Date: January 8-9, 2001 CSI 2131 Page: 1

Prof. Lucia Moura Lecture 11

Binary Searching, Keysorting and Indexing

Last Time : Reclaiming Space in Files

Today : Binary Searching (Chapter 6.3.1 - 6.3.3), Keysorting (Chapter 6.4)
and Introduction to Indexing (Chapter 7.1-7.3)

Binary Searching (Chapters 6.3.1 - 6.3.3)

Let us consider fixed-length records that must be searched by a key value.

If we knew the RRN of the record identified by this key value, we could jump
directly to the record (using “seek”).

In practice, we do not have this information and we must search for the
record containing this key value.

If the file is not sorted by the key value we may have to look at every possible
record before we find the desired record.

An alternative to this is to maintain the file sorted by key value and use
binary searching.

A binary search algorithm using C4++ :

class FixedRecordFile{
public:
int NumRecs();
int ReadByRRN(RecType & record, int RRN);
s

class KeyType {
public:
int operator==(KeyType &) ;
int operator<(KeyType &);
¥

Date: January 8-9, 2001 CSI 2131 Page: 2

Prof. Lucia Moura Lecture 11

class RecType {
public:
KeyType key();

};

int BinarySearch(FixedRecordFile & file, RecType & obj, KeyType & key) {
int low=0; int high=file.NumRecs() -1;
while (low <= high) {
int guess = (high + low)/2;
file.ReadByRRN(obj,guess) ;
if (obj.key() == key) return 1;
if (obj.key() > key)
high = guess - 1;
else
low = guess + 1;
b
return 0; //did not find key
b

Note: the above algorithm corrected some mistakes from the textbook.
Binary Search versus Sequential Search :

Binary Search : O(logzn)
Sequential Search : O(n)

If file size is doubled, sequential search time is doubled, while binary search
time increases by 1.

In assignment#2, binary search must be employed in searching for the record
containing a given student number.

For this purpose, ReadbyRRN must be implemented.

You can use method seekg.

To rewrite the password after correct position is found, move the put pointer
by using method seekp.

Date: January 8-9, 2001 CSI 2131 Page: 3

Prof. Lucia Moura Lecture 11

Keysorting (section 6.4)

Suppose a file needs to be sorted, but it is too big to fit into main memory.

To sort the file, we only need the keys. Suppose that all the keys fit into
main memory.

Idea:
e Bring the keys to main memory plus corresponding RRN
e Do internal sorting of keys

e Rewrite the file in sorted order

keynodes array records
key RRN
HARRISON 0 | —» | HARRISON | 387 Eastern...
KELLOG 1 | —» |KELLOG |17 Maple...
HARRIS 2 | ——» | HARRIS| 4343 West...
BELL 3 | ——» | BELL | 8912Hill...
Main Memory Disk
keynodes array records
key RRN
BELL 3 HARRISON | 387 Eastern...
HARRIS 2 KELLOG |17 Maple...
HARRISON 0 HARRIS | 4343 West...
KELLOG 1 BELL | 8912 Hill...
Internal sorting No change in Disk

in main memory

Date: January 8-9, 2001 CSI 2131 Page: 4
Prof. Lucia Moura Lecture 11
keynodes array records
BELL 3 BELL | 8912 Hill...
HARRIS 2 HARRIS | 4343 West...
HARRISON 0 HARRISON | 387 Eastern...
KELLOG 1 KELLOG |17 Maple...

create new sorted file to
replace previous

How much effort we must do (in terms of disk accesses 7)

e Read file sequentially once

e Go through each record in random order (seek)

e Write each record once (sequentially)

Why bother to write the file back?

Use keynode array to create an index file instead.

index file

BELL

HARRIS

HARRISON

KELLOG

R IO N W

This is called INDEXING !!

Pinned Records

records

HARRISON | 387 Eastern...

KELLOG | 17 Maple...

HARRIS | 4343 West...

BELL | 8912 Hill...

Leave file unchanged

Remember that in order to support deletions we used AVAIL LIST, a list of

available space.

Date: January 8-9, 2001 CSI 2131 Page: 5
Prof. Lucia Moura Lecture 11

The AVAIL LIST contains info on the physical information of records.
In such a file a record is said to be pinned.

Using an index file for sorting leaves the AVAIL LIST and positions of
records unchanged. This is convenient.

Indexing (Chapter 7.1-7.3)
e Simple indexes use simple arrays.
e An index lets us impose order on a file without rearranging the file.

e Indexes provide multiple access paths to a file - multiple indexes
(library catalog providing search for author, book and title).

e An index can provide keyed access to variable-length record files.

A Simple Index for Entry-Sequenced File

Records (Variable Length)

17 | LON | 2312 | Symphony N.S]| ...
62 | RCA | 2626 | Quartetin Csharp]| ...
117 | WAR| 23699 | Adagio | ...

152 | ANG|3795| Violin Concerto | ...

Address of
Record

Primary key = company label + record ID (LABEL ID).

e Index is sorted (main memory).

e Records appear in file in the order they entered.

Date: January 8-9, 2001 CSI 2131 Page: 6
Prof. Lucia Moura Lecture 11

Index :

Reference
key field
ANG3795 152
LONZ2312 17
RCA2626 62
WAR23699 117

How to search for a recording with given LABEL 1D ?

“Retrieve recording” operation :

e Binary search (in main memory) in the index : find LABEL ID, which
leads us to the reference field.

e Seek for record in position given by the reference field.
Two issues to be addressed :

e How to make a persistent index (i.e. how to store the index into a file
when it is not in main memory).

e How to guarantee that the index is an accurate reflection of the contents
of the file. (This is tricky when there are lots of additions, deletions
and updates.)

