Date: January 29-30, 2001 CSI 2131 Page:

Prof. Lucia Moura Lecture 8

Data Compression

Reference : Chapter 6.2 plus complementary material in Huffman codes.

Last Time : Buffer Management

Today

e Introduction to Data Compression

e Techniques for Data Compression
1) Compact Notation
2) Run-length Encoding
3) Huffman Code

Next Time : Data Compression: Lempel-Ziv Code.

Date: January 29-30, 2001 CSI 2131 Page: 2

Prof. Lucia Moura Lecture 8

Data Compression = Encoding the information in a file in such a way that
it takes less space.

Techniques for Data Compression:

1. Using Compact Notation

Ex: File with fields: lastname, province, postal code, etc.

Province field uses 2 bytes (e.g. ‘ON’, ‘BC’) but there are only 13
provinces and territories which could be encoded by using only 4 bits
(compact notation).

16 bits are encoded by 4 bits (12 bits were redundant, i.e. added no
extra information)
Disadvantages:

e The field “province” becomes unreadable by humans.

e Time is spent encoding (‘ON’ — 0001) and decoding (0001 —
‘ON).

e [t increases the complexity of software.

2. Run-length Encoding
Good for files in which sequences of the same byte may be frequent.

Example: Figure 6.1 in page 205 of the textbook: image of the sky.

o A pixel is represented by 8 bits.
e Background is represented by the pixel value 0.

The idea is to avoid repeating, say, 200 bytes equal to 0 and represent
it by (0, 200).

Date: January 29-30, 2001 CSI 2131 Page: 3

Prof. Lucia Moura Lecture 8

If the same value occurs more than once in succession, substitute by 3
bytes:

e a special character - run length code indicator (use 1111 1111 or
FF in hexadecimal notation)

e the pixel value that is repeated (FF is not a valid pixel anymore)

e the number of times the value is repeated (up to 256 times)

Encode the following sequence of Hexadecimal bytes:

22 23 24 24 24 24 24 24 24 25
26 26 26 26 26 26 25 24

Run-length encoding:
22 23 FF 24 07 25 FF 26 06 25 24

18 bytes reduced to 11.

3. Variable Length Codes and Huffman Code
Example of a variable length code:

Morse Code (two symbols associated to each letter)

A
B

=1 .

o B

Since E and T are the most frequent letters, they are associated to the
shortest codes (. and - respectively)

Date: January 29-30, 2001 CSI 2131 Page: 4

Prof. Lucia Moura Lecture 8

Huffman Code is a variable length code, but unlike Morse Code the
encoding depends on the frequency of letters occurring in the data set.

Example of Huffman Code:
Suppose the file content is:

L A M] [S A [M MY |

Total: 10 characters

Letter A I M S Y /b
Frequency | 2 1 3 1 1 2
Code 00 1010 | 11 1011 | 100 01

* Huffman Code is a prefix code: no codeword is a prefix of any other.
(we are representing the space as “/b”)

Encoded message
1010010011011011001111100

25 bits rather than 80 bits (10 bytes)
Huffman Tree (for easy decoding)

Consider the encoded message:

101001001101. ..

o Interpret the 0’s as “go left” and the 1’s as “go right”.

e A codeword for a character corresponds to the path from the
root of the Huffman tree to the leaf containing the character.

Following the labeled edges in the Huffman tree we decode the above
message.

Date: January 29-30, 2001 CSI 2131

Prof. Lucia Moura

Lecture 8

Page: 5

1010
01
00
11
01
etc.

leads
leads
leads
leads
leads

us
us
us
us
us

to I
to /b
to A
to M
to /b

Properties of Huffman Tree:

Every internal node has 2 children

Smaller frequencies are further away from the tree

The 2 smallest frequencies are siblings

The number of bits required to encode the file is minimized:

Where:

B(T) = % f(c).dr(c)

(ceC)

B(T) = number of bits needed to encode the file using tree T,

Date: January 29-30, 2001

Prof. Lucia Moura

CST 2131

Lecture 8

Page: 6

In our example:
B(T)=2x24+1x443x24+1x441x3+2x2=25

What is the average number of bits per encoded letter 7

f(¢) = frequency of character c,
dr(c) = length of the codeword for character c.

Average number of bits per letter = B(T)/total number of characters

= 25/10 = 2.5

The way Huffman Tree is constructed guarantees that B(T) is as small
as possible.

How the Huffman Tree is constructed ?

The algorithm employs a Greedy Method that always merges the subtrees
of smallest weights forming a new subtree whose root has the sum of the

weight of its children.

The algorithm in action:

Subtrees:

Merge the two subtrees of smallest weight (break ties arbitrarily) :

S:1

Y1

A2

/b:2

M:3

Date: January 29-30, 2001 CSI 2131 Page: 7

Prof. Lucia Moura Lecture 8
Subtrees: Y1 A:2 /b:2 M:3
0 1
I:1 S:1
Subtrees: A2 /b:2

Subtrees:

A2 /b:2

Subtrees:

A2 /b:2

Date: January 29-30, 2001 CSI 2131 Page: 8

Prof. Lucia Moura Lecture 8

Final Tree:

Pseudo-Code for Huffman Algorithm:
A priority queue Q is used to identify the smallest-weight subtrees to merge.

A priority queue provides the following operations:
e Q.insert(x): insert x to Q
e Q.minimum(): returns element of smallest key

e Q.extract-min(): removes and returns the element with smallest key

Ex:
Heaps: Each of the three operations can be done in O(log,,)
Arrays: Each of the three operations can be done in O(n)

Date: January 29-30, 2001 CSI 2131 Page: 9

Prof. Lucia Moura Lecture 8

Pseudo-Code: Huffman

Input: characters and their frequencies

(c1, flc1l), (c2, flc2]), ..., (cn, flenl)
Output: returns the Huffman Tree

{ Make heap Q using cl, c2, ..., cn;

1 ton-14do {
allocate new node;

o
o
H
'_l
]

z
1 Q.extract-min();
r = Q.extract-min();
z.left = 1;
z.right = r;
f[z] = £flr] + £[1];
Q.insert(z);
b
Return Q.extract-min();

3

What is the running time of this algorithm if the priority queue is imple-
mented as:

A) Heap (Array Heap)

- Build heap O(n.log,) or O(n)

- Extract-min and insert takes O(log,,)
- Loop iterates n-1 times

total time: O(n.log,)

B) List

- Build heap takes O(n)

- Extract-min and insert takes O(n)
- Loop iterates n-1 times

total time: O(n?)

e Pack and unpack commands in Unix use Huffman Codes byte-by-
byte.

e They achieve 25 - 40% reduction on text files, but is not so good for
binary files that have more uniform distribution of values

