
Date: January 8-9, 2001 CSI 2131 Page: 1
Prof. Lucia Moura Lecture 2

Fundamental File Processing Operations

Last Time

Introduction to File Management

Today

• Physical files and logical files

• Opening and closing files

• Reading from files and writing into files

• How these operations are done in C and C++

• Standard input/output and redirection

• Sample programs for file manipulation

Reference : Folk, Zoellick and Riccardi. Chapter 2.



Date: January 8-9, 2001 CSI 2131 Page: 2
Prof. Lucia Moura Lecture 2

Physical Files and Logical Files

physical file: a collection of bytes stored on a disk or tape

logical file: a ”channel” (like a telephone line) that connects the program
to a physical file

- The program (application) sends (or receives) bytes to (from) a file through
the logical file. The program knows nothing about where the bytes go (came
from).

- The operating system is responsible for associating a logical file n a pro-
gram to a physical file in disk or tape. Writing to or reading from a file in a
program in done through the operating system.

Note that from the program point of view, input devices (keyboard) and
output devices (console, printer, etc) are treated as files - places where bytes
come from or are sent to.

There may be thousands of physical files on a disk, but a program only have
about 20 logical files open at the same time.

The physical file has a name, for instance myfile.txt

The logical file has a logical name used for referring to the file inside the
program. This logical name is a variable inside the program, for instance
outfile

In C programming language, this variable is declared as follows:

FILE * outfile;

In C++ the logical name is the name of an object of the class fstream:

fstream outfile;

In both languages, the logical name outfile will be associated to the physical
file myfile.txt at the time of opening the file as we will see next.



Date: January 8-9, 2001 CSI 2131 Page: 3
Prof. Lucia Moura Lecture 2

Opening Files

Opening a file makes it ready for use by the program.

Two options for opening a file :

• open an existing file

• create a new file

When we open a file we are positioned at the beginning of the file.

In C :

...

FILE * outfile;

outfile = fopen("myfile.txt", "w");

...

The first argument indicates the physical name of the file. The second one
determines the “mode”, i.e. the way, the file is opened.

For example :
“r” = open for reading,

“w” = open for writing (file need not to exist),

“a” = open for appending (file need not to exist),

among other modes (“r+”,“w+”, “a+”).

In C++ :
...

fstream outfile;

outfile.open("myfile.txt",ios::out);

...

The second argument is an integer indicating the mode. Its value is set as a
“bitwise or” of constants defines in class ios.



Date: January 8-9, 2001 CSI 2131 Page: 4
Prof. Lucia Moura Lecture 2

Closing Files

This is like “hanging up” the line connected to a file.

After closing a file, the logical name is free to be associated to another phys-
ical file.

Closing a file used for output guarantees everything has been written to the
physical file.

We will see later that bytes are not sent directly to the physical file one by
one; they are first stored in a buffer to be written later as a block of data.
When the file is closed the leftover from the buffer is flushed to the file.

Files are usually closed automatically by the operating system at the end of
program’s execution.

It’s better to close the file to prevent data loss in case the program does not
terminate normally.

In C :

fclose(outfile);

In C++ :

outfile.close();



Date: January 8-9, 2001 CSI 2131 Page: 5
Prof. Lucia Moura Lecture 2

Reading

Read data from a file and place it in a variable inside the program.

Generic Read function (not specific to any programming language)

Read(Source_file, Destination_addr, Size)

Source file = logical name of a file which has been opened
Destination addr = first address of the memory block were data should

be stored
Size = number of bytes to be read

In C (or in C++ using C streams) :

char c;

FILE * infile;

...

infile = fopen("myfile,"r");

fread(&c,1,1,infile);

1st argument: destination address (address of variable c)
2nd argument: element size in bytes (a char occupies 1 byte)
3rd argument: number of elements
4th argument: logical file name

In C++ :

char c;

fstream infile;

infile.open("myfile.txt",ios::in);

infile >> c;

Note that in the C++ version, the operator >> communicates the same info
at a higher level. Since c is a char variable, it’s implicit that only 1 byte is
to be transferred.



Date: January 8-9, 2001 CSI 2131 Page: 6
Prof. Lucia Moura Lecture 2

Writing

Write data from a variable inside the program into the file.
Generic Write function :

Write (Destination_File, Source_addr, Size)

Destination file = logical file name of a file which has been opened
Source addr = first address of the memory block where data

is stored
Size = number of bytes to be written

In C (or in C++ using C streams) :

char c;

FILE * outfile;

outfile = fopen("mynew.txt","w");

fwrite(&c,1,1,outfile);

In C++ :

char c;

fstream outfile;

outfile.open("mynew.txt",ios::out);

outfile << c;

Detecting End-of-File

When we try to read and the file has ended, the read was unsuccessful. We
can test whether this happened in the following ways :

In C : Check whether fread returned value 0

int i;

i = fread(&c,1,1,infile);

if (i==0) // file has ended

...

in C++: Check whether infile.fail() returns true

infile >> c;

if (infile.fail()) // file has ended

...



Date: January 8-9, 2001 CSI 2131 Page: 7
Prof. Lucia Moura Lecture 2

Logical file names associated to standard I/O

devices and re-direction

purpose default meaning logical name
in C in C++

Standard Output Console/Screen stdout cout

Standard Input Keyboard stdin cin

Standard Error Console/Screen stderr cerr

These streams don’t need to be open or closed in the program.

Note that some operating systems allow this default meanings to be changed
via a mechanism called redirection.

In UNIX and DOS : (suppose that prog is the executable program)

Input redirection (standard input becomes file in.txt)

prog < in.txt

Output redirection (standard output becomes file out.txt. Note that stan-
dard error remains being console)

prog > out.txt

You can also do : prog < in.txt > out.txt

Sample programs for file manipulation

Next we show programs in C++ to display the contents of a file in the screen:

• Open file for input (reading)

• While there are characters to read from the input file :

Read a character from the file

Write the character to the screen

• Close the input file



Date: January 8-9, 2001 CSI 2131 Page: 8
Prof. Lucia Moura Lecture 2

// listc.cpp

#include <stdio.h>

main() {

char ch;

FILE * infile;

infile = fopen("A.txt","r");

while (fread(&ch,1,1,infile) != 0)

fwrite(&ch,1,1,stdout);

fclose(infile);

}

Redirecting output to file called copy.txt. Suppose executable file for this
program is called listc.exe

listc.exe > copy.txt

// listcpp.cpp

#include <fstream.h>

main() {

char ch;

fstream infile;

infile.open("A.txt",ios:in);

infile.unsetf(ios::skipws); // include white space in read

infile >> ch;

while (! infile.fail()) {

cout << ch ;

infile >> ch ;

}

infile.close();

}

A similar redirection can be done here.


