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Elements of Graph Theory 

Quick review on trees and basic concepts of
 Graphs 

New topics 
• Graph Isomorphism 
• Connectivity in directed graphs 
• Euler tours and Hamiltonian paths (Chap 10.5) 
• we will mostly skip shortest paths (Chapter 10.6), as that was
 covered in Data Structures 

• Planar Graphs (Chap 10.7) 
• Graph coloring  (Chap 10.8) 
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Applications of Graphs 

 Applications of Graphs: Potentially anything (graphs can
 represent  relations, relations can describe the extension
 of any predicate). 

 Applications in networking, scheduling, flow optimization,
 circuit design, path planning. 

 More applications: Geneology analysis, computer game
-playing, program compilation, object-oriented design, … 
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Simple Graphs 

Simple Graphs: Correspond to symmetric, irreflexive binary relations R. 
!  A simple graph G=(V,E) consists of: 

!  a set V of vertices or nodes (V corresponds to the universe of the
 relation R), 

!  a set E of edges / arcs / links: unordered pairs of [distinct]
 elements u,v ∈ V, such that uRv. 

!  A directed graph (V,E) consists of a set of vertices V and a binary
 relation (need not be symmetric) E on V. 

Visual Representation 
of a Simple Graph 

u, v are adjacent / neighbors / connected. 
Edge e is incident with vertices u and v. 
Edge e connects u and v. 
Vertices u and v are endpoints of edge e. 
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Degree of a Vertex 
!  Let G be an undirected graph, v∈V a vertex. 
!  The degree of v, deg(v), is its number of incident edges.

 (Except that any self-loops are counted twice.) 
!  A vertex with degree 0 is called isolated. 
!  A vertex of degree 1 is called pendant. 

Handshaking Theorem: Let G be an undirected (simple, multi-, or
 pseudo-) graph with vertex set V and edge set E.  Then 

Corollary: Any undirected graph has an even number of vertices
 of odd degree. 
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Directed Degree 

!  Let G be a directed graph, v a vertex of G. 
!  The in-degree of v, deg-(v), is the number of edges going to v. 
!  The out-degree of v, deg+(v), is the number of edges coming

 from v. 
!  The degree of v, deg(v):≡deg-(v)+deg+(v), is the sum of v’s in

-degree and out-degree. 

!  Directed Handshaking Theorem:  
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Special Graph Structures 

K1 K2 K3 K4 K5 K6 

C3 C4 C5 C6 C7 C8 

Complete graphs Kn 

Cycles Cn 
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Special Graph Structures 

W3 W4 W5 W6 W7 W8 

Q0 
Q1 Q2 Q3 

Q4 

Number of vertices: 2n.  Number of edges? 

Wheels Wn 

n-Cubes Qn 
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A graph G=(V,E) is bipartite (two-part) iff V = V1 ∪ V2  
Where V1 ∩ V2=∅ and ∀e∈E: ∃v1∈V1,v2∈V2: e={v1,v2}. 

For m,n∈N, the complete bipartite graph Km,n  
is a bipartite graph where |V1| = m, |V2| = n,  
and E = {{v1,v2}|v1∈V1 ∧ v2∈V2}. 

A subgraph of a graph G=(V,E) is a graph H=(W,F) where W⊆V and F⊆E. 

Bipartite Graphs 

V1 

V2 

K4,3 

G H Dr-Zaguia-CSI2101-W17 
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§10.3: Graph Representations & Isomorphism 

!  Graph representations: 
!  Adjacency lists. 
!  Adjacency matrices. 
!  Incidence matrices. 

!  Graph isomorphism: 
!  Two graphs are isomorphic iff they are identical

 except for their node names. 
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Adjacency Lists 

Adjacency Lists: A table with 1 row per vertex, listing its adjacent
 vertices. 

a 
b 

d 

c 

f 
e 

Directed Adjacency Lists: 1 row per node, listing the terminal nodes
 of each edge incident from that node. 
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Adjacency Matrices 

!  A way to represent simple graphs (possibly with self-loops.) 
!  Matrix A=[aij], where aij is 1 if {vi, vj} is an edge of G, and is 0

 otherwise. 
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a 
b 

d 

c 

f 
e 

Can extend to pseudographs by letting each matrix elements be the number
 of links (possibly >1) between the nodes. 

0 1 1 0 0 0 

1 0 1 0 1 1 

1 1 0 0 0 1 

0 0 0 0 0 0 

0 1 0 0 0 0 

0 1 1 0 0 0 
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Incidence Matrices 

!  For a graph with n vertices and m edges, the incidence matrix is
 a nxm matrix A=[aij], where aij is 1 if if the vertex vi and
 edge ej are incident , and is 0 otherwise. 
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a 
b 

c 

e 

d 

0 0 1 1 0 0 

0 1 0 1 1 1 

1 0 1 0 0 1 

0 1 0 0 0 0 

1 0 0 0 1 0 

0 

e3 e2 

e4 

e1 
e5 

e6 
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Graph Isomorphism 

Simple graphs G1=(V1, E1) and G2=(V2, E2) are isomorphic
 iff  

There exists a bijection f:V1→V2 such that ∀ a,b∈V1, a and
 b are adjacent in G1 iff f(a) and f(b) are adjacent in G2. 

! f is the “renaming” function between the two
 node sets that makes the two graphs identical. 

! This definition can easily be extended to other
 types of graphs. 
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Isomorphism Example 
If isomorphic, label the 2nd graph to show the isomorphism, else

 identify difference. 

a 

b 

c d 

e 
f 

b 

d 

a 

e 
f c 
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Necessary but not sufficient conditions for  
  G1=(V1, E1) to be isomorphic to G2=(V2, E2): 

• We must have that |V1|=|V2|, and |E1|=|E2|. 
• The number of vertices with degree n is the same in both graphs. 
• For every proper subgraph g of one graph, there is a proper subgraph of
 the other graph that is isomorphic to g. 
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Are These Isomorphic? 

!  If isomorphic, label the 2nd graph to show the
 isomorphism, else identify difference. 

a 
b 

c 

d 

e 

•   Same # of vertices 

•   Same # of edges 

•   Different # of
 vertices of degree
 2!   (1 vs 3) 
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§10.4: Connectivity 

!  In an undirected graph, a path of length n from u to v is a
 sequence of adjacent edges going from vertex u to vertex v. 

!  A path is a circuit if u=v. 
!  A path traverses the vertices along it. 
!  A path is simple if it contains no edge more than once. 

!  Paths in Directed Graphs: Same as in undirected graphs, but the
 path must go in the direction of the arrows. 

An undirected graph is connected iff there is a path between every pair of
 distinct vertices in the graph. 
There is a simple path between any pair of vertices in a connected undirected
 graph. 
Connected component: connected subgraph 
A cut vertex or cut edge separates 1 connected component into 2 if removed 
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Directed Connectedness 

!  A directed graph is strongly connected iff there is a directed
 path from a to b for any two vertices a and b.   

!  It is weakly connected iff the underlying undirected graph (i.e.,
 with edge directions removed) is connected. 

!  Note strongly implies weakly but not vice-versa. 

Note that connectedness, and the existence of a circuit or simple
 circuit of length k are graph invariants with respect to isomorphism. 

Counting different paths: the number of different paths from a vertex i to
 a vertex  j is the (i, j) entry in Ar, where A is the adjacency matrix of the
 graph 

  proof by induction on r 
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§10.5: Euler & Hamilton Paths 

!  An Euler circuit in a graph G is a simple circuit
 containing every edge of G. 

!  An Euler path in G is a simple path containing
 every edge of G. 

!  A Hamilton circuit is a circuit that traverses
 each vertex in G exactly once. 

!  A Hamilton path is a path that traverses each
 vertex in G exactly once. 
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Can we walk through town, crossing each bridge exactly
 once, and return to start? 

19 

Bridges of Königsberg Problem 

A 

B 

C 

D 

The original problem 

Equivalent multigraph 

Theorem: A connected multigraph has an Euler circuit iff each vertex
 has even degree. 

Proof:  
(→) The circuit contributes 2 to degree of each node. 
(←) By construction using algorithm on p. 580-581 
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Euler Path Problem 

!  Theorem:  A connected multigraph has an Euler path (but not an
 Euler circuit) iff it has exactly 2 vertices of odd degree. 
!  One is the start, the other is the end. 

!  Euler tour in a directed graph 
!   in-degrees must match out-degrees in all nodes 

!  Euler Circuit Algorithm 
!  Begin with any arbitrary node. 
!  Construct a simple path from it till you get back to start. 
!  Repeat for each remaining subgraph, splicing results back into

 original cycle. 
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Round-the-World Puzzle 

!  Can we traverse all the vertices of a
 dodecahedron, visiting each once?` 

Dodecahedron puzzle Equivalent graph 
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Hamiltonian Path Theorems 

!  Dirac’s theorem:  If (but not only if) G is connected,
 simple, has n≥3 vertices, and ∀v deg(v)≥n/2, then
 G has a Hamilton circuit. 

!  Ore’s corollary:  If G is connected, simple, has
 n≥3 nodes, and deg(u)+deg(v)≥n for every pair
 u,v of non-adjacent nodes, then G has a
 Hamilton circuit. 
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Hamiltonian Tours - Applications 

Traveling salesmen problem 
•  in a weighted graph, find the shortest tour visiting every
 vertex 
•  It is the same problem as finding the shortest Hamiltonian
 path in complete graphs 

Gray codes 
•  find a sequence of codewords such that each binary string is
 used, but adjacent codewords are close to each other (differ by
 1 bit only) 
•  all binary strings of length n = vertices of n-dimensional
 hypercube 
•  edges of the hypercube = vertices that differ by 1 bit 
•  our problem = find a Hamiltonian circuit in hypercubes 
•  Gray codes – one particular solution 

•  can be defined recursively (as hypercubes are) 
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Gray Codes 

!  G1 = [0,1] 
!  Gn = [0Gn-1,1Gn-1]  “G  is the reverse order of G” 

!  G2 = [0G1,1G1] = [00,01,11,10] 
!  G3 = [0G2,1G2] =

 [000,001,011,010,110,111,101,100] 

We may prove by induction that this is a Gray code 
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Hypercube 

Hypercube(defined recursively) 
!  Hypercube of dimension n contains  2n nodes

 (binary strings of length n) and each node is
 adjacent to n other nodes. 

!  Two nodes are adjacent if they differ by a single
 bit. 

000 001

101100

010 011

110 111

00 01

10 11

0 1
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Hypercube et Codes Gray 

 A Grey Code will construct a Hamiltonian
 cycle in Hypercubes.  

WHY? 

000 001

101100

010 011

110 111
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§11.1: Introduction to Trees 

!  A tree is a connected undirected graph that contains no
 circuits. 
!  Theorem: In a tree there is a unique simple path

 between any two of its nodes. 

!  A (not-necessarily-connected) undirected graph without
 simple circuits is called a forest. 
!  You can think of it as a set of trees having disjoint sets

 of nodes. 

!  A leaf node in a tree or forest is any pendant or isolated
 vertex.  An internal node is any non-leaf vertex (thus it
 has degree ≥). 
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Trees as Models 

!  Can use trees to model the following: 
!  Saturated hydrocarbons 
!  Organizational structures 
!  Computer file systems 

!  In each case, would you use a rooted or
 a non-rooted tree? 
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Some Tree Theorems 

!  Any tree with n nodes has e = n−1 edges. 
!  Proof: By induction on the number of vertices

 “Consider removing leaves.” 

!  A full m-ary tree with i internal nodes has
 n=mi+1 nodes, and ℓ=(m−1)i+1 leaves. 
!  Proof: There are mi children of internal nodes,  plus

 the root. And, ℓ = n−i = (m−1)i+1.  

!  Thus, when m is known and the tree is full, we
 can compute all four of the values e, i, n, and ℓ,
 given any one of them. 
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Some More Tree Theorems 

!  Definition: The level of a node is the length of
 the simple path from the root to the node. 
!  The height of a tree is maximum node level. 
!  A rooted m-ary tree with height h is called balanced if

 all leaves are at levels h or h−1. 

!  Theorem:  There are at most mh leaves in an
 m-ary tree of height h. 
!  Corollary:  An m-ary tree with ℓ leaves has height

 h≥⎡logmℓ⎤ .  If m is full and balanced then h=⎡logmℓ⎤.  
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§11.2: Applications of Trees 

!  Binary search trees 
!  A simple data structure for sorted lists 

!  Decision trees 
!  Minimum comparisons in sorting algorithms 

!  Prefix codes 
!  Huffman coding 

!  Game trees 
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§11.3: Tree Traversal 

!  Universal address systems 
!  Traversal algorithms 

!  Depth-first traversal: 
!  Preorder traversal 
!  Inorder traversal 
!  Postorder traversal 

!  Breadth-first traversal 
!  Infix/prefix/postfix notation 
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Planar Graphs 

Planar graphs are graphs that can be drawn in the
 plane without edges having to cross. 

Understanding planar graph is important: 
!   Any graph representation of maps/ topographical

 information is planar. 
!  graph algorithms often specialized to planar graphs

 (e.g. traveling salesperson) 

!   Circuits usually represented by planar graphs 
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Planar Graphs 
-Common Misunderstanding 

Just because a graph is drawn with edges
 crossing doesn’t mean its not planar. 

Q:  Why can’t we conclude that the
 following is non-planar? 
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Graphes planaires – bien
 comprendre le concept 

A: Because it is isomorphic to a graph which is planar: 
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Proving Planarity 

 To prove that a graph is planar amounts to
 redrawing the edges in a way that no
 edges will cross.   

 May need to move vertices around and the
 edges may have to be drawn in a very
 indirect fashion. 
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Proving Planarity 
3-Cube 

The 3-cube is planar: 
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Proving Planarity? 
4-Cube 

Seemingly not planar, but how would
 one prove this! 
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The smallest graphs that are not
 planar 

!  K5, K3,3 
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Disproving Planarity: Kuratowski / Wagner 

 A graph is planar if and only if it does not
 contain the K5 and the K3,3 as a
 homeomorphic  subgraph / as a minor. 

!  Minor: H is a minor of G, if H can be
 obtained from G by a series of 0 or more
 deletions of vertices, deletions of edges,
 and contraction of edges. 

!  Does not yield fast recognition algorithm! 
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Euler’s theorem 

 Euler’s theorem: Let G be a connected plane
 graph with n vertices, m edges, and f faces.
 Then n + f – m = 2. 

!  Proof. By induction.  
!  True if m=0. 
!  If G has a circuit, then delete an edge and … 
!  If G has a vertex v of degree 1, then delete v and

 … 

 … 
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Euler’s theorem Corollaries 

!  If G is a connected plane graph with no parallel edges
 and no self-loops, with n > 1, then m ≤ 3n-6. 
!  Every face `has’ at least three edges; each edge `is

 on’ two faces, or twice on the same face.  
!  Every plane graph with no parallel edges and no self

-loops has a vertex of degree at most 5. 
!  Consequence: K5 is not a planar graph 

!  If G is a planar simple graph with v ≥3 and no cycles
 of length 3, then e≤2v-4 
!  Consequence: K3,3 is not planar 



Proof of Euler’s theorem Corollaries 

Suppose that G has at most m edges, consider some plane drawing
 of G, with f faces. Consider the number of pairs (e, F) where e
 is one of the edges bounding the face F. 

For each edge e, there are at most 2 faces that it bounds. So the
 total number of these edge face pairs has to be less than 2m.
 On the other hand, because G is a simple graph, each face is
 bounded by at least 3 edges. Therefore, the total number of
 edge-face pairs is greater than or equal to 3f.   So 3f ≤2m 

By the Euler Polyhedron Formula, n-m+f=2, so, 3n-3m+3f=6.
 Since 3f ≤ 2m, 3f = 6 -3n+3m ≤ 2m. Therefore m ≤ 3n -6. 

If G has no triangles, each face must be bounded by 4 or more
 edges. Thus 2f ≤ m and 4 -2n+2m ≤ m , therefore m ≤ 2n -4. 
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Euler’s theorem Corollaries 

Every simple, planar graph has a vertex of degree less
 than 6. 

Proof: 

Thus the average degree (6n-12)/n = 6 – 12/n < 6. 
So at least one of the vertices has degree less than 6.  
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Graph Colorings 

Vertex coloring of a graph 
•  assign a color to each vertex so that adjacent vertices
 are of different colors 
•  i.e. find c: V → N such that  (u,v) ∈E→ c(u) ≠ c(v) 

Chromatic number χ of a graph G 
•  the least amount of colors needed to color the graph 
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Graph Colorings 

So, what is a chromatic number for 
•  Kn? 
•  Cn? 
•  Km,n? 

Bipartite Graphs 
The chromatic number of a graph G is 2 if and only if G is
 a bipartite graph 

Planar Graphs? 
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The four Color Theorem 

The four color theorem: The chromatic number of
 every simple planar graph is at most four 

We can prove that six  colors are enough 

For general graphs? 
 only exponential algorithms known 
 even finding approximation is difficult 
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Six color Theorem 

Proof of the six color theorem: by induction on n, the number of
 vertices of the graph. 

Basis Step: If G has fewer than seven vertices then the result is
 obvious. Suppose that G has n vertices with n ≤ 7.  

Inductive step: We assume that all simple graphs with n-1 vertices
 are 6 colorable. Because of planarity and Euler’s theorem we
 know that G has a vertex v with degree less than 6. Remove v
 from G and all adjacent edges to v. The remaining subgraph
 has n-1 vertices and by the induction hypothesis it can be
 properly colored by 6 colors. Since v has at most 5 adjacent
 vertices in G, then v can be colored with a color different from
 all of its neighbours.   This ends the proof. 
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Graph Colorings - Applications 

Scheduling exams 
•  many exams, each student have specified which
 exams he/she has to take 
•  how many different exam slots are needed? (a
 student cannot be at two different exams at the same
 time) 

Vertices: courses 
Edges: if there is a student taking both courses 
Exam slots: colors 

Frequency assignments 
•  TV channels, mobile networks 
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