Date: January 15-19, 2001 CSI 2131 Page: 1
Prof. Lucia Moura Tutorial 2

Reference for C programming language:
N.K. “C Programming : A modern approach”. Norton, 1996.

Today

e Pointers and arrays (Ref. King)
e Strings (Ref. King)

e Classes and objects in C++ (Ref. Folk, Zoellick and Riccardi, Section
1.5)

o A useful example to help with your assignment

Pointers and Arrays

1) Pointers can point to array elements and can be used for array processing

int a[5], *p, *q;

p = &al0]; // makes p points to al[0]
*p=5; // puts 5 in variable pointed by p

o|v (et

Pointer Arithmetic

p = &al2]; // p points to al[2]
pt = 2; // p points to al4]

Adding 2 to p does not move p 2 bytes, but moves p 2 “int’s” ahead since p
is a pointer to int.



Date: January 15-19, 2001 CSI 2131 Page: 2
Prof. Lucia Moura Tutorial 2

q=p-3;
xq = 10; // place 10 in a[1]

The following program sums the elements of an array using pointers :

int a[10],sum,*p;

sum = 0;
for (p = &al[0]; p < &al[10]; p++) {
sum += *p;

by

2) Array name as a pointer
The name of an array can be used as a pointer to the first element in the
array.

int a[10];

*a = 7; // stores 7 in al[0]
x(a+l) = 12; // stores 12 in a[1]

The “for-loop” in the previous example can be written as :

for (p = a; p < atl; p++) {
sum += *p;

by

Important : An array can be used as a pointer but it is not possible to assign it a new value.

while (*a'!=0) {
at+; // wrong!!!

b

The correct way is

P =aj
while (*p!=0) {
ptt;

by



Date: January 15-19, 2001 CSI 2131 Page: 3
Prof. Lucia Moura Tutorial 2

3) Array arguments
When passed to a function. an array name is always treated as a pointer.

int find_largest(int al], int n) {
int i,max;
max = al[0];
for (1 =1; 1 < n; i++) {
if (ali] > max) max = ali];

t
return max;
b
void store_zeros (int al[], int n) {
int 1i;
for (i=0;i<n;i++)
ali]l = 0;

3

To indicate that an array parameter won’t be changed (like in find_largest)
we can include const in its declaration.

int find_largest (const int al[], int n) {

3

No copy of the array constants is done when its passed as argument to a
function; only pointers are copied.

The call:
largest = find_largest(b,N);

makes a pointer to the first element of b (a pointer to b[0]) to be assigned
to a.

String variables
e There is no basic type String in C

o Array of characters may be used as strings



Date: January 15-19, 2001 CSI 2131 Page: 4
Prof. Lucia Moura Tutorial 2

The string “abc” is stored in a array s of four characters as follow :

s|{alblc]\O

The empty string “ 7 is stored as

s | \0

You are allowed to initialize the char array with a string literal, but not do
an assignment of the string literal to an array.

char s[4] = "abc"; //0K

char s[4]
s = "abc"; // Wrong!

s[0]
s[3]

‘a’; s[1] = ‘b’; s[2] = ‘c¢’;
‘N0’ ; //Correct

In order to move strings around more easily you need to use the C string
library :

#include <string.h>
Useful string manipulation functions :
String copy (strcpy)

Proﬂﬁype: char *strcpy(char *s1, const char *s2);

strcpy(s,"abc");
strepy(r,s); //Now r contains "abc"



Date: January 15-19, 2001 CSI 2131 Page: 5
Prof. Lucia Moura Tutorial 2

If you had done :
r = s;

Pointer s would be copied into r, but if r was declared as char r[4], the
pointer assignment would fail.

Other useful functions :

String concatenation (strcat)
strcat(stril,str2);

Appends str2 to the end of stri.

String comparison (strcmp)
stremp(stri,str2);

returns value < 0 if strl < str?2
=0 il str = str2
>0 if strl > str2

Comparison in lexicography :

"abcd" < "abce"
"abc" < "abcd"

String length (strlen)

strlen(str) returns the length of the string. not counting the extra null
character \0.

int len;
char stri[10];

len strlen("abc"); // len is 3
len = strlen(""); // len is now O
strcpy(strl, "abc");

len = strlen(strl); // len is now 3



Date: January 15-19, 2001 CSI 2131 Page: 6
Prof. Lucia Moura Tutorial 2

Using Objects in C++
Reference : Folk. Zoellick and Riccardi. Sections 1.5.
- Read the book section fore more details

An example of a very simple C++ class is Person, as given below.

class Person

{ public :
// data members
char LastName[11], FirstName[11], Address[16];
char City[16], State[3], ZipCode[10];

// method
Person(); // default constructor
+s
e LastName, FirstName, ... are members

e Object p of class Person is declared :
Person p;

e p.LastName refers to its LastName member.

e Levels of access :
public
private

protected

C++ includes special methods called constructors which guarantee that ob-
jects are property initialized.

A constructor has no return type and the same name as the class: Person()
in the example



Date: January 15-19, 2001 CSI 2131 Page: 7
Prof. Lucia Moura Tutorial 2

There are two ways of having objects created :

by declaration of variable :

Person p; // automatic creation
by declaration of pointer + dynamic creation using new operator :
Person *p-ptr = new Person; // dynamic creation
Also ok :

Person *p-ptr;

f;étr = new Person;

In this case, access to members can be done as follow :

(*p-ptr) .LastName or
p-ptr -> LastName (the second is most used)

Either object’s creation includes the execution of Person’s constructor.

e The symbol :: is the scope resolution operator, telling that Person()

is a member of Person class

e Note that inside the member code, the member can be used without
the dot(.) operator.

e Every call of a member function has a hidden argument which is a
pointer to the object: this.
this — LastName is the same as LastName inside a method’s code.

The code for Person constructor is provides as follow :

Person: :Person()

{ // set each field to an empty string
LastName[0]=0; FirstName[0]=0; Address[0]=0;
City[0]=0; State[0]=0; ZipCode[0]=0;



Date: January 15-19, 2001 CSI 2131 Page: 8
Prof. Lucia Moura Tutorial 2

Example: manipulating fixed length records in C++

The following program will be discussed during this tutorial /lab.. It contains
elements/ideas that are useful for assignment#1.

// readrec.cpp
#include <fstream.h>
#include <string.h>

#define MAX 100

// a simplified version of Person class
class Person {

public:

char LastNamel[6];

char FirstName[6];

char State[3];

Person();

};

Person: :Person() {
LastName[0]=’\0’; FirstName[0]=’\0’; State[0]=’\0";

// Read from stream a fixed length record and places in p
// Fields have sizes: 5, 5 and 2 respectively

int ReadRecPerson(fstream & stream, Person & p) {
stream.getline(p.LastName,G); // reads 5 characters or default
stream.clear() ; // delimiter ’\n’

// when delimiter not found "fail"
// flag is set this clears "fail" flag

if (strlen(p.LastName)==0) return O0;
stream.getline(p.FirstName,6); stream.clear();
stream.getline(p.State,3); stream.clear();
return 1;



Date: January 15-19, 2001 CSI 2131 Page: 9
Prof. Lucia Moura Tutorial 2

// Write to stream the Data in p
int WriteRecPerson(fstream & stream, Person & p) {

stream << p.LastName << p.FirstName << p.State << endl;
by

// Read records from "in.txt" and write in "out.txt" in reverse order
// (first record last, last record first)
int main() {

fstream infile;

fstream outfile;

infile.open("in.txt",ios::in);
outfile.open("out.txt",ios: :out);

Person people[MAX]; int i,n=0;

if (infile.fail()) { // if file does not exist, abandon program
cerr <<"File open failed!\n";
return 0;

while ((ReadRecPerson(infile,people[n]) != 0) && (n<MAX))
n++;

for (int i=n-1; i>=0 ; i--)
WriteRecPerson(outfile,peopleli]);

infile.close();
outfile.close();

return 1;

by

After you understand this, you may look at appendixes: D.5, D.6, D.6. D.8 in
order to see how we could do similar reading/writing tasks by “overloading”
operator>> and operator<<.



