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Foreword 1

Foreword

These notes were first used in the course CSI2172A in the Winter semester of 1998.
This print is the first revision, which I believe, has most of my mistakes corrected and
the examples simplified. The sole purpose of these notes is to teach the core language
and the fundamental elements, mechanisms and programming patterns that character-
ize “good” C++ programs. Neither in depth nor in breadth these notes cover every
aspect of C++ . Specifically, I excluded functions from libraries (stdio, stdlib, math ...)
and even many of those classes which make up the Standard Template Library (STL).
Flavors of C++ (Visual C++ , uC++, ...) are also excluded. For this reason, the
students should also obtain a reference book and a manual for the particular platform.
The material is mostly concerned with the semantics of creating, destroying, passing,
writing or in one word using objects in C++ .

Unfortunately, today (1998), the 1997 ANSI draft of C++ is not 100% supported by
compilers uniformly across platforms. For example, some older C++ compilers do not
have a delete[] operator, many do not support namespaces, logical operators return
int as opposed to bool or instantiate templates in an inconsistent manner to a degree
that even STL components do not port and special flags are required to turn on such
mechanisms as exception handling. 1 tried the examples on Microsoft Windows 95, Mi-
crosoft Windows NT with Borland and Microsoft compilers and on Unix (HP-UX, Solaris)
with gcc and native Sun CC compilers. Some special settings of the compiler flags and
switches are needed to compile the ezception handling, template and namespace exam-
ples. It is also assumed that the standard C and C++ libraries (math, stdio, stdlib,
iostream, string, ... ) are installed.

C++ is an unusually complex language, which supports procedural, object oriented and
parametric styles of programming. C++ is also unique to provide static or compile time
created instances which requires special mechanisms for initializing, deleting, passing



9 Foreword

and returning objects by value. While C++ is almost literally a superset of the C
language, the time available in a one semester lab course is insufficient to clearly draw
a line between the two languages. The first two lectures are mainly involved with the
chore of demonstrating C and C++ syntax, which is followed by a brief introduction into
C++ classes and objects. These lectures should be complemented with ample amount
of lab exercises and examples. The rest of the lectures concentrate on demonstrating
Object Oriented Programming and some Object Oriented Technology (streamed 1/0,
abstraction, polymorphism, design patterns, associations, parametric programming).

The assumed background of the student is “good understanding” of the procedural
paradigm and some practice with such a language (like Pascal ). The material should
also be reinforced with 6-8 assignments or 2-3 assignments and a considerable strength
project. I prefer the latter option, because it gives more of an opportunity for the
students to do their own research of the libraries available, to make decisions of what
frameworks or design patterns to use and to exercise Object Oriented Design at least
to a limited extent.

Istvdan T. Hernddvolgy:
April 1998

At the end of most lectures a new section Notes on Syntaxr and Semantics has been
added. Its purpose is to draw attention to some of the caveats and dangers of implicit
mechanisms present in C++ and to explain some of the confusion which may be due to
the overwhelming notation of C++ . Some comments and suggestions I make on design
and usage present my view which may be different from what some authors propose.
There are many issues in C++ and object oriented programming still debated with no
hope of consensus.

Istvdn T. Hernddvélgyi
June 1999



Chapter 1

Object Oriented Programming and
C++

1.1 Object Oriented Programming

C++ is a general purpose programming language which is suitable to implement a
wide variety of applications. It supports procedural, object oriented and generic styles
of programming. All programming languages support some styles of programming. The
styles supported by a language define the paradigm in which the application should be
designed. Pure languages support only one particular paradigm. For example Pro-
log supports the logic, Scheme and Lisp support functional programming, Pascal and
C support the procedural or imperative style of programming and SmallTalk and Java
support the object oriented paradigm. Non of these paradigms in general is superior
to the other although some may be better suited for particular applications than the
others. Programming paradigms are techniques of abstracting an application and they
define the fundamental building blocks of problem decomposition.

The procedural or imperative paradigm abstracts the tasks performed by the applica-
tion. Tasks are decomposed into subtasks. Each task is implemented as a procedure
which may call other procedures. Good decomposition should identify general tasks
which can be used in many contexts (for example, mazimum of a list).

The functional paradigm is similar to the procedural paradigm in that tasks are de-
composed into subtasks. However, these subtasks are implemented as functions which
always return the value of the computation. Unlike procedural code, information is
not saved in variables but propagated. The function is a first class object so it can be
manipulated by other functions much the same way as if it were data. Because of this
flexibility this paradigm is most popular in Artificial Intelligence.

In the logic paradigm a program is defined by rules and facts. The rules are formulated
as horn clauses and define the inductive step of the algorithm. The facts, in essence,

3



4 CHAPTER 1. OBJECT ORIENTED PROGRAMMING AND C++

are the stopping criteria for recursion. Logic programs require a more complicated
execution engine which uses matching and backtracking. This way applications are
specified rather than implemented (declarative programming). This paradigm is also
very popular in Artificial Intelligence.

The basic unit of decomposition in the object oriented paradigm is the object. The
object is a software module which includes both data and functionality. In this sense
an object is similar to an abstract data structure. However an object provides more
than just combining data and operations. An object belongs to a class and the class is
part of the class hierarchy. Every object is an instance of a class. The instance-class
relationship is analogous to the variable-type relationship. A class defines common
attributes, operations and associations but does not instantiate them. As an example
rusty is an instance of class cat and class cat is a derived class of class animal.

A programming language is object oriented® if it supports:

e encapsulation: the internal members of the class can only be accessed through
a public interface. This interface is the set of operations defined for the class.

e inheritance: classes are arranged into hierarchies. The parent of a class in the
hierarchy is its base class and a descendant of a class is a derived class. A derived
class inherits the data members and the operations of its base class. The is a
relationship between the derived class and the base class should always hold, that
is, derived class is a base class. Instances of the derived class are also instances
of the base class. The routines that implement operations are called methods or
member functions of the class.

e polymorphism: multiple routines can have the same name. Methods with the
same name represent the same operation. It is the task of the compiler or the
interpreter to resolve which implementation of the operation should be executed.

The following example defines two shapes in object oriented pseudo code

abstract class 2D-closed-shape derived from shape {
private variable color
abstract public operation Area
public method setColor(C) {
color := C
}
public method getColor {
return color

}

lsome people also require an additional criterion, namely all constructs are objects which include
iterations, conditionals and even classes.




1.1. OBJECT ORIENTED PROGRAMMING

}

class square derived from class 2D-closed-shape {
private variable side-length
public method Area {
return side-length x side-length
}
public method setSideLength(L) {
side-length := L,
}
public method getSideLength {
return side-length

}
}

class circle derived from class 2D-closed-shape {
private variable radius
public method Area {
return radius x radius x 7
}
public method setRadius(R) {
radius := R
}
public method getRadius {
return radius

}
}

object shape-list of class list := new list of 2D-closed-shape
object pink-circle of class circle := new circle

object blue-square of class square := new square
object a-shape of class 2D-closed-shape := blue-square
a-shape setColor(blue)

blue-square setSideLength(5)

pink-circle setColor(pink)

pink-circle setRadius(3)

shape-list add(blue-square)

10 shape-list add(pink-circle)

11 shape-list for each value ({ getColor, getArea })

O ~J O O i W N -

©

The expected output is:

blue 25
pink 28.27431
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2D-closed-shape

color
area {apstract}
4A
I |
Square Circle
side-length radius
area area

The run-time topology of these objects is shown on the figure below. There are only
two actual instances: a pink circle and a blue triangle, however they are associated
with several variables.

~

shape-list
(list<2D-closed-shape>) ( blue-square

/ (square)
_%
\ a—shape

(2D—-closed-shape)

H\ O \ pink—circle

(circle)

\
>

Line 1 declares a new instance shape-list of class list. Line 2 declares a new
instance pink-circle of class circle and initializes it with a new instance of class
circle. Line 3 declares a new instance blue-square of class square. Line 4 declares
an object whose name is a-shape, but it is not a new instance, just a different name
for blue-square. a-shape is of class 2D-closed-shape. Because instances of the
derived class are instances of the base class, the assignment is valid, but a-shape
does not understand the methods setSideLength and getSideLength because it is
treated as a 2D-closed-shape as opposed to a square. blue-square and a-shape
are one and the same object with different names. This is called aliasing. Line 5
sends the message setColor with argument blue to the object called a-shape. This
also sets the color of blue-square because they are one and the same object. Line
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6 sends the message setSideLength to the object called blue-square. Line 7 sends
the message setColor to pink-circle. This method is not implemented for class
circle, but it is available through inheritance. Lines 8 is analogous to line 6, but for
pink-circle. Line 9-10 add the objects pink-circle and blue-square to the list
object shape-list Line 11 calls methods getColor and getArea on each element of
shape-list. Although getArea has different implementations for instances of class
circle and instances of class square, the compiler/interpreter knows which version
to call. We also declared the operation getArea in class 2D-closed-shape abstract.
This means, that instances of 2D-closed-shape can only be instantiated by the derived
classes, who implement operation getArea. The instance variables are declared to be
private, so they can only be accessed through public methods. We also made a
distinction between operation and method. An operation is implemented by methods,
too, but it applies to the subclasses and possibly to other classes as well. Most object
oriented programming languages, like C++ , do not make this distinction in syntaz.

The above example demonstrates all three features of object oriented programming. If
this example can be implemented this elegantly and with ease, then the programming
language most certainly supports object oriented programming. If a programming
language can implement the example, but does not support this style of programming,
then the language is not object oriented.

1.2 C++ and Other Languages

C++ is one of many languages available for implementing applications. It is natural to
ask if C++ contributes anything special or it is just syntactically different. It is true
that there are many languages which can all encode arbitrarily complex algorithms.
This however does not justify the use of a single universal language or paradigm. In
fact, it is often more advantageous to use the paradigm, platform and language which
is best suited for the application. As an extreme example, C++ is no contender of
Prolog to implement inductive logic programs, while C++ is obviously better suited to
implement applications that directly interact with the operating system. In this sense,
without much religious debate, one can conclude that C4++ should not be used as an
alternative to

e perl, awk, sh, csh, ksh which amongst other related applications are mainly used
to implement system administration and management scripts

e Visual Basic, Tcl/Tk which are mainly intended to implement Graphical User
Interfaces (G UI) to applications (such as data bases)

e Lisp, Prolog, Scheme, ML which are mainly used in Artificial Intelligence because
of their strong semantics and ability to treat “procedures” as first class objects
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Pascal does not support Object Oriented Programming, but otherwise it is very similar
to C . Delphi is the object oriented version of Pascal , but is only available on PC
operating systems. While Pascal and Delphi are popular in Academia, they are hardly
used elsewhere. The reason is that C and C+4+4 provide direct access to the operating
system. Arguably Pascal is a cleaner language with respect to semantics and according
to many it is better suited to teach “good” procedural programming. SmallTalk is an
interpreted object oriented language and is often quoted as the de facto object oriented
language. As opposed to C++ and Java , SmallTalk does not support imperative
features like free functions (C++ ) and even iterations (loops) are expressed as methods.
SmallTalk has also had considerable success in industry, which is now reclaimed by Java
. The real contender of C++ is Java . While Java is no match for C and C++ on the
operating system level, it undoubtedly scores better in platform independence and
library support. Java also provides platform independent windowing libraries (AWT
and SWING) to implement cross platform graphical user interfaces. For this reason,
Java is replacing C++ in many domains. However, Java runs on a virtual platform with
no particular assumption of the underlying operating system or even its existence.
While it is a definite advantage in platform independence, Java is not suitable to
implement operating system level tasks. Java also uses a garbage collector and entirely
hides the memory layout from the programmer. This also makes Java a poor choice
for real-time applications. Without getting into religious discussions, it is true that
while Java and C++4 almost entirely overlap in the application domain, Java is usually
better suited to implement user interfaces, “front-end’” and “top-layer” portions of
applications and C or C++ is needed when hard time constraints must be satisfied
in real-time applications and when operating system level tasks must be performed.
Fortunately, there are clean and natural methods to implement integrated C++ and
Java applications through the Java Native Interface (JNI) and the CORBA protocol.

C and C++ compilers are also available on parallel computers. Parallel compilers for
specific architectures (SIMD, MISD and MIMD) extend C++ syntax with few keywords
and constructs, but otherwise do not deviate much from the original language. On
these platforms, C and C++ are often the only choice. Finally, C is just as capable of
performing system level and and real-time tasks as C++ , however it has no support
for object oriented programming.

1.3 Architecture of a C++ Application

C and C++ software projects are usually developed by more than one programmers.
For this reason the language supports multi file development and separate compilation
of modules.

There are two kind of source files in a C or C++ software project: header file or .h files
and C source or .c files. Header files contain definitions, macros, references to external



1.3. ARCHITECTURE OF A C++ APPLICATION 9

variables and function prototypes. By convention, in both C and C++ , a header file’s
name ends with the .h suffix?. .c files contain the implementations of class methods,
stand alone functions and global variable declarations. .c files in C should have the .c
suffix, but C++ files may have .cc, .cpp or .c++ suffices. The suffices are not important
on PC platforms, because each vendor forces a particular convention and most likely
they are all different and proprietary. Development on Unix workstations, on the other
hand, relies on suffix conventions®. Header files should not contain implementation,
only interface. The implementation of the functions and methods defined in header
files is implemented in the .c files which can be separately compiled into object files
and linked together to an executable.

There are several advantages of separating interface from implementation into separate
files. A programmer using another developer’s work should only be concerned about
the interface to the package, which is separately stored in a .A file. The implementation
of the interface can be compiled separately into an object file. In a big project, where
the application is composed of dozens of object files, it is not necessary to recompile
the entire project if modifications are made locally to one file. If the interface (.h
file) changes, only those files must be recompiled which include the interface file. On
the other hand, if a .c file is changed, only this file must be recompiled. In either
case, linking must still be done. Linking is the last step in the process of creating
an executable application from source code. After the software modules have been
compiled into object files, the link editor creates the executable. Another advantage
of separating coherent modules of an application into separately compiled files is that
object files can be reused in other projects. Those object files that implement reusable
generic components could also be archived in libraries. The following example is the
low level architecture of a digit recognition application using neural networks.

package file depends on
math random.cc random.h implementation of random
calc.cc calc.h implementation of calc
math.h matrix.cc matrix.h implementation of matrix
ode.cc ode.h calc.h differential calculus
neural nnet.cc nnet.h math.h neural networks
nnet.h
digit digitrec.cc nnet.h math.h implementation of
recognition digitrec.h digit recognition
main.cc digitrec.h main routine

The math package contains routines for random number generators, differential calculus
and linear algebra. The entire package definition is included in math.h, which wraps

2some vendors on PC platforms ignore this convention
3see the appendix on make files
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random.h, calc.h, ode.h and matrix.h into one header file. The neural networks
routine and class definitions are accessible via nnet.h. This package uses the math
library. These two packages are generic and can be used in many applications. Such
packages ought to be archived into a library. The last package digitrec is a specific
application using the nnet package to perform digit recognition. Because it is an
application, the routines should form an executable as opposed to a library. The next
section discusses how to create the object files, libraries and the executable application
program.

1.4 Process of Compilation

The process of compilation for a C or C++ project consists of the following steps.

e preprocessing: all source files are first passed to the preprocessor. The pre-
processor expands macros, definitions and may include files or exclude parts of
the source code depending on the preprocessing directives defined in the source
code?.

e compilation: .c files are compiled into object code. Object code is similar to
the format of the executable, but external references to objects in other files and
libraries are not resolved. The object files on a Unix system will have the suffix

.0°

e archiving: Object or .o files can be bundled to form a library. For generic
routines it is advantageous to create libraries, because routines may be linked on
demand and the link editor can pull the routines the executable needs from one
location.

e linking: Object files and routines from libraries are linked to form an executable
application.

The process is shown on the figure below:

4for details, see the appendix on cpp
5on a PC platform they usually suffixed by .obj
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[ Source Code ]

(O Preprocessing
\L [ /lib/cpp ]

Source Code

O Compilation
[g++]

[ Preprocessed }

{ Object File }

Archiving Linking
[ar] O [ld]

/O

{ Library

On a Unix system, the GNU preprocessor, link editor, archiving program and compiler
are freely available. On PC platforms, a C++ compiler would probably be part of
an integrated development environment or IDE which bundles the above programs and
a text editor into one single package. We use the Unix programs to demonstrate the
creation of the project, because they are more explicit. To build the digit recognition
project we would need the following steps and programs.

o g++ : is the GNU C+4+ compiler. g++ is an alias with the proper flags and
options to the GNU C compiler gcc . If the —c flag is specified g++ generates an
object file from the source file. For example:

g++ -c blah.cc
generates the object file blah.o. g++ automatically calls the preprocessor cpp
before it generates the object code.

e cpp : is the preprocessor, and is automatically called by the compiler. The
program usually resides in /1ib/cpp.
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e Id : is the link editor and it combines libraries and object files into executable

programs. For example:
Id -0 app main.o -lmath

creates the application program app by liking the object file main.o and the
routines it needs from the math library. The file name after the —o flag is the name
of the application, and the symbolic name math after -1 instructs the link editor
that it needs to link routines from the math library. By naming conventions, it
is looking for the library libmath.a

e ar : is used to create libraries from object files. Creating the library math from

object files calc.o and matrix.o:

ar rc libmath.a calc.o matrix.o

ranlib libmath.a
rc instructs ar to create a new archive. The library is called 1ibmath.a, but
the link editor automatically recognizes it is as the math library, because it is
preceded by 1ib and has suffix .a. The ranlib program creates a symbol table for
the archive which helps the link editor to find the routines.

Finally the following steps are needed to build the digit recognition project ($ represents
the prompt):

Compile each source file of the math library:

$ g++ -c random.c
$ g++ -c calc.c

$ g++ -c matrix.c
$ g++ -c ode.c

Create the math library:

$ ar rc libmath.a random.o calc.o matrix.o ode.o
$ ranlib 1ibmath.a

Compile each source file of the neural networks project:
$ g++ -c nnet.c
Create the neural networks library:

$ ar rc libnnet.a nnet.o
$ ranlib 1ibnnet.a

Compile each source file of the digit recognition application:

$ g++ -c digitrec.c
$ g++ -c main.c

Create the executable file:

$1d -0 digitrec digitrec.o main.o -lnnet -lmath
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It is unlikely that a developer would actually type the commands above prompt by
prompt. The module dependencies and build rules are usually defined in a Makefile®.
MS Windows C++ compilers are usually part of an Integrated Development Environ-
ment (or IDE) which include all of the above programs. The programmer implicitly
defines the dependencies by building a visual module dependency hierarchy. Pro-
fessional tools are also integrated with source save applications which automatically
provide version control and facilitate team development. Development licenses of such
tools are too expensive for students and even for Academia. However educational
and restricted licenses and minimal versions of these systems are often available for a
nominal fee. The GNU project has long been providing FREE development tools (see
WWW.gnu.org).

6See the appendix on Makefiles
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Chapter 2

Basics 1.

2.1 The “hello world” Program

First let us take a look at the (in)famous “hello world” program. This program prints
the message “hello world” on the screen and then it terminates.

#include <iostream.h>
// include the input output library

int main(void) {
// cout is the OBJECT associated with the
// standard output stream
cout << "hello world" << endl;

return O;

/%
a zero return value is interpreted by the
shell which started this program that
it has terminated with no errors

*/

}

The first line instructs the compiler to include the header file iostream.h. This header
file contains the interface for the iostream library. An interface bundled in a header file
consists of constants, type declarations, class definitions, function prototypes, external
references to global variables and macros. If we did not include this library, the program
would not have access to the output stream.

Every C and C++ program starts executing at the main function, hence a program

15
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can have only one main. main returns an integer and takes no arguments. A wvoid
argument or return type indicates that the function does not take arguments or does
not have a return value. There are two forms of main: one that takes arguments from
the command line, and one that ignores them. Later we discuss passing parameters
at the command line. For now we use the form that disregards the command line
arguments (void). The curly braces { and } enclose a block. In this case, the block is
the body of main.

cout is a global object of class ostream, declared in iostream.h. cout represents the
default output stream, which in most cases is the monitor screen. The arguments can
be written to the stream using the “<” insertion operator. endl is a constant which
stands for the end of line character. Arguments can be chained using the insertion
operator; hence cout < "hello world" < endl; is equivalent to cout < "hello"
< " wo" K "rld" K endl;

The return statement is an unconditional transfer of control. When this statement is
reached the function terminates and the specified value is returned.

There are two ways to put comments into a C++ program. Everything starting at
// until the end of that line is ignored by the compiler. The alternative is to enclose
comments between /* and */. The latter may span multiple lines.

2.2 Literals

Literals are anonymous constants which represent themselves. Every programming
language has some literal representation for integers, floating point numbers, characters
and character strings. These literals become part of the program text (or ezecutable
image of the program) when the program is compiled.

Integer Literals

In C++ integer literals can be specified in decimal, octal and heradecimal. A decimal
representation is just a sequence of digits with an optional minus or plus sign at the
front. Octals can only use the digits 0-7 and an integer literal which starts with a 0
(zero) and is followed by an octal digit is assumed to be an octal integer. Hexadecimal
literals are prefixed by 0z and made up of decimal digits (0-9) and the letters a, b, c,
d, e and f— a being 10 and f 15. Integer literals can also be suffixed by the letters U
or L to represent that the literal is to be stored as a short or long integer.

octal hexadecimal decimal

026 0x16 22
0177 Ox7f 127
0377 Oxff 255
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Literals specified in octal or hexadecimal form usually represent bit patterns. One
must be careful with a number like Ozffffffff, as it represents -1 for a compiler which
uses 32 bits to store integers.

Character Literals

Character literals are enclosed in single quotes and can be assigned to variables of type
char. A character is always stored in one byte, and the char data type also represents
the byte in C and C++ . Of the 256 possible 8 bit patterns most are not printable.
The ASCII standard uses only the 7 low order bits.

ASCII Characters
0 NUL || 1 SOH || 2 STX || 3 ETX
4 EOT || 5 ENQ || 6 ACK || 7 BEL
8 BS || 9 HT || 10 NL || 11 VT
12 NP || 13 CR || 14 SO || 15 SI
16 DLE || 17 DC1 || 18 DC2 || 19 DC3
20 DC4 || 21 NAK |22 SYN| 23 ETB
24 CAN || 25 EM || 26 SUB || 27 ESC
28 FS || 29 GS || 30 RS || 31 US
32 SP || 33 1 34 7l 35 #
36 $ || 37 % || 38 & || 39 ’
40 (4 ) || 42 * || 43 +
44 |l 45 - || 46 || 47 /
48 0] 49 11 50 2| 51 3
52 4| 53 5| 54 6 || 55 7
56 8 || 57 9 || 58 2 || 59 ;
60 < || 61 = | 62 > || 63 ?
64 Q@ || 65 A || 66 B | 67 C
68 D || 69 E || 70 F |71 G
72 H| 73 1) 74 J || 75 K
76 L | 77 M || 78 N || 79 0O
80 P| 81 Q || 82 R || 83 S
84 T || 85 U | 86 V || 87 A%
88 X || 89 Y || 90 Z || 91 [
92 \ || 93 ]| 94 “ | 95 _
96 ‘97 a | 98 b || 99 c
100 d | 101 e || 102 f| 103 g
104 h | 105 i 106 j || 107 k
108 1| 109 m || 110 n || 111 o)
112 p || 113 q | 114 r || 115 s
116 t| 117 u |l 118 v || 119 w
120 x || 121 y || 122 z || 123 {
124 || 125 } || 126 | 127 DEL
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The quote characters > and " have to be escaped by \. Some non-printable characters
also have an escaped literal form:

newline \n
horizontal tab ~ \t
vertical tab \v
backspace \b
carriage return  \r
form feed \f
alert (bell) \a
backslash \\
single quote \’
double quote  \”
null byte \O

Arbitrary 8-bit characters can also be represented by specifying them in octal or hex-
adecimal. For example, \x30” = "\60’ = "0’ (3016 = 605 = 48y9).

String Literals

String literals represent character sequences and are enclosed in double quotes. The
compiler automatically trails quoted string literals with the null byte \0’, because
character strings in C and C++ are null terminated. Characters which otherwise have
to be escaped must be prefixed by a \ in the string literal as well. For example

"\’hello\tworld\’\n"

"\"hi mom!\""
represent

’hello world’

"hi mom!"

Floating-Point Literals

Floating-point literals are of type double (or double precision floating point number).
They consist of an optional minus or plus sign followed by 0 or more digits an optional
decimal point 0 or more decimal digits and an optional exponent. The exponent is
represented by the character e followed by an optional minus or plus sign followed by
digits. For example, the following are floating-point literals:

3.14 .004 1. -5.4e10 -1.e-23
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2.3 Scope

There is no meaningful program without variables and functions. In the object oriented
paradigm functions belong to objects or classes. C+4++ supports both; free functions
which do not belong to any particular class, while instance or class methods belong to
objects or classes. Variables can belong to free functions and instance methods or they
can be instance variables. Variables may be local to the function or method, to the
instance or to a class, they can belong to one particular file or be shared with other files.
Because C++ inherited the imperative features of C while it supports object oriented
concepts, it has unusually versatile and complex scoping rules. Every identifier belongs
to a scope and this scope defines where that identifier can be used. In other words, the
scope of an identifier is the logical block where the identifier is visible.

An identifier is the name of a variable, function, class, method, etc ... assigned by the
programmer and it is introduced into its scope by a declaration. The following line
declares an integer variable:

int a;

The declaration of a variable, in C and C++ , has the following syntax:

type identifier

It is also possible to initialize the variable when it is declared, with the following syntax:
type identifier = expression

erpression must evaluate to the same type as the identifier. In the above example, int
is a primitive type and stands for fixed storage size integer. The storage requirements
for an int most often coincide with the computer’s word size (or 32 bits for most
personal computers). “a” is the identifier which refers to the integer. In C and C++ |
identifier names can be composed from underscores and alphanumeric characters, with
the restriction that a digit cannot start an identifier. Examples of syntactically correct
identifiers:

hello, hello2, _blah, array_counter

C and C++ identifiers are case sensitive, which means that b and B are different
identifiers. A variable is uniquely identified by its name, type and scope. A function
is uniquely identified by its name, return type and parameter types'.

int foo(int,int);

The line above is the prototype of a function. The function is called “foo” and it takes
two integer arguments and returns an integer.

I!methods of a class also need the class name to be uniquely identified
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The following example demonstrates the scoping rules applied for identifiers declared
in a file.

int a; int a;
int foo(int,int); int foo(int,int);

i?t foo(int b,int)

int a;
a=1;
ra=b+2;
}
file: test.cc file: test.cc
EXAMPLE 1 EXAMPLE 2
inta; extern int a;
static int b; extern int b; // no external bf

int foo(int,int);
ir{mt foo(int c,int)
int a;
a=1,
ra=b+gc;

}

file: testl.cc file: test2.cc

EXAMPLE 3

In Example 1, both “a” and “foo” are visible in all function bodies in test.cc. In
Ezxample 2, the first “a” is visible everywhere in test.cc, however “foo” declares its own
local “a”. As scopes can be nested, the most local scope overrides the outer scopes in
case of an identifier’s name clash. The assignment statement, a = 1; sets the value
of the local “a”. C+—+ supplies the scope resolution operator “::”, so the programmer
can explicitly specify which scope’s variable is dereferenced. “::a” hence refers to the
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global “a”. In Erample 3, there are two files. testl.cc defines the integer variable “a”.
test2.cc declares an integer variable “a”, which is defined in another file (external).
The compiler is unable to check whether “a” is really defined in an external file, so
it leaves resolution to the link editor. In this example, “a” is shared between testI.cc
and test2.cc. Variables can be shared amongst more files which have an appropriate
extern declaration, but each variable can only be defined only once (as in, testl.cc,
without the extern keyword). It is also possible to prevent a variable declared outside
of a function’s or class’ scope being shared with another file.

The static keyword for a free? declaration protects the variable from being shared with
external files (ezample: static int b;). Such an identifier is local to the file, so extern
declarations in other files cannot see them. It also works for static functions, which
are like regular functions but are only visible in the file where they are declared. Of
course one should not provide a prototype for such a function in a header file because
the linker would not find it.

In fact, every pair of { and } defines a new scope in C++ .

{ // scope 1
int i=2;

{ // scope 2
int i = 3;

cout << i << endl; // i =3
} // scope 2

cout << i << endl; // i =2
} // scope 1

cout << i << endl; // i is not defined!

The static keyword has many meanings in C++ . Another one is the concept of a
static local variable. A variable declared static in a function remembers its previous
value. What really happens is that a static local variable is not on the stack® but is
allocated in the program text.

2not bound to a class or explicit namespace
3we will discuss stack layout and variable allocation in more detail later
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void foo() {
int a = 0;
static int b = 0;

a = a+i;
b b+1;

cout << a << 7 ? << b << endl;

int main() {
for(int i=0; i<3; i++) {
foo();
}
return O;

}

would print

e
w N =

In other words, b is a global variable but is only visible inside foo and hence its life
time is the entire duration of the program and its scope is foo.

2.4 Namespaces

Namespaces provide a mechanism to logically group declarations. In other words,
classes, functions, variables and types which logically belong together can be put into
a single namespace which expresses this coherence. Namespaces nicely facilitate the
total separation of interface from implementation together with information hiding. A
library is ought to be defined in terms of an interface to what it provides. This interface
is composed of the class definitions, function prototypes, constants, global resources
and type definitions that are necessary to effectively use the library. Implementation
details which may also include class definitions, method and function implementations,
global resources and type definitions should be hidden from the user of the library!
Unfortunately, as of today, namespaces are not uniformly supported across all C++
compilers, and most C+-+ development available today is not using the namespace
mechanism.

Namespaces are declared by the namespace keyword. The body of the declaration is
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enclosed in curly braces. The following is the interface definition of the university
library.

// File: university.h
// interface definition for the university library

namespace university {
class Student { // class definition
/* ... x/
};

class Course { // class definition
/* ... %/
};

extern Databasex db; // global resource
extern const double minimum_salary; // constant
void register(Student&,Course&,Database*); // function

};

Namespaces are open. This means that a namespace can be extended by the user to
add additional classes, functions, etc. to both the interface and its implementation.
The implementation of the interface should reside in a different file. (or files).

// File: university.cc
// implementation

#include "university.h"

// extend namespace with implementation specific
// classes, functioms,

// extension or ’hidden’ interface
// the user of the library does not know about this
// these classes help to implement the university library
namespace university {
class Registry {
/% ... %/
I
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const max_string_length = 1024;

void parse_student_file(istream&,Student**,int);

s
// and now the implementation:
const double university::minimum_salary = 17000;

university::Student::Student() { // default constructor
/% .. %/
}

void university::register(Student& s, Course& c, Databasex b) {
/% ... %/
}

The scope resolution operator :: is needed to qualify the identifiers. For example,
class Student may also be a part of a different namespace and library with a different
purpose and meaning. The qualified identifier university: :minimum_salary refers to
the minimum salary of university namespace as opposed to (let’s say) the company
namespace. Namespaces also define a scope where the identifiers can be referenced.
Application programs can only use the public interface.

// File: univapp.cc
// university application program

#include "university.h" // public interface

int main(void) {
university::Student students[1000]; // array of 1000 university students
/% ... %/

return 0O;

3

It is often cumbersome to use the scope resolution operator to refer to identifiers.
The using directive causes the compiler to search in the specified namespaces for the
identifier if it is not explicitly qualified.
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// File: univapp.cc
#include "university.h" // public interface

using namespace university;

int main(void) {
Student students[1000]; // array of 1000 university students
// Student is from ’university’

/x ... %/

return O;

}
Namespaces can also be composed from other namespaces by the using directive.

// ode also includes namespaces polynomial and complex, and the
// two symbol manipulation libraries. the methods sym_differentiate
// overlap, so use Attila’s instead of Istvan’s

namespace ode {
// implementation of numeric integration
using namespace polynomial;
using namespace complex;

using istvan_symbolmanip;
using attila_symbolmanip;
using sym_polynomial attila::sym_differentiate(const sym_polynomialk) ;

complex integrate(const polynomialk);
polynomial differentiate(const polynomial) ;

}

Namespaces provide hooks for code improvement and reusability by maintaining a
standard interface and replacing it with improved implementations using aliasing of
namespaces.

// OLD ODE
namespace odel {
// simple implementation of numeric integration
// using trapezoid method
using namespace polynomial;
using namespace complex;
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complex integrate(const polynomialk) ;
polynomial differentiate(const polynomialk);

}

// NEW ODE
namespace ode2 {
// sophisticated implementation of numeric integration
// using variable step size adjustable order Runge-Kutta methods
// with hundreds of lines of optimized code
using namespace polynomial;
using namespace complex;

complex integrate(const polynomial&);

polynomial differentiate(const polynomial);

namespace ode = ode2; // aliasing a namespace
// used to be ode = odel

complex ¢ = ode::integrate(p); // magically works better

If the compiler supports namespaces, they should be used to develop libraries and
applications, as they are included in the ANSI definition of the C++ language since
1997. Java supports a similar mechanism via its package directive.

2.5 Primitive Data Types

Every programming language declares a set of primitive types. Variables of these types
can be readily used and the compiler knows how to interpret them. C and C++ pro-
vides the following primitive data types:

type
int signed integer
float signed floating point (real) number
double signed double precision real number
char character type

bool boolean (only in ANSI C++ )
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With additional keywords more primitive types can be formed. int and char can be
preceded with the keyword signed and unsigned. The signed keyword explicitly de-
clares the types signed, while the unsigned modifier forces the sign bit to be interpreted
as part of the number. A char type variable can also be declared unsigned, even though
it is not a numeric type. Every C and C++ compiler internally implements char to be
8-bits long. Hence char can be used as the byte data type. Integers (int) can also be
declared long or short. Although compilers may decide on any fixed storage size for
integers, the storage size of a short int is less or equal to the storage required by an
int, which in turn requires less or the same amount of storage as a long int. A double
precision floating point type can also be preceded by the long modifier. All in all, the
following combinations are possible to declare a primitive type variable: char, unsigned
char, signed char, int, short int, long int, signed int, signed short int, signed long int,
unsigned int, unsigned short int, unsigned long int, float, double, long double.

While the above keywords change the storage size required for the type, or its range,
the keywords below instruct the compiler, how to manage or optimize the variables.
Variables can be declared auto, register and wolatile. auto variables are automatically
created and destroyed. This is the default, hence the auto keyword is redundant.
The register keyword instructs the compiler to keep the variable in a register. The
compiler may ignore this keyword. Optimization at this level is beyond the scope of
this course and modern compilers are good in spotting variables that can be kept in
registers automatically. A single variable used as a counter (as in a for loop) is usually
a good candidate to be declared register.

Sometimes it is absolutely necessary to protect a variable from being optimized (being
kept in a cache or register), and these cases are almost always related to processes
accessing a shared resource asynchronously. Suppose variable c is a stopping condition
for a loop and is shared with another process (or thread). The compiler may spot this
variable to be optimized and puts it into a register to spare lookups by address, while
another process modifies the value of c. The copy kept in the register is inconsistent
with the variable ¢ stored in memory, and hence the loop will not terminate. To guar-
antee that a variable is always obtained by an address lookup, it must explicitly be
declared volatile.

2.6 Conditional and Iterative Constructs

A programming language must support conditional and iterative constructs. At the
assembly language level, a conditional is asking whether the contents of a register
or flag is zero, while iteration is achieved by “jump instructions”. Although, C and
C++ directly support these primitive forms of control flow manipulation, you may
not use “labels” and “goto” statements in this course. They can be simulated by
safer constructs. Most languages provide three looping constructs: while, repeat and



28 CHAPTER 2. BASICS I

for loops, while there are languages that prefer recursion over explicit loops (Prolog,
Scheme). C and C++ support all of the above.

The forloop is usually used in a context where the number of iterations is known ahead
of time. In C and C++ , the format of the for loop is:

for (nitialization expression;test;increment erpression) body

The initialization expression usually initializes the counter variable used in the for
loop. The test must be an expression which is (or can implicitly be typecasted*) to
an integer. In C and C++ , 0 represents false, and a non-zero value is interpreted as
true®. The increment expression usually increments (or otherwise modifies) the value
of the counter variable. The word “usually” is used, because both C and C++ allow
the programmer to use these expressions anyway he likes, including doing something
out of context. The following is an example of a for loop which calculates the value of
factorial:

int fact=1;
for (int i=2;i<=n;i=i+1)
fact = fact*i;

If we had more than one statement in the body of the for loop, they should have been
enclosed in { and }. C insists that local variables are declared before the first statement
in a function, so the integer i must be declared before the for loop. C++ allows the
variables to be declared as they are needed. In this case the counter variable 7 is local
to the forloop. The programmer may leave any or all of the for loop expressions blank.
For example, for(;;) is an infinite loop.

while loops have the following form:
while(test) body

As with for loops, test may be anything that resolves to an integer. If that integer is
zero, test evaluates to false, and if it is not zero, then test evaluates to true. If test
is true, the body of the loop is entered. Hence while(1) is an infinite loop (so is
while(-3.14)). Our factorial example, using a while loop:

int fact=1;

int i=2;

while(i<=n) {
fact = fact*i;
i=1i+1; // or i++

}

4
5

we address implicit type casting later
more recent compilers (as of circa 1995) support the native boolean type bool as well
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repeat or do-while loops are seldom used, because the while and for constructs can
simulate anything the repeat loop can do. In C and C++ , repeat loops have the form:

do
body
while (test) ;

If test evaluates to true, then the body of the loop is reentered. Unfortunately, they
implement the reverse of the Pascal repeat-until logic which exits on true. Another
danger of this construct is that the loop’s body is executed at least once. The factorial
example, using the do-while loop:

int fact = 1;

int 1 = 1;

do {
fact = fact * i;
i=1+1;

} while (i<=n);

The if statement has the following three forms:
if (test) body

if (testl)
body1l

else
body2

test 7 expressionl : expression?

The latter form is provided for convenience only. The value of the expression is ezxpres-
stonl if test is true, and it is expression2 otherwise. For example, in the statement int
max = a>b ? a : b;, maris set to the maximum of “a” and “b”.

Both C and C++4 support recursion, that is, a function can be called within itself. A
recursive implementation of factorial is:

int fact(int n) {
if (n==0) return 1;
else return n*xfact(n-1);

3

2.7 Unconditional Transfer of Control

C++ supports mechanisms that transfer control unconditionally. The use of these
constructs is often not justified and must be used with care. One of these is the infamous
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goto, which we avoid altogether because it is always possible to find a safer® and more
elegant solution. The other constructs are practical and have stronger semantics.

The return statement has two forms:

return;
return erpression;

return forces unconditional exit from the currently executing function with proper stack
clean-up. The first form can be used for functions with void return type. The second
form can be called in functions which return a variable of the type of the expression
after the return keyword. After the stack is properly cleaned up, the value which
expression evaluates to is left on the stack (to be picked up by an assignment statement
or the function which initiated the call).

break can be used in while, do-while and for loops, as well as in the switch statement.
When a break; appears in a loop, control is transferred to the first statement after
the loop (control returns from the loop, or the loop is left unconditionally). In the case
of nested loops, break; only aborts the inner most loop which it was called from.

The switch statement is the equivalent of Pascal ’s case statement and it relies on the
appropriate insertions of break statements. It has the following form:

switch(expression)
case constant;
statements;

case constant, -:
statements,
default:
statements

}

The switch statement has somewhat unusual semantics. constant, , must be integral
literal constants. For example, 1 and 32 are literal constants of int, and ’a’ and 'n’ are
literal constants of char. In the latter case, the characters are implicitly type casted
to ints. Control descends on the case clauses top down until one of the constants
matches the value of the expression. If such a constant is found, then all statements
following that line will be executed, including those which seemingly belong to other
clauses. The default clause is optional; statements beneath it are only executed if
no match was found above. This is why, it is almost always necessary to use break
statements in a switch statement. When the break statement is encountered, control

6 goto is unsafe because it may leave a scope without clean up, that is, it may not release resources,
and deallocate variables
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leaves the switch construct.

char c;

switch(c) {

case
case

case

case
case

case

JaJ:
JbJ:
cout <<
)C):
cout <<
break;
)d):
)eJ:
cout <<
break;
)f):
cout <<

default:

3

The output of the program above is:

cout <<

"a and b" << endl;

"'c" << endl

"d and e" << endl;

"f" << endl

b

b

"beyond f" << endl;

| value of c |

output

a

a and b
C

a and b
C

@

d and e

d and e

H| O QO

f
beyond f

g,-..

beyond £

continue is used to transfer control to the start of a while, do-while or for loop (forces
to start the next iteration). If a continue; is issued in a for loop, everything that
comes right after it, is ignored and control passes to the increment step.

exit terminates the entire process or thread of execution, which it was called from.
Before erit terminates the program, it calls routines provided by the programmer or
generated by default, to deallocate them. It also waits on pending resources. The pro-
totype of exit is void exit(int);. The integer argument is returned to the “system”
it was called from. By convention a zero return value indicates successful completion.
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2.8 Basic Operator Syntax and Semantics

Arithmetic Operators

+

+

/

++

++

: addition, a+b

: unary plus, +a or +4
: subtraction, a-b

: negative, —a or -3

: multiplication, a*b

: division, a/b

: integer division, a/b. If both the left and right hand sides are integers, the result

is the largest absolute value integer ¢ such that |b*c| is less than [al|. For
example, 40 / 3 == 13, -40 / 3 == -13

: modulus (or integer remainder), a %b. The result is the remainder of the integer

division a/b. For example, 40 % 3 ==

: post-increment, a++. The value of the expression is a, but a is incremented by 1

after the expression is evaluated.

: pre-increment, ++a. The value of the expression is a+1 as a result of incrementing

a by 1 before the expression is evaluated.

: post-decrement, a-—. The value of the expression is a, but a is decremented by 1

after the expression is evaluated.

: pre-decrement, ——a. The value of the expression is a-1 as a result of decrementing

a by 1 before the expression is evaluated.

Relational and Logical Operators

&& -

< :

>

logical and, a && b. The result is true if and only if both a and b are true
(otherwise the result is false).

: logical or, a || b. The result is false if and only if both a and b are false

(otherwise the result is true).
less than, a<b

larger than, a>b
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A
1]

: less or equal, a <= b

A\
1]

: larger than or equal, a >= b

I : not, 'a. If a is true, the result is false, if a is false the result is true.
== : equal,a == b

I=: not equal,a !'= b

Bit Manipulation Operators

<< : left shift, a << b, shift the bits of a to the left by b bits and fill the new positions
with 0

>> : right shift, a >> b, shift the bits of a to the right by b bits and fill the new
positions with the value of the original left-most bit (Java has a >>> operator
which fills with 0s)

| : bitwise or, a | b, perform inclusive or bitwise

: bitwise and, a ~ b, perform exclusive or bitwise
& : bitwise exclusive and, a & b, perform and bitwise
: complement, ~a, flip the bits of a

Memory Management and Pointer Operators

new : allocate, T* a = new T, allocate enough memory to hold an instance of type T
and return its address

new [] : allocate (array), T* a = new T[x], allocate enough memory to hold x many
instances of type T contiguously and return its address

delete : deallocate, delete a, release the memory allocated dynamically and held at
address a

delete [] : deallocate (array), delete []1 a, release the memory allocated dynami-
cally and held at address a

sizeof : number of bytes to store type or variable, sizeof (T)
& : address of variable, &a
x : dereference address, *a

: member selection, a.x, a is an instance of a class, struct or union
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-> : member selection (pointer), a->x a is a pointer to an instance of a class, struct
or union

[1 : subscript, a[x], the xth element from address a
The Scope Resolution Operator

: @ the scope resolution operator is used to access static members of a class, to
resolve class or namespace membership and to access global resources in a local
context

Sequencing

, © a, b, expressions a and b are evaluated in left-to-right order; it evaluates to b
Assignment Operators

= : assignment, a = b

2= : a 7= b is equivalent to a = a z b, the following assignment operators are avail-
able: x=, /= =, +=, -= <<= >>= &= |=, ~=

Operator Precedence
The following table lists the operators in order of precedence (higher to lower). The
order of evaluation can always be explicitly specified otherwise by enclosing sub-
expressions in parentheses.

., =>, [1, ++(post), —=(post)
sizeof, ++(pre), ——(pre), ~ ,

I, = +(unary), *(dereference),
new, new[], delete, delete []
*(multiply), /(division), %,
+(addition), -(subtraction)

<<, >>
<, >, <=, >=
== I=

&

I

&&

assignment operators

?(conditional)

, (sequencing)
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2.9 Basic I/0

Every programming language provides mechanisms to read and write data. C and
C++ very much differ in this respect. For now, we only consider reading input from
the keyboard and writing data to the screen C+-+ style.

First, the iostream.h header file must be included. This contains the definitions of
the input and output streams, and references to the global objects cin, cout and cerr.
cin represents the standard input stream or the keyboard, cout represents the standard
output stream or the monitor screen and cerr represents the standard error stream,
which in most cases is also the screen. cout and cerr are instances of class ostream
(output stream). Each instance of ostream understands the binary operator <. The
left hand side of the operator must be an ostream object and the right hand side could
be a primitive type variable, a literal constant or an object for which this operator is
overloaded’. For example:

double pi = 3.14259;
cout << "hello " << (2+5) << " pi = " << pi << endl;

prints hello 7 pi = 3.14259. endl represents the end of line character. Writing to
the standard error stream is analogous to the example above:

cerr << "hello " << (2+5) << " pi = " << pi << endl;

cin represents the keyboard, and this global object is an instance of class istream
(input stream). Every instance of istream understands the >> binary operator. An
instance of class istream must be on the left hand side of this operator, while the right
hand side is a variable. For example, the following line can be used to read in two
integers and a real number:

int a,b;

double c;

cin >> a >> b >> c;

cout << " a ="<K<Ca<KK"bhb="<KLKb<<"¢c="<KK ¢ << endl;

To read a string, we have to declare an array of characters®.

char name[100];
cin >> name;
cout << " name = " << name;

"operator overloading is discussed later
8arrays are covered in the next section
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2.10 Notes on Syntax and Semantics

In C and C++ variable declarations the type name always precedes the name of the
identifier (which is the opposite in Pascal ). More than one variables can be declared
with one type specifier on a comma separated list. Tokens (syntaz elements and identi-
fiers) can be separated by an arbitrary number of white spaces (horizontal tabs, spaces
and new lines). For example

int i, j,
k;

double a,b;
double c;

double

d;

looks awkward but is syntactically correct. The first two lines declare integer variables
i, j and k. The second two non-empty lines declare variables a, b and c. And the
last declaration of variable d is also valid.

Loops in C++ are similar to their counterparts in other languages. The for loop may
have its initialization, test or increment section left blank. For example

for(;;);
is an infinite loop. Because of ANSI scoping rules

for(int i=0;i<10;i++) {

}

is not equivalent to
int i=0;
for(;i<10;i++) {
}

in C++ (although they are in C ). In C++ , loops have their own scope, so the former
version’s i is only visible inside the loop and it may shadow any i in the surrounding
context. It is also possible to declare more than one loop variables in a comma separated
list:
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double j;
int i;
for(i=0, j=10; i < 10 && j > 1; i++, j= j/2 ) {

}

In C and C++ a comma separated list of statements evaluates to the value of the last
expression but the previous ones are also evaluated.

int a,b = 2;

a = b++, 5 + b;

b is incremented and a is set to the new b + 5.

Input and output are quite different in the C language. Instead of I/O streams a family
of printf and scanf functions are used. In general, it is not a good idea to mix the
two. The differences will be discussed in detail later.

Function calls (unlike Pascal ) always need the parentheses even if the function takes
no arguments.

int £ {
return 5;

int main() {
cout << f() << endl; // as opposed to cout << f << endl;
return O;

}

continue, break and return are not functions so they do not need the parentheses.

2.11 Exercises

2.1 When we used the for, repeat and while loops, we had the variable fact containing
the value of n!/ at the end of the computation. Implement functions fact1, fact2
and fact3, which implement factorial as a function, using a for, while and do-while
loops respectively.

2.2 Implement Euclide’s famous greatest common divisor algorithm. Given two inte-
gers “a” and “b”, ged(a,b) is defined (recursively) as: gcd(0,0) = 1, ged(a,0) = a,
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ged(a,b) = ged(b,a mod b). Implement the function ged using all of the iterative
constructs we discussed, including recursion. Comment on which construct is the
most appropriate. Hint: The mod operator in C and C++ is %, that is, a % b
stands for a mod b

Implement algorithm lcm which calculates the least common multiple of two in-
tegers. Hint: use gcd from the previous exercise

Using all the loop constructs, write as many different kind infinite loops as you
can.

Write a program that reads in integers in a for loop and prints them only if the
value is greater or equal to zero. Use continue.

Write a program which reads in two doubles and a character in a loop. If the
character '+’ is read then the two doubles are added up and the result is printed.
Similarly, if ’-’, ’/” or *’ is read, the corresponding arithmetic operation is exe-
cuted. If the character #’ is read, then the program terminates. If a character
other than the ones already mentioned is read, the program prints an error mes-
sage to the standard output stream and continues.
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3.1 Enumerated Types

Enumerations can hold a set of constant values specified by the programmer. For
example, the following declaration defines day to hold any one of the 7 days and refer
them to by their names:

enum day { Monday=1,Tuesday,
Wednesday,Thursday,Friday,Saturday, Sunday } ;

If we did not set Monday to 1, the enumeration would start at zero. We can also set
each of the constants in the enumeration for a specific integral value:

#include <iostream.h>
enum foo { a=-21,b=-2,c=1,d=23};

int main(void) {

foo f1 = a;
foo f2 = foo(2);
foo £f3 = foo(-22);
cout << "f1 = " <K f1 " f2 ="
< f2 << " £f3 = " << f3 << endl;
return O;
}

The output of the program is:
f1 = -21 £f2 = 2 £3 = -22

The range values of which foo can be instantiated is actually bigger than the values we
set the elements to. The form foo(-23) explicitly requests the variable to hold the value

39
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-23, even though, we cannot access it by a symbolic constant. This usage is rare and
if you set or dereference the value of an enumerated type variable, you would always
use the symbolic constants. A better example is:

switch(d) {
case Monday
case Tuesday
case Wednesday:
case Thursday :

case Friday : work();
break;
case Saturday :
case Sunday : rest();
break;
}

3.2 Pointers

A pointer is a variable which holds the address of another variable!. This allows two
pointer variables to indirectly modify the value of the variable they are both pointing
to. Pointers are also one of the major sources of errors in a program; if the address
stored in the variable is invalid, the contents of that part of memory can be corrupted.
If the address is outside of the address space allocated by the operating system for the
program, it is likely that the program will terminate with an error, or if it does not, it
can cause even more damage. Syntactically a pointer variable is declared like a variable
it is pointing to, preceded by an *.

int a;
int *pa;

a is an integer variable and pa is a pointer variable which holds the address of an
integer variable. The address of a variable can be accessed through the & operator
(address operator); &a is the address of variable a. Since pa is a pointer variable which
can hold the address of an integer variable, pa = &a; is a valid assignment statement.
If the pointer variable is preceded by an *, then it refers to the variable it is pointing
to: *pa, which in this case is the variable a. Pointers can also point to pointers.

LContrary to popular belief, a pointer is not only an address. In fact there are two addresses
associated with each pointer: the address it holds and the address of the pointer variable itself.
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int * ptr;

0x00234 | 0x01234 ofr = new int:

*ptr = =57,

0x01234 =57

ptr == 0x01234
&ptr == 0x00234
* ptr == =57

It is important not to confuse what &ptr, *ptr and ptr stand for. The wvalue of a
pointer is the address it holds. &ptr is the address of the pointer variable. Every
variable has an address which can be queried by the & operator. Pointers are variables,
hence the & operator can be applied. #*ptr is the actual value which the pointer is
pointing to. Two pointers can have the same value — or store the same address — but
every variable (hence every pointer) itself has a different address. The case when two
or more pointers point to the same location in memory is also referred to as aliasing.
In that case, the value can be changed via either of the pointers. Besides aliasing,
pointers also play an important role in parameter passing, dynamic memory allocation
and run-time polymorphism as we shall see later. It is virtually impossible to write a
"useful” C or C++ program without using pointers.
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C++ initializes pointers to store 0. This special address has a symbolic name NULL.
C does not initialize pointers by default, hence it is good practice to explicitly set a
pointer to NULL, if it does not point to anything. Pointers can be declared to point
to any type of variable, object and even functions.

int *a; // pointer to an integer variable
int **b; // pointer to a pointer which points to
// an integer variable
int (%f1) (void);
/* f1 is a pointer to a function, which takes
no arguments and returns an integer */
void (*f2)(int, charx*);
/* £2 is a pointer to a function, which takes
an integer and a pointer to a character
arguments and returns no value */

Pointers to functions can be used to pass functions to a function via an argument.

C++ performs type checking on pointer variables; hence it is not possible to set (at least
without warning) a pointer of type A to point to a variable of type B. However, there
is a special pointer type which can point to all type of variables. A pointer variable
declared as void* can hold the address of any variable or function.

void* gp = NULL;

int *pi = NULL;

char *pc = NULL;

pi = pc; // error: pi and pc are of different types
gp = pi; // ok

gp = pc; // ok

pc = gp; // error: pc and gp have different types

3.3 Arrays

Arrays collect variables of the same type in one contiguous chunk of memory. In C
and C++ , arrays are always indexed from 0 to length - 1. The following declaration
defines intarray to be an array which can hold 10 integers.

int intarray[10];
In general, a statically allocated array is declared as:
type name-of-array [d:][ds]...[dn]

where di, ..., d, are the dimension(s) of the array. intarray[0] is the first element of
intarray and intarray[9] is the last element. It is impossible to set the dimensions of
a statically allocated array runtime.
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int matrix[10] [5];

declares a two-dimensional array (matriz), where matrix|[2][3] is the entry in the “third
row” and “fourth column”. It is also possible to initialize a statically allocated array
at declaration:

int vector[5] = {1, 2, 3, 4, 5 };
int matrix[3][3] = {

{11,12,13},

{21,22,23%},

{31,32,33}
};

char name[12] - {’S’,’a’,’n’,’t’,’a’,’ ’,’C’,’1’,’a’,’u’,’s’,0};

A character array (last declaration) is treated as a string in C and C++ . A string is
a null terminated character array and an alternative declaration which automatically
inserts the null character is:

char name[12] = "Santa Claus";

When an array is initialized (and hence defined) at declaration, it is not necessary to
provide all the dimensions.

int vector[] = { 1, 2, 3, 4, 5 };
int matrix[1[3] = {

{11,12,13},

{21,22,23}%,

{31,32,33}
};

char name[] = "Santa Claus";

However, in the case of a multidimensional array, only the first dimension may be
omitted, because the compiler must know at compile time the exact size of statically
allocated variables. In the above example, matrix[0][0] is the entry in the “first row”
and “first column” and matrix|[0] is the first “row”. In fact, matrix[0] can be assigned
to an int*. However, an int|| is not the same as an int*. int[] is the type that
holds the address of a unique statically allocated array variable, while int* is a type
that holds the address of any integer variable. For this reason, it is always possible to
assign an int[] to an int*, but it is not possible to assign an int* (or another intl[])
to an int[|. A type int[|[] does not exist, hence matrix cannot be assigned to a int*x*.
With the sizeof operator, the programmer can query the size of a variable. Using the
above definition of variable matrizx,
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int* pr;
pr = matrix[1];
// ok, pr points to the first element of the second row
pr = &matrix[1][1];
// ok, pr points to the second element of the second row
matrix[1] = pr;
// error, matrix is of type int[], hence it cannot be assigned

cout << "matrix: " << sizeof(matrix)/sizeof(int) << endl;
cout << "matrix[0]: " << (sizeof(matrix[0])/sizeof(int)) << endl;
cout << "sizeof(pr): " << sizeof(pr) << endl;

The output of the program is:

matrix: 9
matrix[0]: 3
sizeof(pr): 42

This allows the programmer to check the size of a statically allocated array (ie: of type
type[di][da]... [dn]).

Character arrays can also be created at declaration with initialization by assigning to
a pointer. The difference is that the “size” information is lost?:

char * nl = "Santa Claus";

char n2[] = "Santa Claus";

cout << "nl: " << sizeof(nl) << endl;

cout << "n2: " << (sizeof(n2)/sizeof(char)) << endl;

The output of the program segment:

nl: 4
n2: 12

The string “Santa Claus” has only 11 characters including the “space”, however the
compiler automatically inserts a null character.

Pointer Arithmetic

It is also possible to perform simple arithmetic on pointers. For example:

int array[] = {1, 2, 3, 4, 5 };

2the size of a pointer is operating system dependent, but it is most likely to be 4 bytes (or 32 bits).
DOS used to have 16 bit pointers, while some operating systems already use 64 bit ones
3more accurately, the size is the size of a char*, or the size of a pointer variable
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int *ptr;
ptr = array; // or ptr = &arrayl[0]
cout << *ptr << 7 7 << *(ptr+3) <<
> 7 << ptr[3] << endl;
gives
144

This means that ptr was moved 3 x sizeof (int) many bytes. For a pointer ptr of
type A, the expression (ptr + k) evaluates to the address (int)ptr + k * sizeof(A).
The notation * (ptr+3) and ptr[3] mean the same thing and usually the second one is
used. In general, for any pointer variable ptr and integer n, the following are equiva-
lences:

ptr +n = &ptr[n]

*(ptr + n) = ptr(n]

3.4 Dynamic Memory Allocation

The main use of pointers, besides aliasing, is associated with dynamic memory. Dy-
namic memory is allocated at run time while static memory is allocated at compile
time. In many applications, it is impossible to know ahead of time how much mem-
ory is needed. Using dynamic memory, however, is a potential source of hard-to-fix
problems. As a dynamic memory chunk does not have a symbolic name, the address
of its first byte must be saved in a pointer. If that pointer is lost, there is no way to
deallocate the memory chunk. If this is done in a loop or in recursive calls, so much
memory can be lost that it halts the system. This situation is referred to as having a
memory leak. When dynamic memory is not needed anymore, it should be returned
to the main pool, so successive allocations can reuse the space. C++ provides two
operators for manipulating dynamic memory. Operator new allocates a new variable
and returns its address, while operator delete returns the memory chunk pointed to by
the pointer.

int *a; // pointer to integer
a = new int;
// a now points to a valid address
*a = b;
delete a;
// memory associated with a is deallocated
*¥a = 3;
// this may crash your computer!!!!
a = new int;



3.4. DYNAMIC MEMORY ALLOCATION 47

// the address of a new memory chunk is in a
a = new int;

// again, but the previous chunk is forever lost!!!
delete a;

To allocate and deallocate contiguous memory, operator new// and operator delete/]
can be used.

int *a; // pointer to integer

a = new int[10]; // a contains the address of an integer array
al[2] = 5; // third element is set to 5

delete [] a; // all memory associated with a is gone

It is important that delete]| is used to return contiguous memory, because delete and
delete[] work differently. Also, the memory allocated by new and new[] are slightly
bigger than if they were statically allocated because the size information must be kept
together with the memory chunk. Later we will see that the meaning of new and delete
can be overloaded and in fact can be customized by a skilled programmer.

Allocating multidimensional arrays is a bit more complicated. Ideally we would like
to write int **a = new int[3|[4]; to allocate a 4 x 3 matrix, however C++ does not
support such mechanism (Java does). There is still a somewhat less elegant way to
allocate the 3 x 4 matrix run time:

int **a; // pointer to the 2 dimensional array
a = new int*[3]; // allocate pointers to the 3 rows first
for(int i=0;i<3;i=i+1)

alil] = new int[4]; // each row has 4 columns
al2]1[3] = 6;

// setting the entry in the third row and fourth column
for(int i=0;i<3;i=i+1)

delete [] al[il; // delete rows first
delete [] a;

Why the above actually works can be derived from pointer arithmetic. Recall that
*(ptr + n) = ptrn]

Extending the above formula recursively for 2 (and possibly more) dimensions for
pointer ptr* and integers n and m:

*(*(ptr + n) + m) = ptr[n][m|

4ptr has to be of the appropriate type, or one "extra” * for each dimension
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and in general

¥(...(x(x(ptr +n) + m)...) + r) = ptr[n][m]...[r]

Dynamic Memory Allocation C Style

C has a more explicit approach to dynamic memory allocation and although it is still
available in C++ | these functions should only be used to actually overload or implement
new and delete. The functions provided by standard C are:

void* malloc(size_t bytes)

void* calloc(size_t n, size_t bytes)
void* realloc(void* ptr,size_t bytes)
void free(void* ptr)

malloc can be used to allocate byte many bytes and it returns a pointer to the newly
allocated chunk. calloc is essentially the same, except it allocates bytes X n many
bytes. free returns memory associated with pointer pir. realloc can be used to
change the size of the memory location pointed to by ptr to be bytes many bytes large.
size_t is a numeric type and its extent may vary from compiler to compiler. In most
cases, it is the same as an unsigned int. realloc changes the size of the block referenced
by ptr to bytes many bytes and returns a pointer to the possibly moved block. The
contents will be unchanged up to the lesser of the new and old sizes.

int *a; // a is a pointer to an integer
a = (int*)malloc(sizeof(int));

// new memory for one integer is allocated
*a = 3;
free(a); // memory returned
a = (int*)calloc(5,sizeof(int));

// array of 5 elements created
al[3] = 4; // fourth element set to 4
a = (intx*)realloc(a,sizeof (int)*10);

// size of a changed from 5 to 10
free(a);

The C++ new and delete operators should never be mixed with the C functions shown
above. It is a serious mistake to deallocate memory created with new using free®

Sthe reason is that new and new[] call the constructor while malloc, calloc and realloc don’t.
Similarly delete and delete[] call the destructor, while free doesn’t.
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3.5 Run-time, Compile-time and Automatic Mem-
ory Allocation

There are three fundamentally different ways of allocating memory. These are compile-
time (or global or static), automatic (also local or “on the stack”) and run-time (or
dynamic or “on the heap”). Compile-time allocated variables are physically part of
the program text (or compiled program). Global variables, class variables (we discuss
them later), static local variables and literal constants (such as "hello world" ) are
compile-time allocated and are part of the executable image.

+ global variables, _4_
'TE)?TG + class variables STACK
+ static local variables
+ literal constants
int foo(int a, int b) {
new, new(] int c=a*b;
HEAP delete, delete[] return blah(c);
malloc, calloc }
realloc, free
int blah(int a) {
return a+2;
}
blah at2

+ local variables
+ parameters @
assed by value
P . y foo a*b+2
(automatically
created and destroyed)

Automatic variables are created and destroyed as the program is running and are
implicitly managed. They are created on the stack and they must be of fixed size.
Whenever a function is called, sufficient space is allocated for parameters which are
passed by value and for all non-static local variables. When the function is finished
executing, these variables are automatically destroyed. If the function returns a value,
that return value is left on the stack to be picked up by the function that initiated
the call. In the figure above, the first stack layout shows two frames on the stack, foo
and blah. Currently blah is executing. After it finished, its frame is popped and its
return value stays there for foo to pick it up (second stack layout). Finally when foo
has finished, its stack frame is popped and the return value is ready to be picked up
by the caller®.

6usually stack frames are implemented such that the space of for the return value is at the beginning
(or low address) but — in theory — the exact layout of a stack frame is irrelevant.
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Dynamic memory is allocated at run-time in a separate area of memory, often referred
to as heap. This area of memory is explicitly managed by the programmer by the new,
new[], delete, delete[] operators in C++ and the malloc, calloc, realloc and
free functions in C . The constructor and destructor mechanisms may implicitly be in-
voked and instantiate and/or destroy memory chunks on the heap. Some environments
(Java , SmallTalk ) implement a garbage collector mechanism which asynchronously
manages the heap.

3.6 Parameter Passing (simple types, pointers, arrays)

C++ provides a rich variety of parameter passing and returning mechanisms. These
are passing by value, passing by reference and passing the address. Similarly, a function
can return a value, a reference to a value or an address.

Passing by value.

When a parameter is passed by value, a local copy is created on the call stack. Hence
any modification made to the parameters passed by value, is made on a local copy.
This can be illustrated on the famous swapping problem.

void swap(int a,int b) {
int tmp;

ot
n s

o |

m a;

a >
b = tmp;
}

Inside the body of the function, we only swap the local copies. This problem is solved
by the other two methods.

Passing by reference.

When a parameter is passed by reference, there is no copy created. The parameters
are aliases to the actual variables passed, hence any modifications made to them is
really made on the real ones.

void swap(int& a,int& b) {
int tmp;



3.6. PARAMETER PASSING (SIMPLE TYPES, POINTERS, ARRAYS) o1

t
n s

mp = a;
b;
= tmp;

(oY

}

Do not confuse the & symbol with the address operator. It is not true that the address
is passed! There is no variable created on the stack. This is the fastest parameter
passing method, because there is no parameter passing, the reference is just another
name for the actual variable. This mechanism is a new feature to C4++ and is not
available in C .

Passing the address.

A pointer is a variable which contains an address. In essence, passing the address in
a pointer is passing a pointer variable by value. A new pointer variable is created on
the call stack and it points to the same address as the pointer variable passed.

void swap(int* a,int* b) {

int tmp;
tmp = *a;
*a = *Db;
*b = tmp;

If we declared two integer variables, int d,e;, the first and second versions of swap
are called like:

swap(d,e);

Hence just by the calling convention, passing by value and passing by reference are in-
distinguishable. Calling the third version, passing the address has the expected syntax:

swap (&d, &e) ;

Passing the address has the advantage of making it syntactically explicit, that the val-
ues referenced by the pointer variables may change. However one must be careful; the
following does not work:

void create(int *a) {
a = new int;
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int *b;

create(b);

cout << *b << endl; // the computer probably crashes
delete b; // if it did not crash yet, it may crash now

void create(int *a)
{ /Ilfigure 2 b b [
a = new int;
/[ figure 3
*a =3,
/ffigure 4 i =
}
int *b: stack stack — |
/I figure 1
create(b);
/I figure 5
figure 1 figure 2
b 1 b [ ] b T
et -’ 4
. 3 5 3
stack stack stack
a | a 44—
figure 3 figure 4 figure 5

Let us take a closer look why the above example does not work. When a function is
called, a copy of the variables passed by value are created on the stack. Any modifi-
cations made to these variables are only made to the local copies. When the function
returns all local variables and local copies of parameters are destroyed. Passing the
address of a variable actually involves passing a pointer by value.
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There are two remedies, passing the address of the pointer as opposed to the address
it holds, or passing the pointer by reference.

void create(int**x a) {
*a = new int;
*%x3 = 3;

}
In this case we would call create(&b) ;

void create(int*& a) {
a = new int;
¥a = 3;

}

and the above version can be invoked as: create(b);

Arrays are always passed by address, regardless which notation we use. However the
different notations force different type checking to be performed. For example:

void fool(int z[21[2]) {
}

void foo2(int z[1[2]) {
}

// variables of type int[k][2] can be passed, where
// k does not have to be known at compile time
// some compilers may complain if k != 2 for the former

void foo3(int z[3]) {
}

void foo4(int z[]) {
}

// variables of type int[k] can be passed, where
// k does not have to be known at compile time
// some compilers may complain if k != 3 for the former

void foo5(int *z) {
// variables of type int[k] and even simple addresses
// of integers can be passed, k arbitrary
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int a1[2]1[2] = { { 11, 12}, { 21, 22} };
int a2[3] = { 1, 2, 3};

fool(al);
foo2(al);
foo3(a2);
foo4(a2);
food(all[1l);
foo5(a2);
foo5(a1l1]);
foo5(&a1[0]1[1]1);

When the return statement with a value is called, a new copy is returned unless it is
returned by reference. The former return mechanism is called return by value. Hence
returning the address of a local variable or returning a reference to a local variable is
an error because as soon as the function terminates its space could be reused.

int& bugl() {
int a = 7;
return a; // a’s space is lost!!!

}

int* bug2() {
int a = 7;
return &a; // a is gone!!!

}

int*x ok() {
int* a;
a = new int;
*a = 7;
return a;

}

The last function, ok () works. ais a local variable, however the memory chunk returned
by new is not on the stack, hence it will not be destroyed. When the return statement
is called, a new copy of the variable a is made. As a is a pointer variable which holds
the address to the dynamic memory piece the copy of a returned will also hold the
same valid address.

Arrays can only be returned by returning the address in a pointer. For example, int]
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foo() is not a valid prototype; it should be int* foo().

We have seen how to declare pointers to functions. Functions can be passed by address
to another function.

void map(int arrayl[], int size, void (*f) (int&)) {
for(int i=0; i<size; i++)
f(arrayl[il);

void triple(int& a) {
a =a x 3;

}
int X[1 = {1, 2, 3, 4, 5};

map(X,5,triple);

Even the program itself can receive arguments form the command line. main has two
forms:

int main(void)
int main(int argc, char * argv[])

The second form takes two parameters, argc (argument count) holds the number of
arguments passed to the program. argv (argument vector) is an array of character
strings which are themselves the arguments. argv[0] is the name of the program.

#include <iostream.h>

int main(int argc, char* argv([]) {
cout << "you called " << argv[0] << " with "
<< "these arguments: " << endl;

for(int i=1; i<argc; i++)
cout << argv[i] << 7 7;

cout << endl;

return O;

}

If the program were compiled to prog and you called prog 4 monkeys then the output
is:
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you called prog with these arguments:
4 monkeys

In C++ , (and not in C ), the programmer can provide defaults for parameters. If the
parameters with the default values are not passed, then the default values are used.

void foo(int a, int b=1,const char* c="blah") {

cout << a << ? ? << b << ¢ << endl;
}
foo(2,3,"hello"); // prints 2 3 hello
foo(2,3); // prints 2 3 blah
foo(2); // prints 2 1 blah

If an argument in the parameter list is provided with a default value then all parameters
following that one must have a default value as well. Abusing this mechanism can lead
to ambiguity; that is, the compiler may not be able to resolve a call if more than one
functions match the call with the missing parameters.

3.7 Constants

A rudimentary way to declare constants is to use the preprocessor. The preprocessor
is run on the code before it is passed to the compiler. To communicate with the
preprocessor, preprocessor directives must be inserted into the code. The #define
directive can be thought of as a global search and replace in a word processor. For
example the file:

#define TOOL FOOL
#define e 2.71828
TOOL
2%e+1

after running the preprocessor, becomes

FOOL
2%2.71828+1

Hence, #define pi 3.14159, simulates the effect of having a constant for 7. C+4++
and ANSI C , on the other hand provides a much more sophisticated and elegant way
for declaring, passing and returning constants.

In C++ , the const keyword can be used to declare constants. By definition a constant
cannot change value, so it must be initialized at declaration:



3.7. CONSTANTS o7

const int a = 5; // a is an integer constant
const char[] prompt="Please enter a value"; // string constant

const double i[]l = { 1, 0, 0 };
const double j[1 = {0, 1, 0 };
const double k[] = { 0, 0, 1 };

/* the three unity vectors in 3D */

Pointers can also be declared constants. The question is, whether the pointer is con-
stant or the value it is pointing to. C++ provides all combinations.

const int a = 2;
c = 4;
const int *pc;
// pointer to a constant value
int * const cp = &c;
// a constant pointer, must be initialized
const int * const cpc = &a;
// a constant pointer to a constant
// must be initialized

pc = &a; // ok, pc can be assigned

*pc = a;
// error: pc is pointing to a constant
*Cp = a;

// ok, the value cp is pointing to can be assigned
cpc = &a;

// error: cpc is a constant pointer, hence cannot be assigned to
*Cpc = a;

// error: cpc is pointing to a constant

Only a pointer to a constant can hold the address of a constant. A constant pointer
cannot be assigned to, hence it cannot change the address it holds. Modern operating
systems provide a memory mapping mechanism for devices (such as the serial port).
Because the address of the device is static, a constant pointer can guarantee that the
address is not lost.

Constants also play an important role in parameter passing. It can be specified at the
parameter list that the argument is a constant, and the compiler would signal an error
if the argument is on the left hand side of an assignment statement or is passed to a
function or method which does not specify the parameter to be const.

void foo(const int& a) {
a =3; // error: a is a constant
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3.8 Defining Types with typedef

Both C and C++ allow the creation of user defined types. Using the typedef keyword
the programmer can create new types. The syntax is identical to variable declarations,
except for the preceding typedef keyword:

typedef int vector3d[3];
// vector3d is a new type, not a variable
// if it were declared: int vector3d[3]
// then it would be a variable
vectordd i = { 1, 0, 0 }; // i is a variable of type vector3d

void foo(vector3d v) // parameter passing

vector3d is a type not a variable! typedef char* string — for ezample —, declares a
new type, which in essence is a char*. User defined types can be arbitrarily complex.

3.9 Typecasting

Typecasting stands for changing the interpretation of a variable. This is sometimes
done implicitly.

void foo(double d) {
}

int a = 2;
foo(a);

The compiler implicitly converts a into a double, as opposed to giving an error that the
types do not agree. For numeric types this conversion is implicit and is applied when
needed. However, sometimes it is useful to explicitly typecast one type for another.
For example, a general memory allocation routine must return void#*, however a void*
cannot be assigned to, let’s say, an int*. In this case, an explicit typecast is needed.
The syntax of typecasting in C and C++ :

( type ) expression

Examples:

double pi = 3.14159;
int a = (int) pi; // a is 3
int * a = (int *) malloc(sizeof(int));
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C++ also provides safer and more elegant ways of performing type casts by the
static_cast, dynamic_cast and reinterpret_cast mechanisms. const_cast can be
used to ”cast” the const away or actually to modify the value of a constant without
compiler warnings.

void foo(void* context) {
int *a = static_cast<int*>(context);
// equivalent to (int*) context

void foo(Student* s) {
PartTimeStudent* st = dynamic_cast<PartTimeStudent*>(s);
// NOT equivalent to (PartTimeStudent*)s !!
// if the actual instance pointed to by s is not
// also an instance of the subclass PartTimeStudent
// st is set to NULL!

void foo(int address) {
double* a = reinterpret_cast<doublex>(address);
// NASTY! put the actual value "address" into the pointer
// system work sometimes demands such things
// equivalent to (doublex*)address

void foo(const int* a) {
x(const_cast<int*>(a)) = 3;
// cast the const away and modify the value pointed to by a

3.10 Examples of Variable Declarations
This section demonstrates how nasty variable declarations can get. While rare in

practice, complicated variable declarations and type definitions do occur in C and
C++ programs and one must be aware of them.

int a[5][4][6];
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A 5 x 4 x 6 array.

int *%*a;

A pointer which points to a pointer which in turn points to an integer. Such
a variable can point to a 3 dimensional structure.

short int *¥*a; // 3 x 2 x 4 array
a = new short int**[3]; // depth
for(int i=0; i<3; i++) {
alil = new short intx*[2]; // height
for(int j=0; j<2; j++) {
alil[jl = new short int[4]; // width
}

The layout of such a beast in memory looks something like this: (Assuming
that a pointer takes 2 bytes and a short int needs one byte. Also, there
1s some extra space required for the arrays to store size information and
the actual address alignment should reflect the word size, which we ignored
here. The point is to observe the layout and which pieces are contiguous
and which are not!)

0x2002 0x3002 0x4002
0x2003 0x3009 0x3003 0x4003
0x2004 0x3004 0x4004
0x2005 0Ox400F 0x3005 0x4008 0x4005

0x2006 0x3006 0x4006

0x2007 0x3007 0x2015 0x4007

0x2008 oxzoo08 | ] 0x4008

0x2009 0x3009 0x4009

0x200A 0x4015 0x300A 0x400A

0x200B 0x300B 0x400B

0x200C 0x2002 0x300C 0x400C

0x200D oxsooo | | 0x400D

0x200E 0x3004 ox300E | ] Ox400E

ox200F | ] 0x300F 0x400F

0x2010 0x3010 0x4010

0x2011 0x3011 0x4011

0x2012 0x3012 0x4012

0x2013 0x3013 ox4013 |
ox2014 | ] 0x3014 oxa014 | |
0x2015 0x3015 0x4015

0x2016 0x3016 0x4016 0x2010
0x2017 0x3017 0x4017

0x2018 0x3018 0x4018 Ox300F
0x2019 0x3019 0x4019
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int (xf) (int, char*, double = 6);

f is a pointer to a function which takes an integer, a character string and
optionally a double with default value 6 and returns an integer.

int fool(int i, char* name, double d = 6) {
/* ... %/

}

int foo2(int i, char* name, double d = 6) {
/¥ ... %/

}

f = fool;

f(2,"hello"); // calls fool(2,"hello",6)

f = foo2;

£(3,"bye",-2.2); // calls foo2(3,"bye",-2.2)

bool (*f) (double*, int, double (%) (double&, void* = NULL), void* = NULL);

f is a pointer to a function which takes a doublex, an integer, a function
which takes a double by reference and an optional void* and returns a
double and an optional void* and returns a boolean.

double triple(double& d, void* = NULL) {
return d *= 3; // triple d
}

double func(double& d, void* context = NULL) {
double b = context == NULL 7 1
: x(static_cast<doublex*>(context));
return b * d;

bool map(doublex array, int 1,
double (*foo) (double&, wvoid* =NULL), void* context = NULL) {
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for(int i=0; i<l; i++) {
foo(array[il,context);

}

return true;

bool foo(double* array, int 1,
double (*g)(double&, void* =NULL), void* context = NULL) {

if (1 == 0) return false;
double s = 0;

for(int i=1; i<1l; i++) {
s += g(array[i],context);

}

return s > 300;

double all = { 1, 4, -2, 5, 3 };
double b = 10;

f = map;
f(a,5,triple); // all values of a are tripled
// a=43, 12, -6, 15, 9 }

f = foo;
if (f(a,5,func,&b)) {
cout << "YES" << endl;
} else {
cout << "NO" << endl;

// (3%10 + 12%10 -6 * 10 + 15%10 + 9 * 10 == 330) > 300
// it writes YES
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int (*A[3]) (char);

A is an array of three pointers, where each pointer points to a function which
takes a char and returns an int. It is an array of pointers rather than a
pointer to an array because [] has higher precedence than *. Explicitly
parenthesized:

int (x(A[3])) (char);

An example:

int fi(char c) {
return ¢ > ’a’ ? -1 : 1;

}

int f2(char c¢) {
return ¢ < ’z’ 7?7 -2 : 2;

}

int (*A[3]) (char) { f1, £2, f1};

int main(void) {

cout << A[1](’k’) << ? ? << A[0](’k’) << endl;
return O;

3.11 Notes on Syntax and Semantics

Pointers are declared by putting stars between the type specifier and the identifier.
Many pointers and arrays can also be declared on the same line as a comma separated
list. As far as the star(s) are in between the type and the identifier, the declaration is
syntactically correct. For example

il’lt *a, * b, **C,
* x d, e[2], *£f[3], (xg)[3];



64 CHAPTER 3. BASICS II.

a and b are pointers to integers, ¢ and d are pointers to pointers to integers, e is an
array of two integers, f is an array of three integers pointer and g is a pointer to an
array of three integers. To distinguish between f and g, one must know that [] has
higher precedence than *, hence f is implicitly int *(£[3]) rather than int (*f) [3].
Function names represent the addresses where the functions are actually stored.

int f(int a) {
return a*a;

int (xp) (int);

p = f;
int k = £O;

f is a function stored at address £ and p is a variable which can hold the address of a
function which takes an int and returns an int. Hence the assignment p = f is valid
because f is the address where the function is stored. k = £() on the other hand is
the invocation of the function stored at address f. After the assignment of f to p it
could have been k = p().

One must note that there is some inconsistency here! If p is a pointer to a function, why
didn’t we write p = &f instead. Or calling f through p, why do we write p() rather
than (xp) O — as if p is the address of the function, then xp must be the function. A
function can only do two things: it can be called or its address can be taken. Hence
compilers provide some leniency with respect to notation:

p=1£f; // OK

p = &f; // ALSO OK

int k = p(O; // OK

int k = (xp)(); // ALSO OK

Functions are often passed as arguments — even more so in C than in C++ .

void execute(void (*callback) (void*), void* context) {
// do something

// when finished execute callback in context
callback(context);
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void cleanup(void* context) {
Context * ptr = (Context*)context;
// do some resource deallocation

ptr->finished = true;

execute(cleanup,this_context);

execute is a function whose purpose is to asynchronously” perform some job, however
it should communicate the result when it is finished. To do so, it calls the function
passed as an argument in callback in the context passed in context. A variable of
type void#* can point to any kind of type or class. So we pass cleanup who typecasts
context to a pointer to a Context object which possibly amongst others has a boolean
variable which is set to true when the job is finished. This kind of callback mechanism
is often used in distributed programming and in particular in Telecommunications. In
the object oriented paradigm it is done better by passing an object which incorporates
the context and it calls a method on itself. Since the introduction of declared interfaces
in Java , such classes do not even have to belong to the same hierarchy.

It is vital to understand the difference between passing by value, passing the address and
passing a reference. While this lecture has emphasized the importance, it becomes even
more pronounced — as we shall see later — when objects are passed and constructors and
destructors may be implicitly invoked. It is not true that when passing by reference the
address is passed. In fact, what really happens is that the reference becomes an alias for
the actually passed variable and when the program is compiled any reference to the alias
is replaced by a reference to the originally passed identifier. This explains why local
variables cannot be returned by reference: the variable on the stack is automatically
cleaned up and hence the variable returned does not exist.

Pointers can also be passed by reference — and often they should be.

void f1(int *a) {
a = new int;

}

void f2(int *&a) {
a = new int;

or in essence parallel
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We have already seen this example and the memory trace of what goes wrong with f1.
The important thing to understand is that a is just a variable which holds the address
of an integer. As such it exists on the stack and is initialized to store the actual address
passed to it. When a = new int is executed, the address stored in this local a has
changed but now it is out of synch with the original variable passed to it which still
points where it used to. On the other hand the a in £2 is also a variable which holds an
address, but this a is not on the stack, it is actually physically the same as the variable
passed to £2 with another name. It is very important to understand this concept, so
take the time and type in the following program to convince you:

#include <iostream.h>
int *b;
int f1(int *a) {

cout << "f1" << endl;
a = new int;

cout << " a = " << (void*)(a) <K< " b ="
<< (voidx*) (b) << endl;
cout << "&a = " << (voidx)(&a) << " &b ="

<< (voidx*) (&b) << endl;
}

int f2(int *& a) {
cout << "f2" << endl;
a = new int;

cout << " a = " << (voidx)(a) << " b="
<< (voidx*) (b) << endl;
cout << "&a = " << (voidx)(&a) << " &b ="
<< (voidx*) (&b) << endl;
}
int main() {
cout << "b = " << (void*)b
<< " &b = " << (void*) (&b) << endl;
f1(b);
f2(b) ;

return O;
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3

When memory is allocated dynamically by the new or new[] operator it is very impor-
tant that the appropriate version of delete is called (ie delete or delete[]). The
reason is that there is type and size information kept that delete and delete[] read
to deallocate the memory chunk. Since new and new[] return addresses which are
usually saved in pointers, neither version of delete can tell from the argument pointer
variable if it holds the address of an array or not. For some time in earlier versions of
C++ there was only delete and no delete[]. In ANSI C++ there is a difference and
not using the correct version of the operator can lead to memory leaks and crashes as
well.

3.12 Exercises

3.1 Variables of type void* can point to any type of variable. Would a type void]]
make sense? Explain!

3.2 Would the following swap procedure work?

void swap(int *a, int *b) {
int *tmp;
tmp = a;
a = b;
b = tmp;

}

Explain! (draw a memory trace!)

3.3 Write a program, which reads an n dimensional vector v of doubles and reads
A an n x n matrix (linear transformation) and prints the resulting vector after
applying the transformation A (ie, A X v). n, the dimension, should also be read
from the keyboard, and A and v should be dynamically allocated.

3.4 Write a procedure, which returns a pointer to the transpose of an n x m dynam-
ically allocated matrix.

3.5 Write a program sort, which is passed an arbitrary number of reals at the prompt
and it prints them in non-decreasing order. For example sort 3 1 24 0 2.3
should print 0 1 2.3 3 24. You can use any sorting algorithm you know.
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Chapter 4

Classes 1.

4.1 Aggregate Types

Most programming languages provide some form of aggregate type or record type. The
C and C++ records fundamentally differ. In C , the struct keyword can be used to
declare records, in C++ it is used to define a class.

struct foo {
int a;
char* name;
foo* link;
}'s;

The above definition, in C , declares a variable S with three fields: a of type integer,
name of type character string, and a link field which as a pointer to the same kind of
foo structure. The 1ink field demonstrates that structures can be self referential. The
type of S is “struct foo”. The fields can be accessed by S.a, S.name and S.link
respectively. C also has a union. A union in C is declared like a struct, but using the
union keyword instead. The fields of the union share the same data space. In other
words, memory referenced by the fields overlap. This mechanism can be used to save
space when it is known that only one of the fields make sense or it can be used as an
alternative to typecasting.

union {
int i;
double d;
1 U;

U.i = 100;
cout << U.i << " : " << U.d << endl;

U.d = 100;

69
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cout << U.i << " : " << U.d << endl;

On my computer the output is:

100 : 2.122e-312
1079574528 : 100

4.2 The C++ Class

The class is more than a C record. It combines data and methods. In C++ , and
unlike in C , the keywords struct, union and the new keyword class always define a
class. An object is a particular instance of the class, which can be created statically
at declaration and dynamically using the new operator. The C+-+ class provides a
mechanism for information hiding and encapsulation so that objects can be accessible
through a public interface and the internals could be private to the class and its derived
classes. Member functions can see all instance variables and methods.

class A {
private:
int a;
public:
void set_a(int);
int get_a();
};

void A::set_a(int i) {
a=1i;

}

int A::get_a() {
return a;

}
A a; // ““A’’ is the class and ‘‘a’’ is the instance

a.a = 2; // error: a.a is private!
a.set_a(2); // ok
cout << a.get_a() << endl;

A is a class with one instance variable a. a is private which means that it cannot be
dereferenced directly. The two methods, set_a and get_a are public so they can be
accessed anywhere and they also have access to all the private variables of the same
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class. private and public explicitly set the access right for the methods and variables
following the keyword until another access modifier keyword is encountered in the
same class definition. By default, every method and variable of a class is private'. The
methods are declared by putting the prototype in the class definition. Later, when they
are actually implemented, it must explicitly be stated which class they belong to. This
is achieved by the :: scope resolution operator. Methods can freely access the variables
of the class, regardless of the access privilege specified. It is possible to make instance
variables public, but in general it is considered to be a bad practice. There should be
set and get methods to modify or inspect the value of an instance variable. Methods
of the class can also be private; they can be used to implement public methods. A
variable of a class which does not have a set method is read only, while a variable with
no get method is write only.

When an object is dynamically allocated, its public methods and instance variables
can be accessed via the usual . operator, or by the -> operator.

Ax ptr;

ptr = new A;

ptr->set_a(2); // equivalent to (*ptr).set_a(2)

cout << ptr->get_a(); // equivalent to (*ptr).get_a()

Information hiding is more than just hiding instance variables — it also facilitates pro-
tection and maintainability. Classes should be designed in terms of an interface: the
programmer should first identify the methods that could be publicly available to be
invoked on instances. It is quite a common misconception to believe that it is a useless
effort to implement public set and get methods for an instance variable when in fact the
variable could itself be made public. Once instance variables are public the structure of
the class becomes open and unchangeable as the rest of the program may already rely
on it. On the other hand if the instance variable is hidden behind an interface — like set
and get methods — it can be changed. For example, consider the class student which
most likely will include such properties as name, marks, etc... The first implementation
would probably have instance variables representing these attributes. Suppose as the
application grows students are stored in a database and information is no longer kept
in run-time present instances but is looked up dynamically in the database. If the
properties were properly hidden behind a public interface the instance variables can
be changed without the rest of the application ever noticing. The get methods query
the database while the set methods update it. To keep in mind that the structure of
a class may change but how it is used is probably static is one of the driving forces of
object oriented design and you should make an effort to always keep this in mind.

lin fact, the only difference between a class declared by the class keyword and a class declared
by the struct keyword is that all members are public by default in the latter case and all members
are private in the former case.
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4.3 Creating, Passing, Copying and Destroying Ob-
jects

Objects are potentially complex structures with many data fields which themselves can
be objects or even pointers either storing the address of dynamically allocated objects
or used for aliasing. This raises the question how should new instances be initialized.
Initialization gets even more complicated with inheritance. The derived class may have
extra fields plus the ones it inherited from the base. How is the base going to be initial-
ized? We have also seen that when a parameter is passed or returned by value a copy of
it is created on the stack. Moreover, the stack is cleaned up automatically when local
variables leave scope. In this section, we start by the constructor/destructor mecha-
nism for instances of classes without inheritance and later we extend the picture with
inheritance. Every object oriented language uses a very similar mechanism (including
Java and SmallTalk ) with the exception that destruction is achieved asynchronously
by a garbage collector.

When a new instance of a class is created (dynamically or statically), a constructor is
called to initialize the object. Constructors are supposed to initialize instance vari-
ables and establish associations. If there is no constructor, the compiler provides one.
This, however, is seldom the one the application needs, specially when the class has
dynamically allocated instance variables. There could be more than one constructors,
each providing different parameters to initialize the object. The constructor always
has the same name as the object and it returns no value. The constructor which takes
no arguments is called the default constructor. If there is a constructor defined but
it is not the default constructor, the compiler will not provide a default constructor!
The constructor which takes the same class object is called the copy constructor. The
copy constructor must take this instance by reference (why?)! The default constructor
is implicitly called when an object is declared and the copy constructor is automati-
cally executed when the object is passed by value to a function or when an object is
returned by value. When an object leaves its scope, it is automatically deallocated and
the destructor method is implicitly called. If the class does not have a destructor then
the compiler provides a default one. Again, the one automatically supplied may not be
the one the application really needs. The destructor has the same name as the class,
but it is preceded by the character ~. The assignment operator can (and in most cases
should) also be overridden for every class. When on object is assigned to another, this
method will be executed as opposed to the default one.

The following is a declaration of the class A with a default constructor, destructor, copy
constructor and assignment operator:
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class A {
public:
AQ; // Default Constructor
“AQ); // Destructor

A(const A%); // Copy Constructor
A% operator=(const A&);
// Assignment Operator

The constructors and the destructors are implicitly called when the objects are created
and when they leave their scope or by the delete operator for dynamically created
instances.

Why would someone implement a default constructor a copy constructor, an assignment
operator and a destructor when the compiler provides one by default? The answer
— as usual — is because of pointers. Pointers are used fundamentally in two ways:
aliasing or sharing an object with other objects and storing the address of an object
dynamically allocated on the heap. In the former case, if an instance shares an object
with another instance, we would not want to have delete called on the pointer variable
because it may be used by other instances. In the latter case, if it is known that the
only pointer to the object is the one in question and it was dynamically allocated,
we would want to have delete free its space. The compiler not knowing what the
pointer really represents takes the conservative approach and does not call delete
on pointer instance variables. Also, when one instance is assigned to another and it
has pointer variables, the assignment operator by default makes the instance point to
the same objects (creating aliasing) and would not call delete on the pointers before
their values are overwritten (potentially causing a memory leak). Similarly, the copy
constructor provided by default would copy the addresses into the pointer creating
aliasing. Of course, it may be the case that the pointers are really only used to alias
(see iterators later) but more often it is not the case and when a copy is created (copy
constructor and assignment operator) you want to have new creating a replica of the
object pointed by the pointer instance variables and when the object leaves its scope
(destructor) delete should be called on the pointer(s). Very often it is also the case
that some of the pointer instance variables are used as aliases and some aren’t. In light
of these scenarios, one should be convinced that it is very important to address how
pointer instance variables are used and design the appropriate constructors, assignment
operator and destructor. The following example illustrates the implicit mechanism for
the class person. Every person object is associated with two pointer variables (of type
char*) and an integer instance variables.
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Person

firsthame
lastname
age

print

The figure below shows what the assignment operator provided by default would do and
what our implementation does. The picture would be almost analogous for the copy
constructor. If the pointer instance variable (in our case lastname and firstname) is
used to store the address of a new dynamically created object, then the proper behavior
of the copy constructor is to create a new object and initialize that object so it has the
same settings. The assignment operator must also destroy the dynamically created
objects first before it assigns the new ones.

P2 = P1, DEFAULT BEHAVIOR P2 =P1, "OUR" IMPLEMENTATIC

BEFORE AFTER BEFORE AFTER
John John John John
Doe Doe Doe Doe
Barb Barb Barb
Doe
Bush Bush Bush
John
firstname firstname firstname firstname
lastname lastname lastname lastname
age=25 | P1 age=25 | P1 age=25 | P1 age=25 | P1
firstname firstname firstname firstname
lastname lastname lastname lastname
age =99 P2 age=25 | p2 age=99 | P2 age=25 | P2

In the implementation below the assignment operator and the copy constructors create
carbon copy replicas and the destructor frees the memory allocated for firstname and
lastname.
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#include <iostream.h>
#include <string.h>

int lineno = 0;

class person {
private:
char * firstname;
char * lastname;
int age;

void copy(charx = NULL,char*x = NULL,int = -1);
// A PRIVATE METHOD, WHICH CAN TAKE
// 0, 1, 2 OR 3 ARGUMENTS.
void destroy();
// A PRIVATE METHOD, WHICH DEALLOCATES
// DYNAMICALLY ALLOCATED MEMORY
public:
person() ; // DEFAULT CONSTRUCTOR

person(char*, charx =NULL,int=-1);
// A CONSTRUCTOR WHICH CAN TAKE 1,2 OR
// 3 ARGUMENTS, THE SECOND AND THIRD
// ARE AUTOMATICALLY SET TO THE DEFAULT
// IF NOT PROVIDED

person(const person&); // THE COPY CONSTRUCTOR
“person(); // THE DESTRUCTOR
person& operator=(const person&); // THE ASSIGNMENT OPERATOR

void print();
};

person::person(): firstname(NULL), lastname(NULL), age(-1) {
cout << ++lineno << " - DEFAULT CONSTRUCTOR" << endl;
}
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person: :person(char* lname,char* fname,int k) {

copy (1name,fname,k) ;

cout << ++lineno << " - SECOND CONSTRUCTOR" << endl;
}

person: :person(const person& p) {
copy(p.lastname,p.firstname,p.age);

cout << ++lineno << " - COPY CONSTRUCTOR" << endl;
}
person: :“person() {

destroy();

cout << ++lineno << " - DESTRUCTOR" << endl;

}

person& person::operator=(const person& p) {
// DESTROY OLD AND THEN COPY NEW

destroy();
copy(p.lastname,p.firstname,p.age);
cout << ++lineno << " - ASSIGNMENT OPERATOR" << endl;

return *this;

}
void person::copy(char* lname,char* fname,int k) {
age = k;

if (lname!=NULL) {
lastname = new char[strlen(lname)+1];
strcpy(lastname,lname) ;

} else lastname = NULL;

if (fname!=NULL) {
firstname = new char[strlen(fname)+1];
strcpy(firstname,fname) ;

} else firstname = NULL;
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void person::destroy() {
delete [] firstname;

delete [] lastname;

firstname = lastname = NULL;

}
void person::print() {
cout << ++lineno << ’ ’ << (firstname==NULL?"unknown":firstname)
<< ? 7 << (lastname==NULL?"unknown':lastname) ;
if (age!=-1) cout << " (age: " << age << ’)’;

cout << endl;

person foo(person p) {
return p;

}

int main(void) {
person people[2];
people[0] .print();
people[1] .print();
cout << ++lineno << " array people declared" << endl;

person john("DOE");
cout << ++lineno << " john declared" << endl;

person jane("SMITH","JANE",27);
cout << ++lineno << " jane declared" << endl;

people[0] = john;
cout << ++lineno << " john assigned to p[0]" << endl;

people[1] = foo(jane);
cout << ++lineno << " jane assigned to p[1]" << endl;

people[0] .print();
people[1] .print();

7
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The output of the program is:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

person *ptr;
cout << ++lineno << "

ptr = new person;
cout << ++lineno << "

delete ptr;
cout << ++lineno << "

john = "KING";
john.print();
cout << ++lineno << "

cout << ++lineno << "

return O;

- DEFAULT CONSTRUCTOR
- DEFAULT CONSTRUCTOR
unknown unknown
unknown unknown

array people declared
- SECOND CONSTRUCTOR
john declared

- SECOND CONSTRUCTOR
jane declared

- ASSIGNMENT OPERATOR
john assigned to p[0]
- COPY CONSTRUCTOR
COPY CONSTRUCTOR
DESTRUCTOR
ASSIGNMENT OPERATOR
DESTRUCTOR

jane assigned to pl[1]
unknown DOE

CHAPTER 4. CLASSES I

pointer to person is declared" << endl;

new person created dynamically" << endl;

ptr destroyed" << endl;

\"KING\" is assigned to john" << endl;
g J

end" << endl;
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19 JANE SMITH (age: 27)

20 pointer to person is declared
21 - DEFAULT CONSTRUCTOR

22 new person created dynamically
23 - DESTRUCTOR

24 ptr destroyed

25 - SECOND CONSTRUCTOR

26 - ASSIGNMENT OPERATOR

27 - DESTRUCTOR

28 unknown KING

29 "KING" is assigned to john

30 end

31 - DESTRUCTOR

32 - DESTRUCTOR

33 - DESTRUCTOR

34 - DESTRUCTOR

Class person has three instance variables: firstname, lastname and age. These are
private variables which can only be set by the constructors (in our little program).
The default constructor assigns NULL to the character strings and -1 to the integer
variable. The instance variables are initialized using a special syntax only available
for constructors: the chain of instance variables following the : (colon) are initialized.
This chain is called the initializer and it must be used to initialize constant members,
member classes and reference members. If a class is a subclass then the super class
must be initialized using the initializer if a non-default constructor is to be called on
the super class. In that case, it is called ezxplicit base initialization. There is another
constructor which can take 1, 2 or 3 arguments, by providing default values for the
last 2 parameters. The assignment operator and the copy constructor only call the
private method copy. This method creates a new dynamically allocated copy of first
name and last name. The alternative is to simply set firstname = p.firstname. In
this case, however, there would be two objects which share the same memory location
for first names. This situation is called aliasing; two or more pointers point to the
same memory location and the contents can be changed via either one of them. This
may be undesirable in some cases. For this reason, copy creates a deep copy. A deep
copy of an object is one which is logically identical to another one and they share no
memory. A shallow copy, on the other hand, is not only identical to another object
but they also share some physical memory. The latter case may be tricky because
it must be handled which object is responsible for deallocating shared objects. The
default- and copy-constructors and the assignment operator automatically provided
by the compiler literally copy the contents of the variables. This results in aliasing
if there are pointer instance variables. In general, there is no need to declare copy-
constructors, the assignment operator and a destructor for a class which has no pointer
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instance variables. On the other hand, they must be declared if there are pointer
variables, and there purpose is not specifically aliasing. The assignment operator is
referred to by operator= and like the copy constructor, it takes a reference to an
object of the same class. The value returned by the assignment operator is a reference
to itself. The pointer this is defined for every class and it holds the address of the
object itself. For example, the instance variable firstname inside the implementation
of the methods of class person can be explicitly referred to as this->firstname. The
destructor deallocates the dynamic memory chunks assigned to the pointers firstname
and lastname, using private function destroy. If operator delete is applied to NULL,
it does nothing. The function foo takes an object of class person by value and returns
an object of class person by value. This function demonstrates how and when the copy
constructor, the assignment operator and the destructor are involved in passing and
returning objects by value.

If there is no default constructor declared for the class but there is a constructor which
takes parameters then it is not possible to allocate an array of such instances. The
reason is that when an array is declared, the default constructor is called on each
and every element. If there is no public default constructor then no such array can
be created. The compiler only provides a default constructor if there is no other
constructor declared.

class A {
public:
A(int);

// No default constructor A()
};

A array[10]; // NO! A needs a default constructor
// to initialize each element!

Back to the example, first, an array for two person objects is declared. Because it is
a statically declared array, each person object is implicitly initialized by the default
constructor. This would also be the case if we had a dynamically allocated array. The
new|| operator also causes the default constructor to be invoked on each slot. joe
and jane are declared using the second constructor which takes parameters. Then we
assign joe to the first slot of the array. The second slot is assigned via function foo
(lines 12 — 16). First the copy constructor is called to create a copy of p on the stack
(line 12). The return statement creates a temporary object of the local copy to be
returned (line 13), this object will be picked up by the assignment operator. The local
copies are then destroyed using the destructor (line 14). The assignment operator uses
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the temporary object, which is destroyed when the assignment is complete (line 16).
The following memory trace shows the steps involved.

Jane Doe pl pl pl
person foo(person p) { Jane Doe Jane Doe

indy Smith || p2 indy Smith || p2 indy Smith p2
return p;—@

} stack

indy Smith

indy Smith P

A
o il ]
A

—®

p1 = foo(p2);

“

—®

1 1
Jane Doe p indy Smith p

T H-I T

indy Smith || P2 indy Smith || P2 The object returned

stack stack

indy Smith —

©®

N

The temporary object (second copy) on the stack is created by the return statement.
When the function terminates, this will be the only object left on the stack to be picked
up. The scope of this anonymous temporary variable is the statement foo is embedded
in.

The assignment of the string "KING” also creates a temporary copy. The assignment
statement expects a person object as its argument. Because there is a constructor
which can create a person object from a character string, it is invoked implicitly.
Whenever a string (charx) is used in a context where a person instance is expected, the
person: :person(char*, char*=NULL,int=-1) constructor is called to create a tempo-
rary and anonymous instance.

Passing objects by reference increases performance and C++ allows to declare a refer-
ence parameter constant. When a reference parameter is constant, the compiler checks
whether the parameter is not modified in any way in the function. The case when
the parameter is on the left hand side of an assignment statement is trivial. However,
it is more difficult (in fact, in general impossible) to detect at compile time whether
the parameter passed to another function will modify it. A member function can (and
should be) declared constant if it does not modify the instance variables. For example
the length method of a list object should be const:

class list {
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private:

int size;
public:

int length() const;
s

int list::length() const {
return size;

}

There are cases when some parts of the objects cannot be const even when the object
is logically const. For example, an object may keep a count of how many other objects
are pointing to it for memory management purposes. Those instance variables which
can never be const should be declared mutable using the mutable keyword?.

To be fair, there is justification for such complicated mechanisms to initialize and
destroy objects. It is true that in Java and SmallTalk there are no implicit calls to
destructors and constructors. The constructors are only called by the new operator (or
class method in SmallTalk ) and by the constructors of subclasses to initialize the base
class. However, Java and SmallTalk do not have statically or compile-time allocated
instances. Also, in Java and SmallTalk , instances cannot be passed by value, because
variables are really only the descriptors®. Just like with primitive types, passing by
value creates a copy. For objects, this copy is created by the constructor. Similarly, if
an object is returned by value a copy must be returned, as local variables will be auto
destroyed with the stack frame. This should warn programmers to pass and return by
reference or pass the address when possible. However, sometimes it is not an option.
Often you need to create a new object by a function and you cannot return the ad-
dress or a reference to a local variable. Many times, specially with recursive methods,
the method should create a new object, otherwise it would modify the original. In
such a situation the object should be passed by value. The implicit mechanism which
automatically creates an instance if the value passed matches the argument for a con-
structor was condemned by the object oriented community and it was excluded from
Java . This, however is part of C++ , and programmers must be aware of it.

class A {

2mutable is only available in ANSI C++
3a variable descriptor is like a pointer, which besides the location of the actual object contains type
information, possibly reference counts and pointers to virtual method lookup table(s)
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public:

AQ;
A(charx) ;
A(double) ;

};

fool(A) {

}

foo2(const A&) {

}

char x ¢ = "Santa";

double d = 3.14;

fool(s); // A(char*) is called!
fool(d); // A(double) is called!
f002(8); // A(char*) is called!
f002(d); // A(double) is called!

A al = "Scrooge", a2 = -0.2; // Again!

4.4 Access Modifiers and Inheritance

Inheritance is a powerful mechanism to aid elegant software design and code reuse.
Through inheritance instance and class variables and methods can be reused and im-
plementation can be extended as opposed to recoded. This however assumes that the
design observed and exploited areas that are applicable in more than one contexts. The
issue of reusable object model design is addressed in detail in the second part of the
lecture notes. This section is concerned with the syntax and semantics of inheritance
in C++ .

The class embodies a logically and structurally coherent part of a software application.
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Instance variables and methods can be hidden if they are declared with the keyword
private and the access is granted by declaring the interface public. The protected
keyword is yet another access modifier which gives the class components the same ac-
cess privileges as private, however, they are visible in the derived class. All instance
variables and methods inherit but the ones declared private in the base class are not
visible in the derived class. In addition, C++ provides access modifiers for the inher-
itance itself, which may restrict access privileges in derived classes. If the inheritance
is private then all otherwise visible members in the derived class are private. If the
inheritance is protected then public members of the base class become protected and
when the inheritance is public then visible members keep their access privileges, as
declared in the base class. By default, inheritance is private.

Visibility
member access | class derived class outside class
private YES NO NO
protected YES YES NO
public YES YES YES

Private inheritance
member access class derived class derived derived class

private private not visible not wvisible
protected protected private not wvisible
public public private not wvisible

Protected inheritance
member access class derived class derived derived class

private private not visible not visible
protected protected protected protected or private*
public public protected protected or private*

Public inheritance
member access class derived class derived derived class

private private not visible not wvisible
protected protected protected protected or private*
public public public public, protected or private*

* it depends on the inheritance between derived and derived derived

The following example illustrates the inheritance mechanism.
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class Base {
private:
int a_priv;
protected:
int a_prot;
public:
int a_pub;

protected:
void set_a_priv(int

public:
void set_a_prot(int

Il
=
-

i) { a_priv

i) { a_prot = i; }

I
[’

void set_a_pub(int i) { a_pub i;

void foo() { }
};

class Derived_1 : public Base {

void foo() {

a_priv = 2; //
set_a_priv(2); //
a_prot = 2; //
a_pub = 2; //

Base
/\
public protected private
Derived 1 Derived 2 Derived_3
public public
Derived_2_1 Derived_3_1

error, a_priv is not visible
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class Derived_2
void foo() {
a_priv = 2;

CHAPTER 4. CLASSES I

: protected Base {

// error, a_priv is not visible

set_a_priv(2); // ok

a_prot = 2;
a_pub = 2;
}
I

class Derived_3
void foo() {
a_priv = 2;

// ok
// ok

: private Base {

// error, a_priv is not visible

set_a_priv(2); // ok

a_prot = 2;
a_pub = 2;
}
};

class Derived_2_1

void foo() {
a_priv = 2;

// ok
// ok

: public Derived_2 {

// error, a_priv is not visible

set_a_priv(2); // ok

a_prot = 2;
a_pub = 2;
}
};

class Derived_3_1

void foo() {
a_priv = 2;

// ok
// ok

: public Derived_3 {

// a_priv is not visible

set_a_priv(2); // set_a_priv is not visible

a_prot = 2;
a_pub = 2;
}
I

int main(void)
{
Derived_1 di;
Derived_2 d2;

// set_a_prot is not visible
// set_a_pub is not visible
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Derived_3 d3;

d1
d1
d1

d2.
d2.
d2.

d3.
d3.
d3.

.set_a_priv(2);
.set_a_prot(2);
.set_a_pub(2);

set_a_priv(2);
set_a_prot(2);
set_a_pub(2);

set_a_priv(2);
set_a_prot(2);
set_a_pub(2);

return O;

}

//
//
//

//
//
//

//
//
//

error,
ok
ok

error,
error,
error,

error,
error,
error,

set_a_priv is protected

set_a_priv is protected
set_a_prot became protected
set_a_pub became protected

set_a_priv became private
set_a_prot became private
set_a_pub became private
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While all combinations of the private, protected and public access modifiers can be used
for members and the inheritance itself, in general the following heuristic will suffice:

e Members (variables and methods) which are not part of the interface of the class

should be protected.

e Instance variables, in most cases, should not be public.

e Members which specifically belong to this class and would create confusion for
the programmer (possibly another person) who creates a derived class should be
private provided with a protected interface. This set up should also be used to
hide complicated mechanisms.

e The inheritance itself, in most cases, only makes sense to be public.

e The interface to the class must be public.

Data members, hence are always present in the derived classes but they may have
changed access privileges. This raises the question, how do the constructors initialize
the inherited variables and how are they released by the destructor? The program
below defines three classes. A is the base class of class B and class C. While both B and
C are equal in logic and functionality, class B illustrates common problems and class C
demonstrates the proper implementation.
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D >

#include <iostream.h>
int lineno = 0;

class A {
protected:
int a;
int b;
public:
AQ:a(1),b(2) {
cout << ++lineno << ’ ? << "A::A()" << endl;

}

A(int i, int j):a(i),b(j) {
cout << ++lineno << ’ ’ << "A::A(int,int)" << endl;

}

A% operator=(const A& c) {
a = c.a;
b = c.b;
cout << ++lineno << ’ ’ << "A::operator=(const A&)" << endl;
return *this;

}

virtual "A() {
cout << ++lineno << 7’ 7 << M"A::"A()" << endl;
}
};

class B : public A {
protected:
int c;
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public:
BO A
cout << ++lineno << ’ ? << "B::B()" << endl;

B(int i, int j, int k) {
a = 1i; // this should not be done this way

b=3;
c = k;
cout << ++lineno << ’ ’ << "B::B(int,int,int)" << endl;

}

B& operator=(const B& d) {
a = d.a; // this can be done simpler

b = d.b;
c =d.c;
cout << ++lineno << ’ ’ << "B::operator=" << endl;
return *this;
}
“BO) {
cout << ++lineno << ’ ’ << "B::"B()" << endl;
}
};
class C : public A {
protected:
int c;
public:
cO Ao
cout << ++lineno << ’ ? << "C::C()" << endl;
}

C(int i, int j, int k):A(i,j),c(k) { // proper base initialization
cout << ++lineno << ’ ’ << "C::C(int,int,int)" << endl;

}

C& operator=(const C& d) {
A::operator=(d);
c =d.c;
cout << ++lineno << ’ ’ << "C::operator=" << endl;
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return *this;

3

“cO {
cout << ++lineno << ’ ’ << "C::"C()" << endl;

};

int main(void) {

A a;

cout << ++lineno << ’ ? << "a is declared" << endl;
B bi;

cout << ++lineno << ’ ? << "bl is declared" << endl;
B b2(3,4,5);

cout << ++lineno << ’ ’ << "b2 is declared" << endl;
bl = b2;

cout << ++lineno << ’ ? << "bl = b2" << endl;

C ci;

cout << ++lineno << ’ ’ << "¢l is declared" << endl;
C c2(4,5,6);

cout << ++lineno << ’ 7 << "¢2 is declared" << endl;
cl = c2;

cout << ++lineno << ’ ’ << "¢l = ¢2" << endl;

return 0;

3

The output of the above program is:

1 A::AQ

2 a is declared

3 A::AQ

4 B::BQ)

5 bl is declared

6 A::AQ)

7 B::B(int,int,int)
8 b2 is declared

9 B::operator=

10 bl = b2
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11 A::AQ)

12 C::C()

13 ¢1 is declared
14 A::A(int,int)

15 C::C(int,int,int)
16 c2 is declared
17 A::operator=(const A%)
18 C::operator=

19 c1 = ¢c2

20 C::7CQ

21 A::7AQ

22 C::7CQO

23 A::"AQ

24 B::"BQ)

25 A::"AQ)

26 B::"B()

27 A::"AQ)

28 A::7AQ)

When an instance of class B or class C is declared, the default constructor of the
base class is automatically called unless another constructor of the base class was
specified to initialize the base. This is demonstrated by the three integer argument
constructor. When an instance of class B is declared with three arguments (lines 6-7),
the default constructor is executed by default. However, both the default constructor
of A and the three integer argument constructor of B initialize the instance variables
a and b. If they were not of a primitive type, but instances of classes with complex
structure, this double initialization would be unacceptable. Class C demonstrates the
proper way of initialization using an existing constructor of a base class (lines 14-15).
C::C(int,int,int) also shows the proper way of initializing the new instance variable
¢ without creating a temporary copy of the argument k on the method’s stack. Unlike
the constructors, the assignment operators do not call the assignment operator of the
base class. However, the assignment operator can be explicitly called using the ::
scope resolution operator. If the base class has private instance variables the only
way to have them assigned to is by invoking the base’s assignment operator this way!
The destructor, like the constructor, implicitly calls the destructor of the base class
Hence if the base class has a pointer variable which points to a dynamically allocated
memory chunk and its destructor deallocates it, then this instance variable should not
be explicitly deallocated in the base class. If the pointer instance variable is set to
NULL after the delete operator was called, then multiple explicit deallocations of this
instance variable in the derived classes only result in a redundant call. If the pointer
is not set to NULL and the delete operator is called on this pointer variable in the
derived classes, then this may result in memory fault. The delete operator, when
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applied to an instance of a class, also (implicitly) executes the destructor method of
the class.

If the derived class does not implement the copy constructor, the copy
constructor of the base class is called implicitly:

class A {
public:
A(const A&) { ... }
};

class B: public A {

)/NU B(const B&);
};

B bi;
B b2(b1); // A(const& A) is called

If the derived class does implement the copy constructor, the copy con-
structor of the base class is not called by default; hence it should explicitly
be invoked:

class A {
public:
A(const A&%) { ... }
};

class B: public A {
public:
B(const B& b):A(b) {

}
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4.5 The Initializer

The initializer is not just some special syntax which could be avoided and its behavior
mimicked in other ways. The initializer is irreplaceable in the following two contexts:

e a non-default constructor is required to initialize the base
e an instance variable is to be initialized by a non-default constructor

As we know, constructors of the derived class first implicitly call the default constructor
of the base class unless another constructor is explicitly specified instead of the default
constructor. Similarly, the destructor of the derived class implicitly calls the destructor
of the base class after it has executed its code. The only way to specify a non-default
constructor is to use the initializer. If the base has private instance variables, then this
is the only way to provide them with default values and specifying a non-default con-
structor is often necessary to avoid double (or multiple) initialization as demonstrated
by the example below. Contrary to popular belief, it is not only redundant but could
potentially be very dangerous to initialize certain types of variables twice. For example
— as usual — pointer instance variables initialized twice by addresses returned by new
create memory leaks. Similarly, resource objects — such as streams — often cannot be
initialized more than once without very serious and unwanted side effects (like opening
a file twice!). A memory leak is demonstrated in the next example.

class Base {
protected:
char* name; // POINTER VARIABLE
public:
Base() { // Default constructor
name = new char[strlen('"hello")+1];
strcpy(name, "hello");
}

Base(char* s) { // Non-Default constructor
name = new char[strlen(s)+1];
strcpy(name,s) ;

};

class Derived : public Base {
public:
Derived() { // Default constructor, INCORRECT
name = new char[strlen("bye")+1];
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strcpy (name, "bye") ;

Derived() :Base("bye") { // Default constructor, CORRECT
}

};

The incorrect default constructor of Derived innocently assigns "bye" to name, but as
we know the default constructor of Base is called first by the constructors of Derived
unless overridden explicitly. Hence first "hello" is assigned to name and then "bye"
loosing the memory needed to store "hello" forever. If name were private as opposed
to protected then assigning anything to it explicitly would not even be possible be-
cause private instance variables are not visible (but still there!) in derived classes.

Besides providing a mechanism to bypass the constructor of the base by invoking a
different constructor, the initializer is also the only mechanism that can be used to
invoke a non default constructor on instance variables which are not pointers.

class A {
public:
AO { ... }
A(int) { ... }
};

class B {
private:
A a;
public:
B(int i):a(i) { // initialize a with A(int) as opposed to A()
}
+;

4.6 Multiple Inheritance

Through multiple inheritance, a class can be derived from more than one base classes.
The benefit of multiple inheritance is much debated in the object oriented community
and because of the extra complexity it introduces, most object oriented programming
languages (Java , SmallTalk ) do not allow it. Often an object logically belongs to more
than one hierarchy, because it plays a different role in each (like rusty the cat’s role
as a feline in evolution and his as role of a pet). In Java there is language support to
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implement role hierarchies without multiple inheritance using interfaces. Some versions
of C++ , like gcc 2.7.2 signatures, provide non-standard mechanisms to implement
multiple roles of an object without relying on multiple inheritance. We will address this
issue in the second part of the lecture notes in more detail. Here we are only concerned
with the syntax and semantics of the multiple inheritance mechanism of C4++ . The
problems that naturally arise are: if both base classes have members with the same
name which one is present in the derived class and if deeper in the hierarchy two classes
which are subclasses of the same class rejoined, are there more than one copies of the
base class? The following example addresses both of these issues.

#include <iostream.h>
int lineno = 0;

class Base {

protected:
int a;

public:
Base():a(0) {

cout << ++lineno << ’ ’ << "Base::Base()" << endl;

}
void set_a(int i) { a =1 ; }
int get_a() { return a; }

};

class Derived_1 : public Base {

protected:
int b;

public:
Derived_1() :b(0) {

cout << ++lineno << ’ ’ << "Derived_1::Derived_1()" << endl;

}
void set_b(int i) { b =1 + 1; }
int get_b() { return b; }

};

class Derived_2 : public Base {
protected:
int b;
public:
Derived_2() :b(0) {
cout << ++lineno << ’ ’ << "Derived_2::Derived_2()" << endl;
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}
void set_b(int i) { b =1i - 1; }
int get_b() { return b; }

};
class VirDerived_1 : virtual public Base {

protected:
int b;

public:
VirDerived_1() :b(0) {

cout << ++lineno << ’ ’ << "Derived_1::Derived_1()" << endl;

}

void set_b(int i) { b =1 + 1; }
int get_b() { return b; }

};
class VirDerived_2 : virtual public Base {

protected:
int b;

public:
VirDerived_2() :b(0) {

cout << ++lineno << ’ ’ << "Derived_2::Derived_2()" << endl;

}

void set_b(int i) { b=1i - 1; }
int get_b() { return b; }
};

class DeepDerived : Derived_1, public Derived_2 {
public:

void set_a(int i) {
Derived_1::set_a(i);

}

void set_b(int i) {
Derived_2::set_b(i);
}

int get_a() {
return Derived_2::a;

}
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int get_b() {
return Derived_1::get_b();

}
};

class DeepVirDerived : public VirDerived_1, public VirDerived_2 {
public:

void set_b(int i) {
VirDerived_2::b = i;

int get_b() {
return VirDerived_1::b;
}
};

int main(void) {

DeepDerived dd;
cout << ++lineno << ’ ? << '"dd is declared" << endl;

DeepVirDerived dvd;

cout << ++lineno << ’ ’ << '"dvd is declared" << endl;
dd.set_a(3);
dd.set_b(3);
cout << ++lineno << ’ ’ << '"dd.a = " << dd.get_a()
<< " dd.b = " << dd.get_b() << endl;

dvd.set_a(3);
dvd.set_b(3);

cout << ++lineno << ’ ’ << "dvd.a = " << dvd.get_a()
<< " dvd.b = " << dvd.get_b() << endl;
return O;
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The following diagram is the inheritance hierarchy. The dashed lines indicate that the
inheritance is wirtual. The keyword virtual maybe added to a base class specifier
in the definition of the derived class. The members of the base class will be shared,
as opposed to duplicated by every class that specified the base class to be wirtual
Hence DeepVirDerived has only one instance of the members of Base; in this case
specifically, instances of DeepVirDerived have only one a. On the other hand, instances
of DeepDerived have multiple instances of a. Both DeepDerived and DeepVirDerived
have two instances of b (and methods set_b and get_b) and this cannot be prevented.

Base

Derived_1 Derived_2 VirDerived_1 VirDerived_2
| /\

DeepDerived DeepVirDerived

The output of the program is:

Base: :Base()
Derived_1::Derived_1()
Base: :Base()
Derived_2: :Derived_2()
dd is declared

Base: :Base()
Derived_1::Derived_1()
Derived_2: :Derived_2()
dvd is declared

10 dd.a = 0 dd.b = 0

11 dvd.a = 3 dvd.b = 0

O© 00N O WN -

Because dd has two instances of a, the constructor on each instance is called (lines
1-4), while there is only one constructor Base::Base() needed for dvd because it
has only one copy of the members from Base. Both, however have multiple copies
of b, set_b and get_b. This ambiguity must be resolved, hence get_b and set_b
must be reimplemented to specify which version to be used. Both examples show a
faulty resolution and hence demonstrate the existence of the two copies of b. The
ambiguity also exists for a, set_a and get_a in class DeepDerived, but this ambiguity
is automatically resolved in class DeepVirDerived by wvirtual inheritance. This simple
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example demonstrates the complications arising from the use of multiple inheritance.
In the second part of the lecture notes we look at techniques to avoid it and still giving
objects multiple logical roles.

4.7 Notes on Syntax and Semantics

The C struct and C++ class are very different. The fact is that many C++ applica-
tions today use old C libraries with C structs. C structs have only data fields (which
may be function pointers) but no member functions. To declare a variable of the C
record type, one must use the struct keyword.

struct S {
int a;
double d;
};

struct S f(int i, double e) {
struct S s;
s.a = i;
s.d = e;

return s;

}

If S were a C++ struct instead — which declares a class with all its fields public — then
f would be defined as:

S f(int i,double e) {

S s;

s.a = 1i;
s.d = e;
return s;

}

The way C and C++ structs are stored is different as well. As C++ structs are classes
as well the descriptors store extra information, such as pointers to the virtual function
table, run-time type information, etc. Because the types are incompatible, such code
compiled by a C compiler has to be linked in a different way. As type definitions are
usually placed in header files, when you include C headers place them into an external
linkage block. Suppose the C typedefs with the C structs and function prototypes are
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in a header file "defs.h" and the implementation was compiled by a C compiler. Then
to include and use these functions and types in a C++ application place the definitions
into the block:

extern "C" {
#include '"defs.h"
}

This will instruct the compiler that the prototypes and structs in "defs.h" are C style
and they were built by a C compiler.

Often beginner programmers are confused by the use of the scope resolution operator
— ::. This operator is used to designate which class the method or member belongs to.
It is very often the case that more classes have a method with the same name. When
the method is defined it must be known which class it belongs to:

class A {
public:
void foo();
};
class B {
public:
void foo();
};

void A::foo() {
// A’s foo

}

void B::foo() {
// B’s foo

}

The scope resolution operator is also used to access a method in a super class.

class A {
public:
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void foo();
};

class B : public A {
public:
void foo();

};

void B::foo() {
A::foo(); // call A’s foo
}

If we did not explicitly specify A::foo() then a simple foo() would be a recursive
call. It is indeed often the case that the method which reimplements the inherited
one needs to use the original implementation. A classical example is the assignment
operator. If the assignment operator is overloaded, it is almost certain that it should
call the assignment operator of the super class — which is not done by default.

The this pointer is accessible in instance methods and it stores the address of the
object which invoked the method. The assignment operator returns a reference to
itself (the left hand side of the assignment) but how would it know what “itself” is?

A% A::operator=(const A&) {

return *this;

A al,a2,a3;

al = a2 = a3;

Here the order of evaluation is al = (a2 = a3). In other words first a2 = a3 is
evaluated and its result sets al. To be able to this chain of assignments the assignment
itself must have a value. The value of course is the left hand side which is only accessible
via the this pointer.

Constructors and destructors are also the source of a lot of confusion for beginners. The
root of the problem is that in C++ not all objects are dynamically allocated. In Java
and SmallTalk objects must explicitly be created by the new operator. C++ does not
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have a garbage collector which means that memory deallocation is the programmer’s
responsibility. The constructor is implicitly invoked when an instance is declared and
by the new and new[] operators. The destructor is implicitly invoked when the instance
leaves scope and by the delete and delete[] operators. When an object is passed
by value, a copy of it must be created on the stack and it is achieved by the copy
constructor. Similarly when a method or function returns an instance by value, a copy
created by the copy constructor is left on the stack to be picked up by the caller. Not
being familiar with this mechanism can lead to very hard to detect problems. First
the programmer must understand what a “copy” of the object should look like. In
particular, if it has pointer instance variables which hold the addresses of dynamically
allocated objects then should a copy of the object share this dynamically allocated
memory chunk or should it create its own copy? There is no definite answer and either
way is just as common in practice. The former way — sharing memory — is much more
complicated to handle. For example, if the destructor calls delete on this variable
it may delete it for many other instances as well. Once it is understood how a copy
should look like, an appropriate copy constructor and destructor must be designed. In
case of memory sharing, it may be necessary to use instance counters to keep track of
how many pointers are pointing to the shared piece of memory.

class A {
private:
int *a;
public:
A(const A&) {
a = new int;
*a = A.a;

}
}

class B {
private:
int *b;
public:
“BO) {
delete b;
}
};

In the above examples instances of class A and class B have a dynamically allocated
instance variable, but A has a copy constructor and no destructor and B has a destructor
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but no copy constructor. If an object of type A is passed by value, then a copy of it
is created on the stack which will be destroyed by the destructor. As there is no
destructor declared, the default action is “nothing”, hence every time an instance of
class A leaves its scope or passed by or returned by value there is a memory leak.
When instances of class B are passed by or returned by value a temporary copy is
created on the stack by the copy constructor. As it does not exist the copy created
will share the instance variable a. When the function is popped from the stack, the
destructor gets called which will delete a for the original object as well because of
memory sharing. In general it is important to understand that if there are dynamically
allocated instance variables or there is aliasing the constructors, the destructor and the
assignment operator must be carefully designed. If there is a need for a destructor, the
chances are you also need an appropriate copy constructor and assignment operator.
Sometimes it is unacceptable to pass instances of a particular class by value because
they are so complicated or big that the copy created would consume too much memory
or it would take too much time to create it. In that case, it is advisable to declare a
copy constructor and an assignment operator and make them private. This guarantees
that the code will not compile if instances of the class are attempted to be passed or
returned by value.

It is also very important to understand how the constructor-destructor mechanism
works together with inheritance. It is the rule in every object oriented language that
the constructor of the base class implicitly calls the constructor of its super class before
its executes its own code. The constructor called is the default constructor unless it is
explicitly specified otherwise. The reason for this implicit call is that instance variables
declared in the super class must also be initialized. To avoid multiple initialization,
non-default constructors of the base class should propagate parameters by invoking
the appropriate constructor of the base class. This can only be done by the initializer.
The initializer syntactically is a colon followed by a comma separated list after the
parameters and before the {. The elements of the initializer are either instance variable
settings or a call to a constructor of the base class (which overrides the implicit call to
the default constructor of the super class). If there is an instance variable whose class
does not have a default constructor then it can only be initialized by the initializer.

4.8 Exercises

4.1 Give an example where it is undesirable to create a logical or deep copy of an
object by the copy constructor and/or the assignment operator! Give a small
example (as a C++ code fragment) of an appropriate destructor.

4.2 Give an example where you would use a class declared by the union keyword.
Hint: such a class would probably be an instance variable of a “wrapper” class!
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Give a concrete C++ code example with two classes — Base and Derived —
and a resource foo, where not explicitly calling a non-default constructor of the
base class causes a serious problem such as memory leak, loss of a resource or
irrecoverable inconsistency.

class Base {
public:
Base() {

Base(foo f) { // non-default constructor

}s

class Derived : public Base{
public:
Derived(foo f) { ... } // causes a serious problem
Derived(foo f):Base(f) { ... } // ok

}s

Explain!

Implement a class smart_object which keeps a count how many other objects are
pointing to it. Also implement a class smart_array which has an array of pointers
to smart_objects. When the destructor deallocates an instance of smart_array
it deallocates the object it holds if and only if it has a reference count of 1. In
other words, the array slot has the last pointer pointing to the object. Design
and implement a very tiny application which demonstrates smart_array and
smart_pointer.
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5.1 Class Variables and Methods

Instance variables belong to the specific instance, however it may make sense to share
variables and methods across all instances of the class. For example a class variable
may keep track of how many objects of the class are allocated at any point when the
application is running. Class variables and class methods belong to the class, not to
the instance, hence there is only one physical manifestation of a class variable and all
instances share this common copy. The lifetime of a class variable is the entire program
and its scope is all instances of the class. Class variables are physically allocated in the
program text. Similarly, class methods belong to the class and they can be invoked
— if public — even if no instances are currently allocated via the class name and the
scope resolution operator. Class methods usually maintain and query the values of
class variables and they perform tasks which logically belong to the class but there is
no need for an actual instance to accomplish the job. The static keyword declares
a variable or a method in the class definition to belong to the class and not to the
instance. Class variables and methods are very useful to implement and maintain
defaults'. The following is an example of sharing variables between all instances of the
class using static variables and methods.

!memory allocation of new instances of the class in SmallTalk is always a class method, that is, the
request new is sent to the class to ask for an instance. C++ , however, does not follow this elegant
method of creating instances, because the new operator is global which may be overridden for a specific
class

105
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Bee
Flower buckgt
capacity
nectar - F
static

\“““‘l‘l‘i NN ,

#include <iostream.h>
#include <stdlib.h>

class Flower {
protected:
int nectar;

public:
Flower(int i=5):nectar(i) {

}

int give_nectar() {

if (nectar>0) <
nectar--;
return 1;

3

return O;
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}

int empty() {
return nectar == 0;

}

void assess_capacity(char* name) {
cout << name << " has " << nectar << " amount of "
<< "nectar left" << endl;

}
};
class Bee {
protected:
static Flowerx F;
int bucket;

int capacity;

public:
Bee(int i=5) :bucket(0),capacity(i) {
}

void collect() {
if ( bucket < capacity) {
bucket += F->give_nectar();

3

int full() {
return bucket == capacity;

3

static void Send_to_flower (Flower *f) {

void assess_performance(const char * name) {
cout << name << " collected " << bucket << " amount of nectar "
<< "and his bucket is " << (full()?"full":'"not full") << endl;
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Flowerx Bee::F = NULL;

int main(void) {

Flower daisy(3);
Flower ewelina(4);
Flower magenta;

Flower *field[] = { &daisy, &ewelina, &magenta };
char* flower_name[] = { "daisy","ewelina",'"magenta" };

Bee attila(4), joel(6), eugene;
int flower_index = O;
Bee::Send_to_flower(field[flower_index]); // setting the static variable

while ( ('attila.full() || !joel.full() || !eugene.full() )
&&
(tdaisy.empty() || !ewelina.empty() || !magenta.empty())) {

if (field[flower_index]->empty() && flower_index < 2) {
flower_index++;
Bee::Send_to_flower(field[flower_index]) ;

}

switch(random()%3) <

case 0: attila.collect();
cout << "attila <- ";
break;

case 1: joel.collect();
cout << "joel <- ";
break;

case 2: eugene.collect();
cout << "eugene <- ";
break;

}

cout << flower_name[flower_index] << endl;
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attila.assess_performance("attila");
joel.assess_performance("joel");
eugene.assess_performance ("eugene") ;

daisy.assess_capacity("daisy");
ewelina.assess_capacity("ewelina");
magenta.assess_capacity('magenta");

return O;

A typical run is:

attila <- daisy

attila <- daisy

joel <- daisy

eugene <- ewelina

joel <- ewelina

attila <- ewelina

attila <- ewelina

joel <- magenta

joel <- magenta

joel <- magenta

attila <- magenta

eugene <- magenta

eugene <- magenta

attila collected 4 amount of nectar and his bucket is full
joel collected 5 amount of nectar and his bucket is not full
eugene collected 3 amount of nectar and his bucket is not full
daisy has O amount of nectar left

ewelina has O amount of nectar left

magenta has 0 amount of nectar left

And now the story: attila, joel and eugene are three friends who regularly fly out to
collect nectar from their flower friends daisy, ewelina and magenta. In fact, they are
so much inseparable that they always collect from each flower together until it has no
nectar left. An average bee is capable of carrying 5 amounts of nectar in his bucket,
but attila is somewhat smaller, so he can only carry 4 amounts while joel can carry 6
amounts. The flowers produce 5 amounts of nectar a day, but this nice spring morning,
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daisy only produced 3 amounts and her sister ewelina produced 4 amounts?. The rest
of the story is the program’s output.

F is a static variable, which belongs to class Bee, as opposed to the instances. In fact
there is only one F for the entire class. Send to_flower is a static member function,
which can be called without an instance. The program shows how a message through
a static method can be used to change the behavior of all instances of the entire class,
without explicitly notifying each instance. The static variables and methods are also
available through the instances, so attila.Send to_flower(...) is a valid call.

Class members and methods can also be used to designate a namespace. Before names-
paces became standard in C++ , they could be simulated by public class methods. As
an example:

class Math {
public:
static double sin(double);
static double log(double);

double d = Math::sin(3.14);

To perform these trigonometric functions, there is no need for an actual instance of
Math, but they do logically belong to a common entity.

5.2 Friend Classes and Functions

C++ allows free functions, methods of another class or an entire other class to have
access to private variables and methods of a class, if this class specifically grants this
access privilege. A class can explicitly declare a function or a class friend with the
friend keyword.

class C; // forward declaration, so Friendly sees C
class Friendly; // forward declaration, so B sees Friendly

class B {

2while attila, joel and eugene are males, in reality male bees are not involved in the work of collecting
nectar or producing honey, their main function is reproduction
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public:
int see_Friendly(Friendly);
+;

class Friendly {
private:
int a;
char b;

public:
Friendly():a(1),b(’a’) {
}

friend class C;
friend int B::see_Friendly(Friendly);
friend void foo(Friendly);

+;
class C {
private:
int c;
public:
void set_C(Friendly f) {
c =f.a;
}
};

int B::see_Friendly(Friendly f) {
return f.a;

}

void foo(Friendly f) {
int ¢ = f.a;

};

The access granted by friend does not inherit: class Mean: public Friendly
would not grant access to any of the functions privileged by Friendly.
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5.3 class vs. struct vs. union

In C++ it is also possible to define a class with the union and struct keywords. If
the struct keyword is used to define a class then by default all members are public, as
opposed to a class defined by the keyword class whose members are private by default.
If the access modifiers are explicitly specified for each member, the class declared by
struct is the same as if it were declared by class. On the other hand, a class defined
using the union keyword is different from classes defined by the class and struct
keywords. Like the C union, an instance of such a class shares the address space for
the data members!

#include <iostream.h>

union U {
private:
char string[sizeof (int)];
int integer;

public:
U(int i=0):integer(i) {
}

int get_integer() {
return integer;

}

char*x get_string() {
return string;
}
s

int main(void) {
U u(123456);

cout << "u.integer = " << u.get_integer() << endl;
cout << "u.string = ";

for(int i=0;i<sizeof (int) ;i++)
cout << ’[’ << (int) (unsigned char)u.get_string() [i] << ’]’;

cout << endl;

return 0;
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3

The output of the program on my machine:

u.integer = 123456
u.string = [0][1][226] [64]

5.4 Inline Methods and Embedded Classes

C++ provides the inline mechanism to replace function calls with a substitution of
their implementation. This results in faster execution speed. For example, if the
length method of a list is defined inline, whenever the method is called, there is no
function invocation. The call is appropriately replaced by the body.

class List {
private:
int size;

public:
inline int length();

};

inline int List::length() {
return size;

3

The compiler may ignore the inline specifier and implement the method with a real
function. By default, if the body of a function is given within the class definition, it is
treated inline.

It is also possible to define a class within a class. In such a case, instances of the
embedded class can only be created by the class, which defined the embedded class.

class Quter {
private:

class Inner {
public:
int a;

};

Inner I;
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public:
int foo() {
return I.a;
}
};

Of course embedded classes can be nested in embedded classes as well. When a method
of an embedded class is implemented in another file it must be explicitly defined which
class(es) it belongs to — using the scope resolution operator : :.

class Outer {

protected:

class Inner {

protected:
Inner(); // constructor
“Inner(); // destructor

void foo(int) const; // a method

};

// constructor
OQuter::Inner: :Inner() {

// destructor
OQuter: :Inner:: Inner() {

// the foo method
void Quter: :Inner::foo(int a) const {
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5.5 The Role of the Constructors and the Destruc-
tor

In general constructors initialize objects and the destructor releases resources associated
with the instance. When an instance of a derived class is initialized, the compiler must
make sure that members of the base class are initialized as well. However, it is a
common misconception that this is achieved using the inheritance mechanism. The
following OO axioms should clarify why and how implicit mechanisms are used to
properly create, initialize or destroy instances.

Constructors do not inherit!

Instead the constructor of the base class first implicitly calls the default con-
structor of the parent class. It is possible to explicitly override the default
constructor by another constructor of the base class, using the initializer.

class Base {
private:
int i;

public:
Base():i(-2) { }
Base(int _i):i(_i) { }
};

class Derived : public Base {
private:

int j;

public:
Derived():j(-3) { }

// Base() is implicitly called!!, i = -2
Derived(int _j):j(_j) { }
// Base() is implicitly called!!, i = -2

Derived(int _i,int _j):Base(_i):j(_j) { }
// Instead of Base() Base(int) is called
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It is clear why both Base and Derived could not be initialized if construc-
tors inherited: if Derived() could override Base (), then Base() would not
be called; if Derived () is not implemented and constructors inherited, then
the members introduced in Derived would not be initialized.

The destructor does not inherit!

The reasoning is analogous. If the destructor inherited, either members
introduced in the base class or members introduced in the derived class
would not be deallocated. The destructor of the derived class first executes
its own code and then the destructor of the base class gets called implicitly.

The assignment operator inherits!

Operators implemented as instance methods are just like any other instance
method: they inherit. This however is seldom what the programmer wants,
because either members introduced in the base class or members introduced
in the derived class will not be assigned. In other words, the assignment
operator’s implementation in the derived class should make an explicit call
to the assignment operator of the base class.

class Base {
public:
Base& operator=(const Base& b) {
return *this;
}
+;
class Derived: public Base {
public:
Derived& operator=(const Derived& d) {
Base::operator=(d); // explicit call
return *this;

};

Implicit calls to the constructors and the destructor
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e Whenever an instance or an array of instances of a class is statically declared,
the default constructor is called: Foo f; Foo af[10]; In the case of the array,
the default constructor is called on each and every slot once. The destructor
on these slots will be called in the exact opposite order.

e Whenever an instance or an array of instances is created dynamically by the new
or new[] operator the default constructor is called: Foo *f; f = new Foo;

e All constructors of the derived class implicitly call the default constructor
of the base class first, unless another constructor of the base class is specified
explicitly (in the initializer).

e Whenever an instance is passed by wvalue, the copy constructor is used to create
a copy of the instance on the stack.

e Whenever an instance is returned by wvalue, the copy constructor is used to create
a copy of the instance returned.

e If there is a constructor of Foo which takes an instance of type T (Foo::Foo( T
t)), then whenever a T object is used in a context where an instance of Foo or a
reference to a Foo is expected the constructor is implicitly called to create a tem-
porary object. void funl(Foo f); void fun2(const Foo& f); Foo f; T t;
funi(t); fun2(t); // in both cases a temporary Foo is created from t

e Whenever a statically allocated instance or an array of instances is leaving its
scope, the destructor is called.

e Whenever a dynamically created instance or array of instances is deleted by the
delete or delete[] operator, the destructor is called.

e The destructor of a derived class implicitly calls the destructor of the base class,
after its code has been executed.

5.6 Exception Handling

Exception handling is very different from traditional error handling. Both error han-
dling and exception handling deal with run-time errors. Often the programmer has the
ability to detect a run-time error:

int a, b;
cin >> a >> b;

if (!cin) // Something is wrong,
// possible non integer values
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The situation is more complicated, when the programmer bundles the implementation
into a library of functions, classes and namespaces and this library is used to implement
applications. The author of the library is able to detect run-time errors but it is the
programmer of the application who may know how to handle them. The obvious
solution is to propagate the error to the application program from the library stopping
the line of execution at the point of detection and gracefully cleaning up stack frames
and temporary resources while returning from nested calls. This mechanism is called
exception handling and it is “built into” ANSI C++ . Most pre-ANSI compilers do not
implement this mechanism or it is not portable. Many compilers still require a special
compiler flag to be “on” to handle exceptions. This mechanism is powerful and allows
the programmer to implement sophisticated run-time error handling. However a large
part of programs still rely on the “old” C libraries (stdio, stdlib, math, /X11/Xlib, ...)
which were written long before exceptions were introduced into the language. As C4++
did not always have exceptions, there are also many C++ libraries in use today which
do not utilize the exception mechanism.

An exception can be thrown when a run-time error is detected. As soon as the exception
has been thrown — no matter how many nested function calls deep it happened —
the function stack frames are gracefully cleaned up and propagation of the exception
continues until a piece of code is willing to catch it. An exception could actually be an
instance of a class that the user can define to carry the “description” of the error. The
piece of code where the programmer expects the error to occur must be placed into a
try block:

try {
// .. a run-time error may occur
// here

} catch (Exceptionl el) {
// if error is of type Exceptionl
// handle it here

catch (ExceptionN en) {
// if error is of type ExceptionN
// handle it here

} catch (...) {
// catch every type of exception
// handle it here

}

Exceptionl, ..., ExceptionN are classes that the programmer can define. As soon
as an exception is thrown in the try block, the logical thread of execution continues at
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the catch block with the same type as the exception. If the exception is not caught
(there is no catch block with a matching declaration) the exception further propagates.
If the exception is not caught in main, the program terminates with a run-time error.
An exception can also be “partially” handled and “re-thrown” in the catch block, by
inserting a simple throw; clause. The example below is somewhat unusual in the
sense that it not only detects the error, but it also handles it. If a lower salary than
the minimum is assigned, the salary is automatically raised to the minimum by the
handler. The clause

try {
// whatever

} catch (...) {
// handle

}

catches all exceptions. ... (or ellipsis) is actually part of the syntax?.

Employee

EmployeeSalaryException « assignSalary(double)

ﬂl throws
| |

TooHighSalary TooLowSalary

#include <iostream.h>

class Employee {
protected:
double _salary;
char* _name;

void copy(double d, char* n) {
if (_name != NULL) delete [] _name;
if (n!=NULL) {
_name = new char[strlen(n)+1];
strcpy(_name,n) ;

}

3as a related topic, see how can one pass a variable number of arguments to a function or method
in the Appendix
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_salary = d;
}
public:

static double MINIMUM_SALARY;
static double MAXIMUM_SALARY;

Employee(char* n=NULL) : _name (NULL) {
copy(-1,n);
}

Employee(const Employee& e):_name(NULL) {
copy(e._salary,e._name);

}

Employee& operator=(const Employee& e) {
copy(e._salary,e._name);
return *this;

}

virtual “Employee() {
delete [] _name;
_name = NULL;

}

void assignSalary(double);

double salary() {
return _salary;

}

char* name() {
return _name;

}
};

class EmployeeSalaryException {
+

class TooLowSalary : public EmployeeSalaryException {
+;
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class TooHighSalary : public EmployeeSalaryException {
3

void Employee::assignSalary(double d) {
_salary = d;
if (d<MINIMUM_SALARY) throw TooLowSalary();
if (d>MAXIMUM_SALARY) throw TooHighSalary();

}
double Employee::MINIMUM_SALARY = 5000;
double Employee::MAXIMUM_SALARY = 50000;

int main(void) {

Employee staff[3];
Employee susan('"suzan"),jerry("jerry"),vera('"vera");

staff[0] = susan;
staff[1] = jerry;
staff[2] = vera;

for(int i = 0;i<3;i++) {
try {
staff[i] .assignSalary(4000+(30000%i)) ;
} catch(TooHighSalary e) {
cout << "Too high salary: " << staff[i].salary() << endl;
staff[i] .assignSalary(Employee: :MAXIMUM_SALARY) ;
} catch (TooLowSalary e) {
cout << "Too low salary: " << staff[i].salary() << endl;
staff[i] .assignSalary(Employee: :MINIMUM_SALARY) ;
}
}

for(int i=0;i<3;i++) {

cout << staff[i] .name() << " earns: $" << staff[i].salary() <<

}

return O;

121

endl;
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The output of the program:

Too low salary: 4000
Too high salary: 64000
suzan earns: $5000
jerry earns: $34000
vera earns: $50000

5.7 Pointers to Member Functions

It may be necessary to invoke a member function on an object without actually referring
to its name. Such a mechanism may implement a policy: a pointer to a member function
is passed to a function or method together with an object. The member function is
called on this object pointed to by the pointer. This can facilitate a run-time user or
event driven decision on the actual method to be invoked on the object.

class A {
public:
// a static or class function
static int foo0();

// a pure virtual or abstract method
virtual void fool() const = 0;

// a method
int foo2(const char*);

};

class B: public A {
public:
// overloaded function
virtual void fool() const;

};

int (xp0) O);
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pO = A::fo00;
p0Q);

A* a= new B;
B b;

void (A::* pl) () const = &(A::fool);
void (B::* p2) () const = &(b.fool);
int (A::x p3)(const charx) = &(a->fo02);

(a=->xp1) () ;
(b.*p2) O;
(b.*p3) ("hello");

pO is a pointer to a function which takes no parameters and returns an int. A: :f000 is
a static or class function of class A which also takes no parameters and returns an int.
Hence A::foo0 can be assigned to p0 and called via p0. In other words, a static or
class function works the same as regular functions with respect to being passed, called
or assigned to pointers.

This of course cannot be true for methods or member functions because they belong
to the instance and they need access to the object’s instance variables. Hence to call
a member function via a pointer we will need a pointer to the member and an object
as well! Syntactically a pointer to a member function is declared similarly to a pointer
to a function, but the scope resolution operator is needed to identify what class the
method belongs to.

void (A::x p1)() const;
void (B::* p2)() const;
int (A::* p3)(const charx);

pl is pointer to ¢ member function of class A which takes no arguments and has no
return value. The method must also be const. pl can hold the address of any such
method of class A. p2 is the same in prototype as pl however it must belong to class B.
Let’s pause here for a bit. Class B is a subclass of class A so can p2 be assigned A: :foo1?
The answer is no and as we shall see in a bit, a pointer to a member function is not
exactly like a function pointer. p3 is a pointer to a method of class A which returns an
int and takes a const charx.

No let’s see the assignments.



124 CHAPTER 5. CLASSES II.

pl = &(A::fool);
pl = &(a->fool);
p2 = &(B::fo02);
p2 = &(b.fo002);
p3 = &(A::f002);
p3 = &(a->f002);

It is irrelevant whether we obtain the address via an existing object — 7.e. a or b — or
actually via the class. Remember p1, p2 and p3 are pointers to member functions so
they cannot be called unless there is an object is designated. Member functions belong
to the instance and they need an instance. So let us take a look at the actual calls.

(a->*p1) () ;

(b.*xp1) O;

(b.*p2) O ;

int k = (b.*p3) ("hello");
(a=->*p3) ("world");

As we already indicated, we need an object and the pointer to the member function.
The pointer to the member function cannot be an address in the same sense as a regular
function pointer because it may not be resolved compile time. fool is a pure virtual
function which means that the actual fool belongs to one of A’s subclasses. But this
will need dynamic binding. So what does a pointer to member function represent if
it may not be possible to have it resolved to a unique address unless the object (or
at least its concrete type) is known? The pointer to the member function is actually
like an index into the object’s descriptor or virtual function table which is resolved to
the unique address by selecting it from the actual object’s descriptor run-time. To be
able to do that some syntax must be introduced. Let p be a pointer to a method of
class A, a be a pointer an actual instance of A or its subclasses and let b be an instance
of A or its subclasses. Then the calls to the method pointed to by p on the instances
referenced by a and b are

(a->*p) (.../* parameters */)
(b.*p) (.../* parameters */)

->* is the operator combination which is needed to invoke the method if the object
is identified by a pointer and .* is the operator sequence needed to call the method
on an actual instance. Note that in (a->*p1) () pl is actually A::fool which is an
abstract method and the type of a is A but the actual instance is of class B. Because of
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the run-time resolution (run-time polymorphism) the method B: :fool is called on the

instance pointed to by a. To understand run-time polymorphism (or dynamic binding)
and virtual functions you need to read the next chapter as well.

5.8 Notes on Syntax and Semantics
The role of the constructors and the destructor has been extensively reviewed in this
lecture. Every C++ programmer must know it by heart to avoid endless frustration of
debugging. Many coding problems — often committed by “professional” programmers
— are due to not knowing how these mechanisms work. As an advice, write some code
which demonstrates every point made in that section and also write code which would
cause problems by not using the mechanism properly. This way you should be prepared
for not only exams but to be able to identify memory leaks and segmentation faults
popping up from “nowhere”. If you think you may need C++ , this would be time well
invested. Here is a list that you should be able answer and write code to demonstrate
it.

e when does one have to implement a copy constructor?

e what can go wrong if a class has a destructor but no copy constructor?

e what can go wrong if a class has a copy constructor and no destructor?

e what is the initializer and what are the situations when it is absolutely necessary
to use it?

e how do constructors initialize instance variables declared in the super class?
e how does the destructor clean up instance variables declared in the super class?

e how does (or rather should) the assignment operator assign values to instance
variables declared in the super class?

e when does one not need to implement the copy constructor, the assignment op-
erator and the destructor?

e how do instance variables with no default constructors get initialized?
e how do temporary objects get implicitly created and in what situations?

It is also an appropriate place to review the meaning of static in C++ .
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e static global variable and function: a variable declared outside of functions

and methods in a file makes this variable global to the file where it is declared.
The purpose is that the identifier associated with the variable will not have a
name clash with variables having the same name in other files. In essence such
a variable is global but is only visible in the file it is declared. The same way, a
static function is only visible in the file where it was declared. When a compiler
encounters static global variables and functions, it does not generate symbolic
information for the linker so it does not know that they exist.

static local variable: a variable declared locally in a function or method is
allocated at compile in the program text — rather than on the stack — but is only
visible inside the method or the function. This creates the effect that the variable
retains its last value from call to call.

static member function and variable: they belong to the class rather than
to the instance. Static instance variables are also allocated at compile time —
rather than by the constructor. Such variables (class variable) are only directly
visible between instances allocated and hence they share the same physical copy.
A static member function (class method) also belongs to the class rather than to
the instances. Class methods can be used to maintain (set, get, update) values of
class variables. In some object oriented languages instance creation is achieved
by class methods. They can also be used to implement functions which logically
should be performed by the class but there is no need for an actual instance to
do the computation.

The inline mechanism is also quite misunderstood by many programmers. A method
or a function declared inline is replaced by its body to spare a function call, which
of course makes it much faster. However one must be very careful how to use this
facility. There is a mystery suggested by some authors that short functions and methods
should be made inline. The problem with this heuristic is that the number of lines
implementing the function is a false measure of the structure of the function and hence
it is an inappropriate guide to use. The programmer should understand what it really
means that a call is replaced by the body of the function at compile time and should
be able to identify those situations where it is impossible. The following is a list where
it is impossible or at least inadvisable to make the function or method inline.

e virtual functions

e recursive functions cannot be inline — this would result in infinite replacement.

* cannot be inline because run-time polymorphism — run-time

1mwvocation of the appropriate version of the operation — cannot be decided compile
time.

4

we will discuss virtual functions and polymorphism in detail later
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e inline functions cannot be passed to other functions and methods as parameters
because they are not functions.

e dynamically linked functions and methods cannot be inline - again they are
not functions.

e when debugging inline functions, the debugger does not know where to put the
cursor. Some debuggers get around this by generating two code streams: one
optimized and one without inlines and other optimizations turned off for de-
bugging. This often results in the well known phenomenon that the “debug
version works” but the “optimized does not work”. Again, in this case it cannot
be blamed on the compiler!

e instances passed and returned by value passed to the inline function or method
may not be replicated (as they may not be needed). However, not knowing this
may result in virtually undetectable side effects.

e and finally an argument for long (many line) functions: excessive replacement
with the function body can result in huge program text (ezecutable files).

In short, do not use inline unless you know exactly what you are doing. And do not
use inline until you have debugged your code. It is also true that methods imple-
mented in the class definition (or in essence in the header file) are inline by default.
However, remember that the compiler may choose to ignore the inline specifier. I
believe explicitly specifying what should and what should not be inline is the most
appropriate — at least it gives the impression that some thought was put into the deci-
ston. Besides, the compiler may not be smarter than you.

Friend classes and functions should also be used with care and understanding is essen-
tial. I think they should be avoided as much as possible. It is of course often beneficial
that one class can access private members of another class without invoking a public
method. The benefit in this case — and in most cases with friend — is speed. However
this speed can often be achieved by creating a public method which sets or gets the
variable of the other class and making it inline. The real problem with friend classes
is that the privilege granted in the class does not inherit to the derived classes and it
violates information hiding in the sense that one class must be aware of the structure of
another instead of going through an interface. There are some examples where friend
is the easiest way to go but they very rarely occur.

Embedded classes are a new edition to ANSI C++ and they are also present in Java
1.1 (and higher). Embedded classes further improve the encapsulation and information
hiding capabilities of object oriented programming. Often one class necessarily needs
another. For example, linked data structures need a building block class (often called
the “node”). Tt is irrelevant for the user of the data structure what an actual node
really is but how can it be totally hidden when it has to be defined. One way to
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hide it — without embedded classes — is to declare a class node and make all of its
members (including the constructor) private and give friend access privileges to the
data structure class. To be able to define node inside the data structure class is
even better. For one reason it would be visible in derived classes while the friend
privilege would not inherit. Also this way the internals can be entirely hidden behind
an interface.

Exception handling is the best attempt so far to write programs that can easily detect
and react to unusual situations. Exceptions are not necessarily errors and are often
recoverable. The biggest contribution of this mechanism is the automatic propagation
of the exception to the level where it can finally be handled while resource cleanup
is in the process. As exceptions are instances of classes themselves, the programmer
can also propagate context information which can help in diagnostics and potential
recovery. An exception can also be partially handled by throwing the exception from the
catch block. The following small example demonstrates how exceptions can propagate
context information and provide partial handling and recovery:

class login_exception {

+;
class unknown_host_exception : public login_exception {
protected:
char host[128]; // computer on network
public:

unknown_host_exception(const char* host_name) {
strcpy(host,host_name) ;

}

const char* get_host() const {
return host;

}
+;
class unkown_user_exception : public login_exception {
protected:
char user[128]; // user on host
public:

unknown_passwd_exception(const char*x u) {
strcpy(user,u) ;
}

const char* get_user() const {
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return user;

void network::login(const char* host, const char* user) {
Host H;

try {

H = connect (host);

} catch (unknown_host_exception& e) {
cerr << "host " << e.get_host() " does not exist!" << endl;
char new_host[128];
cout << "Enter a new host name: ";
cout.flush();
cin >> new_host;
login(new_host,user);
return;

} catch (login_exception& e) {
cerr << "connection error" << endl;
throw e;

char passwd[128];

cout << "Please enter your password: ";
cout.flush();

cin >> passwd;

try {
H.login_user (user,passwd) ;
} catch(unknown_passwd_exception& e) {
cerr << '"no user" << e.get_user() << endl;
char new_user[128];
cout << "Enter user name: ";
cout.flush();
cin >> new_user;
cout << "Enter your password: ";
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cout.flush();
cin >> passwd;
H.login_user(new_user,passwd);

} catch(login_exception& e) {
cerr << "invalid login" << endl;
throw e;

}

The login method tries to be forgiving. The connect method attempts to make a
socket connection to the host computer. If the host name is incorrect it allows for
more attempts. If the exception is something other than unknown host name, then the
message "connection error" is printed and the exception is thrown again (partial
handling). The other potentially troublesome spot is the login_user method. Again
if the user is unknown on the host another try is attempted but the exceptions are
not caught for the second try. If the exception is something other than unknown user
then the message "invalid login" is printed and the exception is thrown again to be
potentially caught by the caller.

5.9 Exercises

5.1 In SmallTalk new (instance creation) is a class method. In C++ , instances are
created by the new operator which calls the constructor. However C++ cannot
provide a universal operator which creates an instance from a logical serialized
form (input stream). Consider the following declaration of the create method,
which instantiates an object of class A (or A’s subclass) from a stream.

class A {
public:

static A* create(istream&);

/* return a new A (B or O)
read from the stream */

-

class B : public A {

.
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2.2

9.3
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class C : public A {

.

Explain (in words), why it is a good (or bad) idea, to implement instance creation
from a stream as a class method! Are there other options?

Given the following class definitions:

class A {
public:
AO {}
A(const A&) { }
~AO { }
A% operator=(const A%) { }
}s
class B {
private:
A al2];
public:
BO { };
B(const B&) { }
~BO {}
B& operator=(const B& b) {
A::operator=(b);
}
}s
How many times and in what order the constructors and destructors of A and B

are executed if the following function is called:

B foo(B b) {
return b;
}

B b1,b2;
bl = foo(b2);
This exercise should clarify the construction and destruction mechanism. Feel

free to use the debugger to trace through the code. Add print lines to each of the
constructors, destructors and assignment operators.

We mentioned that the C+4 compiler may choose to ignore an inline specifier.
Give concrete examples when it must ignore the inline specifier.
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Chapter 6

Polymorphism

6.1 Polymorphism

Polymorphism is a mechanism which allows different implementations of the same
function to exist in an application, with run-time resolution if needed. Run-time poly-
morphism is often referred to as run-time binding, dynamic binding or overloading.
There is still a need of uniqueness, so the compiler or the run-time environment, can
resolve the function reference without ambiguity. Because C++ does not have a run-
time environment (it is a compiler), run-time resolution only means that the address of
the function in question is obtained by an extra level of indirection®. These functions
must be declared wvirtual. On the other hand, often this resolution can take place at
compile time. We address these situations first.

A function, foo, may have different implementations, because it takes different type of
parameters or different number of arguments. This is called parametric polymorphism.

void foo(int);

void foo(char);

void foo(int,int= 5);

void foo(float);

void foo();

void foo(int *);

void foo(void *);

int foo(); // ambiguous: void foo()

1Object Oriented interpreters, like SmallTalk , with a run-time environment can do more sophisti-
cated resolution, and there are situations which a SmallTalk interpreter with the context knowledge
can resolve, but the C++ generated code cannot. The extra level of indirection can be implemented
quite efficiently but it involves using a compile time generated virtual function table

133
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char c;
void *v;
float f;

foo(a); // ambiguous: foo(int), foo(float), foo(char), foo(int, int=5)
foo(&a);
foo(v);
foo(f);

The above function prototypes are examples of polymorphic versions of foo, however
some of them are ambiguous. It is not possible to achieve polymorphism by just on the
return type. The call to foo(a) is ambiguous, because an int can be implicitly type
casted to a char or to a float.

We have already seen this mechanism for the constructor methods of objects, in fact,
the copy constructor and the default constructor of a class are polymorphic versions
of each other. Any method of a class can have an arbitrary number of (unambiguous)
polymorphic versions. There is one case, where run time resolution is needed. The
most powerful and elegant usage of polymorphism requires inheritance and method
overloading. Instances of the derived class are instances of the base class. Hence a
pointer variable to the instance of the base class can point to an instance of any of the
derived classes. If a method is overloaded in the derived classes then method invocation
through the pointer to the instance can only be decided run-time.

#include <iostream.h>

class A {
public:

void foo() { cout << "A::foo()" << endl; } // SHOULD BE VIRTUAL!
};

class B : public A {
public:

void foo() { cout << "B::foo()" << endl; }
};

int main(void) {
A a; B b;
Ax p = &b; Ak r = b;

p->foo();
r.foo();
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a=b;
a.foo();
return O;

+;
The output of the program is:

A::foo()
A::foo()
A::foo()

That is, in all three cases the wrong functions were called! The next section explains,
how to instruct the compiler to force run-time lookup of the appropriate overloaded
method implementation.

6.2 Virtual Methods

In the example above, the compiler made a static reference to A: :foo in all three cases.
In the case of p->foo(), the compiler knows that p is of type A*, hence the compiler
inserts a static reference to the method A: :foo into the object code. The same thing
happens in the case of r.foo() and a.foo(). r is known to be a reference to an object
of class A and a was declared to be an instance of class A. C++ , however provides
the virtual keyword to instruct the compiler not to insert a static reference into the
machine code for A: :foo, but to resolve the reference at run-time (dynamic binding),
depending on the actual object stored in the variable. The modifications to the code:

class A {
public:
virtual void foo() {
cout << "A::foo()" << endl;
}
};

class B : public A {
public:
void foo() {
cout << "B::foo()" << endl;
}
};

Now the output of the program is:
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B::foo()
B::foo()
A::foo()

All but one calls were of the proper function. The one that did not work is a.foo (), and
this cannot be fixed. This is because a=b does not change the descriptor of a, or in other
words, run-time polymorphism does not apply to statically declared objects?. Run-
time polymorphism only works for pointers and references! The following
program demonstrates an application of the use of run-time polymorphism.

Shape

area {virtual}

T

Circle Square

area area

#tinclude <iostream.h>
const double pi = 3.14159;
class Shape {

public:
virtual double area() = 0;

+;
class Square : public Shape {
protected:
double sidelength;
public:
Square(double 1=5):sidelength(1l) {
}

double area() {

2Expecting run-time polymorphism to work on statically allocated objects is a common mistake.
To be fair, this problem has no fix, because statically allocated objects are really allocated at compile
time. Java and SmallTalk solve the problem because all objects must be created dynamically with the
new keyword.
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return sidelength*sidelength;
b
s

class Circle : public Shape {
protected:
double radius;
public:
Circle(double r=3):radius(r) {
}

double area() {
return radius*radius*pi;
}
s

int main(void) {
const int length = 5;

Shape *shapes[length];

shapes[0] = new Square(2);
shapes[1] = new Circle(3);
shapes[2] = new Circle(5.2);
shapes[3] = new Square(4);
shapes[4] = new Circle(1);

double total = 0;
for(int i=0;i<5;i++) total += shapes[i]->area();

cout << "The total area of the " << length << " shapes: "
<< total << endl;

for(int i=0;i<5;i++) delete shapes[il;

return O;

3

The output is:

The total area of the 5 shapes: 136.364
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The method area of class Shape has no implementation; instead we set it to zero. This
means that area has no implementation in this class, but subclasses must implement
the method. A method declared this way is called pure virtual. Because the method is
not implemented, instances of the base class cannot be declared statically or cannot be
allocated by the new operator. Pointers and references of the class can point to or alias
instances of the non abstract derived classes. This makes Shape to be an abstract class.
Most hierarchies should have abstract classes on the very top. If a pure virtual method
is not overridden in the derived class then the derived class stays abstract. Abstract
classes cannot have instances directly in the system.

The use of run-time polymorphism is a bit more expensive, so it does not make sense
to declare all methods virtual. For example, area in the derived classes is not virtual.
The following heuristics serve as a rule of thumb:

e If a method may have a different implementation in a subclass, then the method
should be virtual

e If a method cannot be overridden or the class will not be subclassed, then the
method should not be wvirtual

e All classes which may be subclassed must have their destructor declared to be
virtual

Another use of run-time polymorphism is to insert hooks into an application. A hook
is an explicitly specified entry point which is not implemented but functionality can
be plugged in. This mechanism can also be used to extend a particular part of an
algorithm without actually touching the initial version.

Employee

bonus {virtual}
salary j

T

Manager

bonus

#include <iostream.h>
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class Employee {
protected:
double pay;
charx s;

virtual double bonus() {
return O;

public:
Employee (char* n,double d=10000) :
pay(d) ,s(new char[strlen(n)+1]) {
strcpy(s,n);
}

double salary() {
return pay+bonus() ;

}

char* name() {
return s;

virtual “Employee() {
delete[] s;
s = NULL;

};

class Manager : public Employee {
protected:
double extra;

double bonus() {
return extra;

public:
Manager (char* n,double d=15000, double b=1200):
Employee(n,d) ,extra(b) {
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};

int main(void) {
const int num_workers = 4;
Employee *department[num_workers];

department[0] = new Employee("john",12000) ;
department[1] = new Employee('"sally",21000);
department[2] = new Employee("jack",15000);
department [3] = new Manager("rita",28000);

for(int i=0;i<num_workers;i++) {
cout << department[i]->name() << " earns "
<< department[i]->salary() << endl;
delete department[i];
}

return O;

}

The output of the program is:

john earns 12000
sally earns 21000
jack earns 15000
rita earns 29200

Even though salary is implemented in class Employee, the proper overloaded version
of bonus is called.

Employee’s destructor is virtual. In general, the destructor should always be virtual
if the class is (or may be) subclassed. The reason is to ensure the invocation of the
appropriate version in the subclasses. While we have noted that destructors do not
inherit, we still want to have a run-time decision for the actual type of the instance.
In this case, if a pointer of class Employee is pointing to an actual instance of class
Manager, we would want the destructor ~Manager to be called.

6.3 Virtual Destructor

Virtual methods are virtual because the compiler may not be able to decide what version
of the method to call compile-time and hence it has to be decided with a lookup run-
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time. Destructors are not regular methods because they do not inherit — instead the
destructor of the derived class implicitly calls the destructor of the base class after
it has finished executing its own code. On the other hand, it may be necessary to
delay the decision of invoking the appropriate destructor for an object until run-time.
Consider the following simple example:

class A {
public:

“A() { cout << "A::"A()" << endl; } // “A(Q) should be virtual
};

class B: public A {
public:

;ék) { cout << "B::"B()" << endl; }
};

A * a = new B();

delete a; // O0OPS A::"A is called instead of B::"B

Unless ~A is wvirtual the compiler would assume that a is pointing to an instance of
A which is not an instance of B. Not invoking the appropriate destructor can cause a
memory leak if there are dynamically allocated instance variables in class B. This is
demonstrated by the example below:

class A {
public:
A() { cout << "A::A" << endl;}
“A() { cout << "A::"A" << endl; } // should be virtual
};

class B : public A{
private:
int* huge_array;
public:
BO {
huge_array = new int[10000];
cout << "B::B" << endl;
}
"BO {
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delete [] huge_array;
cout << "B::7B" << endl;

}
};
int main(void) {
Ax a;
for(int i=0; i<1000; i++) {
a = new B;

delete a; // does not call the right destructor!!
} // it eventually runs out of memory and crashes

}

Constructors on the other hand cannot be virtual in this sense, because it must be
explicitly specified either at declaration or for the new operator which subclass the
instance belongs to.

6.4 Invoking an Overloaded Method from the Base
Class

One a method is overloaded int a derived class, we still often would like to have access
to the method originally defined in the base class (this is pretty much always the case
when implementing the assignment operator). The original method can be accessed via
the scope resolution operator (::).

class base {
virtual void foo() {

}
};

class derived : public base {
void foo() {

base::foo(); // invoking the original foo
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6.5 Operator Overloading

Operators are the most likely candidates to be overloaded because they abstract an
operation which can logically be applied on many types. For example, C++ knows
how to read and write native data types, but it does not provide the basic I/O oper-
ators (& and >>) for objects. Basic input and output makes sense for most objects.
Arithmetic operators are only defined for numeric types, but the + operator could be
used to concatenate strings. Most arithmetic operators make sense to be overloaded
for more complex numeric objects, such as complex numbers, matrices and fractions.

Overloading Arithmetic Operators

The arithmetic operators are: +,-,%*,/ and %. Each of these operators have an associ-
ated assignment operator: +=, -=, *=, /= and %=. Arithmetic operators only make
sense to be overloaded, if the object in question is a numeric type. C++ does not re-
strict the use of this mechanism, but an operator for a class should not be overloaded,
if the operator does not have a clear and well defined meaning (for example, the mul-
tiplication operator can be overloaded for class Employee, but does it make sense?).

class Integer {
protected:
int i;
public:
Integer(int j=0):i(j) {
}

Integer operator+(const Integer& b) const {
return Integer(b.i+i);

}
I
b2 = bl + b3; // ok
b2 = b2 + 4; // ok
b2 = b3 + 2; // ok, because operator+ is const
b2 = 4 + b2; // error 4 is not on object of type Integer

The assignment b2 = b2 + 4 works but b2 = 2 + b2 does not. The reason is, that
4 is a literal constant of type int. Integer Integer::operator+(const Integer&)
const only works if the variable on the left is an instance of class Integer. This
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can be circumvented, if we overload Integer operator+(const Integer&, const
Integer&). The former is a member function of class Integer, while the latter is
a free function, which takes two Integer arguments. Operators can be overloaded as
member and as free functions. The former is the more object oriented, however the
latter is more appropriate if the operator is to be applied on “literal” constants. If
the operator is overloaded as a free function for class C, then either operand can be an
instance of a class B for which a constructor of type C::C(const B&) is defined.

The following program demonstrates arithmetic operator overloading for class complex.

class complex {

private:
double re;
double im;

public:
complex(double =0,double =0);
friend complex operator +(const complex&,const complex¥);
friend complex operator *(const complex&,const complex¥);
friend complex operator /(const complex&,const complex&);
friend complex operator -(const complex&,const complex&);
friend complex operator ~(const complex&); // conjugate

};

complex::complex(double r,double i):re(r),im(i) {

}

complex operator +(const complex& cl, const complex& c2) {
return complex(cl.re+c2.re,cl.im+c2.im);

}

complex operator *(const complex& cl, const complex& c2) {
return complex(cl.rexc2.re-cl.im*c2.im,cl.re*c2.im+cl.im*c2.re);

}

complex operator -(const complex& cl,const complex& c2) {
return complex(cl.re-c2.re,cl.im-c2.im);

}

complex operator ~(const complex& c) {
return complex(c.re,-c.im);

}
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complex operator /(const complex& cl, const complex& c2) {

3

return complex((cl*7c2).re/(c2*7c2).re,(cl*"c2).im/(c2*7c2) .re);

complex c1,c2;
const complex c3(3,-4);

c2 =cl +¢c3; // ok
c2 =c3 +cl; // ok
c2 =¢c2 *x5; // ok
c2 =4/ c2; // ok
c2 =c3-1; // ok

Overloading Assignment Operators

C++ has many assignment operators. The ones of interest for this course are:

145

+=

-=, x=, /=3 If there is an overloaded assignment (=) operator and + operator for a
class, the compiler does not provide the += operator. The assignment operators should
not be implemented as friend functions, because constants cannot be assigned to. The
following modifications are needed to the complex class to include the assignment
operators:

class complex {

};

public:

complex& operator=(const complex&) ;
complex& operator+=(const complex&);
complex& operator-=(const complex&);
complex& operator*=(const complex&);
complex& operator/=(const complex&);

complex& complex::operator=(const complex& c) {

// for this particular class, the default assignment

// operator is identical to this one, so this implementation
// is redundant

re = c.re;

im = c.im;

return *this;

3Some others are: &&=, ||=for logical and &=, |= for bitwise operators
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complex& complex::operator+=(const complex& c) {
re += c.re;
im += c.im;
return *this; // or simply return (*this = *this + c)

}

complex& complex::operator-=(const complex& c) {
re -= c.re;
im -= c¢.im;
return *this; // or simply return (*this = *this - c)

}

complex& complex::operator*=(const complex& c) {
re = re*xc.re—imkc.im;
im = rexc.im+im*c.re;
return *this; // or simply return (*this = *this * c)

}

complex& complex::operator/=(const complex& c) {
complex tmp = *this; // why do we need a temporary ?7
re = (tmp*~c).re / (c*c).re;
im = (tmp*~c).im / (c*c).re;
return *this; // or simply return (*this = *this / c)

}

Overloading Comparison Operators

Comparison operators return true or false. In C | true is the same as a non-zero value
and false is always zero. ANSI C++ defines the type bool which is a true boolean
type. The modifications needed to the complex class to implement the comparison
operators 4:

class complex {
private:
double abs_sqr() const; // absolute value squared
public:

4every logical comparison operator can be implemented using only one of operator<, operator>,

operator<= or operator>=! In a later section, we discuss why that would be more advantageous! See
the example on page 204
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friend bool operator==(const complex&,const complex&);
friend bool operator<=(const complex&,const complex&);
friend bool operator>=(const complex&,const complex&);
friend bool operator>(const complex&,const complex&);
friend bool operator<(const complex&,const complex&);
friend bool operator!=(const complex&,const complex&);

};

double complex::abs_sqr() const{
return (rexre) + (im*im);

}

bool operator==(const complex& cl,const complex& c2) {
return (cl.re == c2.re) && (cl.im == ¢c2.im);

}

bool operator<=(const complex& cl,const complex& c2) {
return cl.abs_sqr() <= c2.abs_sqr();

}

bool operator>=(const complex& cl,const complex& c2) {
return cl.abs_sqr() >= c2.abs_sqr();

}

bool operator>(const complex& cl,const complex& c2) {
return cl.abs_sqr() > c2.abs_sqr();

3

bool operator<(const complex& cl,const complex& c2) {
return cl.abs_sqr() < c2.abs_sqr();

3

bool operator!=(const complex& cl,const complex& c2) {
return (cl.re != c2.re) || (cl.im != c2.im);

}

Overloading < and >

Operator < and > can be overloaded for any class, however, for a class C, overloading
ostream& operator<(ostream&,const C&) and istream& operator< (istream&,C&)
empower instances of the class to be written to and read from streams. These not only
include the standard output (cout) and the standard input (cin), but all subclasses
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of ostream and istream. For example, once these operators are implemented, an in-
stance can be instantiated from a file or can be saved in a file (made persistent). The
following additions to class complex are needed to overload the < and > operators:

class complex {
public:
friend ostream& operator<<(ostream&,const complex&);
friend istream& operator>>(istream&,complex¥) ;

};

ostream& operator<<(ostream& os,const complex& c) {
return os << c.re << ’+’ << c¢.im << ’i’;

3

class ParseError {

};

istream& operator>>(istream& is,complex& c) {
// format assumed <real>[+|-]<imaginary>i
// examples:  4+3i, 6-7i
char sign,i;

is >> c.re >> sign >> c.im >> 1i;

if ('is) throw ParseError;

if (sign == ’-’) c.im = -c.im;

else if (sign != ’+’) throw ParseError;
if (i!=’1’) throw ParseError;

return is;

}

Overloading new, new[], delete and delete[]

C++ actually allows the programmer to overload the free store operators and take
memory management under tight control. These operators have global versions but
they can also be overridden for a specific class. Overwriting the global free store
operators requires substantial knowledge and some very good reason. In this case,
your implementation would be called instead of the one which works with the operating
system the compiler was built for. It is much more common that the free store operators
are overloaded for a particular class.

class C {
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public:

void* operator new(size_t);
void* operator newl[] (size_t);

void operator delete(void*, size_t);
void operator delete[](void*, size_t);

};

The size_t parameter is the actual size of the type or what operator sizeof would
return. size_t is usually just a typedef for a long. One must be very careful when
overloading these free store operators! A call to new inside the implementation of new
is a recursive call! So one should probably use malloc or even better the new operator
of another class. It is also important to keep size information and alignment to avoid
memory leaks and for efficiency.

There are other operators, which can be overloaded. Later in the course, we overload
the [|, ++, -- operators for container classes.

6.6 Notes on Syntax and Semantics

It is sometimes a source of confusion for beginner programmers which methods of a class
should be virtual. A method must be virtual if it is or if it will likely be overridden in a
subclass. This facilitates the appropriate version of the method to be invoked through
a reference or a pointer to an instance of the super class — in essence it allows for the
run-time decision of method invocation. Actually at the machine level it is quite trivial
to implement and to clarify things the next example shows how the compiler actual
achieves this.

class A {
public:
virtual void fool() {
cout << "A" << endl;

void foo02() {
cout << "A" << endl;

};

class B : public A {
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public:
void fool() {
cout << "B" << endl;
}

void foo2() {
cout << "B" << endl;
}
};

A * ptr = new B;

ptr->fool(); // outputs "B"
ptr->foo2(); // outputs "A" 7?77

Once a method is defined virtual in a class this method is given an entry in the
virtual function table. The virtual function table is just an array of pointers to the
actual implementations. In this case, all instances of class A. Hence the descriptor of
an A instance looks like this:

A B::vtbl
method address method address
fool — vtbl fool — B::fool
foo2 — A::foo2

The virtual function table (vtbl) stores the locations of the methods for each class and
each instance of A has a pointer to a vtbl, which could belong to A or its subclasses.

Run-time polymorphism is probably the biggest contribution of the object oriented
paradigm. Using inheritance together with polymorphism makes carefully designed
applications easily extendable. There is practical evidence that the structural make
up of an application is more static than the functionality it must perform. It is also
often very difficult to integrate new functionality into existing applications. The object
oriented paradigm focuses on the structure — the building blocks and their associations.
The classes usually represent concrete entities and concepts but they very often can be
abstracted. For example, a bank_account is an abstraction of savings_account. The
functionality associated with bank_account such as withdraw apply to all kind of ac-
counts but more specialized accounts may require a different way to perform the task. A
model designed and implemented in terms of the abstract entities can easily incorporate
such additions. If all kind of accounts are referred to through a pointer to the abstract
class bank_account, then the invocation of method withdraw can be resolved run-time
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to the actual implementation (which could be savings_account, checking account,
corporate_account, etc.). Adding a new account, like student_account only requires
to create the subclass and to override a few methods. As the calls to the methods are
already in place in the application — via a pointer to the super class — student_account
is automatically integrated. Of course it is not always possible to get away with such
little work but a well designed model can handle a lot of additions and extensions
with manageable effort. When the model can no longer incorporate changes without
significant rework it is said to be saturated and redesign maybe necessary. An imple-
mentation without a carefully designed model is saturated as soon as the first line of
code is written. A good object model is likely to be able to handle a lot before it satu-
rates. This is the very reason why the object oriented paradigm is pushed in industry.
Most of the effort and resources of development are spent on software maintenance.

6.7 Exercises

6.1 Let B be a class with a non virtual destructor. Let class C be derived from B.
Give a small and concrete example (as C++ code!), where the sole problem is
the fact that B’s destructor is not virtual!

6.2 Design a hierarchy of animals of at least two levels of inheritance and 10 classes
of which there should be at least 3 abstract. Each class should implement the
method talk, which prints the sound the animal makes. For example cow abel;
abel.talk() would write moo. Read instances of animals from the keyboard into
an array of pointers to instances of abstract class animal, and then print out the
sounds they make in a loop.

6.3 Implement a matrix class, and overload the '*’, ’+’ and ’-’

for matrices.

operators, as defined

6.4 In addition to the operators defined for matrix in the previous exercise, over-
load the operator ’/’ to divide matrices. Hint: A/B = A x B™!, use Gaussian
elimination to implement the inverse

) 0

6.5 Implement a fraction class, and overload the '*’, +’ ’-" and ’/’ operators. The
fraction should always be in reduced form. Hint: Use Euclide’s algorithm to
ni n9

calculate the greatest common divisor. Calculate 5-- "2 as gedltrdy) . 9odB2d1) gy
ged(ng,dy)  ged(ny,da)

lCm(d11d2)_n1 lem(dy,dg) |

ny 4 ny 4 a "2y 99
& T4 as + 7 Why?:

lem(di,s2) lem(di,s2
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Chapter 7

Generic Programming

Generic programming is the ability to supply type information as a parameter to class
definitions and functions. ANSI C++ is one of those rare languages which supports
such a mechanism. This chapter mainly focuses on container classes which are probably
the prime example why templates or parametric types are so important.

7.1 Container Classes

Container classes hold multiple objects which logically or semantically belong together.
A container class is the data it holds together with the operations it provides to access,
remove and add elements. The most common and well known container is the array
which is directly supported by most programming languages. There are many different
kind of container classes and they can be grouped according to several criteria; every
container class belongs to one or more to the following categories:

Size:

o Fized size: size of the container is determined at compile time or run
time, but it cannot change afterwards. (array, some implementations
of vector, ...)

e Bounded size: size of the container cannot exceed or cannot be smaller
than a compile time or run-time determined measure. (some imple-
mentations of stacks, vectors, queues,...)

o Variable size: size of the container during run time may freely change
and is only bounded by available memory. (most “linked” data struc-
tures)

153
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Access:

e Random access: every element stored in the container can be accessed
at any time and order, regardless of the order it was put in or what its
positional relationship is with respect to the other elements. (array,
list, vector, hashtable, ...)

e Restricted access: only elements with a certain property can be ac-
cessed. (stack’s top, queue’s first, priority queue’s highest priority,
heap’s largest, ...)

Special properties:

e Ordering property: elements of the container can be compared, and
an element’s magnitude is reflected in its position in the container.
(binary search tree: the left child’s magnitude is less or equal to the
parent node’s, ...)

e Structural property: the structural organization of the elements in the
container at the implementation level satisfy some criteria. (an AVL
tree is height balanced, ...)

Special properties of container classes are often present to optimize the most frequently
used operations. The object oriented paradigm is very suitable to implement container
classes because it provides encapsulation and information hiding. The role of container
classes is also more significant in object oriented programming because they can be
used to implement associations and to utilize polymorphism. When one object is
associated with many objects, it is usually a container class instance variable which
holds the references to the objects. Iteratively traversing a container class and applying
operations on the elements together with run time polymorphism can significantly
simplify the logic and complexity of a program.
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Process

Processor

class Processor {

private:
PriorityQueue<Process> processes;

Jobld
StackEntry

class Proces {

private:
int Jobld,;
void* StackEntry;

J TelephoneBookEntry

TelophoneBook

class TelephoneBook {

private:

AVLTree<TelephoneBookEntry> entries;

Name

PhoneNumber

class TelephoneBookEntry {

private:
String Name;
Phone PhoneNumber;

}

CheckingAccount CompanyAccount

}
Bank Account
calcinterest
SavingsAccount
class Bank {
private:

list<Account*> accounts;

double Bank::Totallnterest() {

double total = 0;

list_iterator<Account*> currentAccount = accounts.first();

while(currentAccount.hasMoreElements()) {
total += currentAccount—>calclnterest();

currentAccount++;

return total;

List

Lists are usually random access, variable size containers optimized for ran-
dom insertion and deletion. Unlike arrays, they can perform insertion and
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deletion in constant time, while accessing elements may require performing
a number of operations proportional to the size of the list!.

Operations Complexity
insert_(before,after) Oq)
delete_this O
append_copy O

find Om)
element_at Om) or Oog(n))

Most often lists are implemented with links to the previous and next ele-
ments. (doubly linked list).

Vector

A vector is a random access, variable or bounded size container optimized
for random access.

Operations Complexity
insert_at O
element_at O

For truly variable size arrays, constant time random access cannot be guar-
anteed at all times because it may require new memory allocation; however
if the expected size of the vector is known, most implementations can cus-
tom optimize.

Hashtable

A hashtable is a random access, variable size data structure optimized for
retrieval. Each element of the hashtable is associated with an object called
the key which is used as an index. In fact, a hashtable stores (key, value)
pairs. The user of the table is also required to provide a hash function f
which given the key can determine the location of the value associated with
it. When more than one keys hash to the same location, values are stored
outside of the hashtable in “buckets”. A hashtable is “full” when new values
must be stored in the “buckets” and performance quickly degrades. It is
often difficult to find an adequate hash function or to decide on the size of
the primary area or the size of the buckets. Good hash functions exist for
integers, real numbers, strings and calendar dates.

!when random access is of major concern, lists are also associated with a dedicated data structure
for indexing; usually a B+ tree
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Bucket-lists (dynamic)
Primary area (static)

Bucket 1/0x0AF

OXOAF|  Abraham Smith ~
Adam Smith
Alex S[nith
f("smith_abraham")
f("smith_adam") Bucket 2/ OXOAF

put("smith_abraham", new Employee("Abraham","Smith",50000))
put("smith_adam", new Employee("Adam","Smith",70000))

Operations Complexity

put expected: O
worst case: Oy or Oog(n))

get, expected: O

worst case: O(n)y or Ofog(n))

Stack

A stack is a restricted access, variable size data structure. The last element
inserted (push) is the first to be removed (pop).

Operations Complexity
push O
pop O
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Queue and Priority Queue

Both queues and priority queues are restricted access, variable size data
structures. The element with the highest priority is removed first. For
priority queues, the user is expected to provide a comparison function to
establish the priorities. Regular queues implement temporal ordering. Pri-
ority queues are usually implemented with binary heaps.

Operations Complexity

enqueue temporal: O
priority: O(iog(n))
dequeue temporal: O(y)

priority: O(iog(n))
Binary Search Tree

Binary search trees usually store elements which must be sorted at all times.
There are variations which specifically used for indexing. They are usually
random access and variable size.

25 34 12 /5 8 10 67 1

1 8 10 12 25 34 67 75
Operations Complexity

insert O(10g(n))
delete O(10g(n))
find Ofiog(n))

sort O(nxlog(n))
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7.2 Iterators

Iterators provide a uniform mechanism to traverse container classes. Since container
classes store more than one elements, it often makes sense to iterate through the data
structure visiting and/or applying some operation to all of them. In some sense an
iterator is a generalization of a pointer with the same syntax and semantics of pointer
arithmetic. An iterator at any time points to one element and depending on the
container class the usual pointer arithmetic syntax can be used to get to successive
elements. Iterators can also be classified as one of bidirectional iterator, forward iterator
and random access iterator’ Let I be an iterator and n an integer.

Forward Iterators

Syntax Value Side Effects
*1 the value pointed to by I

T++ the value pointed to by I I moves forwards
++1 the value pointed to by I+1 I moves forwards

Bidirectional Iterators
Syntax Value Side Effects
*1 the value pointed to by I
T++ the value pointed to by I T moves forwards
++1 the value pointed to by I+1 I moves forwards
I-- the value pointed to by I I moves backwards
--I the value pointed to by I-1 I moves backwards
Random Access Iterators

Syntax Value Side Effects
*xT the value pointed to by I

I++ the value pointed to by I I moves forwards
++1 the value pointed to by I+1 I moves forwards
I-- the value pointed to by I I moves backwards
-1 the value pointed to by I-1 I moves backwards
I[n] the value pointed to by I+n

*(I+n) the value pointed to by I+n

2The Standard Template Library (STL) also has input and output iterators , but we follow a
simplified model. The Standard Template Library provides a number of iterators and container classes,
and they should be used. The list_iterator and list class presented here are simplifications of
the ones provided by the Standard Template Library. The full implementation is outside of the scope
of these notes. For documentation on container and iterator API refer to Alexander Stepanov, Meng
Lee: The Standard Template Library, 1994 Hewlett-Packard Co.



160 CHAPTER 7. GENERIC PROGRAMMING

list_iterator<int> I = L.first();
int fifth_element = I[4];

while( I.hasMoreElements() ) {
// do something with or to *I
T++:

}

Structural changes to the container may invalidate an iterator which is pointing into
an element. This may cause hard to fix run-time errors. In general, iterators should
be short lived and special care must be taken to avoid inconsistency in distributed or
multi-threaded applications.

7.3 Templates

Templates facilitate parametric programming or generic programming. It is wasteful
and hardly maintainable to have different implementations of a list because they store
different type of values (integers, character strings, employees, ...). Templates allow the
programmer to declare classes where the type information is provided by a parameter.
For example

list<int> L1; // an integer list
list<char*> L2; // a list of strings
list<person> L3; // a list of persons

It is not any more complicated to define parametric classes than standard classes. For
example, the following few lines define class “triple” which holds three elements of the
type provided as a parameter:

template<class T>
class triple {
private:
T _first;
T _second;
T _third;
public:
triple(T,T,T);
T second() const;
void apply(void (*)(T&));
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};

template<class T>
triple<T>::triple(T t1,T t2,T t3):_first(t1),_second(t2),_third(t3) {
};

template<class T>
T triple<T>::second() const {
return _second;

};

template<class T>

void triple<T>::apply(void (*f)(T&)) {
f(_first);
f(_second) ;
f(_third);

+;

void add2(int& i) { i += 2; }
void printInt(int& i) { cout << i <<’ 7; }

void printReverseString(char*& s) {
int 1 = strlen(s);
for(int i=1-1;i>=0;i--) {
cout << s[i];
}

cout << 7 ’;

triple<int> T1(3,4,5);
T1.apply(add2);
T1.apply(printInt) ;

cout << endl;

triple<char*> T2("abel","eugene","sarah");



162 CHAPTER 7. GENERIC PROGRAMMING

T2.apply(printReverseString) ;
cout << endl;

One must be careful when using container classes. Run-time polymorphism only works
for pointers and references. Hence container classes are usually holding pointers to
dynamically created instances. If that is the case, the destructor of the container class
will not deallocate the instances held so the programmer must make sure to deallocate
them before the last references go out of scope. The following example shows a common
way of handling this situation.

class shape {

virtual double area() = 0;

};

class circle: public shape {

double area();

};

class square: public shape {

double area();

};

class shapeList {
protected:
list<shape*> elements;
public:
void insert(shapex);
shape* get(list_iterator<shapex>);

~shapeList();
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3
shapeList::~shapeList() {

list_iterator<shape*> I = elements.first();

while(I.hasMoreElements()) {
delete *I;
I++;

J

One must be careful. Sometimes a data structure is meant to hold only aliases and is
not supposed to deallocate them. Very often a more sophisticated deallocation scheme
is needed.

7.4 Implementing a List

The following figure shows a run-time snapshot of a list. The 1ist_node is the building
block of the list and in essence class 1ist is just a wrapper. This list is doubly linked
so it can be traversed in both directions. A list_iterator, as shown on the figure is
associated with one particular element of the list. There could also be iterators that
are not associated with elements (null).

element —
/7< list_iterator

prev next

list

last
first —

list_iterator ‘ ‘ list_iterator ‘ ‘ list_iterator ‘ ‘ list_iterator
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list_node

template<class T>
class list_node {
protected:
list_node<T>* next;
list_node<T>* prev;
T element;
list_node();
list_node(const T&);

friend class list_iterator<T>;
friend class 1list<T>;

};

list
The following definition of class 1ist defines the operations. Random access operations
(insert_before, insert_after and remove) take iterator parameters. This definition

does not include those private and protected instance variables and methods which
are possibly needed to implement the public interface (see exercises/).

template<class T>
class list {
protected:

list_node<T>* _first;
list_node<T>* _last;
int size;

public:

// list_iterator<T> i

// if (!i.hasMoreElements) insert as first

// otherwise insert before i

void insert_before(list_iterator<T>,const T&);

void insert_before(list_iterator<T>,const 1list<T>&);
// if (!i.hasMoreElements) insert as last

// otherwise insert after i

void insert_after(list_iterator<T>,const T&);

void insert_after(list_iterator<T>,const 1list<T>&);
// remove element at i
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void remove(list_iterator<T>&);
list_iterator<T> first() const;
list_iterator<T> last() const;
int length() const;

1listO;
list(const 1ist<T>&);
1list<T>& operator=(const 1list<T>&);

virtual “list();

};

When implementing the methods, the programmer must specify which instantiation of
list the method belongs to. In other words, it is not enough to write int 1list::length()
{ return size;}

template<class T>
int 1ist<T>::length() const {
return size;

3

template<class T>

list_iterator<T> 1list<T>::first() const {
list_iterator<T> I(_first);
return I;

};

list_iterator
The following definition of list_iterator defines the usual bidirectional access meth-
ods:

operator*, operator->: dereferencing

operator++, operator--: increment

operator[]: random access

The method hasMoreElements () is “borrowed” from the Java Enumeration class, and
is somewhat simpler than the equivalent operations of the Standard Template Library .
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template<class T>
class list_iterator {
protected:
list_node<T>* node;

public:
// by default, point nowhere
list_iterator(list_node<T>* = NULL);
bool hasMoreElements() ;

T& operator*(); // *node
T* operator->(); // *node
T& operator++(); // node->=next, *node
T& operator—--(); // node->=prev, *node

T& operator++(int); // *node, node->=next
T& operator--(int); // *node, node->=prev
bool operator==(const list_iterator<T>&);
bool operator!=(const list_iterator<T>&);
T& operator[](int); // *(node + n)
list_iterator<T> operator+(int);
list_iterator<T> operator-(int);

list_node<T>* getNode() ;
void invalidate(); // node=NULL
};

template<class T>
T& list_iterator<T>::operatorx() {
return node->element;

};

template<class T>

T& list_iterator<T>::operator++() {
// prefix
node = node->next;
return node->element;

};

template<class T>

T& list_iterator<T>::operator++(int) {
// postfix
T& remember = node->element;
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node = node—>next;
return remember;

};

template<class T>

list_iterator<T> 1list_iterator<T>::operator+(int n) {

// like pointer arithmetic
list_iterator<T> I;

I.node = this->node;
for(int i=0;i<n;i++) I++;

return I;

};

template<class T>

T& list_iterator<T>::operator[](int n) {

return (*this + n).node—>element;

};

167

Now list is a parametric container class which can be used to hold any type or class

of values and it also has an associated iterator.

list<int> L;
list_iterator<int> I;

// append an element to the end of the list

L.insert_after(L.last(),5);

// add an element at the front of the list

L.insert_before(L.first(),4);

// traverse the list
while(I.hasMoreElements()) {
cout << *I <<’ 7;
T++:

3

// the fifth element of the list
if (L.length()>=5) {
I =L.first();
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cout << I[4]; // or x(I+4)

// the element before the last one
if (L.length()>=2) {

I =L.last();

cout << I[-1]; // or *(I-1)

These definitions do not exactly show how the Standard Template Library implements
iterators and containers nor they offer a better alternative. For simple containers which
are part of STL, the programmer should refer to an STL documentation and use the
library. It is very possible that the application demands a new kind of container not
available in STL. In that case, one should still make an attempt to subclass a container
or if that is not possible, keep the standard interface so the new data structure can be
traversed by iterators. The exercises that follow could serve as a first introduction to
learn the containers and iterators of the Standard Template Library.

7.5 Notes on Syntax and Semantics

Templates support generic programming or the ability to use types as parameters. The
power of this mechanism is well demonstrated with container classes where the type
information the data structure holds indeed should be a parameter. This idea can easily
be extended beyond container classes. Some algorithms can also be parameterized —
for example sorting performs the same steps regardless of the type of the objects.
The problem with templates is instantiation. The type descriptors cannot be built until
a template class is instantiated with a type. In other words a Vector<int> is not the
same type as a Vector<Student>. Hence compiling the file Vector.cc which contains
the parametric definitions for template <class T> Vector<T> does not make too
much sense unless T is known. However when a Vector<int> is defined in another file,
the compiler must know where the template definitions are to be able to build the type
descriptors.

A common way to avoid this problem is to include the implementation file as well via
an #include directive. This however has its caveats. For one, every file which has a
Vector<int> will have identical but separate definition in each object file. This should
not cause problems if the Makefile® appropriately reflects dependencies but this may
pose a challenge and has maintenance drawbacks. Some compilers — like Borland — try
to come around this and implement smart template instantiations, where the compiler

3Makefiles are discussed in the Appendix
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tries to collect information on template definitions and declarations on a separate pass
and uses it to decide where and how to build the descriptors.

Another way to avoid this is to specify external template generation. In this case all
template descriptors for a class instantiated with different types are in the same file
— as they should be. In this case however the implementation file must be somehow
aware what classes will be used to instantiate the template classes. I have been using
the following schema for a long time, it solves the above problems.

// Header file "A.h"
#if !defined(_A_H_)

##define _A_H

#pragma interface

template<class T>
class A {
. // class A has member(s) of type T

};

template<class T>void foo(const T&);
// function foo is parametric

#tendif

// File A.cc

// Implementation of class A<T> and
// foo(const T&)

#pragma implementation "A.h"
#include "A.h"

#if !defined (A_INST)

// A_INST is the file which defines instantiations
// for A<KT> and foo<T>

#terror "A_INST must be defined"

#else

#include A_INST

#tendif
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// File my_inst.h

// instantiations for class A<T> and foo
#if !defined (_MY_INST_H_)

#define _MY_INST_H_

template class A<int>; // A<int>
template class A<char*>; // A<char*>

// foo<int>(const int&)

template void foo<int>(const int&);

// foo<char*>(char * const&)

template void foo<char*>(char * const&);
#endif

When the code is compiled the A_INST macro has to be set to "my_inst.h" and external
template generation must be specified. With gcc this can be achieved by

$g++ -c A.cc -fexternal-templates -DA_INST=\"my_inst.h\"

If you are using a different compiler, check what flags you need for external template
generation and how you can set macros at compile time.

"my_inst.h" provides the instantiations needed to generate descriptors for A<int>,
A<charx>, foo<int> and foo<char*>. This file is being included in A.cc at compile
time so the resulting object file A.o will have the typedescriptors for these types and
other files can use these types as well with no multiple definitions.

The #pragma directive is for compiler specific flags. gcc requires interface defined
for the class and function prototypes and implementation specified for their defini-
tions. Compilers usually ignore the #pragma directive if it is not recognized. Check
your compiler manual how to compile programs with templates and what methods it
suggests.

Observe that if T is a pointer to a type A then const T after instantiation becomes A
* const (a constant pointer) rather than const A * (a pointer to a constant). The
reason is that T is the object in question, which in this case is the pointer rather than
what it is actually pointing to.

Finally, let’s see a function with a template — or a parametric algorithm. The well
known quick_sort algorithm orders an array of comparable elements®.

Our implementation has the prototype void quick sort<T>(T* A, int 1, int h,
bool (*f)(const T&, const T&)). Ais an array of elements of type T. 1 is the index

4extensively described in T. H. Cormen, C. E. Leiserson and R. L. Rivest: Introduction to Algorithms,
MIT Press, 1989
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of the first element where sorting should start and h is the index of the last element
where sorting should end. f is a function which returns true if and only if the first
parameter is less then the second parameter. f must be strict — if it implements <
instead of <, the algorithm may not terminate.

// prototype
template<class T>
void quick_sort(T*,int,int,bool (*)(const T&, const T&));

template<class T>
void quick_sort(T* array, int 1, int h, bool (*f) (const T&, const T&)) {
int i = 1-1, j = h+1;

if (1 >= h) return;
T cutoff = arrayl[l];

while(true) {
do {
__J' ;
} while(f(cutoff,array[jl));

do {
+41:

2

} while(f(arrayl[il,cutoff));

if (i<j) {
T tmp = arrayl[il;
array[i] = arrayl[jl;
array[jl = tmp;

} else break;

quick_sort<T>(array,1l,j,f);
quick_sort<T>(array, j+1,h,f);

Now to actually see quick_sort<T> in action, we write a program which takes param-
eters from the command line and first it sorts them by alphabetical order and then by
order of string length.
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The only thing we have to do is to implement different versions of £ for different types
and different semantic comparisons.

#include <string.h>
#include <iostream.h>
#include "quick_sort.h"

// return true iff length(sl) < length(s2)
bool less_length(char* const& sl, char * const& s2) {
return strlen(sl) < strlen(s2);

}

// return true iff sl comes before s2 in a dictionary
bool less_alphabetic(char * const& s1, char * const& s2) {
return strcmp(si,s2) < 0;

}

// function prints argv array
void print_args(int argc, char* argv[]) {
for(int i=1; i< argc; i++) {
cout << argv[i] <<’ 7;
}
cout << endl;

}
int main(int argc, char* argv([]) {

// sort by alphabetical order
quick_sort<charx*>(argv,1,argc-1,less_alphabetic);
cout << "alphabetic ordering: ";
print_args(argc,argv) ;

// sort by string length
quick_sort<char*>(argv,1,argc-1,less_length);
cout << "ordering by length: ";

print_args(argc,argv) ;

return O;

Running the program at the command line:
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$sort abrakadabra hello zebra c++ love

alphabetic ordering: abrakadabra c++ hello love zebra
ordering by length: c++ love hello zebra abrakadabra

Finally a little bit of syntax to demonstrate how to use pointers to member functions
to parametric (or template) classes.

template<class T>
class C {

public:
int foo() conmst;

};

C<int> ci;
C<char*>* c2 = new C<char*>;

int (C<int>::* p1) () const = &(C<int>::foo0);
int (C<char*>::* p2) () const = &(C<char*>::foo);

(Cl.*pl) () >
(c2->%p2) O ;

C is a parametric class. c1 is an instance of C<int>, c¢2 is a pointer to an instance of
C<charx*>. pl is a pointer to a method of C<int> which returns an int and takes no
parameters and is set to C<int>::foo. p2 is a pointer of the same kind of method
but it belongs to C<char*> and is assigned C<char*>::foo. The last two lines — as
expected — are the method invocations of the methods designated by the pointers on
the instances. to the methods

7.6 Exercises

7.1 Read up on the Standard Template Library (see references on page 234) and ex-
plain in your own words how iterators abstract data structures. Explain why a
programmer would use only iterator operations rather than native operations of
the data structure (like push or pop for stacks). Describe an example!
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7.2

7.3

7.4

7.5
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Write an application which uses at least two of the container classes of the Stan-
dard Template Library and its iterators! Consult the references on page 234 and
your compiler’s manual!

Implement our definition of 1ist. Feel free to add private and protected
methods and instance variables to the definition.

Implement list (like the previous exercise) but make 1ist _node an internal class
of 1ist and derive 1list_iterator from a generic iterator.

Subclass 1list (see previous exercise) and implement sortable 1ist which has
an additional operation sort. You will need to supply a comparison function
(preferably passed to the constructor as an argument) that compares two values
of the parametric type T.
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Streams

8.1 Streams

Streams abstract low level input-output (I/0). Output can be thought of as a text or
binary representation of an object which can be used to recreate the object or it can
also be a raw stream of data. The process of creating a representation of an object
which can be used to recreate it is also called serialization. Input is recreating objects
from their text or binary representations or it can also be accepting a stream of raw
data. The stream abstraction of an I/O channel or I/O port allows the programmer to
treat the underlying device (file, keyboard, screen, network socket, ...) uniformly, use

the same syntax and even the same code.

ios

istream ostream
(input) (output)
operator>> operator<<
‘‘‘‘‘‘‘‘‘ l l
iostream
ifstream isockstream (input-output) ofstream osockstream
(inp.—file) (inp. socket) (outp.—file) | | (outp. socket)
fstream sockstream

(inp.—outp.—file)

(inp.—outp.—socket)

175
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Every stream is a subclass of either istream or ostream or both (iostream). All
istreams understand operator>> and all ostreams understand operator<. The pro-
grammer may freely implement an overloaded version of these operators which takes
an argument of the specific class. C++ provides implementations of operator>> and
operator< for primitive types (char, char*, int, long, short, double, ...)
but the programmer is responsible to overload the operator for user defined types
and classes. Supposing that the user has implemented operator< and operator>>
which can serialize and recreate an instance of class C, the following code demonstrates
the advantages of stream 1/0:

C c1,c2; // instances of ¢

ofstream ofs("/home/usr/santaclaus/output.txt");
// ofs is an "output file"

ifstream ifs("/home/usr/cinderella/input.txt");
// ifs is an "input file"

cin >> c1; // using the implementation of operator>>
// for objects of class C for initializing
// c1 from the keyboard

ifs >> ¢2; // using the VERY SAME implementation of operator>>
// for objects of class C for initializing
// c2 from a file

cout << c2; // using the implementation of operator<<
// for objects of class C for serializing
// c2 to the screen

ofs << c¢1; // using the VERY SAME implementation of operator<<
// for objects of class C for serializing
// cl to a file

The power of streams stems from the fact that serialization and initialization from a
serialized form of an instance are independent of the type (file, pipe, socket, ...) and
persistence (temporary or permanent) of the particular medium. Serialization is an
operation which has many implementations (operator<) and so is initialization of an
instance from its serialized form provided by multiple implementations of operator>>.

From the programmer’s point of view, there is a stream on the left-hand side and there

is an object on the right-hand side.

ostream < object
istream > object
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Because of inheritance of streams and polymorphism on the input and output operators
the I/O operation (i.e. the operator) and the actual physical device represented by the
stream are separate and hence the implementation of streams and the I/O operators
are reusable because of this context independence. This elegant mechanism is much
more powerful than the one used in the C language (we cover that later in this chapter).
Unfortunately programmers often “prefer” the old way. It however must be understood
that the C++ I/O mechanism is capable performing everything that the C mechanism
can plus it provides reusability and context independence. The separation of the
stream and the I/O device is also often referred to as I/O abstraction and abstract
I/0 means that the I/O operator is implemented for an abstract device (istream and
ostream) whose identity and particulars do not have to be known.

8.2 File and String-Streams

File Streams

Instances of ifstream can read data from a file while instances of ofstream can write
data to a file. Instances of fstream can do both reading and writing. All file streams
have open and close methods.

Constructors & Basic Methods

ifstream()

ifstream(int fd)

ifstream(const char* fname, int mode = i0s::in, int prot = 644)
ofstream()

ofstream(int fd)

ofstream(const char® fname, int mode = ios::out, int prot = 644)
open(const char* fname, int mode = { ios::in or ios::out }, int prot = 644)
close()

ifstream ifs;
ifs.open("/home/usr/santa/christmas.txt");
ofstream ofs;
ofs.open("/home/usr/santa/presents.txt");

ifs created by the constructor is an input file stream associated with no
actual input file. Streams created this way must call the open method
before reading can take place. Similarly ofs is an output file stream,
initially not associated.

int ifd = open("/home/usr/santa/christmas.txt",0_RDONLY);
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if (ifd == -1) { .. // something is wrong}

ifstream ifs(ifd);

int ofd = open("/home/usr/santa/presents.txt",0_WRONLY) ;
if (ofd == -1) { .. // something is wrong}

ofstream ofs(ofd);

ifs is an input file stream associated with file opened by the open sys-
tem call and file descriptor ifd. ofs is an output file stream associated
with file with descriptor ofd.

ifstream ifs("/home/usr/santa/christmas.txt");
ofstrean ofs("/home/usr/santa/presents.txt");

ifs is an input file stream associated with the file christmas.txt in
directory /home/usr/santa and ofs is an output file stream associated
with the file presents.txt in directory /home/usr/santa.

C++ ’s ios class provides the following static constants for mode:

ios::in Open for input.

ios::out Open for output.

ios::ate Set the initial input (or output) position to the end of file.
ios: :app Seek to the end of file before each write.

ios::trunc Always create a new file.

ios::nocreate If the file does not exist fail.

ios::noreplace Create a new file, but fail if the file already exists.

ios::bin Open in binary mode.

These values can be combined using the bitwise | operator: ios::out | ios::create.
File streams opened with the third form of the constructor (const char* fname,int
mode, int prot) are automatically closed when the object leaves scope (by the destruc-
tor). In general however, the programmer should call the close method explicitly
before the file stream instance leaves its scope. Stream instances should always be
passed or returned by reference (why??).

String Streams

String streams can be used to serialize objects to strings (char*) or to initialize objects
from strings. These are specially handy, because unlike files, strings exist in memory.
Hence applications can serialize to and initialize from memory directly without the
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overhead of file I/O. Input string streams are instances of istrstream, output streams
are instances of ostrstream and instances of strstream can do both input and output.

Constructors

istrstream()

istrstream(const char* str)
istrstream(const char* str, int size)
ostrstream()

ostrstream(const char* str)
ostrstream(const char* str, int size)

If the size of the associated buffer is not explicitly specified, it is assumed to terminate
with a null byte ((char)0).

const int buf_size = 100;

charx buffer = new char[buf_sizel;

buffer [buf_size-1] = (char)0; // null byte
istrstream is(buffer,buf_size);

ostrstream os(buffer,buf_size);

0os << "hello world 2 3.14159" ;

char string[10];
int i;
double d;

is >> string; // string contains "hello"
is >> string; // string contains "world"
is >> 1i; // 1i=2

is >> d; // d = 3.14159

The compiler has no way to determine the type (int, char*, ...) of the data to be
read next from a stream, it is the programmers responsibility to make the appropriate
assumptions. Fail safe programs always read streams a byte at a time and do their
own parsing.

8.3 Using Streams and Manipulators

C++ by default provides the following instances, opened implicitly:
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istream cin;

The standard input stream; usually the keyboard.

ostream cout;

The standard output stream; usually the display screen.

ostream cerr;
The standard error stream; usually the display screen.

All these instances are variables (as opposed to constants), so they can be re-assigned.
Checking the state of a stream

The state of a stream can be checked by evaluating the pointer itself. For example:

if (cin) {
cin >> ...

}

For more detailed diagnostics, the following instance methods of ios provide more
information:

f is an instance of ios (could be either istream or ostream)

f.good () is true if no error indicators are set for f.

f.bad() is true if the stream is not usable.

f.eof () is true if the stream has reached the end of file (EQF).

f.fail() is true if any of the error indicators is set.

The method clear (f.clear()) can be used to reset the state of the stream.

Reading a stream

All instances of istream can read a single character, using any of the get methods:

ifs is an instance of istream, ¢ is a char and i is an int.

i = ifs.get(); readsone character from ifs using the int istream::get()
method . If the end of file is reached i == -1. ¢ = (char)i; is the char-
acter read otherwise.
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ifs.get (c); reads one character from ifs using the istream& istream::get(
char&) method.

i = ifs.peek(); returns the next available input character (or EOF)
without changing the state of ifs using the int istream: :peek() method.

An entire line can be read using the istream& istream:get( char* buffer,
int len, char delim=’\n’) method:

char buffer[100];

f.get (buffer,100);

reads at most 100-1 = 99 characters or up to the first \n’ character. The
trailing null character is automatically inserted.

The istream& istream::get(char*,int,char=’\n’) method skips white
spaces and is intended for ASCII character input. Raw bytes can also be
read into a buffer without interpretation using the istream& istream::read(
void*, int len) method. This method attempts to read len many bytes
from the input stream.

char* buffer = new char[100];

if (f.read(buffer,100)) {
// then we have 100 bytes in the buffer

The last character can safely be put back onto the stream using the istream&
istream: :putback(char c¢) method. This method is very handy for im-
plementing parsers, and in fact, the only method that is guaranteed to
backtrack on an input stream without changing its state.

// read characters up to but not including the first ’;’
char buffer[100],c = f.get();

int i=0;

while(c != -1 && c !'= ’;’ && i < 100) {
c =f.get();
i++;

}

if (¢==?;’) f.putback(c);
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Writing to a stream

All instances of ostream can be written to. Object serialization is done using operator<.
For binary output, the following two methods can be used.

The ostream& ostream: :put(char) method can be used to write a single
byte to an output stream.

// ofs is an ostream
ofs.put((char)0x3); // EOT (or ~C) character

The ostream& ostream::write(char* buffer,int len) method can be
used to write len many characters from buffer uninterpreted.

buffer char([] = {’A’,’T’,’D’,’T?,’ 7,’9°,°17 ’1°};
ofs.write(buffer,strlen(buffer)); // call 911

Output is most likely to be buffered by its nature. This means that char-
acters may not appear on the output device (screen, pipe, ...) at the same
time when the program executed the output operation. When this syn-
chronization is necessary the ostream& ostream::flush() method can be

used.

cout << "Please enter .... > "; // no ’\n’ or endl
cout.flush();

cin >> ...

Changing Stream Properties

Streams (both input and output) possess properties and attributes that define its actual
state. The ones we consider here are formatting properties.

The int ios::precision() const method reports how many significant digits are
used for output. By default, this number is 6. The int ios::precision(int sigdig)
method returns the previous settings of significant digits and sets sigdig as the number
of significant digits in use. The int ios::width() const method reports the current
field width setting. This value is 0 by default, meaning that use exactly as many
characters as needed. The int ios::width(int num) method returns the previous
setting of the field with property and sets the field width to num many characters. The
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char ios::fill() const method returns the current setting of the padding character.
By default it is * . The char ios::fill(char padding) method returns the previous
setting and sets the padding character to padding. The fmtflags ios::flags()
const method reports the current value of the complete collection of flags of the stream
state. The method fmtflags ios::setf(fmtflags flag) method sets one particular
flag, while the method fmtflags ios::unsetf(fmtflags flag) turns off flag flag.
Both methods return the entire set of flag settings. The following chart describes the
ios flags:

flag meaning

ios::dec decimal numeric base

ios: :hex hexadecimal numeric base
ios::oct octal numeric base

ios::fixed do not use scientific notation
ios::left left justify

ios::right right justify

ios::internal middle justify

ios::scientific use scientific notation
ios::showbase prefix octal with 0 and hex with 0x
ios::showpoint trail even numbers with .000. ..
ios: :showpos display positive sign

ios: :skipws skip white space (default)

Most often, these properties are to be set for each output operation. Manipulators
provide a convenient way of changing the state of a stream in the middle of expressions
chained by the < (or >>) operators. The scope of a manipulator where it affects the
state of the stream is only the “next” I/O operation. The following operators are
provided for instances of ios:

manipulator meaning

WS skip white space

flush write pending output now
endl write a "\n’ character and flush
ends write a (char)0 character

setprecision(int n)

set number of significant digits to n

setw(int n)

set the width parameter to n characters

setbase(int b)
dec
oct
hex

change numeric base to b
same as setbase (10)
same as setbase(8)
same as setbase (16)

setfill(char c)

set the padding character to c

Example:
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cout << setw(b) << setfill(’$’) << hex << 255 << endl;

// $$$ff

8.4 Overloading operator< & operator>>

operator< is a method of ostream and operator>> is a method of istream, hence
they have to be overridden as free functions. In that form for a class C the prototypes
are as follows:

ostream& operator<<(ostream&,const C&); // or
ostream& operator<<(ostream&,C) ;

istream& operator>>(istream&,C&);

Often these two operators are declared as friends in C’s class definition so instance
variables can be accessed without method invocation. operator< is used to serialize
an instance of class C and operator>> should be able to recreate the same logical
instance from this form. For example:

class student {

private:
char*x lname, *fname;

long snumber;
public:

friend istream& operator>>(istream&,student&) ;
friend ostream& operator<<(istream&,const student&);

s

ostream& operator<<(ostream& os,const student& s) {
0s << s.fname << ’ ’ << g.lname << ’ ’ << s.snumber ;
return os;
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istream& operator>>(istream& is,student& s) {
static char buffer[256] ;

is >> buffer;
s.fname = new char[strlen(buffer)+1];
strcpy(s.fname,buffer) ;

is >> buffer;
s.lname = new char[strlen(buffer)+1];
strcpy(s.lname,buffer) ;

is >> s.snumber;

return is;

8.5 Cstyle I/0

The C language does not support streams or I/O abstraction but it does provide uniform
and consistent I/O via the printf and scanf family of functions. These functions are
declared in <stdio.h>.

Formatted output

The printf functions can take multiple arguments and format them as specified in the
format string. The prototype of this function:

int printf(char* format,...);

On success the function returns the number of characters successfully transmitted (ez-
cept the null byte) and on failure it returns EOF. The three dots (... or ellipsis) are
actually part of C and C++ syntax and specify that zero or more arguments follow.
This facility of passing an arbitrary number of arguments should be used with care be-
cause there is no mechanism to do compile time type checking'. The format string can
contain arbitrary text but the % character up to and including a conversion character
is used to interpret an argument passed to printf for printing (the % character can be
“escaped” to prevent interpretation by printf: %%).

13 variable argument list can be interpreted using a va_list variable, which can be stepped using
va_arg. The programmer is responsible to determine or to know the type of the argument. see the
appendices on page 226
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Conversion characters
character interpretation

d,i decimal integer
0 unsigned octal number
x,X unsigned hexadecimal number
u unsigned decimal number
c single character
s character string
f double or float
eE double or float with scientific notation
p pointer (print as address)

Between the % sign and a conversion character, the following characters — in this very
order — may appear. Omitting any of these forces the default to be used.

e A - sign to force left adjustment. (no - is the default)

e A decimal number that specifies the minimum field with. (the default is to use
as many as needed.)

e A period (.), which separates the field width from the precision.

e A decimal number indicating the precision (or the number of digits printed after
the decimal point) for floating point numbers. For character strings, it is the
maximum number of characters to be

e An h character for short integers or an 1 character for long.

If an asterisk (*) is specified instead of the field width or the precision then these values
can be passed as arguments.

Examples:

int i = 255;

float pi = 3.14159;
double e = 2.718281828,;
char *s = "hello world";

printf ("[%sl\n",s);
printf ("|%20s|\n",s);
printf("|%.5s|\n",s);
printf("1%-20.7s|\n",s);

printf("i = %d = %x \n",i,i);
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printf("e = %.2f = e and pi = %.0f = JYg\n",e,e,pi,pi);

The output of the program is:

|hello world|

| hello world|

|hello|

|hello w |

i = 266 = ff

e = 2.72 = 2.718282e+00 and pi = 3 = 3.14159

Formatted input

The scanf functions can be used to read the values of variables. The prototype of this
function is:

int scanf(char* format,...);

The character conversion table is analogous to the of printf’s?. To read doubles one
must specify %1f as opposed to %f. If non format characters appear in the format
string they must exactly match that of the input. The arguments are the addresses of
the variables. It is a very common and often fatal mistake to use the variable instead of
the address! scanf returns the number of arguments properly converted and initialized
or EQOF if the end of file has been reached.

Examples:

int i;

double d;

int year,month,day;
char buffer[100];

scanf ("%d",&i); /* read one integer */

scanf ("%4f",&d); /* read one double */

if (scanf("%d/%d/%d",&year,&month,&day) != 3) {
printf ("year/month/day expected\n");

}

2except for minor deviations.
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scanf ("Ys" ,buffer); /* read a character string */

Reading and writing files

Files in C can be read and written using fscanf and fprintf. They are analogous
to scanf and printf with the exception that they take a file pointer as their first
argument. A file pointer in C represents a file and can be obtained by the fopen
library call. The same file can be closed using the fclose function and flushed using
the £fflush function.

FILE* fopen(char* filename,char* mode);

int fscanf(FILE* fp,char* format,...);
int fprintf (FILE* fp,charx format,...);

int flcose(FILEx fp);
int fflush(FILEx fp);

mode is one of the following:

mode meaning

"r" open for reading
" open for writing
na" open for “appending”

To read or write a binary file the character b should be appended to mode (like: "rb”
for read binary). fflush and fclose return 0 on success and EOF on error. fopen
returns NULL if the file could not be opened.

FILE *fin = fopen("/usr/home/santa/christmas.txt","r"); /* for reading */
FILE *fout = fopen("/usr/home/santa/donelist.txt","w"); /* for writing */

if (fin == NULL or fout == NULL) {
/* something is wrong */

}

char kid[100],present[256] ;

fscanf (fin,"%s %s",kid,present);

/* santa buys present for kid */
fprintf (fout,"%s %s\n",kid,present);
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Reading and writing character strings

The functions sprintf and sscanf can be used to write to and read from character
strings.

int sprintf(char* buffer,char* format,...);
int sscanf(char* buffer,char* format,...);

They are identical to printf and scanf in all respects, except they take a character
string as the first a argument.

Example:

char buffer[1024];
int 1i;

sprintf (buffer,"hello %s you are %d years old!\n","monica",20);
printf("%s",buffer); /* hello monica you are 20 years old! */

sprintf (buffer,"%d",200);
sscanf (buffer,"%d",&i); /* i = 200 now */

Predefined file pointers

stdin  standard input, analogous to cin
stdout standard output, analogous to cout
stderr standard error, analogous to cerr

8.6 Notes on Syntax and Semantics

Stream abstraction — while not necessarily an object oriented idea — is a big contribution
to programming in general. The most important thing to remember is that there are
two parts to the abstraction. The stream on the left hand side and the object on the
right hand side which understands the 1/O operation. As far as the left hand side
is a stream the object can be read from and written to network sockets, pipes, files,
databases and virtually everything which can be abstracted by a stream. As far as
only the stream changes the implementation of the I/O operation does not need to
change for the object. If a new stream — [ike a serial port — is needed then only this
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stream has to be implemented. Similarly, if there is a new object to be serialized to
a stream, only one version of the I/O operation must be implemented in terms of the
abstract stream and of course, all subclasses will use their particular overloaded versions
resolved run-time.

Unfortunately serialization also poses one of the biggest challenges in the object ori-
ented paradigm. Consider the problem of instantiating objects from a stream. The
problem is that all this power gained by polymorphism to resolve types run-time is
lost. Suppose class B and class C are derived classes of class A. We would like to write
a function or method which would return a new instance of type A. This new instance
could of course be an instance of class B or class C because of inheritance. I cannot just
implement an overloaded read (istream&) method, because until there is no instance
there can be no resolution. The classical chicken and egg problem. One cannot be
done without the other. Feel free to pause here and make sure you understand. There
have been suggestions and even good solutions to the problem but non of them are
really "object oriented”. In fact while the object oriented paradigm is useful to imple-
ment parsers the underlying model is not really object oriented but rather procedural
(or even more often modeled by state machines). Again, we have subclasses of a class
and we would like to be able to implement a nice and automatic mechanism which can
instantiate objects from a stream — even if they are actually instances of the subclasses.

The model I propose is almost fully automatic and should give some ideas. However
before going any further you should understand what the issue is so try to think about
it for a bit.

In our demo, we have a class A with two derived classes B and C. Instances of A which are
actually either instances of B or instances of C are coming on a stream and we would like
to write a method A* A::read(istream&) which returns a pointer to the instance read.
Just to reiterate, the seemingly obvious solution to overload the method to implement
Ax B::read(istream&) and A* C::read(istream&) will not work, because I would
need an actual instance to have read resolve to B: :read or C: :read but that instance
is the very instance I am trying to read!

We will need a way to discriminate actual instances of B from instances of C on the
stream. This will be achieved by a unique magic number. A magic number is a unique
signature which identifies how a file should be interpreted. For example certain type of
image files such as GIF, JPEG, MPEG, PPM and many more ... all start with a unique
magic number which tells the image viewer how it should interpret the file. We use
this very technique to identify instances of B by the signature B_.MAGIC and instances of
C by C_MAGIC. Then an obvious algorithm would be to read the magic number and if it
is the former then return a new instance of B and if it is the latter then it would return
an instance of class C. The problem with this method is that all the maintainability
gained by polymorphism is lost. Suppose I would like to add a new subclass D derived
from A. Well, I would add a new magic number D_MAGIC but I would have to modify an
already existing method A* A::read(istream&) to return a new instance of D when
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its magic number is read. T am not supposed to modify existing code in the object
oriented paradigm when I derive a new class! So what we do instead is to have an
array of readers associated with magic numbers belonging to class A. And when a new
subclass of A is derived, we just add a handler and a magic number by calling one class
method of A and do not modify A at all.

class A_exception {

};
class A {
protected:
// A_reader is a function which
// takes an istream by reference
// and returns a new A object
typedef Ax (* A_reader) (istream&);
static char** magic_numbers;
static A_reader* readers;
static int n;
public:
static A* read(istream&);
static void add_reader(const char*,A_reader);
static void destroy_readers();
virtual void print(ostream&) const = 0;
};
class B: public A {
protected:
int i;
public:
B(int);
virtual void print(ostream&) const;
};
class C: public A {
protected:
char * gs;
public:

C(const charx);
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virtual “C();
virtual void print(ostream&) const;

};

A_reader is type which matches the prototypes of the handlers. Upon recogniz-
ing a magic number the corresponding handler takes over to instantiate the object.
magic_numbers is an array of magic numbers and readers is an array of corresponding
handlers. n is the number of handlers registered. The method A* A::read(istream&)

is the one responsible to instantiate the objects. add_reader(const char* magic_number,
A_reader reader) registers reader to magic_number. destroy_readers deallocates
resources associated with the handlers.

void A::add_reader(const char* magic_number, A_reader reader) {

for(int i=0; i<n; i++) {
if (strcmp(magic_number,magic_numbers[i]) == 0) {
throw A_exception();
// magic_number already exists, programmers error

A_reader* new_readers = new A_reader[n+1];

char** new_magic_numbers = new char*[n+1];
new_readers[n] = reader;

new_magic_numbers[n] = new char[strlen(magic_number)+1];
strcpy (new_magic_numbers [n] ,magic_number) ;

for(int i=0; i<n; i++) {

new_readers[i] = readers[i];
new_magic_numbers[i] = magic_numbers[i];

delete [] readers;
delete [] magic_numbers;

readers = new_readers;
magic_numbers = new_magic_numbers;

n++;

b

void A::destroy_readers() {
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}

for(int i=0; i<n; i++) {
delete magic_numbers[i];

3

delete [] magic_numbers;
delete [] readers;
magic_numbers = 0;
readers = 0;

n =0;

193

add_reader throws an exception if magic_number is already registered, otherwise it
extends the arrays by one new magic number and a corresponding handler reader.
destroy_readers releases the arrays that store the magic numbers and the handlers.

A::A_reader* A::readers = 0;
int A::n = 0;
char*x* A::magic_numbers = 0;

Ax A::read(istream& is) {

}

char magic_number[128];
is >> magic_number;

for(int i=0; i<n; i++) {

if (strcmp(magic_number,magic_numbers[i]) == 0) {

return (readers[i]) (is);
}
}

throw A_exception();
// No such magic_number

The method read reads the magic number into a buffer and goes through the array of
registered magic numbers and if found it invokes the handler to instantiate the object.

Ax B_reader(istream& is) {

int a;
is >> a;
return new B(a);
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Ax C_reader(istream& is) {
char buffer[256] ;
is >> buffer;
return new C(buffer);

3

B_reader and C_reader are the two handlers that instantiate B and C objects respec-
tively.
The rest of the B and C methods:

B::B(int a):i(a) {
}

void B::print(ostream& os) const {
0s << "B_MAGIC" << 7 7’ << 1i;

3

C::C(const charx* c):s(new char[strlen(c)+1]) {
strcpy(s,c);

}

c:: cO {
delete [] s;

}

void C::print(ostream& os) const {
os << "C_MAGIC" << ’ ’ KL s;
}

We would like to use operator<< to print objects of type A. But operator<< belongs
to ostream rather than to A, so how can we use polymorphism to run-time infer the
dynamic type? This is why we had the virtual method print.

ostream& operator<<(ostream& os, const A& a) {
a.print(os);

return os;

3

The question is if we can employ the same trick to use operator>> to read instances
of A. The answer is of course not since A is an abstract class and we would encounter
the same problem that we were trying to avoid by using registered handlers. But we
can use a another trick.



8.6. NOTES ON SYNTAX AND SEMANTICS 195

class A_WRAPPER {
protected:
Ax ptr;
public:
A_WRAPPER() ;
Ax get_AQ);

friend istream& operator>>(istream&,A_WRAPPER%) ;
+;

A_WRAPPER: : A_WRAPPER() :ptr(0) {
}

Ax A_WRAPPER::get_A() {
return ptr;

}

istream& operator>>(istream& is, A_WRAPPER& w) {
w.ptr = A::read(is);

return is;

}

A_WRAPPER is a class which holds a pointer to an instance of A. Its only method is Ax
A_WRAPPER: :get_A() which returns the address of the object held. Note that there is
no destructor! Now we can read an A_WRAPPER using operator>> and get the actual A
instance by calling the method.

And finally, the program:

int main(int argc, char* argv[]) {
A::add_reader ("B_MAGIC",B_reader);
A::add_reader ("C_MAGIC",C_reader);

for(int i=1; i<argc; i++) {

try {
istrstream is(argv[il,strlen(argv[il));
A_WRAPPER w;
is >> w;
cout << *(w.get_A()) << endl;

} catch (...) {
cout << "something is wrong with: " << argv[i] << endl;

}
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A::destroy_readers();

return O;

3

First we register the two handlers.

Then we just keep reading A’s by operator>> and writing them by operator<<. The
most important to remember is that we can add a new derived class of A with a new
handler and magic number and we would not have to modify A’s implementation what
so ever! It is probably worth going through this example a few more times.

8.7 Exercises

8.1 In Java , there is an abstract InputStream class which implements a number of
read methods. The read methods that read burst of characters into a buffer use
the read implementation which reads a single character iteratively. In C++ | it
would be similar to the definitions below:

class InputStream {
public:
virtual int read() = 0; // abstract
virtual void read(char*& b, int& n) {
int c,i = 0;
while((c = read()) != EOF) {
b[i++] = (char)c;
if (i==n) return;

}
}

}s

class FileInputStream : public InputStream {

.

class BufferedInputStream: public InputStream {

.

Explain the advantages of using this method! (Hint: how much work does one
have to do to implement a new subclass of InputStream?)
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8.2 In Java, there is a subclass of InputStream (see previous exercise) Filter InputStream
defined (C++ style) as follows:

class FilterInputStream: public InputStream {
protected:
InputStream* in;
public:
FilterInputStream(InputStream *is):in(is) {

}

virtual int read() {
return in->read();

}

virtual void read(char*& b, int& n) {
in->read(b,n);

}
}s

Explain the use of such a class. Give examples!!!

8.3 Describe situations, when the programmer is required to

o Subclass istream or ostream
o Overload operator>> or operator<
o Subclass istream or ostream and overload operator>> or operator<

8.4 Implement operator>> and operator< for class matrix, which is a class that
manipulates n X m arrays of doubles. Also implement the same C style (scanf,
printf). Is the C or C4++ style of I/O is more appropriate?
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Chapter 9

Object Oriented Design

9.1 Classes and Objects
What is a class?

A class is a set of logically similar entities. These entities may be similar in
structure and have similar properties (instance variables) and they may be
similar with respect to the kind of messages they respond to or with respect
to the kind of operations they can perform (instance methods).

What is an object?

An object is one particular instance of a class whose properties and rela-
tionships are uniquely established (instantiated).

What is a class hierarchy?

Classes are arranged in a hierarchy (¢ree) according to the is a pre-order. A
derived class is a base class (the derived class is also called the subclass and
the base class is also called the superclass). It is similar to the set-superset
relationship in the sense that instances of the derived class are instances of
the base class. In other words, the s a relationship is transitive.

What is an instance variable?

An instance variable usually represents a property of the class. For ex-
ample, student_number is a property of class student. An instance vari-
able can also represent an association. For example, the instance variable
registered_in may represent an association between a student and a
course.

199



200 CHAPTER 9. OBJECT ORIENTED DESIGN

‘What is an instance method?

Instance methods provide the interface to the object. It may be used to set
or report a property or a request to perform an operation. Instance methods
belong to the instance and they can only be called with an instance. The
actual invocation of a particular method with an instance is also referred
to as a message sent to the object. For example, if mary is an instance
of student, then the instance method mary.getStudentNumber () reports
a property, while the instance method mary.registerIn(csi2172A) per-
forms the operation registerin.

What is a class variable?

A class variable represents a common property of all instances of the class.
All instances share this variable (there is one physical location), and the
variable can be changed with or without an instance. For example, a class
variable may be used to count the number of instances allocated, or repre-
sent a shared resource for all instances.

What is a class method?

A class method may be used to report or change a property represented by
a class variable, or it may also be used to perform an operation which is
related to the class but requires no actual instance. For example, the math
class may have a class method sin to perform the trigonometric function
without having an instance of math allocated (math::sin(x)). In some
object oriented languages, — like SmallTalk —, instance creation (the new
operator) is a class method.

How does the object oriented paradigm differ from the procedural paradigm?

The main difference is the basis of problem decomposition. In the procedu-
ral paradigm, problem decomposition consists of identifying the tasks that
the application must perform. These task are in turn refined to subtasks.
Good decomposition minimizes coupling (the inter-dependence of tasks) and
maximizes coherence (each module has well defined and clear purpose in-
dependent of the context it is used). However, it has been observed, that
the structural make up of an application is more persistent than the func-
tionality it must perform. In the object oriented paradigm, decomposition
consists of identifying the building blocks (or entities) of the enterprise
and their relationships (associations). Good decomposition, — as in the
procedural paradigm —, minimizes coupling (the topology of associations)
and maximizes coherence (each object is well defined, reusable and context
independent).
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9.2 Polymorphism: Operation vs. Methods

An operation is a function or transformation that has well understood semantics and
is more-less context transparent. For example, addition of numeric values or drawing a
shape on a window are operations. A method is a particular implementation of an op-
eration for a class. For example, addition of fractions or complex numbers are methods
that implement the abstract operation addition and the draw methods of circle and
triangle are implementations of the operation draw.

The rationale behind using polymorphism is the mechanism provided by object ori-
ented languages which ensures invocation of the appropriate implementation (method)
of the operation, even if this decision has to be made run-time. Using and exploiting
this facility, program logic can be greatly simplified and the application is more main-
tainable and extendable.

Consider the following object model. A, B, C, D and E are classes which all provide
a method implementation of the foo operation. Furthermore, class A’s f002 operation
calls A’s foo method.

A
foo
foo2
AN
B C D
foo foo foo
E
foo

How does polymorphism simplify program logic?

Every instance of a derived class is also an instance of the base class. Hence
instances of classes B, C, D and E are also instances of class A. A variable
declared to hold an instance of class A can actually hold instances of the
subclasses of A. C++ has no way of determining if a statically allocated
instance of A is also an instance of a subclass of A'. On the other hand,

'Most object oriented languages, — like Java and SmallTalk —, do not allow the programmer to
allocate instances statically. Instances in these languages must be allocated by the new operator (or
class method)
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C-++ pointers and references are dynamically (run time) de-referenced, so

the programmer can rely on the appropriate version of the operation to be
invoked.

A *pl,*p2;

pl = new B;
p2 = new E;

pl->foo(); // B::foo
p2->foo(); // E::foo

Because this mechanism is part of the language, the programmer does not
have to implement selection of the appropriate method. Any class which
is associated to an instance of class A or a container that holds instances
of class A can exploit polymorphism to perform abstract operations on a
variety of instances.

How does polymorphism make a program more extendable?

Consider an application, where the objective is to draw figures read from a file on the
screen. Suppose the application supports drawing lines, rectangles and circles.

drawing J figure _ )
Object Oriented
display draw Decomposition
read read
render ﬁl
I I [
canvas circle rectangle line . triangle

:ﬂ r_e_a;i_\: . render | display

Functional
Decompositiol
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The figure above shows straight forward object oriented and functional decompositions.
read reads the figures from a file, render draws each figure on the canvas and display
displays the canvas in a window.

Suppose we would like to add the ability to draw triangles as well. Following our object
model, the programmer only needs to create one new object and implement its draw
and read? methods. Following our functional model, the programmer not only has to
implement functions to read and draw a triangle, but he also must change functions
render and read. Let us take a closer look why:

void render (canvas* c) {

for(int i=0;i<nof_figures;i++) {
switch(figures[i] .type) {
case 1: draw_line(c,figures[i]);
break;
case 2: draw_rectangle(c,figures[i]);
break;
case 3: draw_circle(c,figures[i]);
break;
case 4: draw_triangle(c,figures[i]); // must be
break; // added
default:
panic ("unknown figure");
break;

void drawing::render(canvas& c) {
for(int i=0;i<figures.length();i++) figures[i]->draw(c);
// polymorphism decides which version of draw!

To extend a program incrementally without even partially rewriting already existing
code requires a design in terms of abstract classes and operations. In this case the class
figure is abstract because it can only be instantiated as one of its subclasses. The
operation draw is also abstract, because it must be implemented in the subclasses.

Another way to exploit polymorphism is to implement an operation in terms of some

2reading instances of subclasses is bit tricky, see the example in Notes on Syntax and Semantics
for the Streams chapter
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other well defined operations. In the first example (page 201) , we said, that A::foo2
is implemented using A: :foo. As all methods inherit, classes B, C, D and E also have
a f0o2 method. B::foo2 automatically calls B: :foo (as opposed to A::foo ). The
power of this mechanism is illustrated in the next example:

number

operator<
operator>
operator==
operator>=
operator<=
operator!=

fraction complex

operator< operator<

bool number: :operator>=(const number& n) {
return !(*xthis < n);

3

bool number: :operator==(const number& n) {
return ! (*this < n) && !(n < *this);

3

bool number: :operator<=(const number& n) {
return !(n < *this);

3

bool number::operator>(const number& n) {
return !(*this < n) && (n < *this);
}

bool number::operator!=(const number& n) {
return (xthis<n) || (n < *this);

3

Now the programmer only has to implement complex: :operator< and fraction: :operator<.
The rest of the comparison operators for fraction and complex are “already’ imple-
mented.
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9.3 The Object Model

Programming in many respects is very similar to modeling. A model is a representation
of a real or fictitious enterprise which highlights those aspects that are of particular
interest. An object model is a representation which consists of the entities that make up
the enterprise and their associations. The OMT (Object Modeling Technique) formalism

was developed by James Rumbaugh and is very popular in both industry and academia?.

The Class

Class Name

attribute
attribute

operation
operation

The attributes are most often instance variables and the operations are methods. An
attribute represents a property of an instance of the class. Even though methods may
be implemented to set or get the value of the attribute, there is no need to list these
methods as operations. Operations are those methods that fundamentally constitute to
the functionality of the class and implement the interface to interact with the object.
It is very important to hide implementation details. The object model should be
explicit that a programmer can use it to implement the application, but it should leave
flexibility for the developer to make low level implementation decisions including the
language of choice. An attribute is only worth listing if it would be included in a
general description of the entity. Only methods that are public* and descriptive with
respect to the class’ purpose should be mentioned in the object model.

3the other popular formalism was developed by G. Booch
4if the programming language allows to restrict access privileges on methods
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Button Color Color Color Color
Foreground red red
invert green green
blue Biue
invert
getRed
setRed
getGreen
setGreen
getBlue
setBlue
invert
1 2 3 4 5

1. Foreground is an instance variable of type Color. It is a property of the user
interface component Button. The structure of the color class is insignificant and
it can be treated as if it were a native type.

2. Color is a class with no particular context interpretation. Color also plays a
role in the application, which is more than a property of other classes . This
representation is sufficient for most object models.

3. An instance of Color is equipped with the operation invert which can create the
negative of the color. If the invert operation is fundamental for the application,
this is the right representation.

4. An instance of Color is implemented using the RGB (red, green, blue) color en-
coding scheme. This representation may be too detailed unless it is fundamental
or at least advisable for the application that colors are represented this way. This
representation goes beyond design and enforces an implementation decision. For
example, it prohibits the developer to use the HVS (hue, value, saturation) en-
coding. This level of detail may be appropriate and is likely to be included in the
final and most refined versions of the object model.

5. This representation is redundant, unnecessary and obsessive. This level of detail
is not desirable and only adds confusion to the design.

The Association

Associations represent the relationship between objects. OMT distinguishes the fol-
lowing association types:
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class 1 class 2 1
class 1 c{ class 2 P
class 1 3 class 2 3

class 1 )- -‘ class 2 4

class 1 | qualifier —— 4 class 2 5
class1 k> class 2 €

class1 kK> c‘ class 2 /

1. Class 1 and Class 2 are related. The association is also one-one indicating that
each instance of Class 1 is related to exactly one instance of Class 2. Example:
King — Kingdom.

2. Each instance of Class 1 is related to zero or more instances of Class 2. This
association is a one-many relationship. Example: Country —e City.

3. Each instance of Class 1 is related to exactly 3 instances of Class 2. Example:
ThreeLeggedMonster — 3 MonsterLeg.

4. Each instance of Class 1 is related to many instances of Class 2 and each in-
stance of Class 2 is associated with many instances of Class 1. This association
is a many-many relationship. Example: Student e-e Course. Each student is
registered in zero or more courses, while each course has many students.

5. Instances of Class 2 are represented by a unique qualifier in instances of Class
1. A qualified association is implicitly one-many. Example: University |
student number | — Student.

6. Instances of Class 1 include one instance of Class 2. This type of association
is called aggregation. The main difference between an aggregation and a regular
association is that Class 2 plays a passive role. Example: Monitor ¢— Screen.

7. Instances of Class 1 include many instances of Class 2. Example: Directory
o—e File.
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Inheritance

Base Class Base Class

Derived Class Derived Class 2 Derived Class 1

9.4 Implementing Associations

The particulars of how an association is implemented depends on the context it is used.
The following are some possible implementation heuristics.

Kingdom — King

The Kingdom and King association is intrinsically one-one. The implementation en-
forces that both sides of the association are consistent.

class Kingdom {
King* _king;

public:
Kingdom(King *K):_king(K) { K->setKingdom(*this); }

};

King max;
Kingdom waste_land(&max) ;

Country —e City

A typical one-many association. The implementation enforces consistency.

class Country {
list<City*> cities; // list of pointers to cities

public:
void addCity(Cityx c) {
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cities.insert(c);

}
};

class City {
Country *belongsTo;

public:
City(Country* C):_belongsTo(C) {

C->addCity(this);
}
};

Country Canada;
City Ottawa(&Canada) ;

Course e—e Student
Many-many associations usually involve aliasing at both ends of the association. Spe-
cial care must be taken to avoid infinitely recursive initializations.

class Course {
list<Student*> students;

public:
void register(Student *s) {

s->addCourse(this) ;
students.insert(s);

};

class Student {
list<Coursex> courses;

public:
void addCourse(Coursex C) {
courses.insert(C);

}

void registerIn(Coursex C) {
C->register(this);
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};

University[student_number| — Student

An association is qualified if the qualifier attribute plays an important role in dis-
tinguishing the instances. This special role many times requires the selection of an
appropriate data structure.

class University {
hash_table<Student*> students;

public:
void addStudent(Student *s) {
students.put (s->getStudentNumber () ,s) ;

};

Monitor ¢— Screen

class Monitor {
Screen s;

+;
Directory ¢—e File

class Directory {
list<Filex> files;

};

9.5 Reusable Design Patterns and Frameworks

Probably every textbook on software engineering mentions that a good design maxi-
mizes coherence and minimizes coupling. Coherence in a design means that objects,
data structures, functions or any other programming constructs are well defined and
have a clear purpose. The Object Oriented paradigm is specifically good in maximiz-
ing coherence because the problem is first decomposed by isolating objects or actors
which play some role in the application. Coupling is a measure of the dependence of
such constructs or modules on other ones. In one word, abundance of pointers and
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propagating the task to be performed from object to object is a bad case of coupling.
Unfortunately the Object Oriented paradigm by its very nature tends to introduce
coupling into design.

Recently a new view emerged which does not mind coupling as far as it is automatically
managed and is represented by a simple design pattern. Design patterns are usually
recursive and most often they involve an association between a derived class and one
or more instances of the base class. Via the constructor and destructor mechanism
and the exploitation of run-time polymorphism, these patterns can give rise to almost
arbitrarily complex run-time topologies and yet they are implicitly managed.

Some design patterns can be frequently found in object models and are well docu-
mented and researched. The next few are just a sample and meant to serve as an
eye-opener. Understanding and using design patterns can significantly reduce develop-
ment time and maintenance. New design patterns emerge very fast and now there are
conferences and journals dedicated to this subject. A good (but somewhat outdated)
reference is listed on page 234.

Player-Role Framework

Player —* Role

Person 4 Person—Role

1

Employee Student

The player-role framework is a nice solution to avoid multiple inheritance. In the exam-
ple, a person may have several roles: student, employee or both. This framework not
only avoids the need of multiple inheritance, but it makes the design more extendable.
For example a new role volunteer can easily be added.

General Hierarchy Framework

There are two versions: one with a regular association and one with aggregation. Each
are recursive and can be used to implement arbitrary multi-trees.
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Node Member

Parent-Node Leaf-Node Container Simple-Member

Emp'oyee Folder—Item

|

Manager Developer | |Secretary Directory File

BinaryFile TextFile

The directory structure can be implemented as:

class FolderItem {
FolderItem* parent; // parent == NULL
// implies root directory

public:
void setParent(FolderItem* p) {
parent = p;
}

};

class Directory : public FolderItem {
list<FolderItemx*> items;
public:
void addItem(FolderItem* p) {
p—>setParent(this);
items.insert(p);
}
s

class File: public FolderItem { ... }

class BinaryFile: public File { ... }
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class TextFile: public File { ... }

There are many such reusable design patterns and frameworks, and new ones are
constantly being engineered. The design and analysis of architectural frameworks is
becoming a field on its own right with dedicated journals and conferences.

9.6 C++ and Object Oriented Trivia

This section is meant to be a review of the C++ and Object Oriented concepts presented
in these notes in the form of questions. Most of the answers can be directly found while
few (*) can be deduced from the notes and well known programming concepts.

1.

2.

10.

11.

12.

13.

14.

15.

16.

list the stages of compilation of C++ projects and explain what each step does!

what are the primitive data types in C++ 7

. describe C++ scoping rules!

. what is a namespace and how does it benefit software development?
. describe the iterative constructs available in C4++ !

. how does the switch construct work?

. describe break, continue and return!

. what are enumerated types and how are they used?

. what is a pointer?

what are pointers used for?
how are arrays represented in C++ 7

what is the difference in memory layout between statically and dynamically allo-
cated multi-dimensional arrays?

how can one allocate multi-dimensional arrays dynamically?
what is pointer arithmetic?
describe the relationship between pointers and arrays in C++ !

* why would one use pointers to functions?
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17.
18.
19.
20.
21.
22.

23.

24.
25.
26.
27.
28.
29.
30.

31.

32.

33.
34.
35.
36.
37.
38.
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describe what new, new[], delete and delete[] do?

what is typecasting?

describe compile-time, automatic and run-time memory allocation!
describe the different ways of parameter passing in C++ !

describe the different ways of returning values in C++ !

what is the difference between a reference and a pointer parameter?

what is the difference between a pointer passed by value and a pointer passed by
reference? give a concrete example when the latter is needed!

describe the different meanings of static in C++ !
what is a class?

what is the difference between an instance and a class?
what is an instance variable?

what is a class variable?

what is an instance method?

what is a class method?

what are the three criteria to be present for a language to be object oriented!
describe each!

*k* for a language to be pure object oriented the criterion that the class itself
is an object must hold. what can one achieve by this that otherwise would be
impossible?

what is the role of constructors?

what is the role of the destructor?

what is the role of the copy constructor?

what is the role of the assignment operator?

how do private instance variables declared in the base class get instantiated?

how should dynamically allocated private instance variables declared in the base
class be released?
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39.
40.
41.
42.
43.
44.

45.
46.
47.
48.

49.

20.

ol.
92.
a3.
o4.

3d.

96.
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do constructors inherit? why?

does the destructor inherit? why?

what is the initializer? what is it used for?

what can go wrong if a class has a copy constructor but no destructor?
what can go wrong if a class has a destructor but no copy constructor?

explicitly describe what kind of classes do not need a destructor and a copy
constructor!

describe how and when constructors get called implicitly!
describe how and when the destructor of a class gets called implicitly!
under what circumstances do temporary objects get created implicitly?

* describe how the copy constructor and the destructor should be implemented
for a class which has pointer variables used for aliasing and to hold unique dy-
namically allocated objects!

** suppose there is a class whose instances are shared amongst many other ob-
jects via pointers. is there a way to implement the copy constructor, assignment
operator and the destructor such that when all the references are gone, the ob-
ject deallocates itself? what are the challenges? what assumptions does the
programmer have to make?

* describe a situation where it is advantageous to declare a local object inside an
anonymous local scope — in other words, inside a pair of curly braces which does
not designate the body of a loop or a function!

what does inline mean?
what kind of functions and methods cannot be made inline and why?
what is the advantage of using embedded classes?

what is the difference between classes declared by the struct, class and union
keywords?

* describe an application where it is a good idea to declare a class with the union
keyword!

describe how pointers to member functions differ from regular pointers to func-
tions!
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o7.

98.
99.
60.
61.
62.
63.
64.
65.
66.
67.

68.

69.

70.
71.
72.
73.
74.
75.
76.
7.

78.
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** describe an application where it is appropriate to use pointers to member
functions!

** describe an application where multiple inheritance is not easily avoidable!
what is the difference between error handling and exception handling?
describe exception handling in C4++ !

what are ezception handlers?

why would someone catch an exception and re-throw it?

what is polymorphism?

what is run-time polymorphism or dynamic binding?

what is a virtual method?

* how does C++ implement run-time polymorphism (or dynamic binding)?
** discuss the advantages and disadvantages of operator overloading!

** describe an application where it is advisable to overload the free store operators
(new, new[], delete and delete[])!

what is the difference between C ’s free store functions (malloc, calloc, realloc
and free) and C++ ’s free store operators (new, new[], delete and delete[])?

how does polymorphism aid software development?

what is an abstract or pure virtual method? why do we need them?
what is an abstract class?

why would it be beneficial to model an application with abstract classes?
what is generic programming?

what are templates?

what are iterators?

how do iterators abstract data structures? why would one use iterators to access
elements rather than the data structure’s own methods?

why are container classes implemented with templates?
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79.
80.
81.

82.
83.
84.
85.
86.
87.
88.
89.

90.
91.

92.
93.
94.
95.

96.
97.
98.
99.
100.
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describe properties to compare data structures!
what kind of functions can/should be made parametric?

* describe a class which is not a kind of container but it makes sense to make it
parametric!

what are iostreams in C++ 7

what is serialization?

how do operator<< and operator>> abstract input-output in C++ 7

what are I/O manipulators?

we have seen file- and string-streams. what else can be abstracted by streams?
describe a situation where the solution is to overload operator<< and/or operator>>!
describe a situation where the solution is to subclass istream and/or ostream!

describe a situation where the solution requires to overload operator<< and/or
operator>> and to subclass istream and/or ostream!

describe the conceptual differences between C and C++ I/0!

** it is a well known problem to instantiate objects of a new derived class from
a stream without making modifications to the base class. describe where the
difficulty lies and suggest solutions!

compare the object oriented paradigm to other well known programming paradigms!
how does an object model differ from functional or procedural decomposition?
what are the steps to build an object model?

what are the fundamental building blocks of an object model and how does one
go about identifying them?

what are the most commonly used associations?

give general descriptions how to implement commonly occurring associations!
what are design patterns?

describe design patterns you know!

how does C++ compare to other languages you know? (compare on relevant
points identified by you)
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9.7 Exercises

9.1 Explain in your own words the difference between an operation and its method
implementation. Explain why it is a good (or bad) idea to create a model in
terms of operations. How can this be exploited together with inheritance? Give
examples of such models!

9.2 Consider the following design patterns and try to explain how they would work!
{A} stands for a parameter that designates a class name. Write definitions in
C++ for the classes. Give examples how they would be used!!!

{A}Filter has the exact same operations as {A}. Moreover every method of
{A}Filter only calls {A}’s implementation.

{A}

‘ ‘ {A}Flilter

What about this one? (Hint: what if {A} is a data structure?) Is multiple
inheritance a good idea here?
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{A} —\
E E {A}InputFilter {A}OutputFilter
....... t 3 —
_ {A}Filter :

{A}Factory has many instances of {A} associated with it. The operation create(...)
creates a new instance of {A} using the supplied parameters. Operation delete
detaches the instance from the factory. Operation apply ({operation}) calls the
operation on each and every instance of the factory.

{A} {A}Factory

‘ ‘ {A} create(...)
delete({A})
apply({operation})

9.3 Write sample implementations of the design patterns of the previous exercise for
the application of your choice.
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Chapter 10

Appendices

10.1 The C and C++ Preprocessor: cpp

C and C++ source code files are passed to the preprocessor, cpp , before they are
compiled. The task of the preprocessor is to strip C and C++ comments and to replace
macro names with their expansion. There are predefined and user defined macros. The
preprocessor also understands preprocessor statements.

The following table contains the most commonly used and standard predefined macros.

‘ Macro ‘ Expansion ‘ Example ‘
_FILE _ expands to the name of the | "blah.cc"
current input file
__LINE__ expands to the current 123
line number
_DATE__ expands to the date when | Dec 3 1997
the preprocessor is run
__TIME__ expands to the time when 16:52:01
the preprocessor is run
__STDC__ expands to 1 for ANSI C 1 0oro0
__GNUC__ expands to 1 for gcc 1 oro0
__GNUG__ expands to 1 for g++ 1 0or 0
__cplusplus expands to 1 for C4++ 1oro0
__BASE_FILE__ expands to the name of "main.cc"
the main input file
__INCLUDE_LEVEL__ | the nesting depth of 3
inclusions

Through preprocessor directives, the programmer can define his own macros and can
strip or include code fragments using the conditional preprocessor directives. The fol-
lowing table contains the most frequently used preprocessor directives.

221
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‘ Directive ‘ Argument ‘ Example ‘
#define symbol #define DEBUG-
symbol definition | #define pi 3.14
#define n2 ((n)*(n))
#undef symbol #undef pi
#ifdef symbol #ifdef pi
#ifndef symbol #ifndef _FOO_H_
#if eTPTession #if _LINE__ > 23
#elif eTpression #elif defined vax
#else none #else
#endif none #endif
#include <file> #include <iostream.h>
"file” #include "foo.h"
#line number #line 25
number filename | #line 24 "foo.cc"
#error message #error vax not supported
#warning message #warning this may crash
#pragma option #pragma once

The one directive which almost all C and C++ programs must use is #include, which
usually includes a header file. No identifier can be used without a definition. Defini-
tion of classes, functions, macros and references of external variables which reside in
libraries or object files are always provided as header or .h files. When the preprocessor
encounters the #include directive, it literally includes the file. If the file name is spec-
ified in angular brackets, then it looks for a file which resides in a directory which is
in the include path. If the filename is specified within double quotes, the preprocessor
looks for the file specified by the file path. For example:

#include "/usr/local/matlab/include/mc.h"

includes the file ” /usr/local/matlab/include/mc.h”, while
#include "foo.h"

includes the file from the current directory.

As #include directives can be nested many files deep, it is necessary to avoid multiple
inclusions of the same header file because every identifier can have only one defini-
tion. The preprocessor directives #ifndef, #define and #endif can be used to guard
a header file to be included multiple times. The standard template of guarding the
header file foo.h:

#ifndef _FOO_H.
#define _FOO_H.
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// body of foo.h
#endif

When the first time foo .h isincluded, #ifndef _FOO0_H._is true (if not defined .FOO_H.).
The very next line immediately defines _‘FOO_H_. Every conditional directive or cas-
cade of directives must have a corresponding #endif directive. When the second time
fo0o.h is the argument of an #include directive, _FOO_H_ is defined, hence everything
is skipped until the #endif directive.

Conditional directives can be used to skip lines of code depending whether a macro is
defined. The ezpression argument of a conditional directive may be any constant inte-
ger expression. Expressions can be integer literals, macros and they can be combined
using operators ==, <, >, <=, >=, |, I=+ - % Y%, /, &&, || and parenthe-
ses to explicitly specify precedence of evaluation. The defined symbol may be used
to test if a macro is defined before it would be expanded.

The #error directive forces the preprocessor to terminate with non-zero error code. In
other words, it can be used to prevent further preprocessing, and hence compilation.
The #warning directive, on the other hand, prints the warning message, but does not
stop the preprocessor.

The user can also use the #define directive to define more complicated expansions.
The macro can have parameters, like a function, and the arguments with the current
instantiations will be literally expanded. For example:

#define bug(A,B) A*B

is a macro which would expand bug(4,7) to 4%7, while bug(2+3,6) would expand to
2+3x6. To avoid the latter situation, unless it is the expected behavior, explicit brack-
eting should be used.

#define max(A,B) ((A)>(B)?A:B)
The 2*max (2+3,-5%3) expands to 2% ((2+3)>(-5%3)?72+3:-5%3).

Macros enclosed in double quotes are not expanded! (”line number: _LINE__” does
not expand)

The following example demonstrates the use of the directives and macros.

#ifndef _FO0O_C_
#define _F0O_C_

#ifdef WARNING
#warning This is a warning
#else
#if defined ERROR
#error This is an error
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#tendif
t#tendif

#define max(A,B) ((A)>(B)?7A:B)
#define pi 3.14159

#include <iostream.h>
int main(void) A
int i =

0;

#ifdef

cplusplus

CHAPTER 10. APPENDICES

cout << "You are running a c++ compiler" << endl;

#else // #ifdef __cplusplus

cout << "You are not running a c++ compiler" << endl;

#endif // #ifdef _cplusplus

#ifdef ONE
i=1;
#elif defined TWO
i=2;
#telse
i =
#endif

_1,

cout << "The maximum of " << i << "

and 3 is: " << max(i,3) << endl;

cout << "The value of pi is " << pi << endl;

#ifdef _DEBUG_
cout << "You are in debug mode: " << endl;
cout << "Line: " << __LINE__ << endl;
cout << "File: " << __FILE__ << endl;
cout << "Date: " << __DATE__ << endl;
cout << "Time: " << __TIME__ << endl;
#endif
return O;

}
#tendif // #ifndef _FOO_H_

The -D flag can be used to define a macro for the preprocessor when running g++ .
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$ g++ -DERROR foo.cc
$ foo.cc:8: #error This is an error

Executable not generated.

$ g++ -DWARNING -DTWO foo.cc

$ foo.cc:5: warning: #warning This is a warning
$ a.out

You are running a c++ compiler

The maximum of 2 and 3 is: 3

The value of pi is 3.14159

$ g++ -DDEBUG. foo.cc

$ a.out

You are running a c++ compiler
The maximum of -1 and 3 is: 3
The value of pi is 3.14159

You are in debug mode:

Line: 40

File: foo.cc

Date: Dec 3 1997

Time: 20:05:12

10.2 ANSI C++

The ANSI standardization effort of C++ has produced an even more complex language
than the one described in these notes. As of today (writing these notes), ANSI C++
compilers are not readily available, compilers partially support the ANSI C+-+ stan-
dard and many of the standard features are not portable. The foundation classes are
still being built and debated. The standard template library (STL) is becoming more
popular, but many C++ applications still use in-house development (like custom con-
tainer classes). Many currently being developed C++ applications utilize C libraries
and use C style I/O (as opposed to streams) and mix C style memory management with
C++ ’s new and delete operators. The concept of namespace and exception handling
are most certainly will be supported by all future C++ compilers and will play an
important role in C4++ development.

True Boolean Type

C++ has a true boolean type called bool. Logical operators in ANSI C++ hence
should return bool as opposed to int. There are also two boolean constants: true and
false. An integer is implicitly type casted into a bool if it is used in the context of
a boolean, so code that uses ints as opposed to bool still works as expected. New
development should use bool instead of int.
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True String Class

C++ has a true string class (string) which can be used to replace char* in many
contexts.

Using compiled C code in C++ applications

C++ is not only a superset of C , but it also changed some fundamental components
of the C language. When libraries compiled with a C compiler are combined with C4++
applications, the interface definitions should be appropriately changed. In particular,
the header file of a library should be put into the following linkage block:

extern "C" {
#include "oldcode.h"
#include <math.h>

}

10.3 Library vs. Systems Calls

C was originally designed to implement the UNIX operating system and to be used as
a systems programming language as well as for implementing general purpose applica-
tions. Most modern operating systems are written in C and C++ . C4++ can also be
used to write system level programs, but the object oriented paradigm is not the most
suitable for low level functional tasks that must be able to run fast and with limited
space requirements.

As C and C++ are also systems programming languages, they can call system functions
directly. A system call can be thought of as an atomic block of functionality which is
executed within the operating system kernel. System calls are operating system and
device dependent, so their use is only suggested for low level operating system tasks
and for special device access. The system interface is also wrapped into library func-
tions that provide a more portable but somewhat less efficient way of performing the
same tasks.

The full bundle of system calls available on a UNIX platform are listed in the second
chapter of the man pages. The third chapter describes the library wrappers for these
system calls.

10.4 Passing An Arbitrary Number of Parameters

It is sometimes convenient to pass an arbitrary number of parameters to a function. For
example, the printf and scanf functions can take an arbitrary number of parameters.
The catch is that the compiler has no way of checking the type of the parameters, hence
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the programmer must implement (or assume) a type for each. The type va_list is
used to declare a variable ap that represents the parameter list and the macro va_start
initializes ap to point to the first unnamed argument. There must be at least one named
argument. In C++ | a function that can accept a variable number of parameters must
use ... (ellipsis) to indicate the unnamed arguments. va_arg can be used to step ap,
and it also needs the assumed type (or class). When the unnamed arguments have
been stepped through, va_end must be called, otherwise the function may not be able
to return properly. There is no way to know how many arguments were passed, so
either a named argument with the expected number of arguments must be passed or
one of the named arguments must encode the expected number of arguments somehow
or the last argument must be reserved to signal the end.

#include <iostream.h>
#include <stdarg.h>

double multi_arithmetic(char oper,...) {
// executes oper on the arguments
// the last argument must be 0

va_list ap; // ap can be used to step through ...
double num,result;

va_start(ap,oper); // initialize ap to point
// to the first argument after oper

int isFirst = 1;
while (1) {
num = va_arg(ap,double);
if (num==0) break;
if (isFirst) {
result = num;
isFirst = 0;
continue;
}
switch(oper) {
case ’+’: result+=num;
break;
case ’-’: result—-=num;
break;
case ’*’: result*=num;
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break;
case ’/’: result/=num;
break;

va_end (ap) ;
return result;

int main(void) {

double a=1,b=2,c=3,d=4;

cout << "+ 1 2 3 4 = " << multi_arithmetic(’+’,a,b,c,d,0) << endl;
cout << "- 1 2 3 4 =" << multi_arithmetic(’-’,a,b,c,d,0) << endl;
cout << "x 1 2 3 4 = " << multi_arithmetic(’*’,a,b,c,d,0) << endl;
cout << "/ 1 2 3 4 =" << multi_arithmetic(’/’,a,b,c,d,0) << endl;
return O;

}

10.5 String Functions

This section is a sample of the most commonly used string functions defined in string.h.
Concatenating strings

char *strcat(char *dst, const char *src)
char *strncat(char *dst, const char *src, size_t n)

strcat appends the characters of src after the null byte (’0”) of the string dst. dst
is assumed to have enough memory allocated to hold the resulting string. strncat
is analogous to strcat but it copies at most n characters from src but stops if it
encounters the null byte in src earlier.

Finding the position of a character

char *strchr(const char *s, int c)
char *strrchr(const char *s, int c)
char *strpbrk(const char *s1, const char *s2)
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strchr returns a pointer to the first occurrence of ¢ (converted to a char) in string s
or a null pointer if ¢ does not occur in the string. strrchr returns a pointer to the
last occurrence of c. The null character terminating a string is considered to be part
of the string.

strpbrk returns a pointer to the first occurrence in string s1 of any character from
string s2, or a null pointer if no character from s2 exists in s1.

Substrings

char *strstr(const char *sl, const char *s2)

char *strtok(char *sl1, const char *s2)
char *strtok_r(char *sl1, const char *s2, char *xlasts)

strstr locates the first occurrence of the string s2 (excluding the terminating null
character) in string s1. strstr returns a pointer to the located string or a null pointer
if the string is not found. If s2 points to a string with zero length (that is, the string
"), the function returns si.

strtok can be used to break the string pointed to by s1 into a sequence of tokens,
each of which is delimited by one or more characters from the string pointed to by s2.
strtok considers the string s1 to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer s1 specified) returns a pointer to the first character of the first token,
and will have written a null character into s1 immediately following the returned token.
The function keeps track of its position in the string between separate calls, so that
subsequent calls (which must be made with the first argument being a null pointer) will
work through the string s1 immediately following that token. In this way subsequent
calls will work through the string s1 until no tokens remain. The separator string s2
may be different from call to call. When no token remains in s1, a null pointer is
returned.

strtok_r has the same functionality as strtok except that a pointer to a string place-
holder 1asts must be supplied by the caller. The 1lasts pointer is to keep track of the
next substring in which to search for the next token.

Comparing strings

int strcmp(const char *sl1, const char *s2)
int strncmp(const char *sl, const char *s2, size_t n)

strcmp compares two strings a character at a time, according to the ordering of your
machine’s character set. The function returns an integer greater than, equal to, or less
than 0, if the string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2 respectively. The sign of a non-zero return value is determined by
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the sign of the difference between the values of the first pair of bytes that differ in the
strings being compared. strncmp makes the same comparison but looks at a maximum
of n bytes. Bytes following a null byte are not compared.

Copying strings

char *strcpy(char #*dst, const char *src)
char *strncpy(char *dst, const char *src, size_t n)

char *strdup(const char *s1)

strcpy copies string src to dst including the terminating null character, stopping after
the null character has been copied. strncpy copies exactly n bytes, truncating src or
adding null characters to dst if necessary. The result will not be null-terminated if the
length of src is n or more. Each function returns dst.

strdup returns a pointer to a new string that is a duplicate of the string pointed to by
s1. The space for the new string is obtained using malloc. If the new string cannot
be created, a null pointer is returned.

String length

size_t strlen(const char *s)

size_t strcspn(const char *sl1, const char *s2)
size_t strspn(const char *sl, const char *s2)

strlen returns the number of bytes in s, not including the terminating null character.

strcspn returns the length of the initial segment of string s1 that consists entirely
of characters not from string s2. strspn returns the length of the initial segment of
string s1 that consists entirely of characters from string s2.

10.6 The make Utility

The make utility was invented to simplify the compilation and assembly of large
projects. Even for a few files it is worth to generate a makefile. The make utility
is significantly more complex and powerful than we present it here. Our major concern
is to write makefiles which can be used to compile C++ projects. The power of make
stems from its declarative style. A makefile contains dependency rules and the make
utility, using the dependencies, builds the project with the minimum number of calls
to the compiler.
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A dependency rule has the following form:

target : dependency, dependencys ...
"tab character” rule

The target and the dependencies can be file names. The make utility checks the file
creation date of the target and all of the dependencies. If any of the dependency files
has a later creation date than the target, then the rule is executed. Every rule must
be preceded by one tab character, which must also be the first character of the line.
For example:

foo.o: foo.cc foo.h
g++ -c foo.cc

is a dependency rule which executes g++ -c foo.c if foo.o is older than foo.c of
foo.h.

Macros can be defined to avoid repetitions and to parameterize commonly used utilities
within make . Macros can be defined with the following syntax:

name = text string

For example PROG = foo defines the macro PROG, and make replaces every occurrence
of ${PROG} with foo. The § sign can be used to dereference macros. For example, the
previous dependency rule could have been written as:

CC = g++
foo.o: foo.cc foo.h
${CC} -c foo.cc

make also provides the following predefined macros:

Macro | Meaning

$7 Those elements of a dependency rule
which are younger than the target

$e The name of the current target

$< The name of the current prerequisite

in a suffix rule
$x* The name, without the suffix, of the
current prerequisite in a suffix rule

make also allows the definition of suffiz rules which automatically build a prerequisite
if it has a matching suffix rule. A suffix rule has the form:

.<source-suffix>.<target-suffix>
"tab character" rule
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For example the suffix rule:

.C.0

${CC} -c $<

defines how to build a .o file from a .c file. Once this rule is specified, make can
automatically build object files and it can also do it implicitly if a dependency is a .o
file and there is a C source file with the same stem and suffix .c.

The following is a makefile for the digit recognition application discussed in the first
lecture (University of Ottawa, “csia” SunOS server).

#!/bin/sh

# CC is the C++ compiler

CC = gt++

# -g is the debug flag, another useful flag is -0
# -0 is for "optimization"

CFLAGS = -g

# -L. says that the libraries are in the current directory
LDLIBS = -L. -1lmath -lnnet

# AR is the archiving program
AR = ar

# rc passed to ar forces the creation of a new archive
ARFLAGS = rc

# add the suffix .cc to the suffices
.SUFFIXES: .SUFFIXES .cc

# the suffix rule specifies how to build
# an object (.o0) file from a .cc file
.cC.o:

${CC} -c $< ${CFLAGS}

# digitrec is the application
digitrec: digitrec.o main.o libnnet.a libmath.a
${CC} -o $@ digitrec.o main.o ${LDLIBS}

# dependencies for the math library
libmath.a: matrix.o random.o digitrec.o nnet.o
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${AR} ${ARFLAGS} $@ matrix.o random.o digitrec.o nnet.o
ranlib $@

# dependencies for the neural networks library
libnnet.a: nnet.o

${AR} ${ARFLAGS} $@ nnet.o

ranlib $@

# dependencies of object files

main.o: main.cc

digitrec.o: digitrec.cc math.h nnet.h digitrec.h
nnet.o: nnet.cc nnet.h math.h

ode.o: ode.cc ode.h calc.h

calc.o: calc.cc calc.h

matrix.o: matrix.cc matrix.h calc.h

random.o: random.cc random.h

make looks for the file Makefile in the current directory, hence you have to save the
file under the name Makefile®. Finally, to run make , you only need to type make at
the prompt:

$ make

And the project will be built.

lit is also possible to specify another file. for the complete list of options refer to the man pages
on make
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