record happens ?

For the primary index, binding is at the time the file is
constructed. For the secondary index, it is at the time the
secondary index is used.

Advantages of postponing binding (as in our example):

e We need small amount of reorganization when records are

added/deleted.

e [t is a safer approach : important changes are done in one place
rather than in many places.

Disadvantages :

e [t results in slower access times (binary search in secondary index
plus binary search in primary index).

When to use a tight binding 7

e When data file is nearly static (little or no adding, deleting or
updating of records).

e When rapid retrieval performance is essential. Example : Data

stored in CD-ROM should use tight binding.
When to use the bind-at-retrieval system?

e When record additions, deletions and updates occur more often.

Lucia Moura 126




