Date: February 15-16, 2001

Prof. Lucia Moura

CSI 2131

Page: 1
Lecture 13

Indexing and Cosequential Processing

Last Time : Indexing PartIl (Chapters 7.4 - 7.6)

Today : Indexing Part III (Chapters 7.7 - 7.10) and Introduction to Cose-
quential Processing (Chapter 8.1)

Indexing

Retrieving Using Combinations of Secondary

Keys

Secondary key indexes are useful in allowing the following kinds of queries :
e Find all recording with composer “BEETHOVEN”.

e Find all recording with title “Violin Concerto”.

e Find all recording with composer “BEETHOVEN” and title “Sym-
phony No.9”.

This is done as follows :

Matches from | Matches from | Matched list
composer index | title index (logical “and”)
ANG3795 ANG3795 ANG3795
DG139201 COL31809 DG18807
DG18807 DG18807

RCA2626

Use the matched list and primary key index to retrieve the two recordings

from the file.

Date: February 15-16, 2001 CSI 2131 Page: 2

Prof. Lucia Moura Lecture 13

Improving The Secondary Index Structure
Inverted Lists

Two difficulties found in the proposed secondary index structures :

e We have to rearrange the secondary index file even if the new record
to be added in for an existing secondary key.

o If there are duplicates of secondary keys then the key field is repeated
for each entry, wasting space.

Solution 1

Make the secondary key index record consist of secondary key + array of
references to records with secondary key.

Problems :

e The array will take a maximum length and we may have more records.

e We may have lots of unused spaces in some of the arrays (wasting space
in internal fragmentation).

Solution 2 : Inverted Lists

Organize the secondary key index as an index containing one entry for each
key and a pointer to a linked list of references.

Secondary Key Index File = LABEL ID List File

0 | LON2312 -1
1| RCA2626 -1
0 | Beethoven 3 2 | WAR23699 -1
1 | Corea 2 3 | ANG3795 6
2 | Dvorak 5 4 | DG18807 1
3 | Prokofiev 7 5 | COL31809 -1
6 | DG139201 4
71 ANG36193 0

Beethoven is a secondary key that appears in records identified by the LABEL
IDs: ANG3795, DG139201, DG18807 and RCA2626 (check this by following
the links in the linked list).

Date: February 15-16, 2001 CSI 2131 Page: 3

Prof. Lucia Moura Lecture 13
Advantages :
e Rearrangement of the secondary key index file is only done when a new

composer’s name is added or an existing composer’s name is changed.
Deleting or adding recordings for a composer only affects the LABEL
ID list file. Deleting all recordings by a composer can be done by
placing a “-1” in the reference field in the secondary index file.

Rearrangement of the secondary index file is quicker since it is smaller.

Smaller need for rearrangements causes a smaller penalty associated
with keeping the secondary index file in disk.

The LABEL ID list file never needs to be sorted since it is entry
sequenced.

We can easily reuse space from deleted records from the LABEL ID
list file since its records have fixed-length.

Disadvantages :

Lost of “locality” : labels of recordings with same secondary key are
not contiguous in the LABEL ID list file (seeking). To improve this,
keep the LABEL ID list file in main memory, or, if too big, use
paging mechanisms.

Selective Indexes

We can build selective indexes, such as :

Recordings released prior to 1970, recordings since 1970.

This may be useful in queries involving boolean “and” operations :

“Retrieve all the recordings by Beethoven released since 19707.

Date: February 15-16, 2001 CSI 2131 Page: 4

Prof. Lucia Moura Lecture 13

Binding

In our example of indexes, when does the binding of the index to the physical
location of the record happens 7

For the primary index, binding is at the time the file is constructed. For the
secondary index, it is at the time the secondary index is used.

Advantages of postponing binding (as in our example) :
e We need small amount of reorganization when records are added/deleted.

e [t is a safer approach : important changes are done in one place rather
than in many places.

Disadvantages :

e It results in slower access times (binary search in secondary index plus
binary search in primary index).
When to use a tight binding ?

e When data file is nearly static (little or no adding, deleting or updating
of records).

o When rapid retrieval performance is essential. Example : Data stored

in CD-ROM should use tight binding.
When to use the bind-at-retrieval system?

o When record additions, deletions and updates occur more often.

Date: February 15-16, 2001 CSI 2131 Page: 5
Prof. Lucia Moura Lecture 13

Cosequential Processing

Cosequential processing involves the coordinated processing of two or
more sequential lists to produce a single output list.

The two main types of resulting output lists are :
e Matching (intersection) of the items of the lists.

e Merging (union) of the items of the lists.

Examples of applications :

1. Matching :
Master file - bank account info (account number, person name, account
balance) - sorted by account number
Transaction file - updates on accounts (account number, credit/debit
info).

2. Merging :
Merging two class lists keeping alphabetic order.
Sorting large files (break into small pieces, sort each piece and then

merge them).

Date: February 15-16, 2001 CSI 2131 Page: 6

Prof. Lucia Moura Lecture 13

Matching the Names in Two Lists

List 1(Sorted) List 2 (Sorted) ('V'Sg‘:fgde)d List
ADAMS ADAMS ADAMS
CARTER BECH CARTER
DAVIS
CHIN BURNS
DAVIS CARTER
MILLER DAVIS
RESTON PETERS
End of list ROSEWALD
Detected SCHIMT
WILLIS
Synchronization :

item(1) = current item from list 1
item(2) = current item from list 2

if item(1) < item(2) then
get next item from list 1
if item(1) > item(2) then
get next item from list 2
if item(1) = item(2) then
output the item to output list
get next item from list 1 and list 2

Handling End-of-File/End-of-List Condition
When we get to the end of either list 1 or list 2, we halt the program.

Date: February 15-16, 2001

Prof. Lucia Moura

CSI 2131
Lecture 13

Page: 7

Merging the Names in Two Lists, Eliminating

Repetitions

List 1(Sorted) List 2 (Sorted)

ADAMS ADAMS

CARTER BECH

CHIN BURNS

DAVIS CARTER

MILLER DAVIS

RESTON PETERS

<HIGH VALUE> ROSEWALD
SCHIMT
WILLIS

<HIGH VALUE>

Modify the synchronization slightly :

if item(1) < item(2) then
output item(1) to output list
get next item from list 1

if item(1) > item(2) then
output item(2) to output list
get next item from list 2

if item(1) = item(2) then
output the item to output list

get next item from list 1 and list 2

Merged List
(Sorted)
ADAMS
BECH
BURNS
CARTER
CHIN
DAVIS
MILLER
PETERS
RESTON
ROSEWALD
SCHIMT
WILLIS

Date: February 15-16, 2001 CSI 2131 Page: 8
Prof. Lucia Moura Lecture 13

Handling End-of-File/End-of-List Condition

1. Using a <HIGH VALE> as in the previous example:

By storing <HIGH VALUE> in the current item for the list that finished,
we make sure the contents of the other list is flushed to the output list.

The stopping criteria is changed to :
When we get to the end of both list 1 and list 2, we halt the program.

2. Reducing the number of comparisons:

We can perform a similar algorithm with less comparisons without
using a <HIGH VALUE> as described above.

The stopping criteria becomes:
When we get to the end of either list 1 or list 2, we halt the program.

Finalization: flush the unfinished list to the output list.

while (list 1 did not finish)
output item(1l) to output list
get next item from list 1

while (list 2 did not finish)
output item(2) to output list
get next item from list 2

