Date: February 1-2, 2001 CSI 2131 Page: 1

Prof. Lucia Moura Lecture 9

Lempel-Ziv Codes

Last Time: Compression techniques including Huffman codes.
Today : Lempel-Ziv codes.
Reference: Class notes available in the web page.

Lempel-Ziv Codes

Note : There are several variations of Lempel-Ziv Codes. We will look at

LZ78.

Ex: zip and unzip and Unix compress and uncompress use Lempel-Ziv codes.
Let us look at an example for an alphabet having only two letters:
aaababbbaaabaaaaaaabaabb

Rule : Separate this stream of characters into pieces of text so that the short-
est piece of data is a string of characters we have not seen yet.

alaalblablbblaaalbalaaaalaablaabb

1. We see "a".

2. "a" has been seen, we now see "aa'".

3. We see "b".

4. "a" has been seen, we now see "ab".

5. "b" has been seen, we now see "bb" .

6. "aa" has been seen, we now see "aaa'".
7. "b" has been seen, we now see "ba'".

8. "aaa" has been seen, we now see "aaaa".

9. "aa" has been seen, we now see "aab".

Date: February 1-2, 2001 CSI 2131 Page: 2

Prof. Lucia Moura Lecture 9

10. "aab" has been seen, we now see "aabb".

Notice that this is a dynamic method.
The pieces are indexed from 1 to n.

In the example :

Index : 012 34 5 6 7 8 9 10
Olalaalblablbblaaal|balaaaalaablaabb

0 = Null string

Encoding :

Index : 1 2 3 4 5 6 7 8 9 10
O0al1al0bl1bl3bl2al3al6al2b]|9b

Since each piece is the concatenation of a piece already seen with a new char-
acter, the message can be encoded by a previous index plus a new character.

Indeed a digital tree can be built when encoding or decoding :

0
a b
1 3
2 4 7 5
a b
6 9
a b

Date: February 1-2, 2001 CSI 2131 Page: 3

Prof. Lucia Moura Lecture 9

When a node is inserted the code for the current piece becomes the parent
node combined with the new character.

Note that this tree is not binary in general. Here, it is binary because the
alphabet has only 2 letters.

Bit Representation of Coded Information

How many bits are necessary to represent each integer with index n 7 The
integer is at most n — 1, so the answer is: at most the number of bits to
represent the number n — 1.

1 2 3 4 5 6 7 8 9 10
O0al1al0bl1bl3bl2al3al6al2bl|9b

Index 1: no bit (always start with zero)

Index 2: at most 1, since previous index can be only 0 or 1.
Index 3: at most 2, since previous index is between 0-2.
Index 4: at most 2, since previous index is between 0-3.
Index 5-8: at most 3, since previous index is between 0-7
Index 9-16: at most 4, since previous index is between 0-15

Each letter is represented by 8 bits. FEach index is represented using the
largest number of bits possibly required for that position. For the previous
example, this representation would be as follows:

<a>1<a>0001011010<a>011<a>110<a>00101001

Note that <a> and above should be replaced by the ASCII code for a
and b, which uses 8 bits. We didn’t replace them for clarity and conciseness.

Total number of bits in the encoded example :

10x8404+14+2x244x3+2x4=105 bits

The original message was represented using 24 x 8 = 192 bits.

Date: February 1-2, 2001 CSI 2131 Page: 4
Prof. Lucia Moura Lecture 9

Decompressing

1 2 3 4 5 6 7 8 9 10
O0al1al0bl1bl3bl2al3al6al2bl|9b

| |previous |added |
| |pointer |character]|

| 0 | - I - I
| 1 | 0 | a I
| 2 | 1 | a I
| 3 | 0 | b I
| 4 | 1 | b I
| 5 | 3 | b I
| 6 | 2 I a I
| 7 | 3 | a |
| 8 | 6 | a I
| 9 | 2 | b I
| 10 | 9 I b I

As the table is constructed line by line, we are able to decode the message
by following the pointers to previous indexes which are given by the table.
Try it, and you will get:

a aa b ab bb aaa aaa ba aaaa aab aabb

Irreversible Compression

All previous techniques : we preserve all information in the original data.
Irreversible compression is used when some information can be sacrificed.
Example :

Shrinking an image from 400-by-400 pixels to 100-by-100 pixels. 1 pixel in

the new image for each 16 pixels in the original message.

LIt is less common than reversible compression.

Date: February 1-2, 2001 CSI 2131 Page: 5

Prof. Lucia Moura Lecture 9

Final Notes :
In UNIX:

- pack and unpack use Huffman codes byte-by-byte. 25-40% for text files,
much less for binary files (more uniform distribution)

- compress and uncompress use Lempel-Ziv.

