COURSE OVERVIEW




Course Overview

Fundamental file processing operations

e open, close, read, write, seck (file as a stream of bytes)

Secondary Storage Devices and System Software

e how different secondary storage devices work (tapes, magnetic

disks, CD-ROM)

e the role of different basic software and hardware in 1/O
(operating system (file manager), I/O processor, disk controller)

e buffering at the level of the system /O buffers.

Logical view of files and file organization

e file as a collection of records (concepts of records, fields, keys)
e record and field structures

e scquential access; direct access (RRN, byte offset).

Organizing files for performance

e data compression
e reclaiming space in files: handling deletions, AVAIL LIST, etc.

e sorting and searching: internal sorting, binary searching,
keysorting.




Course Overview

Cosequential processing

e main characteristics: sequential access to input and output
files, and co-ordinated access of input files.

e main types of processing: matching (intersection) and merging
(union).

e main types of application: the merging step in an external sorting
method; posting of transactions to a master file.




Course Overview

Indexing

e Primary and secondary key indexes.

e Maintenance of indexed files; different index organizations.
o Inverted lists for secondary indexes.

e Alternative ways of organizing an index:

— Simple index
keeping index sorted by key (additions and deletions are
expensive: about O(n) disk accesses)

— B trees and B+ trees
improvement in time: searches, insertions and deletions in
about O(log, n) disk accesses, where k is the order of the tree
and n is the number of records for B trees or the number of
blocks of records for B+ trees.

— Hashed index: searches, insertions and deletions in constant
expected time, i.e. expected time O(1), provided that the hash
function disperses the keys well (approximately random).




Course Overview

B trees and B+ trees

o We started from the problem of maintenance of simple indexes.

e B trees: multi-level index that work from bottom up and
guarantees scarches and updates in about O(log;, n) disk accesses.
More precisely, the worst case search time, insertion time and
deletion time (in number of disk accesses) is in the worst-case
proportional to the height of the B-tree. The maximum B tree
height 1s 1 + log;, /o n/2, where n is the number of keys and k is
the order of the B tree.

e Then, we discussed the problem of having both an indexed and a
sequential view of the file: B4 trees.

e B+ tree = sequence set + index set
The index set is a B tree; the sequence set is like a doubly linked
list of blocks of records.

e simple prefix B+ trees: B4 trees in which we store separators
(short prefixes) rather than keys, in the index set.

o We learned B trees and B+ trees maintenance and operations.




Course Overview

Hashing and Extedible Hashing

e We have discussed static hashing techniques: expected time for
access 1s O(1) when when hash function is good and file doesn't
change too much (not many deletions/additions).

e We have discussed: hash functions, record distribution and search
length, the use of buckets, collision resolution techniques
(progressive overflow, chained progressive overflow, chaining with
a separate overflow area, scatter tables, patterns of record access).

e We have discussed extendible hashing. In extendible hashing,
hashing is modified to become self-adjusting, allowing for the
desired expected O(1) access even when the file grows a lot; the
address space changes after a lot of insertions or deletions. A good
hash function is still required.

e If you cannot predict which one could be a good hash function for
a dataset, it is preferable to use a B tree or B+ tree (e.g. general
purpose data base management systems). If the hash function is
not good, hashing may lead to an O(n) performance (e.g.
assignment 3), which is prohibitive, while B trees and B+ trees
have a guaranteed worst case performance which is quite good.




Course Overview

What’s next: Database Management Systems CSI3317

Database management systems

Different layers: File systems

Physical storage devices

Each layer hides details of the lower level.

This course focused in file processing. In order to do file
processing efficiently we studied some key issues concerning physical
storage devices.

CSI3317 will focus on database management systems.

As the number of users and applications in an organization grows, file
processing evolves into database processing.

A database management system is a large software that
maintains the data of an organization and mediates between the data
and the application programs.

Each application program asks the DBMS for data, the DBMS figures
out the best way to locate the data.

The applications are coded without knowing the physical organization
of the data.

File processing is done by the DBMS rather than the application
program.

The application program describes the database at a high-level,
conceptual view; this high-level description is called a data model.
One of the most popular data models is the relational data model;
SQL is a commercially used, standard relational-database language.




Course Overview

Difficulties and issues handled by a DBMS:

e data independence: changes in file organization should not require
changes in the application programs; example of common changes:
add new fields to records of a file, add an index to a file, add and
remove secondary indexes.

e data sharing: care must be taken when several users may be
reading and modifying the data.

e data integrity: ensuring consistency of data (when data is
updated, related data must be updated)

You you learn a lot about this in CSI 3317 ...




