Date: March 12-13, 2001	CSI 2131	Page: 1
Prof. Lucia Moura	Lecture 18	0

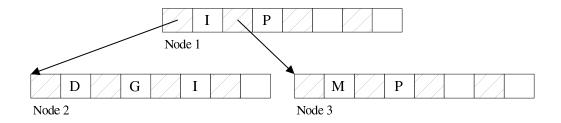
B-Trees

Last Time: Chapters 9.5, 9.6

Today: Chapters 9.8, 9.9, 9.10, 9.11, 9.12

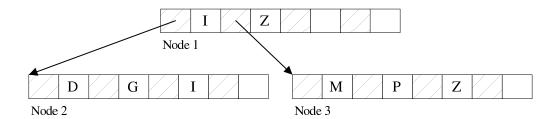
Note regarding insertions in B-trees

Special case of larger key:



Inserting Z

Z is larger than P but P is larger in Node 1, so the place for Z is Node 3.



Date: March 12-13, 2001	CSI 2131	Page: 2
Prof. Lucia Moura	Lecture 18	<u> </u>

B-Tree Properties

Properties of a B-tree of order m:

- 1. Every node has a maximum of m children.
- 2. Every node, except for the root and the leaves, has at least $\lceil m/2 \rceil$ children.
- 3. The root has at least two children (unless it is a leaf).
- 4. All the leafs appear on the same level.
- 5. The leaf level forms a complete index of the associated data file.

Worst-case search depth

The worst-case depth occurs when every node has the minimum number of children.

Level	Minimum number of keys (children)
1 (root)	2
2	$2 \cdot \lceil m/2 \rceil$
3	$ 2 \cdot \lceil m/2 \rceil \cdot \lceil m/2 \rceil = 2 \cdot \lceil m/2 \rceil^2 $ $ 2 \cdot \lceil m/2 \rceil^3 $
4	$2 \cdot \lceil m/2 \rceil^3$
•••	•••
d	$2 \cdot \lceil m/2 \rceil^{d-1}$

If we have N keys in the leaves:

$$N \ge 2 \cdot \lceil m/2 \rceil^{d-1}$$

So,
$$d \le 1 + \log_{m/2}(N/2)$$

For N = 1,000,000 and order m = 512, we have

$$d \leq 1 + \log_{256} 500,000$$

$$d \leq 3.37$$

There is at most 3 levels in a B-tree of order 512 holding 1,000 000 keys.

	Date: March 12-13, 2001 Prof. Lucia Moura	CSI 2131 Lecture 18	Page: 3
--	--	------------------------	---------

Outline of Search and Insert algorithms

Search (keytype key)

- 1) Find leaf: find the leaf that could contain key, loading all the nodes in the path from root to leaf into an array in main memory.
- 2) Search for **key** in the leaf which was loaded in main memory.

Insert (keytype key, int datarec_address)

- 1) Find leaf (as above).
- 2) Handle special case of new largest key in tree: update largest key in all nodes that have been loaded into main memory and save them to disk.
- 3) Insertion, overflow detection and splitting on the update path: currentnode = leaf found in step 1)
 recaddress = datarec_address
 - 3.1) Insert the pair (keys, recaddress) into currentnode.
 - 3.2) If it caused overflow
 - Create newnode
 - Split contents between newnode, currentnode
 - Store newnode, currentnode in disk
 - If no parent node (root), go to step 4)
 - currentnode becomes parent node
 - recaddress = address in disk of newnode
 - key = largest key in new node
 - Go back to 3.1)
- 4) Creation of a new root if the current root was split.

Create root node pointing to newnode and currentnode. Save new root to disk.

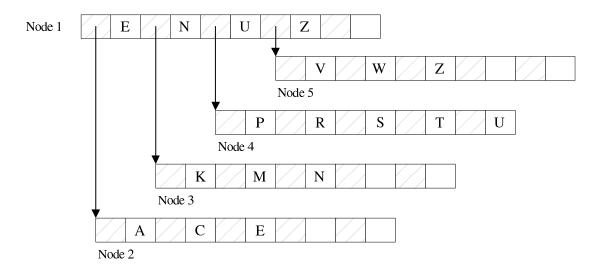
Date: March 12-13. 2001	CSI 2131	Page: 4
Prof. Lucia Moura	Lecture 18	S

Deletions in B-Trees

The rules for deleting a key K from a node n in a B-tree:

- 1. If n has more than the minimum number of keys and K is not the largest key in n, simply delete K from n.
- 2. If n has more than the minimum number of keys and K is the largest key in n, delete K from n and modify the higher level indexes to reflect the new largest key in n.
- 3. If n has exactly the minimum number of keys and one of the siblings has "few enough keys", **merge** n with its sibling and delete a key from the parent node.
- 4. If n has exactly the minimum number of keys and one of the siblings has extra keys, **redistribute** by moving some keys from a sibling to n, and modify higher levels to reflect the new largest keys in the affected nodes.

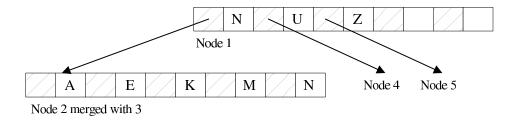
Consider the following example of a B-tree of **order 5** (minimum allowed in node is 3 keys)



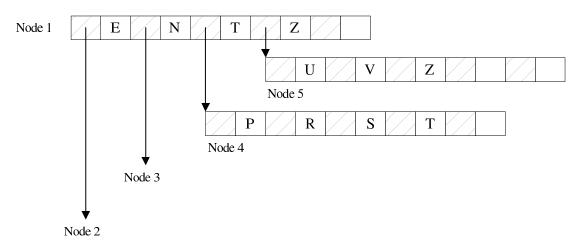
Date: March 12-13, 2001	CSI 2131	Page: 5
Prof. Lucia Moura	Lecture 18	O

We consider the following 5 alternative modifications on the previous tree:

- Deleting "T" falls into case 1)
- Deleting "U" falls into case 2)
- Deleting "C" falls into case 3)



• Deleting "W" falls into case 4)



- Deleting "M" allows for two possibilities: case 3) or 4)
 - Merge Node 3 with Node 2; or
 - Redistribute keys between Node 3 and Node 4

Note that "sibling" here refers only to nodes that have the same parent and are **next to each other.**