Date: March 26-27, 2001 Prof. Lucia Moura	CSI 2131 Lecture 21	Page: 1
r roi. Lucia Moura	Lecture 21	

Hashing

Today: Chapters 11.1-11.4.

Motivation

The main motivation for Hashing is improving searching time. Below we show how the search time for Hashing compares to the one for other methods:

- Sequential search: O(N)

- B Trees and B+ trees: $O(\log_k N)$

- Hashing: O(1)

What is Hashing?

A **Hash Function** is a function h(k) that transforms a key into an address. An address space is chosen before hand. For example, we may decide the file will have 1,000 available addresses.

If U is the set of all possible keys, the hash function is from U to $\{0,1,...,999\}$, that is

$$h: U \longrightarrow \{0,1,...,999\}$$

Example:

k	ASCII code for the	product	$h(k) = product \mod 1,000$
	first 2 letters		
BALL	66, 65	66.65=4,290	290
LOWELL	76, 79	76.79=6,004	004
TREE	84, 82	84.82=6,888	888

Date: March 26-27, 2001	CSI 2131	Page: 2
Prof. Lucia Moura	Lecture 21	1 400

RRN	FILE		
000			
001			
:	:		
004	LOWELL		
:	:		
290	BALL		
:	:		
888	TREE		
:	:		
999			

- There is no obvious connection between the key and the location (randomizing).
- Two different keys may be sent to the same address generating a Collision

Can you give an example of collision for the hash function in the previous example?

LOWELL, LOCK, OLIVER, and any word with first two letters L and O will be mapped to the same address:

$$h(LOWELL) = h(LOCK) = h(OLIVER) = 4.$$

These keys are called **synonyms**. The address "4" is said to be the **home** address of any of these keys.

Avoiding collisions is extremely difficult (remember the birthday paradox discussed in class), so we need techniques for dealing with it.

Date: March 26-27, 2001	CSI 2131	Page: 3
Prof. Lucia Moura	Lecture 21	0

Ways of reducing collisions:

- 1. **Spread out the records** by choosing a good hash function.
- 2. Use extra memory, i.e. increase the size of the address space (Ex: reserve 5.000 available addresses rather than 1.000).
- 3. Put more than one record at a single address (use of buckets).

A Simple Hash Function

To compute this hash function, apply 3 steps:

- Step 1: transform the key into a number.
- Step 2: fold and add (chop off pieces of the number and add them together).
- Step 3: divide by the size of the address space (preferably a prime number).

Distribution of Records among Addresses

There are 3 possibilities:

	niform nonyms)	All syn	onyms		ndom vnonyms)
Key	Address	Key	Address	Key	Address
Α —	0	Α <	0	Α	0
В∖	1	В	1	В∖	1
$C \setminus$	2	С —	\longrightarrow 2	$C \setminus$	2
$_{\rm D}$	3	D /	3	D	3
	4		4		4
	5		5		5
	\ 6		6		\ 6

Uniform distributions are extremely rare.

Random distributions are acceptable and more easily obtainable.

Data: March 26 27 2001	CSI 2131	Daga. 4
Date: March 26-27, 2001		Page: 4
Prof. Lucia Moura	Lecture 21	

Trying a **better-than-random** distribution, by preserving natural ordering among the keys :

- Examine keys for patterns.
- Fold parts of the key.
- Use prime number when dividing the key.

When it does not work, try **randomization.** You can using the following Hash functions:

• Square the key and take the middle:

Ex: key = 453 $453^2 = 205209$ Extract the middle = 52.

• Radix transformation:

Transform the number into another base and then divide by the maximum address.

Ex: Addresses from 0 to 99 key = 453 in base 11:382 hash address = $382 \mod 99 = 85$.